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Abstract 

This paper presents the exact and complete fundamental singular solutions for the 
boundary value problem of a n-layered elastic solid of either transverse isotropy or isotropy 
subject to body force vector at the interior of the solid. The layer number n is an arbitrary 
non-negative integer. The mathematical theory of linear elasticity is one of the most classical 
field theories in mechanics and physics. It was developed and established by many well-
known scientists and mathematicians over 200 years from 1638 to 1838. For more than 150 
years from 1838 to present, one of the remaining key tasks in classical elasticity has been the 
mathematical derivation and formulation of exact solutions for various boundary value 
problems of interesting in science and engineering. However, exact solutions and/or 
fundamental singular solutions in closed form are still very limited in literature. The 
boundary-value problems of classical elasticity in n-layered and graded solids are also one of 
the classical problems challenging many researchers. Since 1984, the author has analytically 
and rigorously examined the solutions of such classical problems using the classical 
mathematical tools such as Fourier integral transforms. In particular, he has derived the exact 
and complete fundamental singular solutions for elasticity of either isotropic or transversely 
isotropic layered solids subject to concentrated loadings. The solutions in n-layered or graded 
solids can be calculated with any controlled accuracy in association with classical numerical 
integration techniques. Findings of this solution formulation are further used in the 
companion paper for mathematical verification of the solutions and further applications for 
exact and complete solutions of other problems in elasticity, elastodynamics, poroelasticty 
and thermoelasticity. The mathematical formulations and solutions have been named by other 
researchers as Yue’s approach, Yue’s treatment, Yue’s method and Yue’s solution.   

Keywords: elasticity, solution, layered solid, graded material  
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1 Introduction 

1.1 Initiation of this study 

The author has studied mathematics and mechanics since 1979 when he started his 
studies toward a BSc degree at Peking University. In 1983, he was admitted for post-graduate 
study by closed-book examination. Because of his strength at mathematics and mechanics, 
his MSc supervisor Professor Ren Wang [1, 2] assigned the project of ground subsidence due 
to underground coal mining as his MSc thesis project in 1984.  This project was initiated by 
Mr. Zeng-qi Li who was a researcher at China Coal Research Institute and a graduate of the 
Department of Mathematics and Mechanics of Peking University in 1957. Mr. Li had 
investigated the ground subsidence problems for many years [3, 4]. In 1984, Mr. Li came to 
Peking University and sought advices from Professor Ren Wang about some mathematical 
issues associated with the mathematical formulation of analytical solution in multi-layered 
elastic solid. The multi-layered elastic solid was the model that Mr. Li used for prediction of 
the ground subsidence due to underground coal mining.  

Under the supervision of his supervisor and others, the author quickly understood and 
mastered the key points of the mathematics and mechanics of the topic and entered into the 
frontiers of the mathematics and mechanics of elasticity in n-layered solids, where n is an 
arbitrary non-negative integer. He examined the topic with mind and derived the solution of 
elasticity in n-layered solids using the classical mathematical tool of Fourier integral 
transform and Laplace transform. His MSc thesis examination committee assessed his 
mathematical results and considered them of certain originality in June 1986 [5]. 
Consequently, this piece of MSc degree work was selected and published at Acta Scientiarum 
Naturalium Universitatis Pekinensis in 1988 [6] on the basis of the committee’s 
recommendation. The committee members were Professor Ren Wang, Professor Zhong-yi 
Ding, Professor Min-zhong Wang [7, 8] and Professor Tianyou Fan [9, 10].  

On the other hand, the MSc thesis examination committee also clearly pointed out the 
following questions. The solution given in the thesis was in the form of improper integrals of 
infinite intervals only. Does it converge? What is its singularity? Does it satisfy the governing 
partial differential equations and the boundary conditions? In other words, the solution given 
in the thesis was only the initial result of the mathematics and mechanics of elasticity in n-
layered solids. Much more detailed and in-depth examinations of the mathematics of the 
solution of elasticity in n-layered solids had to be carried out, which are difficult.  

1.2 Ten years effort and results 

After his graduation from Peking University in July 1986, the author used much of his 
spare time to think and examine the questions. He further carried out careful and rigorous 
investigations on the mathematical formulation and properties of the solutions in the form of 
two-dimensional improper integrals of Fourier transforms. In 1995, he eventually made 
breakthroughs and gave rigorous mathematical answers to the questions raised by the 
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committee. Subsequently, he published his findings in Journal of Elasticity, Journal of 
Engineering Science, Quarterly Journal of Mechanics and Applied Mathematics, Journal of 
Engineering Mechanics and International Journal Solids and Structure [11-17] etc. 

Because of his mathematical developments, the author was selected by Mr. G. H. 
Argue [18], the then Chief Engineer of Civil Engineering of Transport Canada in the 
development of a layered elastic model and associated criteria for the structural design and 
evaluation of airport pavements in 1995 and 1996 [19, 20].  Two research contracts were 
signed with the author. Using his solution and computer program, the author undertook the 
tasks and completed the contracts [21]. On March 5, 1996, Mr. Argue wrote in a reference 
letter that “I selected Dr. Yue for the project because his qualifications in layered elastic 
theory are unique in Canada. He has published mathematical developments of the theory, and 
his computer program for the stress and strain analysis of layered elastic systems is the best 
available.”  

About twelve years later, i.e., in 2007 and 2008, four researchers at Research Centre 
Jülich and four researchers at Massachusetts Institute of Technology published their papers in 
Biophysical Journal [22] and Physical Review E [23], respectively. In their papers, they used 
the elastic solutions in layered solids to analyze the stresses and deformation of cells.  In their 
papers, they made literature reviews on the analytical solutions of elasticity in homogeneous 
solid and layered solids. They found that since Boussinesq’s solution given in 1885 for a 
homogeneous elastic halfspace, the solutions given by Yue in 1995 and 1996 for layered 
solids are concise and convenient, which were expressed in the form of matrices. They called 
them Yue’s approach, Yue’s treatment, Yue’s method and Yue’s solution. Their experimental 
results also supported Yue’s solution.  

1.3 Objectives and outlines 

This paper and the companion paper [24] have three objectives: (1) to give a step by 
step mathematical formulation process of the approach, treatment, method and solutions 
developed by the author for elasticity in n-layered solids; (2) to present a detailed and 
rigorous mathematical verification to the questions on the convergence, singularity and 
satisfaction of the solution; (3) to show the approach, treatment and method applicable to 
transversely isotropic layered solids, mixed-boundary value problems, boundary element 
method, and initial-boundary value problems in the framework of elastodynamics, 
thermoelasticity and Biot’s theory of poroelasticity.  

To achieve the objectives, this paper has been outlined as follows. A comprehensive 
literature review on the history of elasticity since 1638 is presented to illustrate the 
importance of the mathematical theory of elasticity and difficulty and limitation of 
mathematical formulation of closed-form solutions for its boundary-value problems in n-
layered or graded solids. Secondly, the matrix Fourier transform approach developed by the 
author is presented for boundary-value problems in n-layered solids of transverse isotropy. 
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Next, details of the treatment, method and solutions are presented for the mathematical 
formulation of the solutions in n-layered solids in both transform and physical domains.  

In the companion paper [24], the fundamental singular solutions in exact closed-form 
are presented for the basic and classical boundary-value problems in either homogeneous or 
bi-homogeneous solids and show their mathematical properties and singularities.  
Furthermore, the mathematical properties of the solutions for elasticity in n-layered solids are 
examined and presented to analytically show their convergence, singularity and satisfaction. 
The singularity of the solution is given in exact closed-form. The applications of the approach, 
treatment and method to other problems are briefly presented. So, the solutions for other 
boundary-value problems, mixed boundary-value problems and initial-boundary value 
problems can be derived and formulated similarly and systematically in the form of matrix 
operations.  Some concluding remarks are given at the end to summarize this study over the 
last 30 years and to recommend further studies and applications of interests in science and 
engineering.  

 

2 Background (Fundamentals of Elasticity) 

2.1 The mathematical theory of classical elasticity 

2.1.1 The displacement vector, strain and stress tensors 

The mathematical theory of classical elasticity is one of the essential foundations of 
continuum mechanics and advanced mathematics [1,7,8]. It is a classical field theory that 
deals with the fields of elastic displacements, strains and stresses in a continuous solid 
material subjected to external and/or internal loadings. It has a total of 15 field variables in a 
three-dimensional space occupied by the loaded solid materials. The 15 field variables at any 
point in the solid material include three displacements, six strains and six stresses which form 
a displacement vector u , a strain tensor ε and a stress tensorσ , respectively. In the Cartesian 
coordinate system (Oxyz), they can be expressed as follows:  

( )zyx uuuzyx ,,),,( == uu      (1a) 
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The strain tensor ε is also called Cauchy's strain tensor in honour of the French 
mathematician Augustin-Louis Cauchy (1789 – 1857). It has three normal strain components 
( xxε , yyε , zzε ) and six shear strain components ( xyε , xzε , yzε , yxε , zxε , zyε ). 

xxε , yyε and zzε respectively represent the infinitesimal extensions or shortening of the solid 

material along the x, y and z coordinate directions. xyε , xzε and yzε respectively represent the 

half infinitesimal angle changes of the solid material between the x and y coordinate 
directions, between the x and z coordinate directions, and between the y and z coordinate 
directions. For ease of understanding, this paper does not use the compacted tensor notations 
but use the specific expressions for the tensors and governing equations.  

2.1.2 The geometric equations 

Under the assumption of infinitesimal displacement and deformation, the strain tensor 
ε  has the following linear partial differentiation relationship with the displacement vector u , 
which are also called the geometric equations. 
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2.1.3 The force and moment equilibriums 

The stress tensor σ is also called Cauchy's stress tensor. It has three normal stress 
components ( xxσ , xyσ , xzσ ) and six shear stress components ( xyσ , yxσ , xzσ , zxσ , yzσ , zyσ ). 

They are defined as follows. 
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where yzA∆ , xzA∆ and xyA∆ are infinitesimal areas respectively perpendicular to the x, y and z 

coordinate directions at any point (x, y, z). yzF , xzF and xyF are the three force vectors acting on 

yzA∆ , xzA∆ and xyA∆ , respectively. 

Based on the Newton’s second law of motion, the static equations of force 
equilibrium at any point in the solid material along the x, y, and z coordinate directions can be 
expressed in terms of the partial differentiations of the relevant stress tensor components. 
They are also called the equations of equilibrium and take the form  
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where ( ) ),,(,, zyxfff zyx f= is body force vector acting in the interior of the solid material 

along the x, y, and z coordinate directions. 

Because of moment equilibrium at any point (x, y, z) about the x, y, and z coordinate 
directions, the six shear stresses at that point (x, y, z) have the following relations. 

yxxy σσ =       (5a) 

zyyz σσ =       (5b) 

zxxz σσ =       (5c) 

2.1.4 The Hooke’s law 

 The strains (or the deformation) and the stresses (or forces) induced by loading at any 
point (x, y, z) in the solid material are two completely different natural phenomena. However, 
researchers discovered that there are laws governing their relationship. Such laws are 
generally called constitutive relationships at present.  The mathematical theory of classical 
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elasticity adopts the linear relationship between the strains and stresses in elastic solids. It is 
called Hooke’s law in honor of the English polymath and inventor Robert Hooke (1635-
1703). Because transversely isotropic solid material is the main concern of this paper, its 
Hooke’s law is specifically given. The six stresses in (4) can be expressed in terms of the six 
strains in the following six independent equations. 

zzyyxx xx εc)εc(cεcσ 2511 2 +−+=     (6a) 

zzxxyyyy cccc εεεσ 2511 )2( +−+=     (6b) 

zzyyxxzz ccc εεεσ 322 ++=      (6c) 

xzxz c εσ 42=        (6d) 

yzyz c εσ 42=        (6e) 

xyxy c εσ 52=        (6f) 

where )5,4,3,2,1( =ici are the five elastic stiffness parameters. They are independent to the 
levels of strains and stresses. For a positive definition of elastic stress-strain energy, the five 
elastic stiffness parameters shall have the following limits. 
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They have the following relationships with the Young’s moduli, Poisson’s ratios and the 
shear moduli. 
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where E and 'E  are the two Young’s moduli in honor of the English polymath Thomas 
Young (1773 – 1829), ν and 'ν  the two Poisson’s ratios in honor of the French mathematician 
and physicist Siméon Denis Poisson (1781 – 1840), µ and 'µ the two shear moduli, 
respectively in the isotropic plane and along the z-axis direction.  

The isotropic plane of a transversely isotropic solid in (6) is parallel to the x-y plane 
and perpendicular to the z-axis. The material property at any point is the same along any 
directions in the isotropic plane and can have different values along other directions. On the 
other hand, if the solid material property at any point can be the same along any directions, 
such material is called an isotropic material. The five elastic parameters degenerate into two 
elastic parameters as follows. 

)21/()1(2231 νµνµλ −−=+== cc      (9a) 

3/2)21/(22 µννµλ −>−==c      (9b) 

0'54 >=== µµcc        (9c) 

0)1(2' >+== µνEE      (9d) 

2/1'1 <=<− νv       (9e) 

where λ  and µ  are called Lamé constants in honor of the French mathematician Gabriel 
Léon Jean Baptiste Lamé (1795 – 1870). 

2.1.5 The boundary-value problems 

The above equations (2), (4) and (6) govern the displacement field, strain field and the 
stress field within an elastic solid material induced by an external and/or internal loading. To 
obtain a meaningful boundary value problem, the external and internal loading has to be 
properly prescribed on the boundaries and in the interior of the elastic solid material. They 
can be classified as the traction (or stress) boundary conditions, the displacement boundary 
conditions and the stress-displacement mixed boundary conditions. The system of linear 
partial differential equations (2), (4) and (6) has to be solved for a solution of the 
displacement, strain and stress field for the solid material under the prescribed boundary 
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conditions. This solution is unique. In other words, there is one and only one solution for a 
properly given boundary value problem.  

2.2 Establishment history from 1638 to 1838 

The development of the mathematical theory of classical elasticity was started by 
Galileo Galilei (1564 – 1642). In his Discourses published in 1638, Galileo made a scientific 
description of the strength of solids although solids were treated as inextensible [25]. About 
22 years later in 1660, Robert Hooke (1635-1703) discovered the first rough law of 
proportionality between the forces and displacements, a revolutionary idea in science.  He 
wrote in a Latin anagram that “the extension is proportional to the force”, which forms the 
foundation of the constitutive relation equations (6). It can be expressed as follows. 

LKF ∆=       (10)  

where F is the force, L∆ is the extension and K is an elastic parameter depending on the size 
of the solid material.  

About 49 years later, the English physicist and mathematician Isaac Newton (1642 – 
1726) published his book Philosophiæ Naturalis Principia Mathematica ("Mathematical 
Principles of Natural Philosophy") in 1687 and gave the second law of motion as follows. 

maF =        (11)  

where a is the acceleration and m is the mass of the solid material. This law laid the 
foundations for the governing equations of force and moment equilibriums in (4) and (5).  

During this 150-year period from 1660 to 1821, many mathematician and physicists 
worked on the science of elasticity with some special problems of beams, torsion, columns 
and plates. They included Edme Mariotte (1620–1684), Jacob Bernoulli (1655 – 1705), 
Daniel Bernoulli FRS (1700 – 1782), Leonhard Euler (1707 – 1783), Charles-Augustin de 
Coulomb (1736 – 1806), Thomas Young (1773 – 1829), and Siméon Denis Poisson (1781 – 
1840). For example, Thomas Young sharpened the first rough law (10) in 1807 by giving a 
clear formulation of the modulus of elasticity in tension as follows.  

εσ E
L
L

A
KL

A
F

=
∆

==       (12)  

where σ is the tensile stress and equals the ratio of the tension force F over its applied cross-
section area A. ε is the tensile strain and equals the ratio of the extension L∆ over its total 
length L. The elastic modulus (or Young’s modulus) ( AKLE /= ) becomes a real elastic 
parameter independent to the size of the solid material.  

The mathematical theory of classical elasticity presented in above sub-section in 
equations (1) to (9) was formerly established from 1821 to 1838 by the French engineer and 
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physicist Claude-Louis Navier (1785 – 1836), the French mathematician Augustin-Louis 
Cauchy (1789 – 1857), and the British mathematical physicist George Green (1793 – 1841). 
In 1838, George Green developed the revolutionary principle of conservation of elastic 
energy and showed that the number of elastic parameters necessary to characterize the elastic 
solid of general anisotropy turns out to be 21. In particular, Green’s functions are used to 
name the fundamental singular solutions of boundary-value problems in physics and 
elasticity. Using “Green’s function” as the topic, a result of 21,574 papers is shown up in the 
database of Web of Science on April 6, 2015. More details of the establishment history of 
classical elasticity can be found in the textbooks and monographs [26-39]. 

2.3 The key task of solution from 1838 to present 

As shown in (1) to (9), the mathematical theory of classical elasticity comprises a 
complete set of linear partial differential equations governing the fields of displacement 
vector, strain tensor and stress tensor in a solid material subject to external and internal 
loadings. Since its former establishment in 1838, the key task in the mathematical theory of 
classical elasticity has become to derive, formulate and find the solution of the elastic fields 
for specific types of the boundary-value problems [26-40].  

The mathematical formulation and derivation of solutions of boundary-value 
problems within the framework of classical elasticity, however, are definitely not a routine 
task and have intrinsic difficulties. It has been always a difficult task to find a solution for a 
boundary-value problem in classical elasticity. Many mechanicians, mathematicians and 
elasticians devoted their time and efforts to attack the key task in elasticity because of its 
wide applications in engineering and science. Construction of the mathematical tools for 
formulation of stresses and deformations in strained elastic bodies are their dominant 
concerns. The common methods include serial expansions, potential methods, complex 
variables, Fourier transforms and integral transforms. In particular, Barré de Saint-Venant 
(1797-1886) made monumental contributions to torsion and flexure of cylinders with an 
approximation principle (i.e., the Saint-Venant’s principle) of statically equivalent systems of 
load. Gustav Robert Kirchhoff (1824 – 1887) initiated the study of the deflection of plates. 
George Biddell Airy (1801 – 1892) solved two-dimensional plane stress problems.  

Exact, complete and closed-form solutions are limited in the literature. They have 
been derived only for some special cases of homogeneous isotropic (or transversely isotropic) 
elastic solids with some regular and special geometries and loadings. These regular 
geometries include beams, columns, cylinders, plates, shells and sphere. The solutions can be 
found in classical textbooks and monographs [26-40] including Love (1927) and Poulos & 
Davis (1974) and many journal papers.  Exact, complete and closed-form solutions are not 
available for many problems of scientific and technological importance although there are ten 
thousand papers related to the topic of linear elasticity in the database of web of science 
journals at present.  



12-63 

 

Because of the intrinsic difficulties in deriving analytical and mathematical solutions, 
more and more researchers have turned their efforts in developing numerical methods and 
software for numerical solutions of various boundary-value problems in elasticity since the 
introduction of digital electronic programmable computers in 1950s. These numerical 
methods include finite element methods, finite difference methods, boundary element 
methods and discrete element methods.  

2.4 Closed-form fundamental singular solutions  

Fundamental singular solutions are of the most importance in the mathematical theory 
of classical elasticity. They are the solutions of boundary-value problems due to the action of 
force loading concentrated at a point or a curve in the interior or on the boundary of an elastic 
solid. Furthermore, a closed-form solution is a peculiar solution that can be exactly expressed 
in the forms of elementary or special functions with known and accurately evaluable 
singularities.  Consequently, the closed-form fundamental singular solutions are extremely 
limited and useful in classical elasticity or in the much wide areas of continuum mechanics 
and applied mathematics. They can be used to formulate solutions of various distributed 
loadings. They have become much more powerful in solving various boundary-value 
problems due to the development of boundary element methods since 1960s. 

The first complete and closed-form fundamental singular solution in elasticity is 
Kelvin’s solution [41]. It was given by the British mathematical physicist William Thomson 
(or Lord Kelvin) (1824–1907) in 1848. He also did important work in the formulation of the 
first and second laws of thermodynamics. Kelvin’s solution gives the complete elastic field in 
a homogeneous and isotropic medium of infinite extent ),,( +∞<<−∞ zyx  induced by an 
internal body force concentrated at a point. It forms the core basis of the modern boundary 
element methods. The second complete and closed-form singular solution is Boussinesq’s 
solution. It was given by the French mathematician and physicist Joseph Valentin Boussinesq 
(1842-1929) in 1885 [42]. Boussinesq’s solution is also a fundamental singular solution and 
describes the complete elastic field in a homogeneous and isotropic medium of semi-infinite 
extent )0,,( +∞<≤+∞<<−∞ zyx  induced by a normal traction concentrated at a point on 
the boundary surface. The third complete and closed-form solution is Mindlin’s solution [43]. 
It was given by the American mechanician Raymond David Mindlin (1906-1987) in 1936. 
Mindlin’s solution is a fundamental singular solution and describes the complete elastic field 
in a homogeneous and isotropic medium of semi-infinite extent )0,,( +∞<≤+∞<<−∞ zyx  
induced by an internal body force concentrated at a point.  

The above three classical solutions have become the theoretical basis of many 
engineering sciences. Other closed-form fundamental singular solutions available in open 
literature [44-47] for boundary-value problems in classical elasticity are some logical 
extensions of the above three solutions to transversely isotropic solid and bi-materials. They 
include (1) solution of a point force in the interior of a homogeneous and transversely 
isotropic elastic solid of infinite extent; (2) solution of a point force on the boundary of a 



13-63 

 

homogeneous and transversely isotropic elastic solid of a half-space extent; (3) solution of a 
point force in the interior of a homogeneous and transversely isotropic elastic solid of infinite 
extent, where the isotropic plane is parallel to the boundary surface; (4) solution of a point 
force in the interior of two perfectly bonded homogeneous and isotropic elastic solids of 
infinite extent; (5) solution of a point force in the interior of two perfectly bonded 
homogeneous and transversely isotropic elastic solids of infinite extent, where the two 
isotropic planes are parallel to the interface plane. Various solution methods were used for 
the formulations of the above closed-form fundamental singular solutions.  

2.5 Solutions in non-homogeneous and/or anisotropic materials 

Homogeneous and isotropic solids are an idealized model of actual materials. Actual 
materials are usually and commonly non-homogeneous and anisotropic and their properties 
are variable spatially and directionally. They can be observed in many natural and engineered 
materials. The heterogeneity and anisotropy can have significant effects on the elastic 
responses of materials under loadings [48].  Literature reviews over the past 30 years by the 
author have shown that there are no closed-form fundamental singular solutions for general 
non-homogeneous and/or anisotropic elastic solids [49-76].   

In order to solve the boundary-value problems in heterogeneous and anisotropic 
materials, many researchers have concentrated their attentions on the solutions of boundary-
value problems in elastic solids whose properties vary with depth z only since 1940. The 
elastic solutions for the depth variation models can be classified into two categories. In the 
first category, it is assumed that the Poisson’s ratio keeps constant and the shear modulus 
varies continuously with depth in a certain simple manner in the material region.  Elementary 
functions including power law, linear, hyperbolic and exponential functions have been 
adopted to represent the depth variations of the shear modulus.  Studies on this category of 
the boundary-value problems can be found in Holl [49], Gibson [54], Ozturk and Erdogan [62] 
and Selvadurai [63, 66].   

In the second category, it is assumed that elastic materials are piece-wise homogeneous 
and consist of a limited number of distinctive finite elastic layers of an infinite lateral extent. 
The elastic properties (i.e., Poisson’s ratio and shear modulus) keep constant within each 
elastic layer and are different for any two connected layers. Inter-facial conditions, such as a 
fully bonded interface, are imposed to connect different layers together into a layered elastic 
material system. Studies on this topic can be found in Burminster [50], Lemcoe [51], 
Schiffman [52], Michelow [53], Bufler [55], Small & Booker [56], Wang [57], Benitez and 
Rosakis [58], Kausel and Seale [59], Pindera [60], Conte and Dente [61], Ta and Small [64], 
Cheung and Tham [65]. 

Furthermore, the studies on homogeneous and/or layered solids of transverse isotropy 
can be found in Huber [67], Elliott and Mott [68], Hu [69, 70], Pan and Chou [71], Ding and 
Xu [72, 73], Pan [74], Lin and Keer [75] and Ding et al. [76]. 
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2.6 The common issues 

The formulation and solutions of elastic problems in the first category are certainly non-
routine. Many cases cannot provide a complete set of the solutions for the displacement 
vector, strain and stress tensors. In the second category, many analytical or semi-analytical 
methods are developed for deriving and formulating solutions of similar boundary-value 
problems in layered elastic solids with isotropic and/or transversely isotropic properties. The 
methods include forward transfer matrix, flexibility matrix, stiffness matrix, finite layer, 
finite strip and thin layer methods. These solutions are usually expressed in very complicated 
forms involving improper integrals and/or approximated forms. There is almost no 
systematical and rigorous mathematical examination of these solutions in terms of their 
convergence and singularities. Most importantly, closed-form fundamental singular solutions 
were also not available at least in these cited literatures [25-76] on the boundary-value 
problems with depth variations of either the two isotropic or the five transversely isotropic 
elastic parameters.   

2.7 The author’s work 

From 1984 to present, the author has examined the three-dimensional boundary-value 
problems of the classical elasticity in nonhomogeneous and transversely isotropic solid [5, 6, 
11-17, 19, 20, 77-81]. The solid occupies a three-dimensional space of an infinite lateral 
extent ),( +∞<<−∞ yx and a finite thickness )bza ≤≤ , a semi-infinite )+∞<≤ za , and/or 
an infinite extent )( +∞<<−∞ z . The five elastic material parameters ),,,,( 54321 ccccc or 

),',,',( µννEE are arbitrary piece-wise functions of the z–axis. The solid is subjected to 
various loadings at the external boundary surfaces az = and bz = as well as the internal body 
force.  His key task is to rigorously derive and show the complete and closed-form solution of 
the elastic fields from the set of partial differential equations given in (1) to (9) for each of the 
boundary-value problems. Moreover, the author has given the closed-form fundamental 
singular solutions induced by loadings concentrated at a point, a circular ring and a  
rectangular area whose normal direction is parallel to the vertical z-axis in the interior or on 
the boundary of the solid. His closed-form fundamental singular solutions can automatically 
and analytically degenerate as Kelvin solution, Boussinesq solution and Mindlin’s solution 
once the material properties become homogeneous and isotropic. Details of his mathematical 
approach, treatment, method and solutions are presented in this paper and the companion 
paper [24] using the model of n-layered solid with both transverse isotropy and isotropy.  

 

3 The Matrix Fourier Integral Approach 

3.1 General  

The author used the Fourier integral transforms to rigorously derive and formulate the 
general algebraic solution for the set of linear partial differential equations (2) to (6). The 



15-63 

 

Fourier integral transforms are one of the classical mathematical tools for solutions of initial 
and/or boundary value problems in physics and mechanics [82-90]. The concept of Fourier 
integral transforms was originated by the French mathematician and physicist Jean-Baptiste 
Joseph Fourier (1768 – 1830) in his monumental treatise entitled La Théorie Analytique de la 
Chaleur (The Analytical Theory of Heat) in 1822 [82]. He stated the Fourier Integral 
Theorem and used it to solve problems of heat transfer and vibrations. In 1843, A. L. Cauchy 
(1789 – 1857) gave the exponential form of the Fourier Integral Theorem [90].  

On the basis of the classical Fourier integral transforms, the author [5, 6, 11-17] 
developed a matrix approach to solve the set of fifteen linear partial differential equations (2) 
to (6) and derived a general solution in symmetrical matrix form. Details of this approach and 
results are presented below using the transversely isotropic material model. 

3.2 The matrix solution representation 

The strain and stress tensors in (1) to (6) can be re-expressed as the vertical stress 
vector ),,( zyxzT , the plane stresses ),,( zyxpT , the vertical strains ),,( zyxzΓ  and the plane 

strains ),,( zyxpΓ . As a result, the fifteen field variables can be grouped into five vectors as 

follows, 
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Yue [5, 6, 11-17] has shown that the above five sets of vectors for the fifteen field 
variables in the physical domain can be represented by two unknown vectors ),,( zηξw  and 

),,( zz ηξY  in the transform domain for all the boundary-value problems of a solid occupying 
the layer region of +∞<<∞− yx, and bza ≤≤ . In particular, the solution representation 
can be expressed as follows in the Cartesian coordinate system,  

∫∫
+∞

∞−

+∞

∞−

= ηξηξ
ρπ

dKdzzyx ),,(1
2
1),,( Πwu     (14a) 

∫∫
+∞

∞−

+∞

∞−

= ηξηξ
π

dKdzzyx zz ),,(
2
1),,( ΠYT     (14b) 

∫∫
+∞

∞−

+∞

∞−

= ηξηξ
π

dKdzzyx pp ),,(
2
1),,( wΠΓ     (14c) 

),,(),,(),,( zyxzyxzyx pppzpzp ΓCTCT +=     (14d) 
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),,(),,(),,( zyxzyxzyx pzpzzzz ΓCTCΓ += .    (14e) 

where ;22 ηξρ += ;)( yxieK ηξ += ;1−=i The coordinate coefficient matricesΠ and pΠ  are 

defined by 
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The four elastic parameter matrices ,, pppz CC zzC and zpC can vary with the depth z and are 

defined by 
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The two unknown field variable vectors ),,( zηξw  and ),,( zz ηξY in the transform 
domain are defined as follows. 
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They can be re-expressed by ),,( zyxu  and ),,( zyxzT  in Cartesian coordinate system as 
follows.  

∫∫∫∫
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∫∫∫∫
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where ;)( yxieK ηξ +−∗ = the coordinate coefficient matrix *Π is defined by 
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Correspondingly, the body force vector ),,( zyxf  and its counterpart ),,( zηξg in the 
transform domain have the following relations. 

∫∫
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3.3 Two sets of governing ordinary differential equations 

The solution representation can be applied to the system of fifteen partial differential 
equations (2) to (6). The fifteen field variables in the physical domain can be replaced by the 
six field variables in the transform domain. The system of the fifteen linear partial differential 
equations can be then degenerated and reduced to a set of six first-order linear ordinary 
differential equations in terms of the six field variables in the transform domain. Due to the 
symmetry and anti-symmetry of the elastic solid of transverse isotropy in the x-y plane about 
the z-axis, the set of six first-order ordinary differential equations can be decoupled into the 
two sets of first order ordinary linear differential equations.  

3.3.1 The first set for anti-axial-symmetry of materials 

The first set is due to the anti-symmetry about the z-axis and has two linear ordinary 
differential equations with two field variables and variable coefficients with z. It can be 
expressed as follows. 
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where bza ≤≤ , +∞<≤ ρ0 , and 
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3.3.2 The second set for axial-symmetry of materials 

 The second set is due to the axial symmetry about the z-axis and has four linear 
ordinary differential equations with four field variables and variable coefficients with z. It can 
be expressed as follows. 

)()()()( zzzz
dz
d

uu GUCU += ρ      (19a) 

where bza ≤≤ , +∞<≤ ρ0 , and 
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Most importantly, the matrix approach eliminates the two independent variables ξ and 
η  in the six governing ordinary differential equations and preserves only the radial 
distance ρ  of the material axial symmetry about the z-axis. The two coefficient matrices 

)(zvC and )(zuC contain only the five material parameters )5,4,3,2,1),(( == izcc ii and do not 

have the radial distance variable ρ . The five elastic parameters in )(zvC (18b) and )(zuC   

(19b) can be arbitrary functions of the depth z, i.e., .5,4,3,2,1),( == izcc ii  

3.4 The general solution of (z)V and )(zU for homogeneous materials 

To solve a specific type of the boundary-value problem, the specific depth variation 
functions )5,4,3,2,1)(( =izci have to be provided for the five elastic parameters. Consequently, 
a general solution can be derived for the two sets of ordinary differential equations with 
variable coefficients (18-19).  The general solution can then be used to derive and formulate 
specific solutions for various boundary-value problems imposed on the non-homogeneous 
solid in the transform domain.  The solutions in the physical domain can subsequently 
obtained by applying the solution representations (14) to the specific solutions in the 
transform domain. 
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If the five elastic parameters )5,4,3,2,1,( =ici  in (18-19) do not vary with the depth z 

(in other words, the solid is homogeneous), the two coefficient matrices )(zvC and 

)(zuC become constant coefficient matrices. General solutions in matrix forms can be found 
for the two sets of two and four linear ordinary differential equations with constant 
coefficient matrices.  They are given in the ensuing derivations.  

3.4.1 The general solution of (z)V  

The basic solution for the first set of two linear ordinary differential equations with 
constant elastic parameters (18) can be obtained as follows,  

∫ −−−=
z

z
v dzzzzz

1

)()()()()( 11 ςςς GAVAV     (20a) 

where 1zz ≥ or 1zz ≤ . The first basic square matrix )(zA  is defined as follow. 

zz eez ργργ γγ 00 )()()( 00
−−+= BBA      (20b) 

where the material characteristic root 0450 >= ccγ . The material constant square 

matrix )(χB is defined as follows.  
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The above two basic solution matrices have the following properties. 

1)(det =zA         (21a) 









==

10
01

)0( 2IA        (21b) 

)()()( 11 zzzz += AAA       (21c) 

)()( 1 zz −=− AA        (21d) 

3.4.2 The general solution of )(zU  

Similarly, the general matrix solution for the second set of four linear ordinary 
differential equations with constant coefficients (19) can be obtained as follows, 
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∫ −−−=
z

z
u dzzzzz

1

)()()()()( 11 ςςς GQUQU      (22a) 

where 1zz ≥ or 1zz ≤ . The second basic square matrix )(zQ  is defined as follow. 
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where the material characteristic roots 1γ , 2γ and 3γ are defined as follows, 

01 >+= ba ccγ  and 02 >−= ba ccγ    for 0>∆   (23a)  

||1 ba cic +=γ  and ||2 ba cic −=γ    for 0<∆   (23b) 

( ) 0/ 4
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4231 2cccc −−=∆         (24c) 

where 1γ± and 2γ±  are the four roots for 0≠∆  and 3γ± are the two equal roots for 0=∆ of 
the following material characteristic equation. 
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3142
2
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−+
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c
c

cc
ccccc γγ      (24d) 

The three material constant square matrices )(χC , )(χD  and )(χE are defined as 
follows, 
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The above basic solution matrices have the following properties. 

1)(det =zQ          (26a) 

4)0( IQ =          (26b) 
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where 4I is the unit square matrix of the dimension 4. 

3.4.3 The three constant matrices for isotropic solids 

For isotropic solids (9), 0=∆  and the material characteristic roots 10 =γ and 13 =γ . 
The three material constant square matrices )(χB , )(χD  and )(χE (20c, 25b, 25c) can be 
simplified with the two material parameters µ andα  for isotropic solid as follows.  
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3.5 The (z)V and )(zU of a homogeneous layer bza ≤≤  

The general matrix solutions for one homogeneous elastic layer can be re-expressed in 
terms of the six boundary variables at az = as follows.  

∫ −−−= −−
z

a
v

pzpaz dzeaazez ςςςςργργ )()()()()( )()( 00 GAVAV   (28a) 
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z

a
u

pzpaz dzeaazez aa ςςςςργργ )()()()()( )()( GQUQU   (28b) 
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where the two solution square matrices )(spA and )(spQ have only the exponential functions 

with negative independent variable because 0≥−= azs and/or 0≥−= ςzs  
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Secondly, the general matrix solutions for one homogeneous elastic layer can be re-
expressed in terms of the six boundary variables at bz = as follows.  

∫ −−−= −−−−
z

b
v

qzqbz dzebbzez ςςςςργργ )()()()()( )()( 00 GAVAV   (29a) 
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b
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qzqbz dzebbzez aa ςςςςργργ )()()()()( )()( GQUQU   (29b) 

where the two solution square matrices )(sqA and )(sqQ have only the exponential functions 

with negative independent variable because 0≤−= bzs and/or 0≤−= ςzs .  
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The four algebraic boundary equations governing the relationship of the four field 
variables )(aV and )(bV on the upper and lower boundaries az = and bz =  can be expressed 
as follows. It can be shown that they have only two independent equations. 

∫ −−−= −−
b

a
v

pbpab dbeaabeb ςςςςργργ )()()()()( )()( 00 GAVAV   (30a) 

or 
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∫ −−−= −−−−
a

b
v

qaqba daebbaea ςςςςργργ )()()()()( )()( 00 GAVAV   (30b) 

The eight algebraic boundary equations governing the relationship of the eight field 
variables )(aU and )(bU on the upper and lower boundaries az = and bz = can be expressed 
as follows. It can be shown that they have only four independent equations.  
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3.6 The (z)V and )(zU of a homogeneous upper halfspace az ≤<∞−  

The general matrix solutions for the upper homogeneous elastic half space are a 
special case of the general matrix solutions. They can be obtained as follows using the natural 
regularity conditions (i.e., the displacements shall be reduced to zero and the stresses shall be 
bounded as −∞→z ).  
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where ςς
ς >=−
− zz

z  if 1 , and ςς
ς <−=−
− zz

z  if 1 . 

Putting az =  into (32a), two algebraic boundary equations can be obtained as follows. 
It can be shown that they have only one independent boundary equation governing the 
relationship of the two field variables )(aV on the lower boundary az = .  
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Putting az =  into (32b), four algebraic boundary equations can be obtained. It can be 
shown that they have only two independent equations governing the relationship of the four 
field variables )(aU on the lower boundary az = . 
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3.7 The (z)V and )(zU of a homogeneous lower halfspace +∞<≤ zb  

Similarly, the general matrix solutions for the lower homogeneous elastic layer can be 
obtained as follows, using the three regularity conditions as +∞→z .  
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Putting bz =  into (35a), two algebraic boundary equations can be obtained as follows. 
It can be shown that they have only one independent boundary equation governing the 
relationship of the two field variables )(bV on the lower boundary bz = . 

∫
+∞

−−=
b

v
b deb ςςγγ ςργ )()()()( )(

00
0 GBVB               (36) 

Putting bz =  into (35b), four algebraic boundary equations can be obtained as 
follows. It can be shown that they have only two independent equations governing the 
relationship of the four field variables )(bU on the lower boundary bz = . 
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3.8 The (z)V and )(zU of a homogeneous infinite space +∞<<∞− z  

The general matrix solutions for a homogeneous elastic solid of infinite space can be 
similarly obtained as follows, using the six regularity conditions as −∞→z and +∞→z . 

∫
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3.9 Summary notes 

The mathematical approach presented above clear shows the following features. The 
five material parameters for the solutions of the boundary-value problems in the transversely 
isotropic solid are isolated and separated from the independent spatial coordinates ),,( zyx in 
the physical domain and/or ),,( zηξ in the transform domain. They are presented in the four 
square matrices and the three material characteristic roots. The function of the two lateral 
coordinates ),( ηξ in the transform domain is consolidated into the function of the lateral 

radial distance )( 22 ηξρ += .  

The governing equations and general solutions are decoupled into the two systems of 
anti-symmetry and axial-symmetry about the vertical z-axis, which is consistent with the 
axial symmetry of the material property of the transversely isotropic solid about the z-axis. 
The general solutions are all presented in matrix form and the functions of the material 
matrices and the roots and the lateral radial distance ρ and the vertical coordinate z are 
clearly separated and identified.  

The two independent variables ρ and z are always working together as a combined 
variable zρ . The body force term is also clear. There are only the following two types of 
integrations for the body force vector ),,( zηξg . 

∫ −−
z

a

z dze ςηξςχρ ),,()( g      (39a) 

∫ −−−
z

a

z dzez ςηξςρ ςχρ ),,()( )( g     (39b) 

where .or  ,, 3210 γγγγχ =  
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If the body force vector is concentrated on a horizontal plane, i.e., 
)(),(),,( dzz −= δηξηξ gg , whereδ is the Dirac delta function, the equations (39) become 

the following: 

),(),,( )()( ηξςηξ χρςχρ gg dz
z

a

z edze −−−− =∫      (40a) 

),()(),,()( )()( ηξρςηξςρ χρςχρ gg dz
z

a

z edzdzez −−−− −=−∫    (40b) 

where .zda <<  

 

4 The Solution in Transform Domain 

4.1 The boundary value problems 

4.1.1 Material discretization 

For simplicity and without loss of generality, this paper considered the specific type 
of boundary-value problems in an elastic solid of depth variable material properties and an 
infinite extent subject to a body force vector. The depth variations of material parameters are 
represented by a series of step functions (or a series of homogeneous and connected elastic 
layers). This material discretization technique can represent any variations in depth as long as 
the total number of the layers is large enough.   

As a result, the n-layered elastic solid consisting of (n+2) dissimilar layers can be 
obtained. Each layer is homogeneous and has the five transversely isotropic elastic 
constants ),,,,( 54321 jjjjj ccccc , where 1,,...,3,2,1,0 += nnj . The 0th layer occupies the region 

of upper halfspace. The (n+1)th layer occupies the region of lower halfspace. Between the 
upper and lower halfspaces, there are the n layers. The jth layer occupies a layer region of a 
finite thickness extent ),...,3,2,1( nj = . In other words, (i) for ,0

−≤<∞− Hz it is the 0th 

homogeneous elastic halfspace; (ii) for ,1
−+

− ≤≤ jj HzH it is the jth homogeneous elastic layer 

with the layer thickness −
−

+ −= 1jjj HHh ; (iii) for ,+∞<≤+ zHn it is the (n+1)th homogeneous 

elastic halfspace.  

4.1.2 Interface conditions 

Secondly, the interface connection conditions are needed to be prescribed for linking 
the layered solids together. For simplicity, they can be perfectly bonded together whilst other 
types of interface conditions can also be examined [76]. For this perfectly bonded interface 
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connection, the displacement vector ),,( zyxu  and the vertical stress vector ),,( zyxzT  are 
completely continuous at the horizontal interface between any two connected dissimilar 
elastic layers, i.e.,  

),,(lim),,(),,(lim zyxHyxzyx
jj Hz

j
Hz

uuu
+− →→

==      (41a) 

),,(lim),,(),,(lim zyxHyxzyx z
Hz

jzz
Hz jj

TTT
+− →→

==     (41b) 

4.1.3 Internal loading of body force vector  

Thirdly, the distribution of the general body force vector ),,( zyxf is assumed to 
concentrate at an arbitrary horizontal plane dz = in the layered elastic solids.  

)(),(),,( dzyxzyx −= δff       (42) 

where −+
− ≤≤ kk HdH 1 ;δ is a Diract delta function, nk ≤≤1 . In particular, the situation for 

−≤<∞− 0Hd can be included by increasing a single layer of finite thickness dH −> −
0 in the 

0th elastic layer. Similarly, the situation for +∞<≤+ dHn can be included by increasing a 

single layer of finite thickness +−> nHd in the (n+1)th elastic layer. 

Substituting the above body force condition into equations (17), the following results 
can be obtained for the internal loading variables. 

)(),(),,( dzz −= δηξηξ gg       (43a) 

)(),(),,( dzz vv −= δηξηξ GG      (43b) 

)(),(),,( dzz uu −= δηξηξ GG      (43c) 

∫∫
+∞

∞−

+∞

∞−

= dxdyKyx ** ),(
2
1),( fΠg
π

ηξ     (43d) 

4.1.4 The backward transfer matrix treatment 

Using the general matrix solutions in the transform domain, many boundary value 
problems have been formulated and solved in n-layered elastic solids. Yue [11, 13, 14] has 
developed a backward transfer matrix method to obtain analytical solutions for elastic 
problems in the isotropic n-layered system. Details are respectively given in the following 
two sections for the solutions of )(zV and )(zU  with transversely isotropic n-layered solids. 

4.2 The solution of )(zV  
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4.2.1 Solution of )(zV  in terms of )( −
jHV or )( +

jHV  

The general matrix solutions in terms of the field variable matrix )(zV for each of the 
(n+2) layers can be expressed as follows. 

(i) For the 0th layer of the upper halfspace ,0
−≤<∞− Hz  

 )()()( 0000
)( 000 −−−= Hez zH VBV γργ         (44a) 

(ii) For the jth layer of finite thickness −+
− ≤≤ jj HzH 1 , nkkj ,...,1,1,...,2,1 +−=  and 

kj ≠  

)()()( 11
)( 10 +

−−
− −= −

jj
p
j

Hz HHzez jj VAV ργ      (44b) 

or 

)()()( )(0 −− −= jj
q
j

zH HHzez jj VAV ργ      (44c) 

(iii) For the kth layer of finite thickness ,1
−+

− ≤≤ kk HzH nnk ,1,...,2,1 −=  
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≤≤−

=
−+−+
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−
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dz
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(44d) 

or 
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kkk
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for )()(
for )()()(

)( )(
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)()(

0

010

VA
GAVA

V ργ

ργργ

      (44e) 

(iv) For the (n+1)th layer of lower halfspace ,+∞<≤+ zHn  

)()()( )1(01
)()1(0 +

++
−− −= +

nnn
Hz Hez nn VBV γργ       (44f) 

The basic solution matrices in equations (44b) to (44e) are defined as follows. 

)()()( 0
2

0
0

jj
s

jj
p
j

jes γγ ργ −+= − BBA      (45a) 

)()()( 00
2 0

jjjj
sq

j
jes γγργ −+= BBA      (45b)  
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where jjj cc 450 =γ and the constant matrix )(χjB is given in (20c) for the jth elastic layer. 

The basic solution matrices do not have any functions of exponential growth, i.e., ||zeγρ  with 
positive constant )0(>γ . 

4.2.2 Solution of )(zV  in terms of )( 0HV or )( nHV  

Using the perfectly bonded interface condition (1), we have  

)()()()( 11
+

++
− === jjjjjjjj HHHH VVVV      (46) 

Accordingly, using (44b), (44d) and (46), the matrix solution of )(zV for nHzH ≤≤0  can be 

uniformly expressed in terms of )( 0HV  via the backward transfer matrix technique.  

(i) For the jth layer of finite thickness jj HzH ≤≤−1 , nkj ≤≤≤1 and ,−≤ dz  

)()()...()()( 011111
...)( 1011)1(010 HhhHzez p

j
p
jj

p
j

hhHz jjjj VAAAV −−−
+++− −= −−− ργργργ             (47a) 

(ii) For the jth layer of finite thickness 11 −− ≤≤ jj HzH , 1≥≥≥ kjn  and ,+≥ dz  

vk
p
kk

p
kj

p
jj

p
j

dHhhHz

p
j

p
jj

p
j

hhHz

dHhhHze

HhhHzez
kkkkjjjj

jjjj

GAAAA

VAAAV

)()()...()( 

)()()...()()(

11111

)(...)(

011111
...)(

0)1()1(01)1(010

1011)1(010

−−−

−=

++−−−

−++++−

−−−
+++−

++−−−

−−−

ργργργργ

ργργργ

  (47b) 

Similarly, using (44c), (44e) and (46) the matrix solution of )(zV for nHzH ≤≤0 can 

be uniformly expressed in terms of )( nHV via the backward transfer matrix technique.  

(i) For the jth layer of finite thickness jj HzH ≤≤−1 , 1≥≥≥ kjn  and ,+≥ dz  

)()()...()()( 11
...)( 01)1(00

nn
q
nj

q
jj

q
j

hhzH HhhHzez nnjjjj VAAAV ++
+++− −= ++ ργργργ              (48a) 

 (ii) For the jth layer of finite thickness jj HzH ≤≤−1 , nkj ≤≤≤1 and ,−≤ dz  

vk
q
kk

q
kj

q
jj

q
j

HdhhzH

nn
q
nj

q
jj

q
j

hhzH

dHhhHze

HhhHzez
kkkkjjjj
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GAAAA

VAAAV

)()()...()(

)()()...()()(

11111
)(...)(

11
...)(

10)1()1(01)1(00

01)1(00

−−−−−

−−−=

−−−++
−++++−

++
+++−

−−−++

++

ργργργργ

ργργργ

   (48b) 

4.2.3 Solution of )( 0HV in terms of vG  
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Substituting nHz = into equation (47b), the following two algebraic boundary 

equations can be obtained for governing )( 0HV and )( nHV . 
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n
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nn
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n
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n
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  (49) 

Since the 0th layer is an upper elastic halfspace, it has one independent algebraic 
boundary equation governing )( 0HV  from (33). It can be expressed as follows. 

0)( 00 =HVq        (50a) 

where  








 −
=

0040
0

11
γc

q       (50b) 

Thirdly, since the (n+1)th layer is a lower elastic halfspace, it has one independent 
algebraic boundary equation governing )( nHV  from (36). It can be expressed as follows. 

0)(1 =+ nn HVp       (51a) 












=

++
+

)1(0)1(4
1

11
nn

n c γ
p      (51b) 

Using (49) and (51a), the one algebraic boundary equation (51a) can be re-expressed 
as follows. 
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)()()...()(
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ργργργργ

ργργργ

 (52) 

Using equations (50a) and (52), the following set of two linear algebraic boundary 
equations can be obtained for the unknown two variables )( 0HV . 

0)( 00 =HVq            (53a) 

vk
p
kk

p
kn

p
nn

p
nn

Hdhhhp
n

p
nn

p
nn

dHhhh
eHhhh kkkkkk

GAAAAp
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011111
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(53b) 

Or they can be re-expressed in the following matrix form, 
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kkkkkk
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)()()...()(

)(
)()...()(

11111

)(...
0

11111

0 101)1(02)2(0101 ργργργργ

 (54) 

From (54), the solution of )( 0HV is given exactly as follows. 

vAp
Hdhhh kkkkkkeH GNV )(...

0
101)1(02)2(0101)( −−−−− −−−−−−= ργργργργ    (55a) 

where ApN is given below and its exact expression is in Appendix A. 









−
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−

)()()...()( 11111

1

dHhhh k
p
kk

p
kn

p
nn

p
nn

ApAp AAAAp
0

MN   (55b) 

where 1−
ApM is the inverse matrix of the 22× coefficient matrix ApM  and can be analytically 

derived in exact form (Appendix A). ApM  is defined as follows. 









=

−−+ )()...()( 11111

0

hhh p
n

p
nn

p
nn

Ap AAAp
q

M    (55c) 

4.2.4 Solution of )( nHV  in terms of vG  

Similarly, substituting 0Hz = into equations (48b), another two algebraic boundary 

equations can be obtained for governing )( 0HV  and )( nHV . They are as follows.  

vk
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q
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qqHdhhh
nn

q
n

qqhhh

dHhhhe

HhhheH
kkkk

nn

GAAAA

VAAAV

)()()...()(
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  (56) 

Using (56), (50a) can be re-expressed as follows. 
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q
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GAAAAq
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)()()...()(

)()()...()(
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ργργργ

 (57) 

Using (51a) and (57), the following set of two linear algebraic equations can be 
obtained for the two unknown variables )( nHV at the interface nHz = . 

0)(1 =+ nn HVp               (58a) 
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Or they can be re-expressed in the following matrix form,  
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hhh
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 (59) 

 

From (59), the solution of )( nHV is given exactly as follows. 

vAq
dHhhh

n
kkkknnnneH GNV )(... 0)1()1(0)1()1(00)( −−−−−− ++−−= ργργργργ     (60a) 

where AqN is given below and its exact expression is in Appendix B. 
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)()()...()( 11122110
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dHhhh k
q
kk
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qqAqAq AAAAq
0

MN    (60b) 

where 1−
AqM is the inverse matrix of the 22× coefficient matrix AqM  and can be analytically 

derived in exact form (Appendix B). AqM  is defined as follows. 









−−−

= +

)()...()( 22110

1

n
q
n

qq
n

Aq hhh AAAq
p

M       (60c) 

4.2.5 Solution of )(zV  in terms of vG  

Finally, substituting the solution of )( 0HV in the general matrix solutions expressed 

in terms of )( 0HV , the solution of )(zV can be obtained for −≤<∞− dz . Similarly, 

substituting the solution of )( nHV  in the general matrix solutions expressed in terms 

of )( nHV , the solution of )(zV can be obtained for +∞<≤+ zd . Consequently, the solution 
of )(zV is expressed as follows. 

vV zz GΨV ),()( ρ=         (61a) 

where +∞<<∞− z , +∞<≤ ρ0 ; ),(1 zV ρΨ is a square matrix of 22× elements and can be 
exactly expressed as follows. 
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 (i) For the 0th layer of the upper halfspace ,0
−≤≤<∞− dHz  

Ap
HdhhhzH

V
kkkkkkez NBΨ )(),( 000

)(...)( 101)1(02)2(0101000 γρ ργργργργργ −−−−− −−−−−−−−=             (61b) 

 (ii) For the jth layer of finite 
thickness jj HzH ≤≤−1 and −≤ dz , )(,1,...,2,1 nkkj ≤−=  

Ap
p

j
p
jj

p
j

HdhhzH
V hhHzez kkkkjjjj NAAAΨ )()...()(),( 11111

)(...)( 101)1(01)1(00
−−−

−−−−−−− −= −−−++ ργργργργρ (61c) 

(iii) For the jth layer of finite thickness jj HzH ≤≤−1 and ,+≥ dz nkkj ,...,1, +=   

Aqn
q
nj

q
jj

q
j

dHhhHz
V hhHzez kkkkjjjj NAAAΨ )()...()(),( 11

)(...)( 0)1()1(0)1()1(010
++

−−−−−−− −= ++−−− ργργργργρ (61d) 

 (iv) For the (n+1)th layer of lower halfspace ,+∞<≤≤ ++ zHd n  

Aqnn
dHhhhHz

V
kkkknnnnnnez NBΨ )(),( )1(01

)(...)( 0)1()1(0)1()1(00)1(0
++

−−−−−−−− −= ++−−+ γρ ργργργργργ             (61e) 

4.3 The solution of )(zU  

4.3.1 Solution of )(zU in terms of )( −
jHU or )( +

jHU  

Similarly, the general matrix solutions in terms of the field variable matrix )(zU for 
each of the (n+2) layers can be expressed as follows. 

(i) For the 0th layer of the upper halfspace ,0
−≤<∞− Hz  
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  (62a) 

(ii) For the jth layer of finite thickness −+
− ≤≤ jj HzH 1 , nkkj ,...,1,1,...,2,1 +−=  and 

kj ≠  

)()()( 11
)( 1 +

−−
− −= −

jj
p
j

Hz HHzez jaj UQU ργ      (62b) 

or 

)()()( )( 1 −− −= −

jj
q
j

zH HHzez jaj UQU ργ      (62c) 

(iii) For the kth layer of finite thickness ,1
−+

− ≤≤ kk HzH nnk ,1,...,2,1 −=  
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or 
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(iv) For the (n+1)th layer of lower halfspace ,+∞<≤+ zHn  
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The basic solution matrices in equations (62a) to (62e) are defined as follows. 
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where the three constant matrices )(χjC , )(χjD and )(χjE , and the roots jjj 321 ,, γγγ are 

obtained by replacing the five elastic constants in equations (23-24) with the five elastic 
constants of the jth layer. The basic solution matrices do not have any functions of 
exponential growth, i.e., ||seγρ  with positive constant )0(>γ . 

4.3.2 Solution of )(zU  in terms of )( 0HU or )( nHU  

Using the perfectly bonded interface condition (1), we have  

)()()()( 11
+

++
− === jjjjjjjj HHHH UUUU      (64) 

Using (62b), (62d) and (64), )(zU can be uniformly expressed )( 0HU  at 0Hz = via 
the backward transfer matrix technique.  

(i) For the jth layer of finite thickness jj HzH ≤≤−1 , nkj ≤≤≤1 and ,−≤ dz  

)()()...()()( 011111
...)( 111)1(1 HhhHzez p

j
p
jj

p
j

hhHz ajjajaj UQQQU −−−
+++− −= −−− ργργργ    (65a) 

(ii) For the jth layer of finite thickness 11 −− ≤≤ jj HzH , 1≥≥≥ kjn  and ,+≥ dz  
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Similarly, using (62c), (62e) and (64), )(zU can be uniformly expressed in terms of 
)( nHU  via the backward transfer matrix technique.  

(i) For the jth layer of finite thickness jj HzH ≤≤−1 , 1≥≥≥ kjn  and ,+≥ dz  
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(ii) For the jth layer of finite thickness jj HzH ≤≤−1 , nkj ≤≤≤1 and ,−≤ dz  
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4.3.3 Solution of )( 0HU in terms of uG  

Substituting nHz = into equations (65b), the following four algebraic boundary 

equations can be obtained for governing )( 0HU and )( nHU .  
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Since the 0th layer is an upper elastic halfspace, it has two independent algebraic 
boundary equations governing )( 0HU  from (34). It can be expressed as follows. 

0UP =)( 00 Hq         (68a) 

where  
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Thirdly, since the (n+1)th layer is a lower elastic halfspace, it has two independent 
algebraic boundary equations governing )( nHU  from (37). It can be expressed as follows. 
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Using (67), (69a) can be re-expressed as follows. 
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Using (68a) and (70), the following set of four linear algebraic equations governing 
)( 0HU with four known variables can be obtained. 

0UP =)( 00 Hq             (71a) 
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Or they can be re-expressed in the following matrix form,  
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From (25), the solution of )( 0HU is given exactly as follows. 

uQp
Hdhhh kakkkakkaaeH GNU )(...

0
11)1(2)2(11)( −−−−− −−−−−−= ργργργργ    (73a) 

where QpN is given below and its exact expression is in Appendix C. 
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where 1−
QpM is the inverse matrix of the 44× coefficient matrix QpM  and can be analytically 

derived in exact form (Appendix C). QpM  is defined as follows. 
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4.3.4 Solution of )( nHU  in terms of uG  

Similarly, substituting 0Hz = into equations (66b), another four algebraic boundary 

equations can be obtained for governing )( 0HU and )( nHU . They are as follows.  
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Using (74), (68a) can be re-expressed as follows. 
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Using (69a) and (75), the following set of four linear algebraic equations governing 
)( nHU with four unknown variables can be obtained 

0)()1( =+ nnp HUP       (76a) 
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Or they can be re-expressed in the following matrix form,  
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From (77), the solution of )( nHU is given exactly as follows. 

uQq
dHhhh

n
kakkkannananeH GNU )(... )1()1(1)1()( −−−−−− ++−−= ργργργργ     (78a) 

where QqN is given below and its exact expression is in Appendix D. 
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where 1−
QqM is the inverse matrix of the 44× coefficient matrix QqM  and can be analytically 

derived in exact form (Appendix D). QqM  is defined as follows. 
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4.2.5 Solution of )(zU  in terms of uG  

Substituting the solution of )( 0HU in (62a) and (65a), the solution of )(zU can be 

obtained for −≤<∞− dz . Similarly, substituting the solution of )( nHU in (62f) and (66a), 

the solution of )(zU can be obtained for +∞<≤+ zd . Consequently, the solution of )(zU is 
expressed as follows. 

uU zz GΨU ),()( ρ=         (79a) 

where +∞<<∞− z , +∞<≤ ρ0 ; ),( zU ρΨ is a square matrix of 44× elements and can be 
exactly expressed as follows. 

 (i) For the 0th layer of the upper halfspace ,0Hz ≤<∞−  
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(ii) For the jth layer of finite thickness jj HzH ≤≤−1 and −≤ dz , )(,1,...,2,1 nkkj ≤−=  
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(iii) For the jth layer of finite thickness jj HzH ≤≤−1 and ,+≥ dz nkkj ,...,1, +=   
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 (iv) For the (n+1)th layer of lower halfspace ,+∞<≤ zHn  
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4.4 The solution of )(zw and )(zzY in terms of ),( ηξg  

The solution of )(zV and )(zU is given in (61a) and (79a) in terms of the two loading 
matrices ),( ηξvG and ),( ηξuG . )(zV and )(zU can be re-expressed as follows. 
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As a result, the solution of )(zw and )(zzY can be expressed as follows in terms of the body 
force loading vector ),( ηξg  

),(),(),,( ηξρηξ gΦw zz =        (81a) 

),(),(),,( ηξρηξ gΨY zzz =        (81b) 

where 
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4.5 Summary Notes 

The solutions of )(zV and )(zU (or )(zw and )(zzY ) are exactly derived, formulated 
and expressed in matrix forms. The many layers are treated with matrix production. It just 
increases one step of production of the associated two solution matrices for adding or 
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increasing one layer solid with different elastic constants. The backward transfer matrix 
technique eliminates the existence of functions of the exponential growth in the solution in 
the transform domain and maintains the advantages of the conventional forward transfer 
matrix method.  

The two inverse matrices have just the dimensions of 22× and 44× for 
)(zV and )(zU , respectively and can be derived analytically.  The solution 

matrices ),( zV ρΨ and ),( zU ρΨ (or ),( zρΦ and ),( zρΨ ) are functions of zρ , jhρ ,and the 

elastic constants ),,,,( 54321 jjjjj ccccc . They are independent to the actual forms of the 

internal loading vector vG and uG  (or ),( ηξg ), which makes them applicable to many actual 
distributions of the internal loadings. 

 

5 The Solution in Physical Domain 

5.1 General 

 In this section, the method for deriving and formulating solutions in physical domain 
is presented. The solution representations in (14) and (17) are used for this purpose. In 
addition to solution in Cartesian coordinate system, the solution in cylindrical coordinate 
system can also be derived and formulated and expressed directly and systematically.  

5.2 The solution in Cartesian coordinate system 

5.2.1 Solution in inverse double Fourier transform integrals 

Using (14), (17) and (81), the solution of the field variable 
vectors ),,( zyxu , ),,( zyxzT , and ),,( zyxpΓ  in the layered solid ),,( +∞<<−∞ zyx due to 

the internal loading concentrated on a horizontal plane, i.e., )(),(),,( dzyxzyx −= δff , can be 
expressed as follows in the Cartesian coordinate system. 

∫∫
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where ),,( +∞<<−∞ zyx  and the body force vector ),(~ ηξf in the transform domain is 
expressed as follows, 

∫∫
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= dxdyKyx *),(
2
1),(~ ff
π

ηξ     (82d) 

5.2.2 Solution for concentrated point body force vector 

The fundamental solutions due to the point type of body force vector f concentrated at 
the original point (0,0,0) can be expressed as follows. 

cyxyx ff )()(),( δδ=        (83a) 

So, we have 

π
ηξ

2
),(~ cff =         (83b) 

Consequently, the solution of ),,( zyxu , ),,( zyxzT , and ),,( zyxpΓ can be expressed 

as follows 

cu zyxzyx fGu ),,(),,( =     (84a) 

czz zyxzyx fGT ),,(),,( =     (84b) 

cpp zyxzyx fGΓ ),,(),,( =     (84c) 

where the Green’s functions are  
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 The relationships of the independent variables between the Cartesian and cylindrical 
coordinates in the physical domain can be defined as follows,  
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Similarly, the relationships of the independent variables between the Cartesian and 
cylindrical coordinates in the transform domain can be defined as follows, 
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The identity Bessel functions of order m can be expressed as follow. 
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 Consequently, the Green’s functions in (85) can be simplified as the following 
Hankel transform integrals with the semi-infinite interval from 0 to ∞+ . 
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where ( )22111 2
1

Φ+Φ=Φ , ( )22112 2
1

Φ−Φ=Φ , ( )22111 2
1

Ψ+Ψ=Ψ , ( )22111 2
1

Ψ−Ψ=Ψ .  

There are only sixteen Hankel transform integrals in (88) and are defined as follows.  

∫
+∞

Φ=
0

0 )(),(),( ρρρ drJzzrG Lu     (89a) 

∫
+∞

Φ=
0

1 )(),(),( ρρρρ drJzzrG Lp     (89b) 

∫
+∞

Ψ=
0

1 )(),(),( ρρρρ drJzzrG Lz     (89c) 

where 33311321 ,,,,),( ΦΦΦΦΦ=Φ zρ ; 33311321 ,,,,),( ΨΨΨΨΨ=Ψ zρ ;L = 1, 2, 3, or 4. 

5.2.3  Solution in double convolution integrals 

Using convolution integral theorem and the Green’s functions (88), the solution for 
)(),(),,( dzyxzyx −= δff in (82) can be further expressed in the following two-dimensional 

convolution integrals. 

∫∫
+∞

∞−

+∞

∞−

−−= dsdttsztysxzyx u ),(),,(),,( fGu      (90a) 

∫∫
+∞

∞−

+∞

∞−

−−= dsdttsztysxzyx zz ),(),,(),,( fGT      (90b) 

∫∫
+∞

∞−

+∞

∞−

−−= dsdttsztysxzyx pp ),(),,(),,( fGΓ      (90c) 

where +∞<<∞− zyx ,, . 

 For a general body force loading ),,( zyxf , the solution can be derived from the 
following three-dimensional convolution integrals. 

ςςς ddsdttsztysxfzyx u∫∫∫
+∞

∞−

+∞

∞−

+∞

∞−

−−−= ),,(),,(),,,( fGu    (91a) 

ςςς ddsdttsztysxzyx zz ∫∫∫
+∞

∞−

+∞

∞−

+∞

∞−

−−−= ),,(),,(),,( fGT    (91b) 
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ςςς ddsdttsztysxzyx pp ∫∫∫
+∞

∞−

+∞

∞−

+∞

∞−

−−−= ),,(),,(),,( fGΓ    (91c) 

where +∞<<∞− zyx ,, . 

5.3 The solution in cylindrical coordinate system 

5.3.1 General matrix solution representation 

The five field variable vectors can be defined as follows in the cylindrical coordinate 
system );20 ; 0( bzar ≤≤<≤+∞<≤ πθ . 
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The above five sets of vectors for the fifteen field variables in the physical domain 
can be also represented by two unknown vectors ),,( zϕρw  and ),,( zz ϕρY  in the transform 
domain in the cylindrical coordinate system [11, 12]. The solution representations can be 
given as follows. 

∫∫
+∞

=
π

ρϕϕρ
π

θ
2

00

),,(
2
1),,( ddKzzr cc wΠu     (93a) 

∫∫
+∞

=
π

ρϕρϕρ
π

θ
2

00

),,(
2
1),,( ddKzzr czcz YΠT    (93b) 

∫∫
+∞

=
π

ρϕρϕρ
π

θ
2

00

),,(
2
1),,( ddKzzr ccpp wΠΓ    (93c) 

),,(),,(),,( zrzrzr pppzpzp θθθ ΓCTCT +=     (93d) 

),,(),,(),,( zrzrzr pzpzzzz θθθ ΓCTCΓ +=     (93e) 

where ;)sin( ϕθρ += rieKc ;1−=i  The four elastic parameter matrices ,, pppz CC zzC and zpC are 

given in (14h) to (14j). The coordinate coefficient matrices cΠ and cpΠ  are defined by 
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The two unknown field variable vectors ),,( zϕρw and ),,( zz ϕρY are defined as 
follows. 
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They can be re-expressed by ),,( zr θu and ),,( zrz θT in the cylindrical coordinate system as 
follows.  

∫∫
+∞

=
π

θθ
π
ρϕρ

2
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**

0
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2

),,( drrdKzrz ccuΠw     (96a) 

∫∫
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=
π

θθ
π

ϕρ
2
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),,(
2
1),,( drrdKzrz czcz TΠY     (96b) 

where ;)sin(* ϕθρ +−= ri
c eK the coordinate coefficient matrices *

cΠ is defined by 
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ϕθϕθ
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cΠ     (96c) 

Similarly, the body force vector ),,( zr θf  and its counterpart ),,( zϕρg in the 
cylindrical coordinate system can be expressed as follows.  

∫∫
+∞

=
π

ρϕρϕρ
π

θ
2

00

),,(
2
1),,( ddKzzr ccgΠf     (97a) 

∫∫
+∞

=
π

θθ
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1),,( drrdKzrz ccfΠg     (97b) 

where 
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5.3.2 Solution in inverse double Fourier transform integrals 

It has been shown that the partial differential equations (2) to (6) can be reduced to the 
two sets of two and four first-order linear ordinary different equations (18) and (19). Similar 
to the formulation process in the Cartesian coordinate system, the solution of )(zw and )(zzY  
due to the internal loading of )(),(),,( dzyxzyx −= δff can also be expressed as follows.  

),(),()( ϕρρ gΦw zz =       (98a) 

),(),()( ϕρρ gΨY zzz =       (98b) 

∫∫
+∞

=
π

θθ
π

ϕρ
2

0

**

0

),(
2
1),( drrdKr ccfΠg     (98c) 

where ),( zρΦ and ),( zρΨ are given in (81c) and (81d) respectively. 

The solution of ),,( zr θu , ),,( zrz θT and ),,( zrp θΓ  in (93) due to the internal loading 

of )(),(),,( dzrzr −= δθθ ff  can be expressed as follows in the cylindrical coordinate 
systems. 

∫∫
+∞

=
π

ρϕϕρρ
π

θ
2

00

),(),(
2
1),,( ddKzzr cc gΦΠu    (99a) 

∫∫
+∞

=
π

ρϕρϕρρ
π

θ
2

00

),(),(
2
1),,( ddKzzr ccz gΨΠT    (99b) 

∫∫
+∞

=
π

ρϕρϕρρ
π

θ
2

00

),(),(
2
1),,( ddKzzr ccpp gΦΠΓ    (99c) 

where .;20 ; 0 +∞<<−∞<≤+∞<≤ zr πθ  

5.3.3 Solution in Fourier series and Hankel transform integrals 

The solution in (99) can be further expressed in terms of Fourier series and Hankel 
transforms as follows. 

θρρρρθ im
m

m
mm edzrzr ∑ ∫

+∞=

−∞=

+∞

=
0

)(),()(),,( gΦΠu     (100a) 

θρρρρρθ im
m

m
mmz edzrzr ∑ ∫

+∞=

−∞=

+∞

=
0

)(),()(),,( gΨΠT     (100b) 
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θρρρρθ im
m

m
mpmp edzrzr ∑ ∫
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−∞=
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=
0

)(),()(),,( gΦΠΓ     (100c) 
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,...3,2,1,0     )( ±±±== mrJJ mm ρ  and 1−=i      (101c) 

The body force vector g and f can be further expressed in terms of Fourier series and 
Hankel transforms as follows. 

∑
+∞=

−∞=

=
m

m

im
m err θθ )(),( ff       (102a) 

∫ −=
π

θ θθ
π

2

0

),(
2
1)( derr im

m ff      (102b) 

∑
+∞=

−∞=

−=
m

m

im
m e ϕρϕρ )(),( gg      (102c) 

∫=
π

ϕ ϕϕρ
π

ρ
2

0

),(
2
1)( deim

m gg      (102d) 

where )(ρmg and )(rmf have the following relationship. 

∫
+∞

=
0

* )()()( rdrrr mcmm fΠg ρρ      (103a) 

where 
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5.3.4 Solution in Fourier series and Green’s functions 

 The solution in (100) can be further expressed in terms of Fourier series and Green’s 
functions as follows. 

 

θθ im
m

m
mum edrrrzrrzr ∑ ∫

+∞=

−∞=

+∞

=
0

0000 )(),,(),,( fGu     (104a) 

θθ im
m

m
mzmz edrrrzrrzr ∑ ∫

+∞=

−∞=

+∞

=
0

0000 )(),,(),,( fGT    (104b) 

θθ im
m

m
mpmp edrrrzrrzr ∑ ∫

+∞=

−∞=

+∞

=
0

0000 )(),,(),,( fGΓ    (104c) 

where the Green’s functions are defined as follows. 

ρρρρ drzrzrr cmcmum ∫
+∞

=
0

0
*

0 )(),()(),,( ΠΦΠG      (105a) 

ρρρρρ drzrzrr cmcmzm ∫
+∞

=
0

0
*

0 )(),()(),,( ΠΨΠG     (105b) 

ρρρρρ drzrzrr cmcpmpm ∫
+∞

=
0

0
*

0 )(),()(),,( ΠΦΠG     (105c) 

5.3.5 Solution of body force vector concentrated at a circular ring 

The equations governing the body force vector uniformly concentrated on the circular 
ring can be expressed as follows.  

cr
rrr ff

π
δθ

2
)(),( 0−

=         (106a) 
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The corresponding fundamental singular solutions due to the body force vector 
uniformly concentrated on the circular ring can then be expressed as follows.  

cu zrrzrrzr fGuu ),,(
2
1),,(),,( 000 π

θ ==     (107a) 

czzz zrrzrrzr fGTT ),,(
2
1),,(),,( 000 π

θ ==     (107b) 

cppp zrrzrrzr fGΓΓ ),,(
2
1),,(),,( 000 π

θ ==     (107c) 

where the Green’s functions are fined as follows. 
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2
1),,( ρρρρ
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drzrzrr ccu ΠΦΠG    (108a) 
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5.4 Summary notes 

 The solution has been systematically derived and formulated with the matrix approach 
in both Cartesian and cylindrical coordinate systems. The basic solution matrices 

),( zρΦ and ),( zρΨ are related only to the material properties of the n-layered solids. They 
are suitable and applicable to various internal body force loadings in both Cartesian and 
cylindrical coordinate systems. The other three stresses pT and three strains zΓ can be 

obtained using the Hooke’s law (6) and the solution of zT and pΓ in (14d-14e) in Cartesian 

coordinate system and in (93d-93e) in cylindrical coordinate system. 

Most importantly, the solutions given in above equations are in the forms of improper 
integrals of infinite intervals either over the entire horizontal plane or from 0 to ∞+ . The 
improper integrals have many depending parameters including )2(5 +× n elastic 
constants )1,,...,1,0;5,4,3,2,.1,( +== nnjicij  , n layer thicknesses ),...,2,1,( njh j = , the three 

independent variables ),,( zyx  and the applied loading vectors. The following three questions 
have to be answered. Do they converge? What are their singularities? Do they satisfy the 
governing partial differential equations and the boundary and interface conditions? These 
questions are analytically and rigorously examined and verified in the companion paper [24].  

 

6 Summary and Conclusions 

It is evident that the mathematical theory of linear elasticity is one of the most 
classical field theories in mechanics and physics. Many well-known scientists and 
mathematicians made contributions to its development and establishment over 200 years 
from 1638 to 1838. They include Galileo Galilei (1564 – 1642), Robert Hooke (1635 – 1703), 
Isaac Newton (1642 – 1726), Edme Mariotte (1620 – 1684), Jacob Bernoulli (1655 – 1705), 
Daniel Bernoulli FRS (1700 – 1782), Leonhard Euler (1707 – 1783), Charles-Augustin de 
Coulomb (1736 – 1806), Thomas Young (1773 – 1829), and Siméon Denis Poisson (1781 – 
1840), Claude-Louis Navier (1785 – 1836), Augustin-Louis Cauchy (1789 – 1857), George 
Green (1793 – 1841), and Gabriel Léon Jean Baptiste Lamé (1795 – 1870). 

Furthermore, the boundary-value problems of classical elasticity in n-layered and 
graded solids are also one of the classical problems. For more than 150 years from 1838 to 
present, many well-known scientists and mathematicians have made tremendous efforts to 
mathematically and analytically derive and formulate solutions in closed-forms for these 
boundary-value problems. They include Barré de Saint-Venant (1797 – 1886), Gustav Robert 
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Kirchhoff (1824 – 1887), George Biddell Airy (1801 – 1892), William Thomson (or Lord 
Kelvin) (1824 – 1907), Joseph Valentin Boussinesq (1842 – 1929), and Raymond David 
Mindlin (1906 – 1987).  However, exact solutions and/or fundamental singular solutions in 
closed form are still very limited in literature.  

From 1984 to 1995, the author investigated the boundary value problems of the 
classical elasticity in n-layered solids of either isotropy or transversely isotropy.  He derived 
and formulated the solutions in equations (82) to (109) exactly and analytically for an 
arbitrary number n of elastic layers with different material properties. He used the classical 
mathematical tools and presented the mathematical derivation and formulation and the 
solutions in matrix forms. Using the symmetry and anti-symmetry of the n-layered solids of 
transverse isotropy, the author broke down the solutions and separated them into several 
blocks (or matrices) including material matrices, layering matrices, independent variable 
coordinate matrices, and applied loading terms. Consequently, many solutions in n-layered 
solids are obtained systematically and automatically. The solutions are also systematically 
expressed in both Cartesian and cylindrical coordinate systems. Therefore, the researchers at 
Research Centre Jülich and Massachusetts Institute of Technology have shortly named these 
mathematical formulations and solutions as Yue’s approach, Yue’s treatment, Yue’s method 
and Yue’s solution.  
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Appendix A  Exact Expression of )( 0HV  in terms of vG  

The equation (54) can be re-expressed as follow. 
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From (a1), the solution of )( 0HV is given exactly as follows. 
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where ApN can be re-expressed as follows.  
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The five determinants ApM , 11ApM ,  12ApM , 21ApM and 22ApM  in (a3) can be expressed as 

follows. 
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The determinants of the five 2×2 square matrices in (a4)-(a6) can be obtained using the 
following formula. 
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Appendix B  Exact Expression of )( nHV in terms of vG  

The equation (59) can be re-expressed as follow. 

v
AqAq

dHhhh
n

AqAq

AqAq

CC
eH

MM
MM

kkkknnnn GV 







=







 −−−−−− ++−−

21

)(...

2221

1211 00
)( 0)1()1(0)1()1(00 ργργργργ   (b1) 

From (b1), the solution of )( nHV is given exactly as follows. 
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The five determinants AqM , 11AqM , 12AqM , 21AqM and 22AqM in (b3) can be given below 

and can be expressed exactly using the formula (a7). 
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Appendix C  Exact Expression of )( 0HU in terms of uG  

The equation (72) can be re-expressed as follow. 
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From (c1), the solution of )( 0HU is given exactly as follows. 
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The seventeen determinants in (c3) are expressed as follows. 
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where .4,3,2,1=j  



62-63 

 

The determinants of the seventeen 4×4 square matrices in (c4)-(c6) can be obtained exactly 
using the following formulae. 
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where the determinant of a 2×2 square matrix is given in (a7). 

 

Appendix D  Exact Expression of )( nHU in terms of uG  

The equation (77) can be re-expressed as follow. 
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From (d1), the solution of )( nHU is given exactly as follows. 
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The seventeen determinants in (d3) are given below and can be exactly expressed using the 
formula (c7). 
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where .4,3,2,1=j  

 


