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YTHDF1 links hypoxia adaptation and non-small
cell lung cancer progression
Yulin Shi1,2,11, Songqing Fan3,11, Mengge Wu4,11, Zhixiang Zuo 5, Xingyang Li5, Liping Jiang1, Qiushuo Shen1,2,

Peifang Xu1, Lin Zeng1,2, Yongchun Zhou4, Yunchao Huang4, Zuozhang Yang4, Jumin Zhou1, Jing Gao6,

Hu Zhou 6, Shuhua Xu 7,8, Hongbin Ji 9, Peng Shi8,10, Dong-Dong Wu 8,10*, Cuiping Yang1* &

Yongbin Chen1,8*

Hypoxia occurs naturally at high-altitudes and pathologically in hypoxic solid tumors. Here,

we report that genes involved in various human cancers evolved rapidly in Tibetans and six

Tibetan domestic mammals compared to reciprocal lowlanders. Furthermore, m6A modified

mRNA binding protein YTHDF1, one of evolutionary positively selected genes for high-

altitude adaptation is amplified in various cancers, including non-small cell lung cancer

(NSCLC). We show that YTHDF1 deficiency inhibits NSCLC cell proliferation and xenograft

tumor formation through regulating the translational efficiency of CDK2, CDK4, and cyclin

D1, and that YTHDF1 depletion restrains de novo lung adenocarcinomas (ADC) progression.

However, we observe that YTHDF1 high expression correlates with better clinical outcome,

with its depletion rendering cancerous cells resistant to cisplatin (DDP) treatment.

Mechanistic studies identified the Keap1-Nrf2-AKR1C1 axis as the downstream mediator of

YTHDF1. Together, these findings highlight the critical role of YTHDF1 in both hypoxia

adaptation and pathogenesis of NSCLC.
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H
ypoxia, occurring under normal and pathological condi-
tions, imposes stress to cells and organisms. A lack of
oxygen has been linked to various human disease condi-

tions including diabetes and cancer, and constitutes challenges for
mammals including humans living at high altitude1–3. In the past
decade, many hypoxia adaptation selected SNPs have been
identified from studies on genetic variants that affect the
homeostatic and pathological responses to hypoxia in humans,
wild and domestic animals at high altitude4,5. For example,
positive selection has been found on prolyl hydroxylase 2 (PHD2)
coding gene EGLN1, where adaptive amino acid changing
mutations increased HIF-2α degradation to reduce the hemo-
globin (Hb) concentration in Tibetans, protecting them from
polycythemia, a condition considered as a blunted physiological
response at high altitude6. Consistent with this observation,
recent studies showed that the Tibetan specific HIF-2α adaptive
mutation down regulates its own expression7,8. Therefore,
hypoxia adaptation selected genes more likely play anti-hypoxia
or anti-HIF1/2 dependent roles to make animals or humans
behave normally under hypoxic environments. In contrast,
hypoxia can activate many adaptive cellular responses con-
tributing to hypoxic solid tumor progression, which is associated
with poor clinical outcome9. Under hypoxic conditions, PHDs
cannot hydroxylate HIF-1α and HIF-2α, which leads to HIF-1/2
protein stabilization, nuclear translocation and transcriptional
activation, promoting tumor progression through a metabolic
shift toward glycolysis, induction of angiogenesis, migration, and
more10. Thus, molecular events involved in both hypoxia adap-
tation and hypoxic solid tumors may not necessarily behave
identically.

Biomarkers for hypoxic solid tumors are traditionally identified
by comparing cancerous with paracancerous tissues using com-
prehensive integrative analyses. Burrowing rodents like naked
and blind mole rats living under extreme hypoxic conditions
evolve strong hypoxic tolerance and cancer resistance, and
could reveal molecular events important for cancer
progression11,12, suggests that we can use evolutionary theory to
identify genes involved in both hypoxia adaptation and hypoxic
solid tumors.

In this study, the large-scale population genome and tran-
scriptome data from Tibetan domestic mammals including dog,
horse, pig, cattle, sheep, and goat are analyzed, and are compared
with their corresponding species from low elevations. We find
that many genes involved in cancers evolved under positive
selection in Tibetan domesticated mammals. We identify
YTHDF1, an m6A modified mRNA binding protein, as a posi-
tively selected candidate gene for hypoxia adaptation. Discovered
in the 1970s, m6A is the most prevalent type of modification for
internal mRNA/lncRNA observed in a wide range of organisms
ranging from viruses to yeast, and to mammals13–16. Recent
findings have shown that deregulation of m6A modification leads
to brain developmental abnormalities and other diseases,
including cancers17–20. YTHDF1 expression is decreased in
highland mammals compared to lowlanders, furthermore it is
amplified in various types of cancers including NSCLC. We show
that YTHDF1 inhibition suppresses NSCLC cell proliferation,
colony formation, xenograft tumor formation, and de novo lung
ADC progression. We find that YTHDF1 low expression corre-
lates with a worse clinical outcome by rendering cancerous cells
resistant to cisplatin treatment through upregulating an anti-
oxidant system which is Keap1-Nrf2-AKR1C1 dependent, and
demonstrate that the resistance of hypoxia-induced cellular
apoptosis in YTHDF1 knockdown BEAS-2B cells utilizes the
same axis. In summary, this study provides insights into not only
adaptive evolution, but also the search for therapeutic targets for
cancers.

Results
Rapid evolution of genes involved in cancers. As hypoxia is a
driving force of tumor progression and metastasis by influencing
the expression of many tumor-associated genes (TAGs), we
investigated the evolutionary pattern of genes involved in various
cancers in human and six Tibetan domestic mammals (dog,
horse, pig, cattle, sheep and goat) at high altitude. This was done
using two groups of genes associated with cancers: one group
contained all the gene mutational information causally implicated
in cancers obtained from the Cancer Gene Census (CGC) data-
base21; and the other group of TAGs from the PubMed database
(http://www.binfo.ncku.edu.tw/TAG/) (Supplementary Fig. 1a).
We first utilized genome-wide single-nucleotide polymorphisms
(SNPs), genotyped by the Affymetrix Genome-Wide Human SNP
6.0 Array, from 31 unrelated Tibetans22, and compared them
with genomic data for Han people from HapMap (phase II,
http://hapmap.ncbi.nlm.nih.gov/). As evaluated by FST23, SNPs in
CGC genes harbored significantly higher levels of population
differentiation between Tibetans and Han Chinese (mean FST
value is 0.0596), than SNPs in other genes (mean FST value is
0.0585) (P= 3.04 × 10−6, by Mann–Whitney U test), suggesting
potentially faster evolution of CGC genes in the Tibetan popu-
lation. Meanwhile, SNPs in the TAG genes also displayed a higher
level of population differentiation than that in other genes,
although it did not reach statistical significance (P= 0.44, by
Mann–Whitney U test). Since the genotyping SNP array has
ascertained bias, we further used whole genome sequences of Han
Chinese and Tibetans from a previous study24,25, and calculated
iHS (Integrated Haplotype Score), XP-EHH (cross population
extended haplotype homozygosity) and FST values for each SNP
to evaluate the evolution of Tibetans23,26. We found strong evi-
dence of positive selection on genes associated with cancers
(Fig. 1a).

Next, we interrogated the evolutionary patterns of human cancer
related genes in six Tibetan domestic mammals including dog,
horse, pig, cattle, sheep, and goat. The differentiation of each SNP
was evaluated using FST, XP-EHH and ΔDAF (the difference of the
derived allele frequencies) between the populations from high and
low altitudes. Both CGC and TAG genes exhibited significant
increased evolution rate among the Tibetan domestic mammals,
which is inline with the above result in Tibetans (Fig. 1b). Because
the phenotypic evolution is tightly coupled to changes of gene
expression, we reasoned that TAGs might also change their mRNA
expression in domestic mammals in the highland, in addition to
DNA sequence alterations. To verify this, we used transcriptomes of
lung tissues from four Tibetan pigs and four lowland Min pigs by
RNA-sequencing. We found that differentially expressed genes were
significantly enriched in categories of cell death, apoptosis,
migration, etc., many of these genes have been documented to
play important roles during tumorigenesis (see Supplementary
Data 1). Interestingly, TAGs from CGC and TAG databases,
displayed substantial different levels of mRNA expression between
the Tibetan and Min pigs (Supplementary Fig. 1b).

Interestingly, we also found that age-standardized death rates
for various human cancers including lung, colorectal, liver and
breast cancers are significantly lower in Tibet than that in all
the other provinces (Supplementary Fig. 1c, d). This analysis
was done using the newly updated epidemiological data for
China at the provincial level27, which is similar to the longevity
and cancer resistance phenotypes observed in naked and blind
mole rats living under extreme hypoxic conditions11,12. The
above evidence makes it possible to identify putative cancer
biomarkers from genes selected for hypoxia adaptation. For this
purpose, we examined the function of positively selected genes
in domestic mammals from Tibet. Except for TEX2 and
YTHDF1, most of the top two ranked positively selected genes
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from individual domestic animals, EPAS1 and HBB in dog,
AKAP13 and PAPSS2 in horse, IFNLR1 and MBD3 in pig,
BIRC7 and YTHDF1 in cattle, TEX2 and IKZF1 in sheep, DSG3
and NOL4 in goat, have been documented to play pivotal roles
in different cancer types (Fig. 1c, d; see Supplementary Data 2).
This result strongly supports the feasibility of this approach,

and suggests that YTHDF1 and TEX2 are likely candidate genes
that play important roles in cancer progression.

YTHDF1 in hypoxia adaptation and cancer progression. Due to
the frequent decreased expression of TEX2 in various cancers and
lack of documented functions (Supplementary Fig. 1e), we
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decided to further corroborate our hypothesis on the roles of
YTHDF1, one of the m6A-specific mRNA binding and translation
regulating proteins, in hypoxia tolerance and cancer
progression28,29. Since no amino acid change within YTHDF1
was identified in highland cattle (data not shown), we reasoned
that a change in mRNA expression might have occurred during
evolution. Indeed, we found that the mRNA expression levels of
YTHDF1, but not the other two YTH domain family members
YTHDF2 and YTHDF3, were lower in the kidney and liver tissues
derived from highland cattle than those from lowland cattle
(Fig. 1e). To examine whether the low expression of YTHDF1
correlates with hypoxia adaptation in vitro, we knocked down
YTHDF1 mRNA expression in normal human bronchial epi-
thelium cells (BEAS-2B) with 2 independent shRNAs, and indeed
found that deficiency of YTHDF1 abrogated hypoxia-induced
cellular apoptosis significantly, as examined by Annexin V
staining and western blot with PARP and cleaved caspase -3
(CC3) antibodies (Fig. 1f–h, Supplementary Fig. 1f, g).

In addition, we found that YTHDF1 targeting of m6A-mRNA
transcripts overlapped more significantly with CGC, TAG,
hypoxia related and positive selected genes compared with the
rest of the untargeted genes29, (Fig. 1i), which led us to explore
the potential function of YTHDF1 in cancers. We first
examined its expression pattern using the TCGA database
and the cBioPortal web resource30, and found that YTHDF1,
like KRAS, is frequently mutated and amplified in various
cancers (Fig. 1j, k, Supplementary Fig. 1h; Supplementary
Table 1), including breast, pancreas, colon, and lung cancers. In
contrast, another m6A-modified mRNA reader protein
YTHDF2, which recognizes m6A and reduces the stability
of its targeted transcripts, is mostly deleted in human cancers
(Supplementary Fig. 1h). Because hypoxia-driven molecular
event changes have been well established to be able to
drive drug resistance, enhance epithelial-to-mesenchymal
transition, remodel the extracellular matrix, support cancer
stem cells, and facilitate evasion from immune surveillance in
NSCLC and other hypoxic tumors31, we then decided to focus
on the functional roles of YTHDF1 in NSCLC. Consistent with
web resource databases, we observed that both the protein
and mRNA expressions are more prominent in NSCLC
cancerous tissues and cell lines (H1975, A549, H838, H1299,
GLC-82, SPC-A1 and H1650), compared to paracancerous
tissues or normal BEAS-2B cells, respectively (Fig. 2a–d,
Supplementary Fig. 2a).

YTHDF1 regulates NSCLC cell proliferation. To study gain
or loss of function of YTHDF1, we forced expression of human

Flag-tagged YTHDF1 with a lenti-viral system and abrogated the
YTHDF1 expression with two independent lenti-viral shRNAs
targeted to the 3’-UTR of YTHDF1 mRNA (Materials and
Methods). Although we did not detect a significant oncogenic
effect after YTHDF1 overexpression (Data not shown), we did
observe that knockdown of YTHDF1 inhibits cell proliferation
and colony formation in vitro compared to the scrambled shRNA
control, which could be rescued by YTHDF1 overexpression
(Fig. 2e–h, Supplementary Fig. 2b, c). As YTHDF1 affects ribo-
some occupancy and translation of m6A-modified mRNAs29, we
performed a proteome-wide screening experiment in YTHDF1
knockdown H1299 cell lines using a tandem mass tags (TMT)-
based quantitative proteomic approach to reveal protein targets of
YTHDF1. A total of 6986 proteins were identified and quantified
in the proteomic experiment, and 1363 proteins were significantly
changed in YTHDF1 knockdown cells (fold change >= 1.2,
students’ t test P value < 0.05) (see Supplementary Data 3).
Intriguingly, the two YTHDF1 shRNA groups and the control
group were classified into two separate clusters, and 12 pathways
were enriched by KEGG (Kyoto Encyclopedia of Genes and
Genomes) analysis (Fig. 2i, Supplementary Fig. 2e, f). In addition,
we found that many cell cycle checkpoint regulators which have
been indicated to play important roles during G0/G1 cell cycle
transition32 including CDK2, CDK4 and cyclin D1 are down-
regulated (see Supplementary Data 3). To examine whether
YTHDF1 regulates cell cycle transition, we performed flow
cytometric analysis which revealed that YTHDF1 abrogation led
to a significant increased G0/G1 cells and more p27 protein
expression (one of the cyclin-dependent protein kinase inhibi-
tors33), than in control cells (Fig. 2j, m, Supplementary Fig. 2h).
We also examined DNA synthesis using Click-iT EdU Alexa
Fluor Imaging, and found that YTHDF1 ablation in A549 and
H1299 cells markedly decreased the ratio of EdU-positive cells.
Consistent with the proteomic data (with the exception of
CDK6), other G0/G1 cell cycle transition key regulators including
CDK2, CDK4, and cyclin D1 proteins were consistently reduced
in YTHDF1 knockdown cells, with no observed differential
mRNA expression (Fig. 2k–m, Supplementary Fig. 2d–g). In
addition to perform the m6A-seq in A549 cells, we sequenced
RNA obtained from the immuno-purified complex of YTHDF1
(RIP-seq) to reveal YTHDF1 bound mRNAs, 3,676 genes were
shared (m6A-seq+ RIP-seq) as high-confident targets of
YTHDF1 (Fig. 2n, see Supplementary Data 4), which were
mapped to cell cycle and tumor (including lung cancer) related
signaling pathways in the KEGG (Kyoto Encyclopedia of Genes
and Genomes) pathway database (Fig. 2o, see Supplementary
Data 4), and m6A peaks as well as YTHDF1 binding enrichment

Fig. 1 YTHDF1 is a hypoxia adaptation gene. a The signature of positive selection on cancer related genes in Tibetan humans evaluated by different

statistics. For each gene, FST_max is the maximum FST value among all SNPs within the gene. iHS_sig_num and XP-EHH_sig_num for each gene are the

numbers of SNPs exhibiting significant high values of iHS (integrated haplotype score) and XP-EHH (cross population extended haplotype homozygosity)

respectively. Mann–Whitney U tests were used to test the statistical significances. TAG, tumor-associated genes are from www.binfo.ncku.edu.tw/TAG/;

CGC, refers to Cancer Gene Census database. Other, refers to genome wide other genes. b Significantly higher values of XP-EHH, FST and ΔDAF (the

difference of the derived allele frequencies) were found for SNPs in tumor related genes than in other genome wide genes. The values of two columns

represent the –log10 transformed P-values calculated using Mann–Whitney U tests. c Positive selection of TEX2 in Tibetan sheep. Sliding window analysis

(size: 50 kb, step: 25 kb) was performed with -log 10 (empirical P value). d The genomic landscape of the signature of positive selection in the highland

cattle genome. Sliding window analysis (size: 50 kb, step: 25 kb) was performed with -log 10 (empirical P value) for autosome 1 to 29. e The mRNA

expression of YTHDF1, but not YTHDF2 or YTHDF3 is decreased in highland cattle. f, g Validating the efficiency of shRNAs targeting to YTHDF1 by both

real-time RT-PCR (f) and western blot (g). h, Suppression of cellular apoptosis by depleting YTHDF1 under 1% O2 hypoxic condition. i YTHDF1 interacting

m6-mRNA transcripts overlapped more with CGC, TAG, Hypoxia response genes and PSG (positive selected genes). j YTHDF1 is frequently amplified in

various cancers. Mutation (green), deletion (blue), amplification (red), multiple alterations (gray). The related database was indicated in Supplementary

Table 1. k Significant differential expression of YTHDF1 between tumor and normal tissues from lung (GEO accession code: GSE10072), colorectum

(GSE24514) and breast (GSE21422) cancers. DCIS: ductal carcinoma in situ; IDC: invasive ductal carcinoma. Means ± SEM, *P < 0.05; **P < 0.01; ***P <

0.001; t-test. Ctr= Control shRNA or scrambled shRNA; YTH1= YTHDF1; YTH2= YTHDF2; YTH3= YTHDF3
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were observed in CDK2 and CDK4 as shown by Integrative
Genomics Viewer (IGV) software (Fig. 2p). Furthermore, we
showed that knockdown of YTHDF1 in A549 cells significantly
reduced CDK2 and cyclin D1 mRNAs in the translating pool
(Supplementary Fig. 2i).

YTHDF1 deficiency inhibits lung cancer progression in vivo.
We used xenograft tumor formation to examine the in vivo
function of YTHDF1. Five-week old male nude mice were ran-
domly divided into indicated groups and injected with cell lines

stably expressing scrambled control shRNA or shRNAs targeting
YTHDF1 (1 × 106 cells/point subcutaneously). Mice were mon-
itored each day and tumor growth was measured every 3 days. As
expected, we observed subcutaneous tumors in the scrambled
shRNA control group. Knockdown of YTHDF1 dramatically
retarded tumor formation, tumor weights, and volumes com-
pared to scrambled shRNA-transformed cells (Fig. 3a–d).

To understand whether YTHDF1 regulates lung tumor
initiation in vivo, we took advantage of YTHDF1lox/lox (Y) mice
which were crossed with KrasG12D, with or without Trp53lox/lox
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(KP or K) lung ADC mouse models34, to generate KPY or KY
mice (Supplementary Fig. 3a, b). Mice were then given Adeno-
Cre virus by nasal inhalation and sacrificed for gross inspection
and pathologic studies at 12 weeks (for KP and KPY mice) or
22 weeks (for K or KY mice) post viral administration (Fig. 3e).
We observed that ADC derived from KP or K mice exhibited high
YTHDF1 expression compared with the loss of YTHDF1
detection in KY or KPY mice (Fig. 3f, Supplementary Fig. 3d).
As compared with reciprocal control KP or K mutant mice, KPY
or KY mice showed a dramatic decrease in tumor burden as
measured by tumor number and tumor size (large tumors,
≥ 1mm2), respectively, indicating that YTHDF1 promotes the
lung tumor progression driven by KRAS with or without Trp53
mutation (Fig. 3g, h, Supplementary Fig. 3e, f). Consistently, a
lower proliferation rate evidenced by Ki67 staining and an
increase of CC3-positive cells were detected in lung tumors from
KPY (or KY) mice compared to the KP (or K) mice, suggesting
that YTHDF1 deletion had an inhibitory effect on tumor cell
growth in vivo (Fig. 3j, k, Supplementary Fig. 3g, h). Detailed
pathologic analysis revealed that the majority of the lesions from
the KPY mice were lung ADC, indicated by positive immunos-
taining of both Napsin A and TTF-1 (Fig. 3i).

YTHDF1 positively correlates with clinical outcome. Prompted
by the results that significant increased YTHDF1 expression was
observed in NSCLC tissues and cancerous cell lines (Fig. 2,
Supplementary Fig. 2), we further surveyed the protein expression
and cellular location of YTHDF1 in NSCLC (including lung SCC
and ADC) and noncancerous control lung tissues (NCLT) by
immunohistochemical staining (IHC) using tissue microarray.
The percentage of positive YTHDF1 expression was significantly
higher in NSCLC tissues (55.9%; 272/487) than that in NCLT
tissues (42.1%; 64/152) (Fig. 4a, b, Supplementary Fig. 4a; Sup-
plementary Table 2). Surprisingly, when the association between
YTHDF1 protein levels and overall survival were analyzed, we
noticed that YTHDF1 high expression patients had a better
clinical outcome, while low protein expression patients had a
significantly adverse outcome (Fig. 4c). Consistent with this, we
obtained similar results by applying the Affymetrix gene
expression dataset from 1926 lung cancer patients (Fig. 4d)35.

To explore the underlying mechanism by which low expression
of YTHDF1 causes a worse survival rate, we reanalyzed the tissue
microarray database used for IHC, and found that 462 NSCLC
patients were treated by platinum based chemo-(441/462) or
radio-(21/462) therapy alone, whereas 25 patients were treated by
both chemo- and radio-therapies (Supplementary Table 2). Since
cisplatin (cis-Diamminedichloroplatinum, DDP) was one of the
most preferred first line drugs used in these patients, we then
proposed that high or low expression of YTHDF1 might sensitize

or restrain, respectively, the cancerous cells responding to DDP
after surgery, which in turn results in either a better or worse
overall survival rate. To test this hypothesis in vivo, KP and KPY
mice were sacrificed for gross inspection and pathologic studies
12 weeks after they were given Adeno-Cre virus by nasal
inhalation for 8 weeks, vehicle Phosphate-Buffered Saline (PBS),
or were injected with DDP (7 mg/kg) by intraperitoneal injection
every week (Fig. 4e). Histological examination revealed that the
tumor burden was dramatically repressed in KP mice comparing
with KPY mice after DDP treatment, evidenced by dramatic
reduction of tumor number, tumor size and Ki67 positive cell
numbers, accompanied with increased CC3-positive immunos-
tainings (Fig. 4f, Supplementary Fig. 4h). Furthermore, similar
phenotypes were validated by xenografts in mice. YTHDF1
knockdown with control cells were grown as xenografts in nude
mice. After tumors reached about 50 mm3 in size, mice were
randomized for treatment with PBS or DDP. For A549
xenografts, control tumors treated with PBS grew to average
470, 253 and 145 mm3 in control shRNA, YTHDF1 shRNA #1
and shRNA#2 groups, respectively, 21 days following randomiza-
tion (Fig. 4g). Interestingly, scramble shRNA tumors treated with
DDP grew to ~23% of PBS treated tumor size, however, YTHDF1
knockdown tumors did not show significant difference in tumor
size comparing PBS with DDP treatment groups. (Fig. 4g–i,
Supplementary Fig. 4b–e). In the DDP treatment tumor groups,
dramatically higher proliferation as measured by Ki67 IHC, and
lower overall apoptosis indicated by CC3 IHC, in
YTHDF1 shRNA tumors were also detected compared with
control tumors (Fig. 4h, i, Supplementary Fig. 4f, g). In vitro, we
also found that YTHDF1 is downregulated in cisplatin-resistant
A549 cells (A549/DDP), whereas forced expression of YTHDF1
in A549/DDP or depleting YTHDF1 in A549 and H1299 cells
promoted or inhibited cellular viabilities, respectively (Fig. 5d, e,
Supplementary Fig. 4i, j, and 5a, e, f). To corroborate this
phenotype, we also treated the NSCLC cancerous cells with
radiation or navitoclax, an inhibitor of the anti-apoptotic factors
BCL-xL and BCL-236. We found that YTHDF1 knockdown
inhibited cellular apoptosis in radiation but not navitoclax
treatment group (Supplementary Fig. 5g).

YTHDF1 functions through Keap1-Nrf2-AKR1C1 axis.
Hypoxia can induce cellular apoptosis through energy depriva-
tion and radical formation including excess ROS generation37,38.
Low oxygen levels occurring in hypoxic solid tumors is often
associated with resistance to radio-, chemo- or targeted-
therapies39–43. ROS are produced metabolically as byproducts
by mitochondria and other cellular elements, as well as by
external factors including hypoxia, smoking, pollutants, chemo-
drugs and radiation44,45. NF-E2 p45-related factor 2 (Nrf2) is a

Fig. 2 YTHDF1 is elevated in various cancers. a, b YTHDF1 is increased in NSCLC cancerous tissues examined by western blot. (b) is the quantification

data for (a). p paracancerous tissue, T tumor. The numbers indicated different tissues. c, d Both YTHDF1 mRNA (c) and protein (d) were increased

in various NSCLC cell lines: H1975, A549, H838, H1299, GLC-82, SPC-A1, and H1650, compared with BEAS-2B. e Establishment of YTHDF1 overexpression

and knockdown A549 cell lines, verified by western blot (top) and Real-time RT-PCR (bottom). Green arrow: exogenous YTHDF1-Flag; black arrow:

Endogenous YTHDF1. f, h YTHDF1 Knockdown dramatically inhibits A549 cell proliferation (f) and colony formation ability (g) in vitro. (h) is quantification

data for (g). i A heat map of the most significant 1363 altered protein intensities was generated using hierarchical clustering analysis. j Effect of

YTHDF1 knockdown on the G0/G1 cell population in A549 cells, as measured by PI staining and flow cytometry. Quantification data is also indicated.

k Knockdown of YTHDF1 significantly decreases DNA synthesis in A549 cells, as measured with a Click-iT EdU Alexa Fluor Imaging Kit. Scale bar: 100μM.

l Quantification data for the EdU assays in A549 and H1299 cell lines. m Effect of YTHDF1 knockdown on protein levels of the G0/G1 cell cycle regulators,

including p27, CDK2, CDK4, CDK6, and cyclin D1. Indicated cell extracts were probed with indicated antibodies. n Overlap of m6A-seq peaks in A549 cells

with RIP-seq for YTHDF1. o Significantly enriched KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways for 3676 overlapped genes (p < 0.05).

p IGV tracks displaying m6A peaks and YTHDF1 binding enrichment in indicated genes from m6A-seq and YTHDF1 RIP-seq in A549 cells, respectively. Blue

indicated m6A-seq IP, orange indicated YTHDF1 RIP-seq IP, and green indicated INPUT. Both the m6A-seq and RIP-seq have two replicates. Means ± SEM,

*P < 0.05; **P < 0.01; ***P < 0.001; t-test
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Fig. 3 YTHDF1 depletion inhibits de novo ADC progression. a Xenograft tumor masses harvested from indicated A549 cell lines after tumors had grown for

42 days. b, c YTHDF1 elimination inhibits xenograft tumor weight (b) and volumes (c) in male nude mice. d Representative IHC images showing YTHDF1

knockdown in xenografts. Scale bar: 50 μm. e A scheme of Adeno-Cre treatment-induced KP and KPY mouse models. f YTHDF1 is upregulated in ADC
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transcription factor playing a key role in endogenous antioxidant
processes, which regulates the expression of antioxidant genes
including aldo-keto reductases 1C1 and 1C2, (AKR1C1 and
AKR1C2), heme oxygenase 1 (HO-1) and NADP(H), under both
physiological and oxidative stress conditions46. Keap1 (Kelch-like

ECH-associated protein 1) functions as a negative regulator for
Nrf2, which is deactivated under oxidative stress condition47. To
explore the underlying mechanism, we reanalyzed our mass-spec
data and noticed that Keap1 and Nrf2 were inversely regulated
upon YTHDF1 knockdown, as shown by decreased Keap1 but
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increased Nrf2 and its downstream responding factor AKR1C1
protein expression (see Supplementary Data 3). AKR1C1 belongs
to the human aldo-keto reductase (AKR) family, whose aberrant
expression has been shown to be induced during development of
resistance to a variety of chemotherapeutic drugs with carcino-
genesis of NSCLC, breast and ovarian cancers48,49. Therefore, we

decided to validate whether the Keap1-Nrf2-AKR1C1 axis is the
mediator for the YTHDF1 function responding to hypoxia- or
DDP- induced cellular apoptosis. We firstly confirmed that the
mRNAs for Keap1 and Nrf2 were not affected upon DDP treat-
ment by Real-time RT-PCR (Supplementary Fig. 5d). By western
blot, we further confirmed that Keap1 was decreased whereas
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Nrf2 and AKR1C1 were increased upon YTHDF1 knockdown
after DDP treatment, accompanied by increased nuclear accu-
mulation of Nrf2 protein-one of the markers for the activation of
Nrf2 and its downstream targeted genes including AKRs, GR,
GCLC, GCLM, and NQO150 (Fig. 5a, b, Supplementary
Fig. 5b–d). To further determine whether AKR1C1 mediates the
regulation of cellular responses to DDP by YTHDF1, we inhibited
AKR1C1 by 3-bromo-5-phenylsalicylic acid (BPS), an inhibitor
designed based on the structure of AKR1C149, and found that
BPS in combination with IC50-DDP was significantly more
effective than either agent alone in decreasing cellular viability.
CC3 and PARP western blot also confirmed this (Fig. 5d, e,
Supplementary Fig. 5a, e, f). The protective role of YTHDF1
knockdown against the cellular stress response was verified by
measuring intracellular ROS following H2O2 challenge. While
H2O2 did not induce a measurable amount of ROS in
YTHDF1 shRNAs cells, it increased the level of ROS in control
shRNA cells in a dose-dependent manner (Fig. 5f). Furthermore,
we found that the m6A but not the gene expression level in A549/
DDP was significantly different from that in A549 cells, and the
m6A modification level of YTHDF1 bound Keap1 transcript was
significantly reduced (Supplementary Fig. 5h, i, see Supplemen-
tary Data 5). Consistently, we showed that knockdown of
YTHDF1 in A549 cells reduced Keap1 mRNAs in the translating
pool upon DDP treatment (Supplementary Fig. 5j).

To examine whether this was true in vivo, we performed IHC
in KP and KPY mouse ADC tumors, and found that much more
Keap1, albeit with moderate Nrf2 and AKR1C1 proteins, were
detected in KP mouse tumors, whereas less Keap1 and much Nrf2
and AKR1C1 proteins, both in the cytosol and nuclear fractions,
were observed in KPY mouse tumors (Fig. 5c). To confirm
whether YTHDF1 was negatively associated with AKR1C1, we
performed immunostaining for AKR1C1 in the NSCLC TMA
again, and revealed that 70.6% (192/272) of YTHDF1 positive
NSCLC tissues were AKR1C1 negative, whereas 40.5% (87/215)
YTHDF1 negative NSCLC tissues were AKR1C1 positive, (p=
0.012), and a similar negative correlation between YTHDF1 and
AKR1C1 expression was also validated by western blot in the
same clinical tissues as used in Fig. 2 (Fig. 5g–j). In addition, the
overall survival rate for YTHDF1 negative and AKR1C1 positive
NSCLC patients were significant worse than other immuno-type
patients (Supplementary Fig 5k). Consistently, we found that
YTHDF1 was decreased whereas AKR1C1 was increased by IHC
in 100% (6/6) NSCLC patients resistant to platinum based
neoadjuvant chemotherapy, whose lung cancer progression were
examined by computerized tomography (CT) scan. However the
expression pattern was reversed in 75% (3/4) responders
(Supplementary Fig 5l, m). Since AKRs family members are also
important for hypoxia-induced ROS clearance, we hypothesized
that the same mechanism was employed in YTHDF1 deficient
BEAS-2B cells resisting to hypoxia-induced cellular apoptosis. As

expected, we found that the decreased cellular apoptosis induced
by hypoxia was dramatically increased by treating cells with the
AKR1C1 specific inhibitor BPS (Fig. 5k, l).

Discussion
Unraveling the mechanisms of adaptation to hypoxia will
improve our understanding of not only mammalian hibernation,
but also unsolved clinical, military, and space travel problems51.
Previous genome-wide scans have identified many candidate
genes including molecules involved in HIF pathway contributing
to high-altitude hypoxia adaptation8. In addition, HIF pathway
has also been found to be involved in various human cancers and
offers ideal targets for small molecule intervention39,52–54.
However, a hostile hypoxic environment has been shown to either
promote or inhibit cancer progression10,55. Here, we have shown
that TAGs evolved rapidly in Tibetans and Tibetan domestic
mammals. Although the molecular events important for both
hypoxia adaptation and hypoxic solid tumors may behave dif-
ferently, evolutionary studies using hypoxia adapted animals
represent an alternative source to identify molecular events
important for cancer progression11,12. Here, using the large-scale
population genome and transcriptome data of Tibetan domestic
mammals, we have identified YTHDF1-an N6-methyladenosine
(m6A)-specific RNA binding protein, whose low expression is
critical for highland cattle hypoxia adaptation and frequent
amplification is identified in many hypoxic solid tumors. Inter-
estingly, Shi et al. showed that m6A facilitates hippocampus-
dependent learning and memory through YTHDF1, indicating
the important roles of YTHDF1 during development56. Recent
finding also showed that the durable neoantigen-specific immu-
nity is regulated by YTHDF1, and YTHDF1 deficient mice
showed an elevated antigen-specific CD8+ T cell antitumor
response57. Importantly, we found that YTHDF1 regulates
NSCLC cancerous tissues or cells responding to DDP-dependent
chemotherapy, indicating that understanding the mechanisms of
resistance to hypoxia-induced apoptosis might lead to more
specific treatments for hypoxic solid tumors.

Since lung cancer is the leading cause of cancer related death
worldwide, and NSCLC accounts for approximately 85% of all
cases, we further characterized the functional roles of YTHDF1 in
NSCLC58. As proposed in our model (Fig. 6), under normoxia
conditions, constitutive activation of CDK-cyclin complexes,
induced by YTHDF1 amplification, may contribute not only to
uncontrolled cell proliferation but also to genomic and chromo-
somal instability, resulting in cancer progression. Therefore, it is
promising to suggest increasing the overall survival of NSCLC
patients by repressing YTHDF1. However, the clinical correlation
analysis shows the adverse result. Importantly, YTHDF1 defi-
ciency caused resistance of DDP or hypoxia-induced cellular
apoptosis in cancerous and normal cells, respectively. The
anticancer mechanisms of DDP are caused not only by its

Fig. 5 The Keap1-Nrf2-AKR1C1 axis is the mediator for YTHDF1. a After DDP (15 μM) treatment in A549 cells, indicated cell extracts were examined by

western blot. Antibodies: Keap1, Nrf2, AKR1C1, β-actin, Lamin B (Nuclear fraction), GAPDH (cytosol fraction). b Representative images indicating Nrf2

nuclear accumulation after YTHDF1 knockdown in A549 cells treated by 15 μM DDP. Scale bar: 10 μm. c, Representative IHC stain,ng of KP and KPY

tumors for Keap1, Nrf2 and AKR1C1 expressions. Scale bar; 50 μm. d, e Effect of DDP and/or AKR1C1 inhibitor BPS on cell viabilities of indicated A549 cell

lines (d), which were further validated by western blot (e). DDP: 15 μM, BPS: 40μM. Indicated cells were pretreated by DDP for 12 h followed by BPS

treatment. Indicated total extracts were probed with indicated antibodies: PARP, CC3, Bcl-2, BAX and β-actin. Red stars: DDP treatment group comparison;

Green stars: DDP+ BPS treatment group comparison. f YTHDF1 knockdown exhibited antioxidant functions. Indicated A549 cell lines were treated with

indicated doses of H2O2 for 12 h, intracellular ROS levels were measured. Representative histograms of ROS analysis are shown. g, j YTHDF1 negatively

correlates with AKR1C1 expressions in NSCLC (SCC and ADC) tissues, validated by both IHC staining in TMA (g) and fresh clinical tissues using western

blot (h). (i) is the quantification data for (g). (j) is the quantification data for (h). k, l YTHDF1 knockdown dependent resistance to hypoxia-induced cellular

apoptosis is reversed by treating cells with 40 μM BPS. After 72 h treatment under hypoxia condition, indicated cells are stained with Annexin V/PI, and

the percentage of apoptotic cells was assessed by flow cytometry (k). (l) is the quantification data for (k). Means ± SEM, *P < 0.05; **P < 0.01; ***P <

0.001; t-test
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covalent binding with DNA, but also by ROS formation resulting
into activation of p53 and caspases59. Mechanistic studies indicate
that ablation of YTHDF1 decreases translational efficiency of the
m6A-modified Keap1 transcript in an oxidative stress state
induced by DDP, which in turn activates the antioxidant ROS
clearance system (Nrf2-AKR1C1) leading to DDP resistance and
a worse clinical outcome for NSCLC patients after platinum based
chemotherapy.

In contrast to YTHDF1 increased expression in NSCLC can-
cerous tissues, YTHDF1 is decreased in highland cattle compared
to that in their lowland counterparts, which also results in
increased expression of AKR1C1 and a better antioxidant defense
response under hypoxic stress conditions. Thus, the balance of
YTHDF1 expression and its targeted m6A-modified mRNAs or
interacting proteins between normoxia and hypoxia conditions is
important both for non-pathological homeostasis and various
human cancers. These findings may have important ramifications
on targeting YTHDF1 for treating NSCLC, and it will be neces-
sary to distinguish the specific YTHDF1 substrates respectively in
the future. Consistent with our findings, YTHDF1 protein is
decreased whereas AKR1C1 is increased in platinum based
neoadjuvant chemotherapy non-responders. Although further
pre-clinical or clinical studies and statistical analysis are needed,
our findings not only provide a route to reduce the cyto-toxicity
of DDP during neoadjuvant or adjuvant chemotherapy59, but also
provide a potential therapeutic strategy to improve the clinical
outcome of YTHDF1 low expressing NSCLC patients, by com-
bining usage of AKR1C1 specific (pre-) clinical inhibitors with
platinum based chemotherapy in future.

N6-methyladenosine (m6A), being the most profound mod-
ification in mRNA of many eukaryotic species, plays a pivotal role
in various bioprocesses including tissue development, self-
renewal and differentiation of stem cells, DNA damage
response and cancers. Multiple writers, erasers or readers of m6A

have been demonstrated to play important roles in various can-
cers (e.g., Lung caner, breast cancer, endometrial cancer, glioma,
HCC and acute myeloid leukemia)20,60–62. For example,
Methyltransferase-like 3 (METTL3), one of the m6A writers, is
upregulated in lung adenocarcinoma and play oncogenic effect by
promoting translation of its target mRNA transcripts including
EGFR and TAZ63. Overexpression of m6A demethylase ALKBH5
was associated with lower survival time of glioma64. Currently, it
is not clear why YTHDF1 is downregulated in highlanders but
upregulated in hypoxic solid tumors, and whether or not
YTHDF1 interplays with other m6A modifiers (writers, erasers
and/or readers) in NSCLC. Different from our observation that
YTHDF1 low expression correlates with worse NSCLC clinical
outcome by IHC analysis using tissue microarray, another study
using TCGA RNA-seq data showed that YTHDF1 was upregu-
lated in hepatocellular carcinoma (HCC), which correlated with
significant shorter OS and DFS survival rate65. Another study also
showed that oncogene c-Myc promotes YTHDF1 expression in
colorectal cancer, whose high expression was associated with
poorer overall survival66. The above apparent discrepancies sug-
gest that we need to take both the protein and mRNA expressions
of YTHDF1 into consideration to characterize its functional roles
in future. In addition, the m6A modified mRNA targets of
YTHDF1 could be time- and cellular context- dependent, which
leads to the differential functions of YTHDF1 in various cancers
progression.

For the last decade lung cancer has been simplistically divided
into NSCLC and small-cell lung cancer on the basis of limiting
molecular subsets67. Therefore, identification of additional mole-
cular events is essential for developing therapies against NSCLC.
Our findings show that YTHDF1 is dramatically upregulated in K
or KP mice de novo ADC tumors compared with paracancerous
tissues. YTHDF1 deficiency renders tumors resistant to cisplatin
dependent chemotherapy in vivo, suggesting that KRAS mutations
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along with YTHDF1 mutations, or expression level, should be
simultaneously considered to predict the efficacy of NSCLC
therapies. Furthermore, the physiological role of YTHDF1 for the
development of lung and other tissues needs to be deciphered to
distinguish the differential effect of specific m6A modifications
during development and tumorigenesis.

Together, our findings represent the application of evolutionary
theory, using genomic and transcriptome data from hypoxia
adapted Tibet domestic mammals, to identify a ranked list of genes
that can form the basis for not only hypoxia adaptation of species to
high elevations, but also have a broad impact in cancer biology and
therapy. Finally, we advocate for the requirement of evolutionary
methods and concepts to understand cancer progression and the
hallmarks of cancer from different angle68.

Methods
Human SNPs data. Human genome wide SNPs, genotyped by the Affymetrix
Genome-Wide Human SNP 6.0 Array, from 31 unrelated Tibetans were down-
loaded from a previous study22 and compared with genotype data for Han Chinese
from HapMap (phase II, http://hapmap.ncbi.nlm.nih.gov/). We also used whole
genome sequences of Han and Tibetan humans from a previous study24,25. The
iHS, XP-EHH and FST values were calculated for each SNP to evaluate the evo-
lution of Tibetans.

SNP data and positively selected genes. Transcriptomic data of lung tissues of
four Tibetan pigs and four Min pigs were from our other study69. Briefly, a total of
134 genomes from 19 Tibetan (highland) goats, 24 Tibetan horses, 20 Tibetan
sheep, 11 Tibetan dogs, 19 Tibetan cattle and 41 Tibetan pigs, together with 193
genomes from 20 goat, 10 horse, 70 sheep, 34 dogs, 30 cattle, and 29 pigs from the
lowlands were obtained for comparative population genomic analysis. SNPs for
each species were called. Population differentiation (FST) between domestic
mammals in the highland and lowland was calculated for each SNP23. The XP-
EHH value for each SNP was calculated by the XP-EHH program (http://hgdp.
uchicago.edu/Software/). ΔDAF (the difference of derived allele frequencies) was
calculated for each SNP as the derived allele frequency (DAF) in the domestic
animals in highland minus the DAF in domestic animals from the lowland. FST,
XP-EHH, and ΔDAF (the difference of the derived allele frequencies) were inte-
grated to identify potential positive selection in the Tibetan domestic mammals:
iFXD ¼

Qn
i¼1

Psi
1�Psi

, where where i is different methods and Ps represent the
probability under positive selection. The iFXD value of each protein encoding gene
was calculated by averaging the iFXD values of all SNPs within a gene. The top two
genes showing highest level iFXD values were described in the main text.

Genes associated with cancer. Genes whose mutations have been causally
implicated in cancer, were obtained from the CGC database21 (http://cancer.sanger.
ac.uk/cancergenome/projects/census/). Other TAGs were downloaded from (http://
www.binfo.ncku.edu.tw/TAG/). One-to-one orthologous genes between human
and domestic mammals including dog, horse, pig, cattle, and sheep were down-
loaded from Ensembl (version 72) by BioMart. One-to-one orthologous genes
between human and goat were retrieved by reciprocal best-hit BLASTP search.

Transcriptomic analysis of lung tissues of Tibetan pigs. Transcriptomic data of
lung tissues of four Tibetan pigs and four Min pigs were from our other study69.
The trimmed reads were aligned against the reference genome of Sus scrofa (Sscrfa
10.2) using TopHat v2.0.4 with default parameters70 and using the gene annotation
available at Ensembl v77. Transcripts were initially assembled using the reference
annotation based transcript assembly method in Cufflinks71. Newly generated
transcripts were subsequently extracted from the output of the assemblers using a
custom Perl script. The reference annotation was then merged with the newly
generated transcripts to generate another reference annotation file. To quantify
gene expression, the FPKM (Fragments Per Kilobase of transcript per Million
mapped reads) values were calculated using Cuffmerge without RABT. Finally,
CuffDiff was applied to identify differentially expressed genes71. We considered a
FDR (false discovery rate) cutoff of <0.01 to identify significantly differentially
expressed genes between Tibetan and Min pig breeds.

Expression data from different types of human cancers. Expression data of
genes YTHDF1 and TEX2 were downloaded from NCBI GEO with accession codes
including GSE10072, GSE28735, GSE24514, GSE21422, GSE19804 and GSE9574.

Mouse colony, mouse treatment, and tumor biology studies. KrasG12D with or
without Trp53lox/lox (KP or K) lung adenocarcinoma (ADC) mouse model was
generously provided by Hongbin Ji in SIBS, CAS34. Mouse care and treatment was
approved by the Animal Care and Use Committee at the Kunming Institute of
Zoology, Chinese Academy of Sciences. YTHDF1lox/lox mice were generated using a

CRISPR/Cas9 system in C57BL/6J mouse background by Shanghai Model
Organisms Center, Inc (Shanghai, China). The YTHDF1 donor vector containing
flox sites flanking Exon3 of YTHDF1 gene was cloned, and 4 sgRNAs targeting to
Intron2 and Intron3 were generated in vitro. Two sgRNA target sites for Intron2
were 5′-GCATGTGTCCGCTATTTGCC-3′ and 5′- CCCAAGGTGGGACCGAA
CCC-3′. Two sgRNA sites for Intron3 were 5′-TAATGGTGTATAGGACTGTA-3′

and 5′-CTAGGAGAGTAGGTAAGTTC-3′. The donor vector with two sgRNA
and Cas9 mRNA was microinjected into C57BL/6J fertilized eggs. F0 generation
mice positive for homologous recombination were identified by PCR and con-
firmed by sequencing. The primers (P1-P4) used for genotyping the correct
homology recombination were P1: 5′- TGTGCCCTTCAACCCAGTG -3′ and P2:
5′-CTCGGTAGCTCCCCAGTATCAT-3′ for the correct 5′ homology arm
recombination, and P3: 5′- CAGTCCAATCCGGTGAGTTTATCT-3′ and P4: 5′-
AAGCTATCCACCTCCCTCTGTATG -3′ for the correct 3′ homology arm
recombination. The genotype of F1 generation YTHDF1 flox heterozygous mice
were identified by PCR. All mouse protocols were approved by Kunming Institute
of Zoology Animal Care and Use Committee.

YTHDF1lox/lox mice were crossed with KP or K mice to generate KPY or KY
mice. Mice were treated via nasal inhalation of adenovirus carrying Cre
recombinase (5 × 106 p.f.u for Ad-Cre, Biowit Inc., Shenzhen, Guangdong), and
were then killed at indicated times for gross inspection and histopathological
examination. For xenograft tumor growth experiment, male nude mice at 5 weeks
of age were divided into indicated groups and injected with indicated cell lines.
Tumor sizes in all groups were measured every 3 days for 6 weeks using Vernier
calipers (Suzhou, China). For the xenograft Cisplatin treatment assay, day 0 was
designed when tumors reached around 50 mm3 in volume. DDP 7 mg/kg or carrier
(PBS) was injected i.p. 1 time per week. All mice were sacrificed at the end of the
experiment and tumors were harvested and weighed. Representative images were
presented, and all experiments were repeated at least 3 times. *P < 0.05; **P < 0.01;
***P < 0.001; t-test. Detailed information on primers and antibodies used in this
study is described in Supplementary Data 6. The China maps in Supplementary
Fig. 1 were created by an in house excel program: ChinaDataMap.xls, which can be
obtained upon request.

Constructs, cell culture, and shRNA-lenti-viral infection. Independent shRNAs
against different genes targeting different regions were constructed using a pLKO.1
vector. The 3XFlag C-terminal tagged forms of different overexpression genes were
synthesized and cloned into a pCDH-MSCV-E2F-eGFP lenti-viral vector. All of the
constructs were verified by sequencing, detailed cloning information can be pro-
vided upon request. The lenti-viruses were generated according to the manu-
facturer’s protocol. Briefly, supernatants containing different lenti-viruses
generated from HEK-293T cells were collected 48 and 72 h post-transfection. HEK-
293T was purchased from ATCC, BEAS-2B was kindly provided by Dr. Hongbin Ji
at SIBS, CAS. H1975, A549, NCI-H838, H1299. and NCI-H1650 were purchased
from Cobioer, China with STR document, GLC-82, SPC-A1 were gifts from Dr.
Yunchao Huang, and A549-DDP was a gift from Dr. Shiyong Sun at Emory
University, Atlanta, USA. All cells were cultured in RPMI 1640 medium supple-
mented with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin then
incubated in a humidified atmosphere with 5% CO2 at 37 °C. Cisplatin was pur-
chased from Sigma (Cat#p4394, USA).

Nanoflow liquid chromatography tandem mass spectrometry. The indicated
cells were washed three times with cold PBS and lysed in SDT lysis buffer (0.2%
SDS (m/v), 100 mM DTT, 100 mM Tris, pH= 7.6). All experiments were per-
formed on an Orbitrap Fusion mass spectrometer with nanoLC easy1200 (Thermo
Fisher Scientific). Peptides were loaded on a self-packed column (75 μm× 150 mm,
3 μm ReproSil-Pur C18 beads, 120 Å, Dr. Maisch GmbH, Ammerbuch, Germany)
and separated with a 90 min gradient at a flow rate of 300 nL/min. Solvent A was
100% H2O and 0.08% formic acid, solvent B was 80% acetonitrile and 0.08% formic
acid. The Orbitrap Fusion was programmed in the data-dependent acquisition
mode. An MS1 survey scan of 375–1500 m/z in the Orbitrap at a resolution of
120,000 was collected with an AGC target of 400,000 and maximum injection time
of 50 ms. Precursor ions were filtered according to monoisotopic precursor selec-
tion, charge state (+2 to+7), and dynamic exclusion (45 s with a ±10 ppm win-
dow). Then, the most intense precursors were subjected to HCD fragmentation
with a duty cycle of 3 s. The instrument parameters were set as the following: 38%
normalized collision energy with 5% stepped collision energy, 50,000 resolution,
100,000 AGC target, 105 ms maximum injection time, 105 Da first mass, 1 m/z
isolation width. Raw files were processed by search against the UniProt/SwissProt
Huamn database.

m6A-seq and RIP-seq. Based on the documented procedure29, total RNA was
extracted using Trizol reagent (Invitrogen, CA, USA) following the manufacturer’s
procedure. The total RNA quality and quantity were analysis of Bioanalyzer 2100 and
RNA 6000 Nano LabChip Kit (Agilent, CA, USA) with RIN number >7.0.
Approximately more than 50 μg of total RNA was subjected to isolate Poly (A)
mRNA with poly-T oligo attached magnetic beads (Invitrogen). The cleaved RNA
fragments were subjected to incubated for 2 h at 4 °C with m6A-specific antibody (No.
202003, Synaptic Systems, Germany) in IP buffer (50mM Tris-HCl, 750mM NaCl
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and 0.5% Igepal CA-630) supplemented with BSA. The mixture was then incubated
with protein-A beads and eluted with elution buffer (1 × IP buffer and 6.7 mM m6A).
Eluted RNA was precipitated by 75% ethanol. Eluted m6A-containing fragments (IP)
and untreated input control fragments are converted to final cDNA library in
accordance with a strand-specific library preparation by dUTP method. Then we
performed the paired-end 2 × 150 bp sequencing on an Illumina Novaseq™ 6000
platform at the LC-BIO Bio-tech ltd (Hangzhou, China) following the vendor’s
recommended protocol. For RIP-seq, input mRNAs and IP with 150–200 ng RNA of
each sample were used to generate the library using Illumina kit.

Polysome profiling. Based on the documented procedure, we started with nine 15-
cm dish of indicated cells. Before collection, cycloheximide (100 μg/ml) was added
into cell culture media for 5 min. Cells were collected, washed and lysated with lysis
buffer: 5 mM Tris-HCl (pH 7.5), 2.5 mM MgCl2, 1.5 mM KCl, 100 μg/ml cyclo-
heximide, 2 mM DTT, 0.5% Triton X-100, 0.5% Sodium Deoxycholate, 200U/ml
RNase inhibitor, 1x protease inhibitor cocktail (EDTA-free). The cell supernatants
were fractioned (total 72 fractions, 0.45 ml per fraction), and then analyzed by
NanoDrop (Thermo Fisher Scientific) for OD260. Sample from each fraction was
subjected to Real-time RT-PCR analysis of relative mRNA expressions of interested
genes, including CDK2, CDK4, cyclin D1, and Keap1.

Cell proliferation, viability, and ROS assays. For cell proliferation assays, tested
cell lines were plated into 12-well plates and the cell numbers were subsequently
counted each day. Apoptotic cell numbers were analyzed by flow cytometry. Indicated
cells were plated at a density of 10,000 cells/well with 100μl medium into 96-well
plate, 24 h later, indicated drugs were added. Cell viability was evaluated by standard
sulforhodamine B(SRB) staining, and each result was validated in triplicate72. To
examine cellular response to oxidative stress, cells were treated with H2O2 for 12 h,
intracellular ROS levels were detected by reactive oxygen species detection assay kit
following the manufacturer’s protocol (BioVision Catalog #K936–250).

IHC staining and antibodies. The IHC staining for samples on the tissue
microarrays (TMAs) was carried out using ready-to-use Envision TM+Dual
Link System-HRP methods (Dako; Carpintrria, CA). To eliminate nonspecific
staining, the slides were incubated with appropriate preimmune serum for 30
min at room temperature. After incubation with a 1:500 dilution of primary
antibody (Abcam: ab99080) to YTHDF1 at 4 °C overnight, slides were rinsed
with phosphate-buffered saline (PBS) and incubated with a labeled polymer-
HRP which was added according to the manufacturer’s instructions and incu-
bated for 30 min. Color reaction was developed by using 3, 3’-diaminobenzidine
tetrachloride (DAB) chromogen solution. All slides were counterstained with
hematoxylin. Positive control slides were included in every experiment in
addition to the internal positive controls. The matched IgG isotype antibody was
used as a negative control. The scores for immunohistochemical staining of
TMA sections were characterized independently by two evaluators, at 200 X
magnification based on the staining intensity and extent of staining. Staining
intensity for YTHDF1 was scored as 0 (negative), 1 (weak), 2 (moderate), and 3
(strong). Staining extent was scored as 0 (0%), 1 (1–25%), 2 (26–50%), 3
(51–75%), and 4 (76–100%). Agreement between the two evaluators was 95%,
and all scoring discrepancies were resolved through discussion between the two
evaluators. All the P values were based on the two-sided statistical analysis and
P-value less than 0.05 was considered to be statistically significant. Uncropped
scans of the most important western blots are shown in Supplementary Fig. 6.

Ethics statement. Samples were obtained with informed consent and all protocols
were approved by The Second Xiangya Hospital of Central South University Ethics
Review Board (Scientific and Research Ethics Committee, S-02/2000). Written
informed consent was obtained from all patients. Written informed consent was
obtained from the next of kin, caretakers, or guardians on the behalf of the minors/
children participants involved in this study. Clinical samples from platinum based
neoadjuvant chemotherapy resistant NSCLC patients were obtained from the Third
Affiliated Hospital of Kunming Medical University and Harbin Medical University
Cancer Hospital in China.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The datasets generated during and/or analyzed during the current study are available
from the corresponding author on reasonable request. Original m6A-seq and RIP-seq
data are available: GSE136433. The mass spectrometry proteomics data have been
deposited to the ProteomeXchange Consortium via the PRIDE73 partner repository with
the dataset identifier PXD015182.
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