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ABSTRACT

Companies like Alibaba operate tens of data centers (DCs) across

geographically distributed locations. These DCs collectively pro-

vide the storage space and computing power for the company, stor-

ing EBs of data and serving millions of batch analytics jobs every

day. In Alibaba, as our businesses grow, there are more and more

cross-DC dependencies caused by jobs reading data from remote

DCs. Consequently, the precious wide area network bandwidth

becomes a major bottleneck for operating geo-distributed DCs at

scale. In this paper, we present Yugong — a system that man-

ages data placement and job placement in Alibaba’s geo-distributed

DCs, with the objective to minimize cross-DC bandwidth usage.

Yugong uses three methods, namely project placement, table repli-

cation, and job outsourcing, to address the issues of high bandwidth

consumption across the DCs. We give the details of Yugong’s de-

sign and implementation for the three methods, and describe how

it cooperates with other systems (e.g., Alibaba’s big data analyt-

ics platform and cluster scheduler) to improve the productivity of

the DCs. We also report comprehensive performance evaluation re-

sults, which validate the design of Yugong and show that significant

reduction in cross-DC bandwidth usage has been achieved.
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1. INTRODUCTION
Big companies and cloud providers today manage tens of ge-

ographically distributed data centers (DCs) across the globe [20,

2, 40]. A typical DC consists tens of thousands of physical ma-

chines [53, 61, 52, 48]. These DCs provide the computing and
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storage capacity for many Internet-scale businesses. When manag-

ing geo-distributed DCs at such scale, the precious cross-DC band-

width becomes a major bottleneck [56, 22, 32, 49].

In Alibaba 1, a large scale data management and analytics plat-

form, called MaxCompute [3], manages tens of DCs in geographi-

cally distributed locations. Each of these DCs consists of thousands

to tens of thousands of servers, and the DCs are inter-connected by

wide area networks (WANs). Collectively these DCs store 5 mil-

lion tables and execute 7 million analytics jobs every day for vari-

ous business applications (e.g., Taobao 2, Tmall 3, etc.) in Alibaba.

Jobs in MaxCompute form complex data dependencies through the

production and consumption of massive amounts of data each day.

While most of the dependencies are within a local DC, as our busi-

nesses grow, dependencies from remote DCs are increasing rapidly.

On a typical day, jobs in MaxCompute incur hundreds of PBs of

data transfer through WANs due to cross-DC dependencies.

The WANs connecting the geo-distributed DCs, however, have

low capacity [43, 54, 18]. The WAN bandwidth is in the order

of Tbps, while in comparison the aggregated bandwidth for intra-

DC networks can be considered arbitrarily large. The WAN la-

tency is 10-100 times higher than the intra-DC latency in Alibaba.

The WANs are also much more expensive compared with the intra-

DC networks [9, 17]. Moreover, the capacity growth rate of the

WANs is significantly slower compared with the growth of our

business application demands (similar findings have also been re-

ported in [56, 55, 18]). Over time, the cross-DC bandwidth has

become a very precious resource and also the performance bottle-

neck for MaxCompute’s operations. The WAN cost (before the

deployment of Yugong) took up a significant portion of the overall

operating cost of MaxCompute — a great financial burden given

the massive scale of MaxCompute’s daily operations.

The cross-DC bandwidth problem is not uniquely caused by Al-

ibaba’s internal business applications, but is common in any en-

terprise that provides globally deployed services (e.g., all kinds

of Web services, mobile APPs, E-commerce), which are normally

run in geo-distributed DCs [15, 12, 31, 8, 41, 13]. There are also

many big data analytics and database management systems such as

Hive [50], Spark [60], Flink [11], etc., which may run in one DC

but the data could be transferred from remote DCs via a transparent

layer such as a platform like MaxCompute. In fact, MaxCompute

itself is a PaaS solution for Alibaba Cloud 4 to transparently man-

age all underlying (intra-DC and cross-DC) data movements for

both Alibaba’s internal customers (i.e., various business units such

1https://www.alibaba.com/
2https://www.taobao.com/
3https://www.tmall.com/
4https://www.alibabacloud.com/
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as Taobao and Tmall) and its Cloud customers, so that customers

may use existing systems for their applications on the Cloud with-

out caring the complicated optimizations for cross-DC data man-

agement.

The above discussion motivates us to develop Yugong — a sys-

tem that aims to reduce cross-DC bandwidth usage (internally for

MaxCompute but extensible as a more general solution for

data/project placement in geo-distributed DCs). Reducing cross-

DC bandwidth usage is a challenging problem. Recent research on

geo-distributed analytics, e.g., [43, 54], only optimize the band-

width usage for a small number of jobs and focus on the bandwidth

reduction for each individual job by scheduling tasks within a job

across multiple DCs. However, modern DCs usually manage thou-

sands of projects (a project is a group of logically related data and

jobs for a specific business application) and execute millions of jobs

for these projects each day, There are also complex dependencies

among jobs, tables of projects and DCs. Existing solutions were not

designed for such large scale, complex production environments.

In addition, the loads and the availability of resources (e.g., CPU,

memory, disk, network bandwidth) change dynamically in differ-

ent DCs, which aggravates the problem of data/project placement

in geo-distributed DCs.

In the Yugong project, we consider a more holistic solution. We

conduct extensive analysis to understand the projects and their ta-

bles, the daily jobs and their data dependencies in Alibaba’s geo-

distributed DCs. Based on the valuable insights obtained from the

analysis, we divide the problem into an offline component and an

online component. We formulate the offline component as two

separate problems, project placement and table replication, and

the online component as the problem of job outsourcing. Project

placement manages the placement of new projects (e.g., a new busi-

ness, or divisions of an existing business) and the migration of ex-

isting projects among the DCs. Table replication replicates (hot)

partitions of tables to multiple DCs and determines the life span of

these replicas. Job outsourcing dynamically schedules certain jobs

out of their original DCs to other DCs. The three problems address

different aspects of bandwidth usage across our DCs as follows.

Project placement re-groups projects with high dependencies with

each other together in one DC. Table replication reduces cross-DC

bandwidth usage by moving data closer to jobs, while job outsourc-

ing achieves the goal by considering the resource availability and

loads of the DCs and moving jobs to where data are.

The solutions to these three problems are implemented as the

corresponding modules in the Yugong system to provide services

to MaxCompute to reduce cross-DC bandwidth usage. After the

deployment of Yugong, significant reduction on cross-DC band-

width usage has been observed compared with the previous method

used in our production. On average, the bandwidth usage reduc-

tion is about 70-80% of the total cross-DC dependencies, and the

amounts of incoming cross-DC bandwidth saving for different DCs

range from several PBs to tens of PBs each day. Yugong has also

improved load balancing among the DCs with its job outsourc-

ing service, which supplements MaxCompute’s geo-distributed job

scheduling capability.

Our main contributions are summarized as follows:

• An in-depth analysis of very large scale production work-

loads consisting of thousands of projects, millions of jobs

and tables, and their dependencies across geo-distributed DCs

in Alibaba.

• An analytical model that formulates the problem of minimiz-

ing cross-DC bandwidth usage, an effective strategy that de-

couples the problem into simpler problems, and efficient al-
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Figure 1: Trend of dependency growth

gorithms that are devised based on the insights obtained from

our workload analysis.

• A production-ready implementation of our solution for large

scale geo-distributed DCs.

• A comprehensive performance study to validate the effec-

tiveness of our approach and Yugong’s performance.

Paper outline. The remainder of this paper is organized as fol-

lows. Section 2 gives the basic settings of the problem studied in

this paper. Section 3 presents the workload analysis. Section 4

gives an overview of Yugong. Section 5 discusses the detailed prob-

lem formulation and solutions. Section 6 describes implementation

details. Section 7 reports the performance evaluation results. Sec-

tion 8 discusses related work. Section 9 summarizes our work.

2. BACKGROUND
We first describe the basic settings necessary for our discussion

in the subsequent sections. Yugong was developed to serve the

geo-distributed DCs managed by MaxCompute [3], which is a gen-

eral purpose, fully fledged, multi-tenancy data processing platform

developed at Alibaba Group from ground up since 2009. MaxCom-

pute provides data warehouse solutions at very large scale.

User data in MaxCompute are organized by tables, which are in

turn grouped into projects according to business functionality (e.g.,

search services for Taobao form a project). Most of these tables are

read-only 5 time-partitioned tables and in many applications a

partition is created for each table each day. For example, the sales

data of Taobao are kept as a time-partitioned table and the daily

sales records are appended to this table every day.

Each computation workload submitted by a user is called a job.

Each job belongs to only one project as it is usually launched by

the project group and uses the project’s resource quota for its ex-

ecution. By default, each project along with its jobs and tables is

assigned to a default DC. Each job runs in only one DC because

each DC hosts thousands to tens of thousands of machines and has

enough resources to process even the largest jobs within a reason-

able time. We also expect that the computing and storage power

within a DC grows at a similar pace as the tables and jobs grow.

Jobs in MaxCompute form complex data dependencies as jobs

may read tables from other projects that are in different DCs, which

leads to cross-DC communication. Initially, the concept of project

is to group logically related jobs and tables in one DC to reduce

cross-DC communication. However, as businesses grow in Al-

ibaba, modularization and the reusability of the modules are em-

phasized and thus the interactions among projects are getting more

5Yugong (and MaxCompute) also supports updatable tables, as
long as tables support snapshot reads and the snapshots to be ac-
cessed can be determined at query compilation time.
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Table 1: Project statistics

median 70ile 90ile 95ile

Job count 0.03618 0.14341 1.28655 3.38794

Table count 0.03332 0.14381 1.19097 3.25267

Partition count 0.00490 0.07122 1.32603 3.38401

Physical size 0.00037 0.01144 0.47186 2.06538

CPU 0.01646 0.13485 1.44358 4.14529

Mem 0.01372 0.10932 1.37686 4.09082

Table 2: Job statistics

median 70ile 90ile 95ile

Input count 0.26685 0.80056 26.4000 77.6000

Output count 0.26685 0.26685 0.26685 0.80056

Input size 0.00029 0.01415 1.50871 8.95521

Output size 0.00001 0.00046 0.05425 0.32171

CPU 0.00136 0.00876 0.21882 1.25955

Mem 0.00055 0.00409 0.12494 0.97678

Table 3: Table and partition statistics

median 70ile 90ile 95ile

Table size 0.10853 4.85782 236.730 988.152

Partition size 0.00099 0.01481 0.24773 0.95386

complex, resulting in significantly increased cross-DC bandwidth

usage. Figure 1 plots the trend of dependency growth among our

DCs over 200 consecutive days in 2018. The dependencies among

our DCs increased significantly over the last year. Specifically,

the cross-DC dependencies increased around 3x during the period.

Thus, reducing the cross-DC bandwidth usage becomes critical.

3. WORKLOAD ANALYSIS
We conducted a comprehensive analysis on the workloads of Al-

ibaba’s geo-distributed DCs to explore (1) how the workloads use

cross-DC bandwidth and (2) how we can reduce the bandwidth us-

age. We present some of our important findings in this section. The

findings were obtained based on 7 of our DCs unless otherwise

stated.

3.1 Projects, Jobs and Tables
We first present some statistics of the projects, jobs, tables and

partitions managed by MaxCompute in Tables 1-3. The numbers

in these tables are normalized
6 by their mean values. For exam-

ple, the mean value of the number of daily jobs in the projects is

approximately 3200, and thus the median job count in Table 1 is

about (0.03618× 3200) ≈ 116.

From Table 1, we can see that most projects are small projects,

i.e., a 70ile project is only 0.1x of the mean in terms of job/table

counts and CPU/memory usage, while the median values are even

much smaller. However, there are also a small number of large

projects, i.e., a 95ile project has around ten thousand of daily jobs

and several thousand of tables, occupying several petabytes of the

physical storage. In fact, various statistics of projects, jobs, tables

and partitions in Tables 1-3 follows a power-law distribution.

In Table 2, the entries of the input count/size are normalized by

the mean values of the output count/size, which shows that jobs

normally have more input partitions than output partitions, and

6We admit that the exact numbers would be easier to understand,
but unfortunately cannot be reported in the paper as they contain
sensitive business/customer information. However, we emphasize
that the normalized numbers (and other approximate numbers) pre-
sented in this paper are sufficient for drawing the conclusions and
findings that are necessary for our problem formulation and solu-
tions.

Project DC0

20

40

60

80

100

Lo
ca

l r
at

io
 (%

)

33 40

74
87Read size

# input tables

(a) Local dependency ratio
at the project/DC level

0 4 8 12 16 20
Top jobs/tables (%)

0

20

40

60

80

100

Ac
cu

m
ul

at
ed

 ra
tio

 (%
)

Jobs
Tables

(b) Accumulated dependency
ratio

Figure 2: Dependency analysis

0 50 100 150 200
Difference (%)

0

20

40

60

80

100

CD
F

Partition Size
Partition Read Size

(a) Partition/read size difference

0 2 4 6 8 10 12 14 16 18 20
Access offset

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Sc
al

ed
 d

ep
en

de
nc

y 
siz

e

(b) Cross-DC dependency size

Figure 3: Table and partition access patterns

their input sizes are much larger than their output sizes. In Table 3,

the entries of the table size are normalized by the mean values of the

partition size, which shows that a partition of a table is normally

orders of magnitude smaller than the entire table.

3.2 Dependency Analysis
Next we report the dependency analysis results. Figure 2a gives

the local dependency percentage at both the project level and the

DC level on a typical day, where local dependency refers to data

read by a job from tables belonging to its own project or from tables

in the local DC. Only 33% of the data and 40% of the input tables

read by jobs are from their own projects. About 74% of the input

data are from local DCs, while 87% of the input tables are from

local DCs. The results show that there is a large amount of cross-

DC dependencies, i.e., 26% of the total dependency size is cross-

DC, which amounts to hundreds of PBs of data transfer through

WANs per day.

Figure 2b plots the accumulated dependency ratio for the top jobs

and tables ranked by their cross-DC dependencies. The top 5% of

the jobs result in 80% of the total dependencies and the top 0.57%

of the tables account for 80% of the total dependencies. The results

suggest that a small number of hot tables and large jobs contribute

to a significant amount of the overall cross-DC dependencies.

3.3 Table Access Pattern Analysis
The partitions of tables are usually created and accessed by daily

recurring jobs, which consist of more than 76% of the SQL jobs in

MaxCompute. We first analyze the recurrent patterns of the par-

titions, as well as their access patterns. We compare the sizes of

any two consecutive partitions, and plot the CDF of their absolute

difference (calculated as ||Pi+1| − |Pi||/|Pi|) as the solid curve in

Figure 3a. We also plot the absolute difference between the total

read sizes of any two consecutive partitions (i.e., the total amount

of data read from each partition by all jobs) on two consecutive

days as the dotted curve in Figure 3a. The size differences between

the consecutive partitions are small, e.g., 80% of the consecutive

partitions have a difference less than 10%, while the differences
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Figure 4: Potential gain of scheduling tables and jobs

between the total read sizes of any consecutive partitions are just

slightly larger. In general, the partition size remains rather stable

over time and the partition access patterns are recurrent daily.

Jobs may not just read the most recent partitions of a table. If

a job reads a partition that was created k days ago, we regard the

access offset for the job reading the table as k. Most of the daily re-

curring jobs have fixed table access pattern, i.e., different instances

of a job launching on different days read tables with the same ac-

cess offset. We analyze the access offset of the time-partitioned

tables, by aggregating the cross-DC dependency size for all jobs

in a day by their access offsets as shown in Figure 3b. The result

suggests that recent partitions are more frequently accessed, espe-

cially those with access offsets 0 and 1. Besides, the dependency

size decreases exponentially as the access offset increases.

3.4 Potential Gain
Next we investigate the amount of partitions that are worth repli-

cating to a specific remote DC. If the total amount of dependencies

from a remote DC to a local partition (i.e., the total amount of data

that jobs in a remote DC need to read from the local partition) is

larger than the size of the local partition, replicating this partition

to the remote DC can save cross-DC bandwidth. Figure 4a plots

the CDF of the ratios of the total remote dependency size to the

size of each corresponding partition to be replicated to two of our

DCs. We omit partitions with 0 dependency size from these two

DCs. The result shows that more than half of the partitions have

remote dependency size larger than the partition size (indicated by

the portion with log ratio greater than 0), meaning that replicating

these partitions instead of reading them remotely can reduce the

total cross-DC bandwidth usage.

Figure 4b reports the potential gain achieved by scheduling out

the top k% of the jobs that have the largest dependencies from other

DCs. The figure shows that scheduling out a small percentage of

jobs can reduce a significant amount of the remote dependencies

and hence the cross-DC bandwidth usage.

3.5 Resource Utilization
Figure 5 plots the CPU and memory utilization of two DCs over

72 hours. The resource utilization patterns are rather dynamic and

unpredictable. Even though there are many recurring jobs, their

start time and completion time can vary considerably on different

days because a recurring job can only be launched when all its de-

pendencies are resolved and its completion time can be affected by

the resource utilization situation. In addition, there are also ad hoc

jobs that are difficult to predict their submission time and comple-

tion time. Different DCs also have different resource bottlenecks in

different time periods. For example, DC1 is bottlenecked at mem-

ory from Hours 50 to 60, while DC2 is bottlenecked at CPU during

that time period.
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Figure 5: Resource utilization patterns

3.6 Summary of Workload Analysis
We summarize our findings from the workload analysis as fol-

lows:

• [F1] Projects, jobs and tables follow power-law distributions.

The cross-DC dependencies among jobs and tables exhibit

the long-tail phenomenon. A relatively small number of hot

tables and large jobs contribute to a large portion of the total

cross-DC dependencies.

• [F2] The inputs of jobs are much larger than their outputs in

terms of both data size and number of partitions.

• [F3] Partitions of a table created on consecutive days have

similar size. The size of a partition is hundreds of times

smaller than that of its table. Most jobs are recurrent and

the table access patterns on consecutive days are stable.

• [F4] Recent partitions of tables are more frequently accessed.

The amount of dependencies decreases exponentially as the

access offset increases.

• [F5] Some tables are frequently read by jobs in remote DCs

and thus replicating these tables can save cross-DC band-

width. Also, scheduling some jobs to run in their non-default

DCs can reduce cross-DC bandwidth usage.

• [F6] The DCs have dynamic and unpredictable resource uti-

lization patterns, and they may have different resource bot-

tlenecks during the same time period.

4. AN OVERVIEW OF THE YUGONG AP­

PROACH
Based on the findings of our workload analysis, we propose three

methods to reduce the cross-DC bandwidth usage: project place-

ment, table replication, and job outsourcing. We give an overview

of these three methods below, while we present the detailed prob-

lem formulation and solutions in Section 5.

Project Placement. Project placement includes (1) the placement

of new projects in DCs and (2) the migration of existing projects

from DCs to DCs. In the ideal case, highly related projects are

grouped in the same DC such that the total cross-DC bandwidth

is minimized. The optimal project placement problem is a variant

of the bin packing problem, which is NP-hard. In fact, even if

an optimal solution can be found, practically it is still infeasible

for the following reasons. In MaxCompute we have already hosted

thousands of projects with up to hundreds of PBs of data associated

with each project, and thus a re-placement of all projects among the

DCs would incur an extremely large amount of bandwidth usage,

which is not affordable in our production environment as the DCs
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Table 4: Notations

Notation Description

Li(d) The life span of a replica of table i in DC d
p(i), p(j) The project that table i or job j belongs to

T (p), J(p) The set of tables or jobs that belong to project p
tpti The time partition of table i created on day t
Si The size of a partition of table i
Rt

i(j) The amount of data read from partition tpti by job j
Rt

i(p) The amount of data read from tpti by J(p)
Rt

i(d) The amount of data read from tpti by J(p), ∀p in DC d
Xp,d Xp,d = 1 if project p is assigned to DC d; 0 otherwise

BW (d) The total incoming cross-DC bandwidth for DC d
BW opt(d) The optimal BW (d) given unlimited storage budget

Srep(d) The storage size for replicas at DC d

are being heavily used and our normal business operations must not

be interrupted at any time. In addition, even if we have an optimal

placement of all projects currently, over time the current placement

would no longer be optimal because projects (e.g., the number of

jobs, the resource consumption of jobs, table sizes, etc.) and their

dependencies may change as our businesses keep developing.

For the above reasons, we change the optimal project placement

problem into a project migration problem, which only changes the

placement of a small number of projects incrementally (based on

F1, Section 3.6). Yugong monitors the cross-DC bandwidth us-

age under the current project placement and periodically assesses

whether a (small, affordable) change of project placement can have

a significant reduction on the bandwidth usage. It then executes the

new project migration plan.

Table Replication. Some table partitions are frequently read by

jobs from remote DCs and thus replicating these partitions to the

remote DCs helps reduce the cross-DC bandwidth usage (according

to F5). We may also cache partitions for more than one day as

jobs may read old partitions. However, there is a trade-off because

storing the replicas longer results in less bandwidth usage but uses

more storage space. Assume that all tables are time-partitioned and

the table access patterns are similar on consecutive days (according

to F3), the problem becomes to decide which table partitions are

worth replicating (and to which DCs) each day and how long their

replicas should be cached under a storage constraint. The objective

is to minimize the total cross-DC communication each day, which

includes the bandwidth used for sending the replicas to remote DCs

and the bandwidth consumed by remote reads in the case when the

required partitions are not replicated.

Job Outsourcing. Outsourcing a job, i.e., scheduling a job out of

its default DC, to run in a remote DC where some of its input tables

are stored may reduce the cross-DC bandwidth usage (according to

F5), especially when the input size is large. This may also improve

the overall resource utilization (hence save the production cost) by

balancing the loads and the utilization of various resources (e.g.,

CPU, memory, disk, network) among the DCs (based on F6).

5. PROBLEM FORMULATION AND SOLU­

TIONS
Approach Summary. We divide our approach into an offline com-

ponent and an online component. Both project placement and table

replication are done offline; while job outsourcing requires an on-

line solution since the scheduling decision needs to consider the

loads and resource utilization of the DCs. We first present an ana-

lytical model to describe the offline component, which is then sep-

arated into two individual problems: a project migration problem

P2 P1 P0 8
7

9
J1

J2

Table T0
Partition size: 10

P2 P1 P0

DC1 DC2
Project1 Project2

J1
J2

Table T0
10

P2 P1 P0
9

J1

J2
Table T0

10

No Replication

Replication with life span 1

Replication with life span 2

Figure 6: An example of table replication with life span

and a table replication problem. For project migration, we con-

sider an unlimited storage budget for the replicas. Then, we de-

velop a heuristic that decides the life span of the replicas given a

fixed storage budget. The online component schedules jobs to their

non-default DCs according to both the static job information (e.g.,

the cross-DC bandwidth cost when scheduling a job to run in a re-

mote DC and the predicted resource utilization) and the dynamic

cluster/network information (e.g., available resources, quota, etc.).

Notations. Table 4 lists the frequently used notations. Most of

these notations will be used directly in our subsequent discussions

and readers may refer to Table 4 for their definitions.

Life Span of Table Replicas. We first introduce the notion of life

span for table replicas, as motivated by the fact (i.e., F4 in Sec-

tion 3.6) that the recent partitions of tables are more frequently ac-

cessed. We define the life span Li(d) for a replica of table i in DC

d as the number of most recent partitions that should be stored for

table i in DC d. Let tcur be the current day (or the time interval of

the current partition of a table, if the time unit of a partition is not

a day). In other words, DC d stores the replica of partitions tpti of

table i, where tcur − Li(d) < t ≤ tcur . For example, if the life

span of the replicas for a table in a DC is 2 days, then on Day 7,

the partitions of the table that were created on Day 6 and Day 7 are

replicated and stored in that DC. On Day 8, the partition that was

created on Day 6 becomes stale, and is thus deleted and replaced

by the current partition that was created on Day 8. With the notion

of life span, all reads to the partitions that are covered by the life

span are local (as they are replicated in the local DC). The cost to

maintain the life span consists of (1) the cross-DC bandwidth cost

required each day to replicate the latest partition to the remote DC,

i.e., Si; and (2) the storage cost for storing the most recent Li(d)
replicated partitions in the remote DC, i.e., Si × Li(d). Thus, the

trade-off is that a longer life span turns more remote dependencies

into local reads but increases the maintenance cost. Apparently,

setting the life span to infinity (i.e., replicating all partitions of ta-

bles) minimizes the bandwidth, but is impractical as the cost is too

high.

We illustrate the benefit of table replication with life span in Fig-

ure 6. P0, P1 and P2 are time partitions of table T0 that were cre-

ated today, yesterday and two days ago, respectively. T0 belongs

to Project 1 in DC1. Assume that the size of each partition is 10

units, and jobs in DC2 require (7 + 8) units of data from P0 and

9 units from P1. If jobs in DC2 directly read the partitions from

DC1, the total cross-DC bandwidth cost is 24 units. If the life span

is 1 for T0 in DC2, P0 is replicated in DC2 and the reads to P0 be-

comes local. Each day, we need to replicate the latest partition with

a cross-DC replication bandwidth cost of 10 units to maintain the
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life span. Thus, the total cross-DC bandwidth cost is 19 units and

the replication storage size is 10 units (for storing one partition). If

the life span is 2 for T0 in DC2, then the storage cost is 20 units

and the cross-DC bandwidth is 10 units each day (by replicating the

latest partition), making all reads local. We do not need to consider

a longer life span for T0 in DC2 in this example because there is no

job in DC2 reading a partition of T0 that is two days old (i.e., P2 is

not read).

The above example may look simple. But the challenge is that

to determine which table partitions we should replicate (or cache)

and to which remote DCs, and find the optimal life span (i.e., how

long should we cache) for each table in each remote DC, in order

to minimize cross-DC bandwidth usage under the condition that

we have limited replication storage size and in MaxCompute we

have millions of tables (each with hundreds of time-partitions) and

millions of daily jobs.

5.1 Analytical Model
Assumptions. In the following context, we attempt to minimize

the total cross-DC bandwidth usage in a day. We assume that the

WANs connecting each pair of DCs have the same unit cost. We

assume (based on F3) that the sizes of all partitions from the same

time-partitioned table are the same, jobs are recurring daily and

their table access patterns are the same on consecutive days. Thus,

we only need to consider jobs running on one day. We use “all

jobs” to refer to “all jobs running on the current day tcur”. The

table access patterns are generated by jobs running on tcur only.

The jobs and access patterns are actually changing slowly over days

and we will discuss how we can adapt to changes in Section 5.3.

Model Formulation. We first elaborate Rt
i(p) and Rt

i(d) in Ta-

ble 4. Rt
i(p) is the total amount of data read from partition tpti by

all jobs of project p, given as follows.

Rt
i(p) =

∑

j∈J(p)

Rt
i(j). (1)

Rt
i(d) is the total amount of data read from partition tpti by all jobs

of all projects in DC d, given as follows.

Rt
i(d) =

∑

p

Rt
i(p)Xp,d. (2)

We also denote R(d) as the table access matrix of DC d, i.e.,

R(d)[i, t] = Rt
i(d) for all table i and time t.

Given a project placement plan P , a table replication plan R
(i.e., the life span L for all tables in DC d), the total cross-DC

bandwidth cost for d each day can be calculated by the sum of

(1) the total cost of all the remote reads for all the partitions that

are not covered by R and (2) the total cost for replicating remote

partitions to DC d.

BW (d) =
∑

i:Xp(i),d=0

(

∑

l≥Li(d)

Rtcur−l
i (d) + Si × sgn(Li(d))

)

,

(3)

where sgn(x) = 1 when x > 0 and sgn(x) = 0 when x = 0. The

total storage size needed to maintain the replicas is given by

Srep(d) =
∑

i

Si × Li(d). (4)

Constraints. Every project should belong to exactly one DC:

∀p,
∑

d

Xp,d = 1. (5)

Let cpup, memp, stop be the CPU, memory and storage consump-

tion for project p, respectively, and CPUd, MEMd and STOd

be the CPU, memory and storage limit of DC d. Projects in a DC

should satisfy the following resource constraints:

∀d :
∑

p

cpupXp,d ≤ CPUd, (6)

∀d :
∑

p

mempXp,d ≤ MEMd, (7)

∀d :
∑

p

stopXp,d ≤ STOd. (8)

The storage required for storing the replica should not exceed a

replication storage budget STOrep

d :

∀d : Srep(d) ≤ STOrep

d . (9)

As we explained in Section 4, in MaxCompute we want to limit

the negative impact caused by project re-placement and thus we

only select a small, affordable number of projects to be migrated.

We denote the maximum number of projects that we want to mi-

grate in a phase as MigCount, and DCorig(p) be the original DC

that project p belongs to. Then, after project migration takes place,

we have:
∑

p

(1−Xp,DCorig(p)) ≤ MigCount. (10)

We also consider some project-DC constraints. For example, if

project p can only be placed in its original DC, we have

Xp,DCorig(p) = 1 at all time and Xp,d = 0, ∀d ̸= DCorig(p).
If project p cannot be moved to some DC d, we have Xp,d = 0.

Objective. The objective is to find the project placement plan

P and the table replication plan R such that the total cross-DC

bandwidth cost for each day is minimized, while satisfying all the

constraints:

min
∑

d

BW (d). (11)

Analysis. This analytical model is computationally intractable as

it is an integer programming problem with (|T | + |P |) × |DC|
integer variables, where |T | is the total number of tables, |P | is the

total number of projects, and |DC| is the number of data centers.

We make use of our findings, as summarized in Section 3.6, to

simplify the problem. Since jobs tend to read the recent partitions

and the size of their dependencies on partitions decreases expo-

nentially as the access offset increases (i.e., F4), it is reasonable

to first assume that we have sufficient/unlimited replication stor-

age size for project migration and then use a heuristic to decide the

life span under a fixed storage budget. This simplification greatly

reduces the complexity of the model as we essentially remove Con-

straint (9).

With this simplification, we can decouple the problem into two

problems: (1) a project migration problem that first finds the project

placement plan P assuming unlimited replication storage budget,

and (2) a table replication problem that finds the table replication

plan R given P , while satisfying Constraint (9). The decoupling is

also natural to our production environment because project place-

ment/migration cannot be executed frequently due to the higher mi-

gration cost, while the table replication plan can be updated far

more frequently.

5.2 Project Migration
In the simplified project migration model, we remove Constraint

(9). Given a project placement plan, the minimum cross-DC band-

width cost BW opt(d) for DC d can be obtained by: (1) reading all
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required partitions of each table i from the DC of table i, if the total

amount of data read from table i is smaller than the total size of its

partitions; or (2) otherwise storing all the partitions of table i in DC

d and replicating its latest partition each day. Thus, BW opt(d) is

given by:

BW opt(d) =
∑

i:Xp(i),d=0

min{
∑

t

Rt
i(d), Si}. (12)

The above summation over Rt
i(d) along time dimension t helps re-

move the complexity of jointly considering the replication strate-

gies for every time partition. Our objective becomes finding a

project placement plan P such that the overall BW opt is mini-

mized:

min
∑

d

BW opt(d). (13)

Even with this simplification, the number of projects and tables re-

main large as we have thousands of projects and millions of tables.

We make use of the power-law distribution of the cross-DC depen-

dencies (i.e., F1) to further reduce the problem size. As shown in

Figure 2b, a small number of tables contribute to a large portion

of the cross-DC dependencies. Thus, we only consider the top ta-

bles that have the largest dependency size in our project migration

model. Besides, when solving the problem, we also found that mi-

grating a small number of projects can significantly improve our

current project placement, while the improvement degrades rapidly

with further migration as the projects that have great influence are

already placed in a suitable DC.

Our project migration strategy can also be used to solve the new

project placement problem. We first place the new projects in DCs

according to the loads of the DCs, and then solve the project migra-

tion problem by setting MigCount to the number of new projects.

5.3 Table Replication
Given the project placement plan P computed in Section 5.2, we

then find a table replication plan (i.e., find the life span Li(d) for

each table i in each DC d) to minimize the total cross-DC band-

width cost, while satisfying Constraint (9). We first assume (based

on F3) that the table access patterns are the same on consecutive

days, and devise a heuristic for the life span for all tables in dif-

ferent DCs. Then we remove this assumption and consider the dy-

namic maintenance of the life span for the table replicas, as the ta-

ble access patterns are actually changing gradually over time. Note

that the table access matrix Rt
i(d) in our solutions include only ta-

bles that do not belong to projects in DC d, i.e., Xp(i),d = 0, since

we only care remote reads. For simplicity, we omit DC d in the

subsequent discussion.

A DP Solution. The optimal table replication plan under a given

replication storage budget and a given project placement plan can

be obtained through dynamic programming (DP). We denote

dp(i, s) as the minimum cross-DC bandwidth cost that can be ob-

tained by considering the first i tables under the replication storage

size constraint s. Let the life span for table i be Li. The storage size

for storing the replica for table i is Li×Si. Similar to Equation (3),

the cross-DC bandwidth cost incurred for reading partitions of table

i is the sum of (1) the total cost of all remote reads for the parti-

tions that are not covered by the life span and (2) the replication

cost: BWLi
=

∑

l≥Li
Rtcur−l

i + Si × sgn(Li).
The DP transition function is given as follows:

dp(i, s) = min
Li

{dp(i− 1, s− Li × Si) +BWLi
}. (14)

Algorithm 1: k-probe life spanning

Input : Table set T , table access matrix Rt
i , partition size Si,

replication storage budget STOrep, and probing variable k
Output: The life span Li for each table i
maxPQ← ∅ // a max-heap with Gain as key
for i ∈ T do

Li ← 0
for k′ in 1 to k do

Calculate Gaink′

i by Equation (15)

maxPQ← {Gaink′

i , (i, Li)} if Gaink′

i > 0

used← 0
while maxPQ ̸= ∅ do

{Gaink′

i , (i, li)} ← maxPQ.dequeue
if li = Li and used+ Si × k′ ≤ STOrep then

used← used+ Si × k′

Li ← Li + k′

for k′ in 1 to k do

Calculate Gaink′

i by Equation (15)

maxPQ← {Gaink′

i , (i, Li)} if Gaink′

i > 0

The minimum cross-DC bandwidth cost for the first i tables with

storage budget s is to enumerate all possible life spans Li for table

i and take the minimum of them.

The time complexity of the DP solution is O(|T ||L||storage|),
where |T | is the number of tables (in the order of tens of thousands

to millions), |L| is the possible life spans for each table (normally

a few hundred), and |storage| is the number of replication stor-

age units used in the DP formulation (in the order of thousands of

millions: PBs of storage budget divided by MBs of partition size).

Thus, the DP solution is too expensive.

K-Probe Greedy Heuristic. As an alternative to the DP algorithm,

we propose an efficient greedy algorithm. At each step, the algo-

rithm advances the current life span Li for table i by up to k units,

which is greedily determined by a marginal gain defined as follow:

Gaink
i =

{

(
∑

0≤t<k
Rtcur−Li−t

i − Si)/(Si × k) Li = 0
∑

0≤t<k
Rtcur−Li−t

i /(Si × k) Li > 0

(15)

Intuitively, the nominator is the total cross-DC bandwidth cost that

can be saved by advancing Li by k units, while the denominator

is the storage space needed to store the extra k partition replica.

If Gaink
i > 0, it means that replicating the extra k partitions can

further save cross-DC bandwidth. Note that we need to subtract

Si from Gaink
i when Li = 0 because we need to use cross-DC

bandwidth to replicate partition tptcur
i , while for Li > 0 this cost

is already covered by the case Li = 0.

Algorithm 1 presents the greedy algorithm. The algorithm first

initializes a max-priority-queue (maxPQ) to keep all possible

Gaink
i , if Gaink

i > 0, for Li = 0 for each table i. Then it keeps

dequeuing the maximum Gain from the maxPQ until the queue be-

comes empty. Suppose that the current maximum Gain is Gaink′

i

for a certain table i, we advance Li by k′ units if the storage budget

still allows for another k′ replicas. The “li = Li” condition is to

make sure that for all Gaink′

i calculated based on the current Li,

where 0 ≤ k′ < k, only one k′ will be used to advance Li. After

Li is advanced, new gains Gaink′

i will be calculated based on the

updated Li and enqueued in the maxPQ.

The time complexity of Algorithm 1 is O(k|T ||L| log(k|T ||L|)),
which is significantly smaller than that of the DP algorithm since k
is only in the order of hundreds. We show that the greedy algorithm
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obtains the optimal bandwidth cost given sufficient storage budget

as follows.

Theorem 1. Setting STOrep to the actual replication storage size

used when the optimal bandwidth cost in Equation (12) is achieved

and k to be the maximum life span, Algorithm 1 computes a ta-

ble replication plan that gives the same optimal bandwidth cost as

Equation (12).

We give our proof sketch as follows. Let Lopt
i be the life span

for table i when the optimal bandwidth cost in Equation (12) is

achieved. Consider the current life span Li for table i in Algo-

rithm 1. We have Li < Lopt
i , and the gain for advancing Li to

Lopt
i is higher than to any l > Lopt

i , since Lopt
i requires less stor-

age while incurring the same amount of reads (note that Lopt
i is

obtained given unlimited replication storage budget and so it will

replicate any partition as long as the remote read size from that

partition is larger than the partition size, as given in Equation 12).

Thus, if our storage budget is the same as the actual replication

storage size used to obtain the optimal bandwidth cost in Equa-

tion (12), then the gain for advancing Li to Lopt
i will be dequeued

from the maxPQ at some point. And after that, the gain for further

advancing Li becomes 0 and will not be enqueued.

Incremental Maintenance. Our greedy solution only considers

fixed table access patterns for now. In practice, the table access

patterns are actually changing (though slowly) over time due to the

growth of business and occasional ad-hoc jobs. Thus, we need to

update the table replication plan periodically. Assume that the plan

is updated every δ days. The problem now becomes, given a current

replication plan R, we need to find a new replication plan R′ such

that (1) it can serve as a good replication plan for the coming δ
days and (2) the bandwidth cost for transiting from R to R′ is

minimized. As an example for the transition cost, suppose the life

span for table i is Li in R and L′
i in R′, and Li < L′

i, meaning that

R′ covers more partitions for table i than R. Thus, extra bandwidth

is needed to replicate the older partitions from (tcur−L′
i) to (tcur−

Li) in order to transit from R to R′.

The simplest way to update the replication plan is to rerun Algo-

rithm 1 every δ days but it may incur a significant transition cost.

Considering the cost incurred by replicating older partitions, we

propose a simple modification to the gain function. Let Ii,t be an

indicator such that Ii,t = 1 if tpti is covered by R and Ii,t = 0
otherwise. We define Gt

i as the amount of bandwidth that can be

saved if the new plan covers tpti .

Gt
i = Rt

i − (1− Ii,t)× Si/δ (16)

The intuition is that if a partition tpti is not in the replication plan,

then including it in the plan needs to pay for a penalty that amounts

to the amortized bandwidth cost for replicating tpti over the δ days.

That is, we do not encourage replicating older partitions unless the

gain is substantially large. By replacing Rt
i with Gt

i in Equation 15,

we obtain a new gain function:

Gaink
i =

{

(
∑

0≤t<k
Gtcur−Li−t

i − Si)/(Si × k) Li = 0
∑

0≤t<k
Gtcur−Li−t

i /(Si × k) Li > 0

(17)

Apart from using a new gain function, we also take the average of

the table access matrix Rt
i over the previous δ days to reduce the

effect of the oscillations in the table access patterns.

5.4 Online Job Outsourcing
Outsourcing jobs to remote DCs that store the input data can be

beneficial if the input data size is large (according to F5). However,
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Figure 7: Yugong Components

we need to consider if the remote DCs have free resources to run

the jobs and if the expected job completion time (including waiting

time in the remote DCs) is shorter than that in the default DC of

a job. Job outsourcing can also be utilized to balance the loads

among DCs (according to F6). Thus, the outsourcing decision is

made online as it requires dynamic online cluster information.

By default, jobs are launched in their project’s default DC as we

only allocate resource quota for each project in its default DC. To

enable job outsourcing, we create another quota group in each DC

for launching jobs from remote DCs and thus we only outsource a

limited number of jobs to their non-default DCs.

Job outsourcing mainly considers reducing the cross-DC band-

width cost while at the same time taking the loads of the DCs into

account. We use a simple score function to make the decision of

outsourcing job j to DC d:

Score(j, d) = α×
1

Cost(j, d)
+ β ×

AvailResrc(d)

WaitT (j, d)
, (18)

where Cost(j, d) and WaitT (j, d) are the total cross-DC band-

width costs and the estimated waiting time if we outsource job j to

DC d, and AvailResrc(d) is the amount of available resources in

DC d. Note that Cost(j, d) includes sending all necessary infor-

mation/data to DC d for the job execution and transferring back the

job output back to the default DC. We carefully tune the parameters

α and β to favor a small cross-DC bandwidth cost.

6. SYSTEM IMPLEMENTATION
In this section, we provide some implementation details of Yu-

gong. The architecture of Yugong is shown in Figure 7. Yugong is

directly plugged into MaxCompute to provide services for project

placement/migration, table replication and job outsourcing. We

may also connect Yugong with other DC management systems in a

similar way.

6.1 Plan Generator
The Plan Generator in Yugong is responsible for generating

project placement plans and table replication plans. It takes in the

cross-DC dependency information from a MetaStore, which is a

key-value store that keeps all the static historical information of

jobs, tables and projects in MaxCompute. Then it employs an opti-

mization solver to solve the project migration problem and provides

project migration recommendation. We use a home-brewed solver

developed by the Intelligent Decision Lab inside Alibaba [16], which

is built specifically for large scale constrained programming prob-

lems. The Plan Generator also creates new table replication plans

periodically using the k-probe life spanning algorithm. The repli-

cation storage budget is set for each DC individually based on the
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storage usage of each DC. The Plan Generator runs the k-probe

algorithm with different update intervals to find the best update in-

terval for incremental maintenance of the replication plan.

The Plan Generator keeps monitoring the workload statistics and

bandwidth usage of the DCs, and generates a new project migration

plan when there is a significant change in the workloads or when

the bandwidth usage becomes worse than a threshold. Meanwhile,

the table replication plan is updated periodically according to the

best update interval. Projects are only migrated infrequently due to

the large migration cost, while the table replication plan is updated

more frequently.

6.2 Replication Service
After the project placement/migration plan and the table replica-

tion plan are generated, their execution is actually converted into

many replication jobs. To execute the placement/migration plan,

the partitions of the tables in the projects are replicated to the des-

tination DCs. Before the migration of a project completes, jobs are

still launched in the original DC of the project. After the migration

completes, Yugong deletes the project’s tables from the original DC

and updates the MetaStore about the new location of the project.

To execute the table replication plan, existing partitions covered

by the replication plan are replicated to the destination DCs, while

the replication of new partitions will be triggered online when the

partitions are created.

Yugong provides replication service to execute the replication

jobs. As shown in Figure 7, the replication service is implemented

as a master-slave architecture. The RepMaster assigns projects

evenly to RepSlaves and distributes the replication workloads to

RepSlaves. RepSlaves obtain the partition replication information

from the Plan Generator. Each RepSlave then subscribes to a

Pub/Sub service in MaxCompute and will be notified whenever a

partition belonging to some of its assigned projects is created. Rep-

Slaves launch replication jobs for their assigned projects only, and

they submit the jobs to MaxCompute’s Global Job Scheduler. The

Global Job Scheduler dispatches the jobs to the respective DCs,

where the cluster scheduler (i.e., Fuxi [61]) allocates resources for

the job execution.

A replication job copies a given table partition from the source

DC to the destination DC. It is similar to a map-only MapReduce

job with parallel replication instances. Before running the repli-

cation job, a planning job will first be launched to determine the

number of replication instances, and then dispatch the files to these

instances evenly. Each replication instance running in the source

DC reads the files assigned to it locally and writes them to the re-

mote destination DCs.

A RepSlave launches a replication job under one of the follow-

ing three cases. The first one is event-triggered: when a partition

that should be replicated is created, the RepSlave will be notified

and launch the corresponding replication job. The second one is

on-demand: when a job launching in the destination DC requires a

partition and the partition is in the replication plan, but the partition

is yet to be replicated, the RepSlave will be notified and launch a

replication job to replicate the data. The third one is scan: the Rep-

Slave also periodically scans the replication plan to check whether

there are some partitions that need to be replicated (e.g., those de-

layed due to some scheduling issues). The on-demand replication

jobs have the highest priority to be scheduled for execution.

6.3 Job Outsourcing Service
The job outsourcer has multiple instances, which obtain static

job information from the MetaStore and dynamic cluster/network

information from MaxCompute’s Resource Monitor to make out-

Table 5: Statistics of DCs (DCs 3-7 reported as a range)

#Project

(100)

#Job

(100K)

#Table

(100K)

Normalized remote

dependency

DC1 2 7 7 9

DC2 34 36 28 67

DCs3-7 1-4 3-18 5-23 1-14

sourcing decisions. Job outsourcers make their decisions indepen-

dently for their own jobs according to the score function in Equa-

tion (18). Before outsourcing a job, a job outsourcer also first com-

municates with MaxCompute to check whether all partitions of ta-

bles required for the job are available in the destination DC.

If a job is to be outsourced, its job outsourcer sends all the neces-

sary information for the job execution to the Global Job Scheduler,

where the job will be submitted to the destination DC for execu-

tion. The outsourcer is also responsible for moving the output of

the job back to the default DC of the job after its completion (note

that this cost is small according to F2 and is included in Cost(j, d)
in Equation (18)).

7. PERFORMANCE RESULTS
We report some performance results 7 of Yugong in our geo-

distributed DCs in this section. The results were obtained from

7 DCs, some of their statistics are given in Table 5. In Table 5,

the daily remote dependencies among the DCs are normalized by

the smallest daily amount of in-coming cross-DC bandwidth for a

single DC. The total amount of daily cross-DC dependencies is in

the order of hundreds of PBs.

While we report some results for all the 7 DCs in order to give

a better overall picture, for other detailed results we only report for

two DCs, DC1 and DC2, due to the page limit. DC1 is a medium-

size DC hosting thousands of servers, while DC2 is a large DC with

several tens of thousands of servers. DC2 has the largest numbers

of projects, jobs, and tables, though this does not imply that DC2 is

the largest DC in terms of computing resources.

7.1 Overall Performance
We first report the overall performance of Yugong running in

production in Alibaba. Figure 8 shows the reduction of the in-

coming cross-DC bandwidth usage for each DC on a typical day

(i.e., the reduction by Yugong on that day is its typical perfor-

mance). Yugong reduced the cross-DC bandwidth usage from 14%

to 88% for different DCs. DC2 has the most significant reduction

as it has the largest remote dependencies. In total, 76% of the total

bandwidth usage was reduced by Yugong on that day.

Figure 9a plots the CDF of the completion time of the replication

jobs in different DCs. The result suggests that most of the replica-

tion jobs can finish within a few minutes. More than 96% of the

jobs can finish in less than 600 seconds, which is short compared

with the running time of most analytics jobs in MaxCompute. Fig-

ure 9b reports the causes of the replication jobs. About 62% to 82%

of the jobs in different DCs are event-triggered by the creation of

new time partitions. Few replication jobs are launched on-demand,

meaning that few analytics jobs are delayed due to waiting for a

required partition that is not yet replicated.

7We remark that, wherever the performance results contain sensi-
tive business/customer information, we report the relative numbers
instead of the exact numbers. The relative numbers, however, are
sufficient to show the improvements made by Yugong. We highlight
our main findings in italic fonts.
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Figure 9: Results of replication jobs (best viewed in color)

7.2 Performance of Table Replication
We then investigated how our table replication strategy performs

under both fixed and dynamic table access patterns.

7.2.1 Fixed Table Access Patterns

We first assume that the table access patterns are fixed for differ-

ent days. This scenario is used to test how well Algorithm 1 (de-

noted as k-probe) performs and how close it is to the optimal band-

width usage under unlimited storage budget. We compared k-probe

with a baseline counting algorithm (denoted as Counting) that ran

in our production before the deployment of Yugong. Counting uses

a simple counting and voting strategy to decide the life span: it

evaluates the table access matrix Rt
i(d) for each table i in the last

7 days and if a partition was read in 5 out of the 7 days, it is con-

sidered as worth-replicating. Then a life span for a table is formed

if the worth-replicating partitions tend to be consecutive (i.e., 80%

of the partitions in a time range are worth-replicating). Counting

does not take the amount of dependencies into account and we can-

not specify a storage budget for it. For fair comparison, we set the

replication storage budget of k-probe to be the same as the storage

used by Counting. We also report the optimal bandwidth cost one

can achieve under unlimited storage budget, denoted as Opt.

Figure 10 shows the cross-DC bandwidth usage of Counting and

k-probe in the 7 DCs, where the reported values are relative to the

optimal bandwidth cost achieved by Opt. The improvements of k-

probe over Counting are from 18% to 45% for different DCs. In

addition, k-probe’s results are very close to the optimal ones.

We then report how well k-probe performs under different repli-

cation storage budgets. We compared with another greedy method

(denoted as Greedy), which greedily takes in a partition from the

table access matrix that gives the current largest marginal gain un-

til the storage budget is used up. Figure 11 gives the cross-DC

bandwidth costs needed by each method under different replication

storage sizes (relative to the actual storage size used by Opt). We

report the cross-DC bandwidth costs as relative numbers to the total

amount of cross-DC dependencies, meaning that the lower the rela-

tive cost, the more reduction in bandwidth usage is achieved. Under

the same storage size, k-probe uses 41% and 45% less bandwidth

compared with Counting in DC1 and DC2, respectively. In addi-

tion, k-probe nearly achieves the optimal bandwidth usage given

enough storage. Without the life span concept, Greedy cannot fur-
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Figure 10: Cross-DC bandwidth usage with fixed access patterns

(1.0 represents the optimal bandwidth usage)
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Figure 11: Cross-DC bandwidth usage w/ different storage sizes
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Figure 12: The effects of k on k-probe

ther reduce the overall bandwidth usage even given more storage

because it uses extra bandwidth to replicate old partitions from their

default DCs every day.

Next we report the effects of the probing variable k on the per-

formance of our k-probe algorithm. Figure 12 reports the cross-DC

bandwidth usage (relative to the result of Opt) achieved by k-probe

for different k, where the replication storage budget was set as the

actual storage size used by Opt. The results vary for DC1 and DC2

for small values of k. For DC1, a small k ≈ 10 already resulted in

a good result, while for DC2 a small k resulted in relatively high

cross-DC bandwidth usage as the storage budget was not fully used.

This is because a small k may give a low marginal gain that stops

the advance of the life span. A relatively large k achieves per-

formance close to the optimal bandwidth usage as stated in Theo-

rem 1. We also note that the k-probe algorithm can finish in a few

minutes even when we set k = 500.

7.2.2 Dynamic Table Access Patterns

While in Section 7.2.1 we have assessed the effectiveness of our

k-probe algorithm, showing that it can approach the optimal cross-

DC bandwidth usage, the production environment is actually dy-

namic where the table access patterns are changing over time. We

thus report the performance of our algorithm under the normal dy-

namic production environments in our DCs. This is also how we

select the best strategy for production as the settings directly reflect

the production scenarios. We used the table access patterns from

production over 100 days and compared k-probe with the Counting
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Figure 13: Cross-DC bandwidth usage reduction (over 100 days)

of k-probe over Counting
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Figure 14: Effects of update intervals and update strategies

strategy previously used in our production. For fair comparison,

we used the same amount of replication storage budget for both

approaches. Since the dynamic production environments may re-

quire update maintenance of the replication plans, we also found

the best update intervals for both approaches and used them in the

performance evaluation.

Figure 13 reports the improvements achieved by k-probe over

Counting on the reduction of cross-DC bandwidth usage in differ-

ent DCs. The results were obtained over 100 days and the im-

provements are from 25% to 45%. We remark that the amounts of

reduced bandwidth are in the scale of several PBs to tens of PBs in

different DCs per day.

Next we report the effects of different update intervals on the

performance. An update interval of 1 means updating daily and 7

means updating weekly, while None indicates that we never update

the table replication plan. Figure 14a reports the total incoming

cross-DC bandwidth usage of both approaches for different update

intervals in DC2, where the numbers are relative to that of Counting

with no update (i.e., None). The result shows that k-probe achieves

considerably less total bandwidth usage over the 100 days com-

pared with Counting using different update intervals. The improve-

ments of k-probe over Counting is from 20% to 33%. In general,

setting the update interval to a small constant (e.g., 2 to 4) leads

to better results for k-probe. Never updating the table replication

plan performs the worst as it cannot adapt to the online workload

changes.

We also studied the performance of k-probe using different com-

binations of strategies for updating the table replication plan. We

used two different table access matrices as the input to our algo-

rithm: (1) OneDay indicates that we used the table access ma-

trix on that day as the input, and (2) Avg refers to using the av-

erage table access matrix over the last 7 days as the input. We

used two different update strategies: (1) Inc updates the replication

plan using the incremental strategy we proposed in Section 5.3, and

(2) Normal directly replaces the replication plan without consid-

ering the bandwidth cost for replicating the old partitions.

Figure 14b reports the total cross-DC bandwidth usage (over 100

days) using different strategies, where the numbers are relative to

that of the OneDay+Normal strategy with no update. The result
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Figure 15: Effects of varying number of migrated projects and dif-

ferent project placement plans (best viewed in color)

shows that using the Avg + Inc strategy and updating the repli-

cation plan every two days achieve the best cross-DC bandwidth

usage. The Inc strategy performs better than Normal because

it considers the bandwidth cost for replicating the old partitions.

Besides, Avg performs better than OneDay as it can mitigate the

oscillations in the table access patterns over different days.

7.3 Performance of Project Migration
We first report the effects of the number of migrated projects on

the cross-DC bandwidth usage given unlimited replication storage

budget. Figure 15a shows that as we migrated more projects, the

cross-DC bandwidth cost first decreased significantly, but then it

only decreased moderately when we migrated more than 20 projects.

Specifically, we reduced 21% of the bandwidth usage by migrating

20 projects and reduced 33% by migrating 60 projects. The result

suggests that our project migration strategy by migrating only a

small number of projects can already significantly reduce the cross-

DC bandwidth usage.

We also examine the effectiveness of the decoupling of the orig-

inal intractable problem (formulated in Section 5.1) into two sim-

pler problems, i.e., first solve project migration under unlimited

replication storage budget (Section 5.2) and then solve the table

replication problem with the k-probe algorithm with a storage bud-

get (Section 5.3). We generated three different project placement

plans by migrating 0, 20 and 50 projects considering unlimited stor-

age budget and only the top 1,000 tables with the most dependen-

cies (accounting for 70% of the total cross-project dependencies).

Then, we ran k-probe on each of the project placement plans with

different storage budgets. We gave a total storage budget to all DCs

instead of giving a storage budget to each DC individually to obtain

an overview of the effects of project migration.

Figure 15b reports the cross-DC bandwidth usage using different

project placement plans, which are relative to the total amount of

cross-DC dependencies before any migration. We also plot 3 dots

in the figure, i.e., 0+Opt, 20+Opt and 50+Opt, which represent

the optimal cross-DC bandwidth usage given unlimited storage for

each project placement. The result suggests that under different

project placement plans obtained by project migration, the opti-

mal bandwidth usage given unlimited storage budget can be ap-

proached by our k-probe algorithm. In addition, even with limited

replication storage budgets, k-probe can always achieve less band-

width usage using a better project placement plan (i.e., one that

reduces more bandwidth usage) obtained under the assumption of

unlimited storage budget. As from Figure 15a, we can see that

migrating 50 projects is a better plan than migrating 20 projects,

which is in turn better than no migration at all. Thus, Figure 15b

shows that the results of 20+k-probe and 50+k-probe are always

better than that of 0+k-probe. This also verifies the effectiveness

of our decoupling strategy.
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Figure 16: Job outsourcing for cross-DC bandwidth usage reduc-

tion and load balancing

7.4 Performance of Job Outsourcing
We also evaluated the amount of cross-DC bandwidth that can

be saved by scheduling jobs to run out of their default DCs. Fig-

ure 16a reports the number of jobs outsourced to each DC and the

cross-DC bandwidth reduced by the outsourcing activities, where

the numbers are relative to the maximum number of outsourced

jobs to a DC and the maximum bandwidth reduction. There was

no job that was outsourced to DC4 because other DCs had little

dependency on DC4. In total, job outsourcing can further reduce

several hundred terabytes of bandwidth per day.

We then report the benefit that job outsourcing can bring on load

balancing among the DCs. Figure 16b depicts the differences be-

tween the CPU/memory utilization of two clusters over 40 days.

The difference was calculated hourly between the utilization rates

(0 to 100%) of CPU/memory in the two clusters, and the hourly dif-

ferences were then averaged. During the period from Day 1 to Day

21, we can see that the difference in memory utilization rate is large

(around 35 on average, meaning that if one cluster used 90% of its

memory, the other one used only 55%). Indeed, what happened

was that one of the clusters was memory-bound and the memory

utilization often reached the limit. We enabled job outsourcing on

Day 22, and the difference of memory usage between the clusters

decreased by about 2 times afterwards. This is because job out-

sourcing effectively outsourced some jobs from the heavily-loaded

cluster and made better utilization of the memory of the other clus-

ter. The result demonstrates that job outsourcing can balance the

resource utilization among different clusters in the DCs.

8. RELATED WORK
Geo-Distributed Scheduling. Recent work on geo-distributed

scheduling for analytics workloads only consider a small number

of jobs and assume that data are partitioned across geo-distributed

DCs and tasks from a job can run in multiple DCs. Iridium [43] op-

timizes task scheduling and data placement to achieve low latency

for analytic queries. Geode [56] and WANalytics [55] make query

planning WAN-aware and provide network-centric optimizations

for data analytics across DCs. Clarinet [54] proposes a WAN-aware

query optimizer by considering the network bandwidth, task place-

ment, network transfer scheduling and multiple concurrent queries.

Tetrium [24] considers both the computing and network resources

for task placement and job scheduling in geo-distributed DCs. Pix-

ida [29] applies graph partitioning to minimize cross-DC task de-

pendencies in data analytics jobs. Hung et al. [25] propose geo-

distributed job scheduling algorithms to minimize the overall job

running time but it does not consider the WAN bandwidth usage

among the DCs. Bohr [34] exploits the similarity among data in

different DCs for geo-distributed OLAP data cubes. Lube [57] de-

tects and mitigates the bottlenecks in geo-distributed data analytic

queries in real-time.

There are other works that make data stream analytics, distributed

machine leaning and graph analytics WAN-aware. JetStream [44]

proposes explicit programming models to reduce the bandwidth

required for analyzing streaming datasets. For machine learning

workloads, Gaia [23] and GDML [10] develop geo-distributed so-

lutions to efficiently utilize the scarce WAN bandwidth while pre-

serving the correctness guarantee of ML algorithms. Monarch [27]

and ASAP [26] propose an approximate solution for geo-distributed

graph pattern mining.

Cloud-Scale Data Warehousing. Google BigQuery [19], Ama-

zon Redshift [4], Microsoft Azure Cosmos DB [39] and Alibaba

MaxCompute [3] are large scale data warehouse products. The

“project” concept in MaxCompute corresponds to the “database”

in Redshift and the “project” in BigQuery. Even though Yugong

is primarily built used as a plugin for MaxCompute in this work,

similar ideas can also be applied to other geo-distributed data ware-

housing platforms.

Caching and Packing. Cache management is a well-studied topic

across different levels of computer architecture, from CPU cache,

memory cache, to application-level cache. Memcached [38] and

Redis [46] are highly available distributed key-value stores provid-

ing in-memory cache over disks. EC-Cache [45] and SP-Cache [59]

provide in-memory cache for data-intensive clusters and object

stores. Piccolo [42], Spark [60], PACMan [6] and Tachyon [33]

incorporate memory caching for cluster computing frameworks. In

this work, we use disk storage as caching for remote partitions to

reduce the cross-DC bandwidth. The table replication problem is a

variant of the knapsack problem [7, 51] and the project placement

problem is a variant of the bin packing problem [30, 51]. Tetris [21]

analogizes the multiple resource allocation problem to the multi-

dimensional bin packing problem for task scheduling.

Cluster Workload Analysis. There is a large body of work about

cluster trace data analysis [47, 37, 5, 58, 14, 35, 1, 36]. We focus

on analyzing the dependency relationship among jobs and tables

in this work. The daily recurrent pattern of jobs was also found

in [28].

9. CONCLUSIONS
We presented Yugong, which was developed to reduce the high

and costly cross-DC bandwidth usage in Alibaba’s geo-distributed

DCs. Yugong works seamlessly with MaxCompute in very large

scale production environments and has significantly reduced the

cross-DC bandwidth usage by project migration (to reduce cross-

DC dependencies), table replication (to eliminate heavy remote

data reads) and job outsourcing (to move jobs to data and to bal-

ance resource utilization). We believe our solution will benefit both

researchers and practitioners in work related to geo-distributed data

placement and job scheduling.

In large scale production environments where there are many

critical businesses such as those in Alibaba, system robustness is

often more important than performance, and we have also observed

that Yugong has consistently achieved stable performance over a

long period of time (nearly 2 years). We are now also enhancing

the connection between Yugong and our cluster scheduler, Fuxi, for

very large scale geo-distributed job scheduling (e.g., tens of mil-

lions of jobs over tens of large clusters).
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