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1 Introduction

F-theory [1] compactifications to four dimensions are typically defined by specifying a T 2

fibered Calabi-Yau fourfold. The traditional assumption is that the fibration has a section,

i.e. there is an embedding of the basis divisor into the total space, almost everywhere

intersecting the fiber at a point. All such models are birational to a Weierstrass model [2].

Restricting oneself to Calabi-Yau fourfolds defined by Weierstrass models (and thus, having

at least one section) simplifies model building with non-Abelian gauge symmetries, since

there are well understood techniques for reading off the low energy non-abelian gauge

groups from the structure of a Weierstrass model.1 Considerable effort has been made

to develop similar techniques for analyzing and engineering elliptically fibered Calabi-Yau

manifolds that also give rise to Abelian gauge groups in the low energy effective theory.

Initiated by the construction of the U(1)-restricted model in [4], the study of global

F-theory compactifications with U(1) gauge factors can very roughly be divided into two

approaches: (1) For a given U(1) gauge rank, one can determine the ambient space in

which every elliptic fiber giving rise to such a low energy theory must be embeddable by

using an old idea of Deligne [5]. Having obtained this space, one can then try to extract

information about generic features of all such compactifications, such as all the matter

representations can that possibly occur [6–11]. Non-generic elliptic fibers in Tate form

1See for example table 4 of [3] for a comprehensive dictionary between vanishing degrees of the Weier-

strass model and the associated gauge algebras.
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were studied in [12, 13]. (2) Conversely, one can take the stand and demand that given

an arbitrary elliptically fibered Calabi-Yau manifold, one should be able to determine the

low energy effective theory it gives rise to [14–16]. By breaking up the Calabi-Yau into its

various building blocks and determining which of them can be treated separately, one can

then systematically answer questions about entire classes of compactification manifolds [16]

and find connections between them using Higgsings [20]. Alternatively, one could perform

computer-aided scans over large numbers of compactifications as was done for example

in [21, 22]. Naturally, these two approaches are not mutually exclusive and there exist

many ways in which they overlap. Additionally, work has been done to understand the

geometry associated to singularities in higher codimensions in the base manifold [23] and

the relations between the different ways of resolving these [24–26]. Furthermore, we note

that a perpendicular approach has been taken by [27, 28], where resolutions are avoided

by instead deforming the singularities, corresponding to a Higgsing of the gauge group.

By now, not only the Abelian gauge groups themselves, but also purely Abelian mat-

ter states, often called singlet states, appear to be fairly well understood in four and six

dimensions, both from a geometric [8, 29, 30] and a field theoretic perspective [15, 31, 32]

using the Chern-Simons terms of the effective theory compactified on a circle. Recently,

a proposal for counting the precise number of multiplets in F-theory compactifications to

four dimensions has been made [33]. In contrast, Yukawa couplings in global compactifi-

cations have been much less studied so far, both those that involve singlets and those that

do not. While their assumed geometrical counterparts, intersections of different matter

curves in codimension 3 in the base manifold, have received attention [7–10, 12, 20, 30, 34],

it appears crucial to point out that the relation to T-branes [35, 36], and in particular the

low energy effective theory and local models [37–42] remain to be explored.

Notably, beyond mathematical convenience there is no a priori physical reason to re-

strict oneself to T 2 fibrations with section. Calabi-Yau fourfolds with T 2 fiber but no

section constitute perfectly respectable M-theory backgrounds, and they can admit a F-

theory limit. The physics of such backgrounds is rather interesting, and only recently it

has been started to be systematically explored, mostly for the case of compactifications

on threefolds [17–19].2 In this paper we extend the physical picture put forward in [19] to

Calabi-Yau fourfold compactifications without section. We propose a closed string and an

open string perspective on the massive U(1) arising in compactifications without section,

and comment on the geometrical configurations realizing this duality. Furthermore, we

explicitly describe how a non-Abelian gauge theory on seven-branes can be engineered in

such geometries. This allows us to argue that models without section do have potentially

fruitful model building properties, such as the natural appearance of certain discrete sym-

metries at low energies. These discrete symmetries can (and do) forbid certain Yukawa

couplings from being generated, even though the Yukawa couplings are otherwise allowed

by all continuous symmetries present at low energies. Let us remark that intersecting D6

brane scenarios with similar physical implications have recently been studied for example

in [45–47]. As we were completing this paper, [20] appeared in which discrete symmetries

in F-theory compactifications are also studied.

2See also [43, 44] for earlier work on the topic.
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We start in section 2 with a quick review of some aspects of the physics of compactifi-

cations without section, where we explain the connection of discrete symmetries to certain

geometrically massive U(1) symmetries, and we highlight the relevance of including M2 in-

stanton effects in order to have a consistent description of the physics. In section 3 we then

provide a detailed analysis of a phenomenologically motivated toy example, and show that

indeed discrete symmetries forbid certain Yukawa couplings from appearing, in agreement

with what the general discussion suggests.

2 F-theory compactifications without section and Yukawa structures

In this section we first discuss F-theory on genus-one fibrations without section generaliz-

ing the insights of [19] to Calabi-Yau fourfold compactification. This will be the first task

of subsection 2.1, where we will provide two different perspectives, a closed string and an

open string one, on massive U(1) gauge symmetries arising from such fibrations. Next, we

examine the discrete symmetries that survive as remnants of the massive U(1) gauge sym-

metries at low energies in section 2.2. The Yukawa structures that arise in four-dimensional

SU(5) Grand Unified Theories are treated in subsection 2.3, putting special emphasis on

continuous and discrete selection rules. We also argue that an interesting class of instanton

effects plays a key role in connecting the closed and the open string pictures. Finally, in

subsection 2.4 we give a more detailed geometric description of the set-up and discuss the

string interpretation of the Higgsing.

2.1 Physics of F-theory compactifications without section

In this section we first review the physics of F-theory compactifications on manifolds with-

out section following the point of view taken in [19] (see also [17, 18, 20]). Next, it will be

crucial to extend the discussion to a four-dimensional context, i.e. to the study of Calabi-

Yau fourfolds without section.

Before turning to geometries without section, it is useful to first recall some facts about

geometries with a section. In order that F-theory is well-defined, a potential Calabi-Yau

compactification geometry should admit a genus-one fibration over some base manifold B.

In this case the value of the dilaton-axion τ , given by the complex structure modulus of

the T 2 fiber, can be extracted from the geometry and describes a Type IIB string theory

background. A subclass of such T 2 fibrations are geometries that have a section. The

presence of a section implies the existence of a global meromorphic embedding of the base

B into the total space of the fibration. Alternatively, one can view a section as selecting

precisely one point in the fiber over every point in the base with the possible exception of

lower-dimensional loci in the base where the fiber degenerates. Fibrations with a section

can be birationally transformed into a Weierstrass model given by

y2 = x3 + fxz4 + gz6 , (2.1)

where (x : y : z) are the homogeneous coordinates of a P
2,3,1, and f, g are functions on B.

A canonical section is simply given by z = 0. While the F-theory literature has mostly
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focused on such Weierstrass models, the presence of a section is by no means a physical

requirement for the existence of an effective F-theory action.

Let us thus turn to the case of having a genus-one fibered Calabi-Yau fourfold X4

without section. Despite the absence of a section such geometries still admit a multi-

section or n-section [17–20]. More precisely, while one cannot find a divisor cutting out a

single point in the fiber over every point in the base, one can still find divisors singling out

n points in the fiber. These points may then undergo monodromies as one moves along

the base B of X4. The simplest case, which will be also the main focus in this work, is

the situation where n = 2, i.e. a manifold with a bi-section. It was argued in [19] that

the effective action of F-theory compactified on such a manifold should include a massive

U(1) gauge symmetry. In fact, one should rather think of the compactification as a cousin

of a reduction with two sections, which would correspond to having an extra U(1) gauge

symmetry present in the effective theory. Since the U(1) is massive in compactifications

without section, let us recall that a U(1) can become massive by two related mechanisms:

a linear Higgs mechanism or a non-linear Higgs mechanism, also known as the Stückelberg

mechanism. It was argued in [19] that both points of view are useful to specify the effective

theory obtained from a X4 compactification.

We start by describing the Stückelberg picture first. In this case the F-theory effective

theory on X4 contains a U(1) that is massive due to the shift-gauging of an axion c given by

D̂c = dc+mÂ1 , c → c−mΛ . (2.2)

Upon ‘eating’ the axionic degrees of freedom the kinetic term of c turns into a mass term

for Â1. It was argued in [19] that for a geometry without section the axion involved in

the gauging is a closed-string degree of freedom arising from the R-R or NS-NS two-form

of Type IIB string theory. In other words, the geometries realize a geometrically massive

U(1) gauge symmetry [4, 48, 49]. In fact, at weak string coupling c is simply the zero-mode

of the R-R two-form C2 that renders a D7-brane U(1) massive [50].

Let us briefly recall the argument to justify that F-theory compactifications with a

bi-section do indeed yield a Stückelberg massive U(1) in the effective theory. Following

the suggestion of [51], it was shown in [19] that the M-theory to F-theory duality for such

geometries requires the introduction of a background flux on the F-theory side. In order to

connect M-theory and F-theory one has to consider the F-theory setup on an extra circle.

Following the duality, the absence of a section requires to introduce circle flux n along

the extra circle. Indeed, at weak coupling this is due to a background flux for the field

strength of the R-R two-form C2. In the lower-dimensional theory the circle flux induces

a further gauging

Dc = dc+mA1 + nA0 , (2.3)

where A0 is the Kaluza-Klein vector. Taking into account that this implies the presence of

a Stückelberg mass for the U(1) gauge field given by the linear combination mA1+nA0, it

was shown that the M-theory and F-theory effective theories can indeed be matched. The

presence of the Stückelberg gauging (2.2) coupling to the R-R or NS-NS two-form axion is

crucial for this match to work.
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As pointed out above, the study of F-theory compactifications without section has so

far focused on Calabi-Yau threefolds [17–20]. However, it is important to remark on how

these considerations generalize to four-dimensional F-theory compactifications on Calabi-

Yau fourfolds. In a four-dimensional theory with N = 1 supersymmetry the axion c must

arise from a complex field. We take it to be the real part of a complex field G, ReG = c.

The field G is obtained when expanding the M-theory three-form as [52, 53]

C3 = iGΨ̄− iḠΨ , (2.4)

where Ψ is a (2, 1)-form on the Calabi-Yau fourfold X4. Using this definition of G, one

can derive the four-dimensional effective theory. The relevant U(1) gauging appears in the

kinetic term of G given by

L4 = KGḠD̂µG D̂µḠ , D̂G = dG+mÂ1 . (2.5)

Upon ‘eating’ the axion ReG, the kinetic term (2.5) becomes a mass term for Â1, and the

mass is simply given by KGḠ. Furthermore, it was shown in [52, 53] that for a massless G

KGḠ takes the form

KGḠ =
i

2V

∫

X4

J ∧ Ψ̄ ∧Ψ . (2.6)

Note that since Ψ is a (2, 1)-form on X4, it depends on the complex structure moduli zk of

X4. Remarkably, the moduli dependence of Ψ can be specified by a holomorphic function

h(z). In the simplest situation one finds that [53, 54]

KGḠ ∝ (Imh)−1 . (2.7)

Moving along the complex structure moduli space, the coupling KGḠ setting the mass of

the U(1) can become zero.

Let us comment on the points at which the U(1) becomes massless. In order to do

that, we extrapolate the behavior of KGḠ using the results from a Calabi-Yau threefold.

Indeed, the analog coupling in a Calabi-Yau threefold compactification depends crucially

on the complex structure moduli and can be specified by a holomorphic pre-potential F(z).

In this case, the function h can be thought of as a second derivative of the pre-potential

F(z). One then expects that at special points zi ≈ 0, i = 1, . . . , ncon in complex structure

moduli space one has

h(z) =
∑

i

ai log z
i + . . . , (2.8)

where ai are constants and the dots indicate terms that are polynomial in the complex

structure parameter zi. Geometrically, as we discuss in more detail below, this indicates

that the points zi = 0 are conifold points and a geometric transition takes place. In fact,

as discussed already in [19], the Calabi-Yau threefold with a bi-section X3 can transition

to a Calabi-Yau threefold with two sections X3 by means of a conifold transition. In the
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Calabi-Yau fourfold case a similar transition from X4 to X4 can take place. In this case,

however, one finds a whole curve of conifold points:

X3
tune zi

−−−−−−−→ X sing
3 with conifold points

resolve
−−−−−−→ X3 (2.9)

X4
tune zi

−−−−−−−→ X sing
4 with conifold curve

resolve
−−−−−−→ X4 (2.10)

We stress that the resolved branch X can only be accessed in the lower-dimensional theory,

i.e. in M-theory on X. Nevertheless, the existence of the branch X naturally leads us to

another interpretation of the setup with a U(1) made massive by a linear Higgs mechanism.

To introduce the linear Higgs mechanism picture, let us approach the singular geometry

from the side of X4. At the singular point one also finds that there are new matter states

in the four-dimensional effective theory, that are charged under the U(1). In other words,

these admit the couplings

D̂φ = dφ+ iq̂Â1φ , (2.11)

where q̂ is the U(1) charge of the complex field φ. This implies that one can also think

of giving a mass to the U(1) by turning on a vacuum expectation value (VEV) for the

field φ. In the F-theory compactifications under consideration the field φ will be a matter

field arising from the open string sector on intersecting seven-branes. It will further be a

singlet under the any additional non-Abelian group and therefore denoted by 1q̂, where the

subscript indicates the U(1)-charge. Working with the open string matter field φ should

be considered as the dual picture to working with the closed string field G. In order to

match the charges one expects an identification

1q̂ (open string) ↔ A(z)e2πirG (closed string) , (2.12)

where mr = −q̂, and A(z) is a coefficient that generally depends on the complex structure

moduli of X4. Working with either 1q̂ or G degrees of freedom should give a dual description

of the same physical effective theory.

Let us close this section by noting that the fact that the U(1) is massive implies that

it will be absent in the effective theory at energy scales below its mass. In this effective

theory the selection rules originally imposed by the U(1) gauge symmetry will remain as

discrete symmetries. In the next section we therefore discuss discrete gauge symmetries of

F-theory compactifications in more detail.

2.2 Discrete gauge symmetries

Let us now examine the Higgsing with respect to the discrete symmetries left over and use

the restrictions that general F-theory spectra have to fulfill to our advantage. The set-up we

consider consists of a U(1)0×U(1)1×SU(N) gauge group in the circle-compactified theory

with matter states in the singlet, the fundamental N and the antisymmetric representation
1

2
N(N− 1) of SU(N). Here U(1)0 is the gauge group corresponding to the Kaluza-Klein

vector and U(1)1 is the gauge factor lifting to the proper four-dimensional U(1) factor.

Hence they correspond to the gauge fields A0 and A1 in (2.3) of the previous section. As

– 6 –
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noted for example in [14, 16], the allowed U(1)1 charges of all the occurring representations

obey certain restrictions. First of all, let us assume that the U(1)1 generator has been

rescaled such that the smallest singlet charge is N , thereby ensuring that all there are no

fractional charges under U(1)1. Then the U(1)1 charges of the matter states fundamental

representation satisfy

QU(1)1(N) ≡ k mod N (2.13)

and the charges of the states in the antisymmetric representations fulfill

QU(1)1

(
1

2
N(N− 1)

)

≡ 2k mod N , (2.14)

where k is an integer defining the matter split [16] with respect to U(1)1. Let us now

assume that a field in the 1m,n̂N representation3 attains a VEV. For a general spectrum,

the U(1)0 × U(1)1 symmetry is broken to U(1)′ × (Zm ⊕ Zn̂N ) while the SU(N) factor

remains intact. Here U(1)′ is the linear combination n̂NU(1)0 −mU(1)1 under which the

singlet with non-trivial VEV is uncharged. In terms of the old charges, the charges under

the new gauge group are

QU(1)′ = n̂NQU(1)0 −mQU(1)1 (2.15)

and

QZm
= QU(1)0 mod m QZn̂N

= QU(1)1 mod n̂N . (2.16)

Now let us be more specific and assume that the field Higgsing the U(1) gauge factor

has chargesm = 1 and n̂ = 2, as we find to be the case for all the models in which the elliptic

fiber is embedded inside P112. Roughly speaking, this is due to the fact that states that are

doubly charged under U(1)1 are intrinsically linked to states with non-trivial KK-charge,

since the zero section also appears as a term in the divisor acting as the four-dimensional

U(1) generator [19], and it is these states that appear at the conifold singularities. At first

sight, the discrete gauge symmetry then appears to be Z2N . However, we argue that it is

in fact only Z2. To see this, look at all the possible charges of the matter representations:

QZ2N
(1) ∈ {0, N} ,

QZ2N
(N) ∈ {k, k +N} , QZ2N

(
1

2
N(N− 1)

)

∈ {2k, 2k +N} . (2.17)

Here we represent elements of Z2N by integers and the group law by addition modulo 2N .

This implies

2 ·QZ2N
(1) = 0 ,

2 ·QZ2N
(N) = 2k , 2 ·QZ2N

(
1

2
N(N− 1)

)

= 4k , (2.18)

3That is, the field transforms trivially under SU(N) and has charges m and n̂ ·N under U(1)0 and U(1)1,

respectively. Note that m here is the same as in (2.3), but we have chosen to write split up the n from (2.3)

into n = n̂ ·N in order to emphasize that it contains a factor of N .

– 7 –
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which is an element of the center ZN of the unbroken SU(N) factor. We therefore see

that we can split Z2N into Z2 ⊕ ZN and identify the second part with the center of the

non-Abelian gauge group.

Finally, let us note that there are at least two kinds of special cases for which our

discussion has to be adjusted. The first such case corresponds to a 0-split, i.e. spectra of

the above type with k = 0. In this case all U(1) charges are divisible by N and the second

part of the discrete gauge group is Zn̂ instead of Zn̂N . Therefore the center of the SU(N)

group drops out directly. The second case corresponds to set-ups where N is even and

k = N
2 . In that case there may be additional identifications because fields that we treated

independently above may be contained in the same multiplet.

2.3 Four-dimensional Yukawa structures

In the following we discuss the Yukawa structures of SU(5) GUTs engineered in an F-

theory compactification without section. Therefore, let us consider a SU(5) GUT with 10

representations and 5 representations. Furthermore, we include a number of GUT singlets

1. In order to make contact with the discussion of subsections 2.1 and 2.2 we distinguish

representations by an additional U(1)1 charge, corresponding to the Abelian gauge field

Â1 introduced above. We indicate the U(1)1 charges of the 10, 5 and 1 states will by a

subscript q as in

10q , 5q , 1q : Rq → e2πiqΛRq , (2.19)

where a gauge transformation of Â1 acts as Â1 → Â1 + dΛ.

Since we are interested in Yukawa couplings, the relevant terms in the U(1)-invariant

perturbative superpotential are

Wpert :
∑

q1+q2+q3=0

10q110q25q3 ,
∑

q1+q2+q3=0

10q1 5̄q2 5̄q3 . (2.20)

This generically implies that various couplings are absent. As an example, which we will

realize in F-theory below, let us assume that we have a 4-split, i.e. k = 4 in (2.13) and (2.14)

with the representations

5−6, 5−1, 54, 103, 15, 110 . (2.21)

The perturbatively permitted cubic Yukawas are then

103 × 103 × 5−6 , 103 × 5̄1 × 5̄−4 , (2.22)

plus additional couplings involving the singlet states.

Let us now contrast this to the case in which the U(1) vector field has gained a mass

term. As discussed above, this implies that the low-energy gauge symmetry is reduced to

Z2 × SU(5). For our specific set-up we find that the Z2 charges are as follows:

QZ2
(54) = 0 , QZ2

(5−1) = 1 , QZ2
(5−6) = 0 ,

QZ2
(103) = 1 , QZ2

(15) = 1 , QZ2
(110) = 0 (2.23)

– 8 –
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In particular, this means that at masses below the Stückelberg mass of our U(1) gauge

field, the two curves 54 and 5−6 should be indistinguishable. Furthermore, the singlets 110
are not charged under any massless gauge field anymore.

Under the remaining gauge symmetry, we expect to find the Yukawa couplings

103 × 103 × 5−6 , 103 × 103 × 54 , 103 × 5̄1 × 5̄−4 , 103 × 5̄1 × 5̄6 (2.24)

plus additional couplings involving the singlet states. It is crucial to point out, however,

that the coupling 103 × 103 × 5−1 is still ruled out by the Z2 symmetry and we do not

expect it to be realized in our example geometries.

It is particularly interesting to stress the role of the singlets in the setup. In the

example of section 3, we show that the singlet states 110 are involved in the Higgsing

described in the previous subsection 2.1. In fact, the spectrum (2.21) arises in the open

string interpretation of the F-theory setting. The closed string axion appears as the phase

of the 110 using the identification (2.12). Furthermore, we will find in our concrete example

that there are couplings of the form

110 × 5−6 × 5̄−4 . (2.25)

Given such a coupling in the open string picture, one may thus wonder whether from the

closed string point of view a non-perturbative superpotential appears that involves the

complex field G. Concretely, inspired by the identification (2.12) we have in mind terms

of the form

Wnon−pert = . . . +
∑

q1+q2−rm=0

A(z)e2πirG5q1 5̄q2 . (2.26)

As we will explain in subsection 2.4, some of these couplings are indeed present, and can

be reinterpreted in terms of the classical couplings (2.25).

Let us close this subsection with some comments on the non-perturbative cou-

plings (2.26). Superpotential couplings of a similar type induced by stringy instantons

have been studied intensively in orientifold compactifications as reviewed in detail in [55].

Remarkably, the couplings (2.26) appear to be of somewhat different nature. They do not

depend on the Kähler moduli and therefore are not suppressed at large volume. However,

this is not a contradiction to a de-compactification argument, since these couplings are

localized near the intersection of seven-branes. The instantons give a mass for certain 5-

states that will therefore be absent in the effective theory for the massless modes only. We

will see in our concrete examples that this picture is indeed consistent. It would be very in-

teresting to perform a more thorough study of the instantons inducing the couplings (2.26).

Interestingly, this can already be done in the weak coupling limit.

2.4 String interpretation of the Higgsing

Let us now try to understand better the link between geometric quantities on the one hand

and field theory quantities on the other. We emphasize that the fact that a new branch

of moduli space opens up in the M-theory compactification, connecting via a geometric

– 9 –
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transition our Calabi-Yau background to a large network of spaces, is not essential for

our discussion. An alternative, more self-contained, viewpoint is that we are studying the

physics of the Higgsed (i.e. deformed) branch close to a particular point in moduli space

where extra degrees of freedom appear. Nevertheless, we will keep using the M-theory

viewpoint for convenience, since discussions about geometry and M2-brane states can be

easily understood there.

Let us start with the case of the five-dimensional transition, i.e. a conifold transition

for a Calabi-Yau threefold in M-theory. This case is well understood by now and we briefly

recall the discussion of the transition given in [56, 57]. Take a Calabi-Yau threefold X .

As we tune some of the complex structure moduli, there are codimension R subspaces in

complex structure moduli space where X develops conifold singularities. Geometrically,

this implies the simultaneous vanishing of a number of periods

zi =

∫

Πi

Ω , i = 1, . . . , P (2.27)

with Πi a set of elements of H3(X ,Z), and Ω the holomorphic three-form of X . More

pictorially, we have P 3-spheres contracting to zero size. Not all of these 3-spheres are

homologically independent, only R of them are. Our examples all have P − R = 1, and

henceforth we restrict the discussion to this case for concreteness.

Consider the defining equation of the Calabi-Yau fourfold without a section that we

will study later, which is of the form4

p112 = ã0w
2 + ã1y

2
1w + ã2y1y2w + ã3y

2
2w + ã4y

4
1

+ ã5y
3
1y2 + ã6y

2
1y

2
2 + ã7y1y

3
2 + ã8y

4
2

= 0 ,

(2.28)

with the ãi being sections of line bundles of appropriate degree in the base. The conifold

locus in moduli space is obtained by tuning R coefficients in this equation, which allow

us to set ã8 = 0, modulo local coordinate redefinitions. An argument in [19] then shows

that there are conifold singularities at the P points in the base given by the solutions of

ã3 = ã7 = 0.

In the five-dimensional effective field theory, as we approach the conifold locus, a

massive U(1) vector multiplet becomes light. When we hit the conifold locus in moduli

space the massive vector multiplet becomes massless, and it splits into a massless vector

multiplet and a massless charged hyper. The physics is thus that of an unHiggsing process.

Going in the reverse direction, i.e. taking ã8 6= 0, corresponds to giving a VEV to the

charged hyper, and thus an ordinary five-dimensional Higgsing process.

For our purposes it will be useful to understand the geometric manifestation of this

Higgsing in more detail. (The basic picture was given in [58].) Consider the theory at the

conifold locus. We have a massless U(1) vector multiplet,5 which in M-theory comes from

4We changed notation with respect to [19], the most relevant part of the dictionary for comparison to

that paper is {ã8, ã3, ã7} → {a, f, e}.
5Typically there will be other U(1) vector multiplets in the low energy theory, but one can choose a

basis in which they decouple from the physics of the transition.
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a supergravity reduction of the form C3 = A∧ω, with A the five-dimensional vector boson

and ω a harmonic two-form in the threefold X . By Poincaré duality, we can also think of

ω as defining a four-cycle D in X .

As we start making ã8 6= 0, the U(1) should acquire a mass. The geometric manifes-

tation of this fact is that ω is no longer a harmonic form, but rather becomes a low-lying

eigenform of the Laplacian of X , or dually, the four-cycle D becomes a four-chain with

boundary. In fact, the four-chain is easy to describe: as we deform away from the conifold

locus, the P conifold singularities are replaced by P three-spheres Si. There is a relation

in homology between these spheres, i.e. there is a four-chain in homology with boundary

on these spheres. This four-cycle is D.

Coming back to the ã8 = 0 conifold locus, we have that there are also P hypermul-

tiplets charged under the U(1). They come from M2 branes wrapping the vanishing size

holomorphic S2 at the conifold singularity. As we deform away from the conifold locus,

R = P −1 hypermultiplets stay massless, and get reinterpreted in the geometry as complex

structure moduli of the R growing classes in homology, plus the integrals of C3 and C6 over

the same homology classes. The massive vector boson comes from reducing C3 over the

(non-zero) eigenform of the Laplacian connected to the four-cycle becoming a four-chain

in the conifold transition. From this discussion, it follows that one should identify the

closed string axion entering the Stückelberg mechanism in the geometric description of the

massive U(1) given above with the phase of the charged hypermultiplet getting a VEV and

entering the non-linear realization of the U(1) gauge symmetry becoming massive.

One take-home message from this discussion is that there is a deep interrelation be-

tween the field theory and the geometry, and a duality dictionary of sorts: what we see in

the field theory as a Higgsing of a field appears in the geometry as a particular four-cycle

getting boundaries and becoming a four-chain. There is also a nice interplay between field

theory and string theory when it comes to the corrections to the theory: as explained

in [58], and further substantiated in [59], in order to reproduce the right hypermultiplet

moduli space metric one expects from field theory, one should sum an infinite set of non-

perturbative corrections coming from M2 brane instantons in M-theory.

A similar picture will hold in the case of compactifications on a Calabi-Yau fourfold.

We now have an M-theory compactification down to three dimensions, and there is a U(1)

symmetry that becomes Higgsed as we resolve the conifold singularities. The U(1) vector

boson comes from the reduction of C3 = A ∧ ω. Poincaré duality now tells us that we

should be looking for a six -cycle in the geometry that opens up in the resolution process

and has boundaries on five-cycles. These five-cycles have a simple interpretation: instead

of having conifold points in the total space, we now have conifold curves. As we deform

the defining equation, we obtain a set of five-cycles given by fibrations of the deformation

S3 over the matter curve being Higgsed.6 The massive U(1) is associated with the open

chain with boundaries on these five-cycles. The conifold periods analog to (2.27) can be

studied using the recent results of [61, 62]. However, the relevant couplings, as discussed in

subsection 2.1, should rather be encoded by J ∧Ψ integrated over the five-cycles involved

in the transition.

6Note that this kind of setup has been studied before in [60].
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We now obtain a possible reinterpretation of the perturbative field theory discussion

in terms of geometry: the cubic terms that give rise upon Higgsing to mass couplings

between the two 5 curves that recombine can be understood geometrically as being given

by M2 instanton corrections wrapping the contracting three-cycle, as we approach the

conifold point at ã8 = 0. Notice that the discussion is reminiscent of the N = 2 discussion

in [58, 59]. It would be quite interesting here, for the same reasons, to elucidate the

microscopics of the instanton viewpoint.

3 A class of elliptic fibrations with discrete symmetries

In this section, we present a class of Calabi-Yau manifolds that realize the effects discussed

in the preceding discussion. To do so, we start in subsection 3.1 by constructing a class of

elliptically fibered manifolds without section, with fiber a generic quartic in P112. Next, we

enforce an SU(5) singularity along a divisor of the base manifold and study the low-energy

effective action of F-theory on the Calabi-Yau manifold. In section 3.2 we find that despite

the absence of massless U(1) gauge factors in the effective action, there are different matter

curves distinguished by a discrete gauge symmetry that is a remnant of a massive U(1)

vector field. Furthermore, we encounter that not all the Yukawa couplings that would

naively be allowed by the SU(5) gauge symmetry are realized geometrically. In fact, we

show that those couplings that do exist correspond precisely to those invariant under the

additional discrete symmetry.

Moving to the conifold locus in complex structure moduli space we note in section 3.3

that one of the matter curves becomes reducible and splits into two parts. We note that this

is a manifestation of the U(1) becoming massless at the singular point and the restoration of

the full Abelian gauge symmetry. Resolving the conifold singularities allows us to confirm

that the map between the full U(1) charges and the charge under the discrete remnant

group left over after the Higgsing process is as expected.

3.1 Hypersurface equation in P112

Following the discussion in [19], we embed a genus-one curve inside P112. The most general

such genus-one curve is given by (2.28), which we reproduce here

p112 = ã0w
2 + ã1y

2
1w + ã2y1y2w + ã3y

2
2w

+ ã4y
4
1 + ã5y

3
1y2 + ã6y

2
1y

2
2 + ã7y1y

3
2 + ã8y

4
2

= 0 ,

(3.1)

where the ãi determine the complex structure of the genus-one curve. After fibering the

curve over a suitable base, the ãi become sections of line bundles over the base manifold.

As discussed in [19], an elliptic fibration with such a generic fiber does not have a section,

but rather a two-section defined by y1 = 0. However, after tuning ã8 → 0 the genus-one

curve becomes singular and the two-section splits into two independent sections. These

can then be most conveniently described after resolving the singularity obtained by the

tuning. Note further that P112 exhibits an orbifold singularity at the origin and, in general,
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this singularity should be resolved. Here, however, we restrain from doing so and instead

impose a condition on ã0 later on that makes sure that our hypersurface does not hit the

orbifold singularity.

Next, let us tune the complex structure coefficients in such a manner that the elliptic

fibration obtains an SU(5) singularity and then resolve this singularity using methods

from toric geometry. In general, there are many inequivalent ways of creating such a

singularity and then resolving it. Toric resolutions of such singularities were classified

using the formalism of tops in [63] and, for the case of SU(5), evaluated explicitly in [16].

In the language of [16] the ambient fiber space P112 correspond to the polygon F4 and there

are three inequivalent tops.7 Let us pick the first one, called τ4,1 in [16], and denote the

four blow-up variables and the variable corresponding to the affine node by ei, i = 0, . . . , 4.

Then this choice of SU(5) top implies that the coefficients ai must factor according to

ã0 = e20e1e4 · a0 ã1 = e1e2 · a1 ã3 = e0e3e4 · a3 ã4 = e31e
4
2e

2
3e4 · a4

ã5 = e21e
3
2e

2
3e4 · a5 ã6 = e1e

2
2e

2
3e4 · a6 ã7 = e2e

2
3e4 · a7 ã8 = e0e2e

3
3e

2
4 · a8 , (3.2)

where the ai are irreducible polynomials and ã2 = a2. Unlike the ãi, it is crucial that the

ai depend on ei only through the combination e0e1e2e3e4.

3.2 Non-Abelian matter curves and Yukawa points

Having tuned the complex structure coefficients in the above manner, the next step is to

verify that this does produce an SU(5) singularity and to examine what sort of matter

representations arise at codimension two in the base manifold.

To do this, let us now compute the Weierstrass form (2.1) of the Jacobian of the above

genus-one curve. One finds that the Weierstrass coefficients f and g also depend on the

ei only through the combination e0e1e2e3e4 and we can therefore go to a patch in which

e1 = e2 = e3 = e4 = 1 without losing any information. In that case f and g read

f = −
1

48
·
(

a42 − 8e0 · a1 · a
2
2 · a3 + 8e20 · (2a

2
1a

2
3 − a0a

2
2a6 + 3a0a1a2a7)

+ 8e30 · a0 · (3a2a3a5 − 2a1a3a6 − 6a21a8)

+ 16e40 · a0 · (−3a23a4 + a0a
2
6 − 3a0a5a7) + 192e50 · a

2
0a4a8

)

(3.3)

and

g =
1

864
·
(

a62 − 12e0 · a1 · a
4
2 · a3 + 12e20 · a

2
2 · (4a

2
1a

2
3 − a0a

2
2a6 + 3a0a1a2a7)

+ 4e30 · (−16a31a
3
3 + 9a0a

3
2a3a5 + 6a0a1a

2
2a3a6 − 36a0a

2
1a2a3a7 − 18a0a

2
1a

2
2a8)

+ 12e40 · a0 · (−6a22a
2
3a4 − 12a1a2a

2
3a5 + 8a21a

2
3a6 + 4a0a

2
2a

2
6

− 6a20a
2
2a5a7 − 12a20a1a2a6a7 + 18a20a

2
1a

2
7 + 24a0a

3
1a3a8)

7Put differently, that means that there are three different ways of engineering a resolved SU(5) singu-

larity. Note that one of the tops, called τ4,2 in [16], leads to non-minimal singularities even for Calabi-Yau

threefolds.
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+ 48e50 · a0 · (6a1a
3
3a4 − 3a0a2a3a5a6 + 2a0a1a3a

2
6 + 18a0a2a3a4a7

− 3a0a1a3a5a7 − 12a0a
2
2a4a8 + 18a0a1a2a5a8 − 12a0a

2
1a6a8)

+ 8e60 · a
2
0 · (27a

2
3a

2
5 − 72a23a4a6 − 8a0a

3
6

+ 36a0a5a6a7 − 108a0a4a
2
7 − 144a1a3a4a8)

+ 288e70 · a
3
0 · (−3a25a8 + 8a4a6a8)

)

. (3.4)

From that it follows directly that the discriminant, defined by ∆ = 4f3 + 27g2, obeys

∆ =
a20
16

·
(

e50 · a
4
2 · (−a3a7 + a2a8) · (−a32a4 + a1a

2
2a5 − a21a2a6 + a31a7)

− e60 · a
2
2 · (a

4
2a

2
3a4a6 − a1a

3
2a

2
3a5a6 + a21a

2
2a

2
3a

2
6 + 11a1a

3
2a

2
3a4a7

− 10a21a
2
2a

2
3a5a7 + 8a31a2a

2
3a6a7 − 8a41a

2
3a

2
7 + a0a

4
2a4a

2
7

− a0a1a
3
2a5a

2
7 + a0a

2
1a

2
2a6a

2
7 − a0a

3
1a2a

3
7 − 12a1a

4
2a3a4a8

+ 11a21a
3
2a3a5a8 − 10a31a

2
2a3a6a8 + 8a41a2a3a7a8 + a41a

2
2a

2
8)

+ e70 · (a
5
2a

3
3a4a5 − a1a

4
2a

3
3a

2
5 + 10a1a

4
2a

3
3a4a6 − 8a21a

3
2a

3
3a5a6 + 8a31a

2
2a

3
3a

2
6

+ 40a21a
3
2a

3
3a4a7 − 32a31a

2
2a

3
3a5a7 + a0a

5
2a3a

2
5a7 + 16a41a2a

3
3a6a7

− 12a0a
5
2a3a4a6a7 + 8a0a1a

4
2a3a5a6a7 − 8a0a

2
1a

3
2a3a

2
6a7 − 16a51a

3
3a

2
7

+ 48a0a1a
4
2a3a4a

2
7 − 41a0a

2
1a

3
2a3a5a

2
7 + 46a0a

3
1a

2
2a3a6a

2
7

− 36a0a
4
1a2a3a

3
7 − 50a21a

4
2a

2
3a4a8 + 40a31a

3
2a

2
3a5a8 − a0a

6
2a

2
5a8

− 32a41a
2
2a

2
3a6a8 + 16a0a

6
2a4a6a8 − 12a0a1a

5
2a5a6a8 + 12a0a

2
1a

4
2a

2
6a8

+ 16a51a2a
2
3a7a8 − 40a0a1a

5
2a4a7a8 + 34a0a

2
1a

4
2a5a7a8

− 44a0a
3
1a

3
2a6a7a8 + 30a0a

4
1a

2
2a

2
7a8 + 8a51a

2
2a3a

2
8) +O(e80)

)

. (3.5)

Obviously, there is an SU(5) singularity along the GUT divisor defined by e0 = 0. Addi-

tionally, if a0 has zeros, there will be a further SU(2) singularity whose Cartan divisor is

precisely the divisor obtained from blowing up the Z2 orbifold singularity of P112. Here

we ignore this additional part by making sure later on that a0 is in fact a constant, which

implies that the Calabi-Yau hypersurface avoids the orbifold singularity. Furthermore,

there are three different curves on the GUT divisor over which the SU(5) singularity is

enhanced, namely

T ≡ a2 = 0 (3.6)

F1 ≡ −a32a4 + a1a
2
2a5 − a21a2a6 + a31a7 = 0 (3.7)

F2 ≡ −a3a7 + a2a8 = 0 . (3.8)

Since we have that

f |T=0 = O(e20) , g|T=0 = O(e30) , ∆|T=0 = O(e70) (3.9)

f |F1=0 = O(e00) , g|F1=0 = O(e00) , ∆|F1=0 = O(e60) (3.10)

f |F2=0 = O(e00) , g|F2=0 = O(e00) , ∆|F2=0 = O(e60) (3.11)
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Equation Involved curves Singularity Coupling Multiplicity

{a1 = 0} ∩ {a2 = 0} T , F1 non-minimal — 0

{a2 = 0} ∩ {a3 = 0} T , F2 E6 10× 10× 5′′ 27

{a2 = 0} ∩ {a7 = 0} T , F1, F2 SO(12) 10× 5̄′ × 5̄′′ 18

Table 1. Yukawa couplings involving only non-Abelian representations. Note that all the couplings

are located on the GUT divisor defined by e0 = 0. The multiplicities were evaluated explicitly for

the example manifold given in subsection 3.5.

Involved curves Singularity Coupling Multiplicity

F1, F2 SU(7) 1× 5′ × 5̄′′ 108

Table 2. Yukawa couplings involving both non-Abelian and Abelian representations. Note that all

the couplings are located on the GUT divisor defined by e0 = 0. The multiplicities were evaluated

explicitly for the example manifold given in subsection 3.5.

we find that there are SU(6) singularities along the curves Fi = 0 and that there is an

SO(10) singularity at T = 0. Consequently, the Fi = 0 curves host fundamental matter

representations, while the T = 0 curve is the location of the antisymmetric 10 repre-

sentation of SU(5). We denote the representation located at F1 = 0 and F2 by 5′ and

5′′, respectively.

Before proceeding any further, let us remark here already that without further gauge

symmetries than SU(5), one would not expect to find different 5-curves as we just have. We

therefore expect there to be an additional gauge symmetry that can differentiate the two

curves. However, from the absence of sections we know that it cannot be an Abelian gauge

group. It will, in fact, turn out to be a discrete symmetry that distinguishes the 5-curves.

Next, let us consider the Yukawa points on the GUT divisor, i.e. those points at which

several of the curves meet and the singularity is enhanced even further. We first consider

points that involve the 10 representation. Since we have that

f |T=0 = −
1

3
·
(

e20 · a
2
1 · a

2
3 − e30 · a0 · a1 · (a3a6 + 3a1a8)

+ e40 · a0 · (−3a23a4 + a0a
2
6 − 3a0a5a7) + 12e50 · a

2
0a4a8

)

(3.12)

g|T=0 =
1

864
·
(

− 64e30 · a
3
1 · a

3
3 + 24e40 · a0 · a

2
1 · (4a

2
3a6 + 9a20a

2
7 + 12a0a1a3a8)

+ 48e50 · a0 · a1 · (6a
3
3a4 + 2a0a3a

2
6 − 3a0a3a5a7 − 12a0a1a6a8) +O(e60)

)

(3.13)

we find the enhancements listed in table 1.

Additionally, there are couplings between the two 5-curves and singlets under the non-

Abelian gauge group. We do not give the explicit equation of the singlet curve here, but

note that we find the couplings list in table 2.

– 15 –



J
H
E
P
1
1
(
2
0
1
4
)
1
2
5

Equation Involved curves Singularity Coupling Multiplicity

{a1 = 0} ∩ {a2 = 0} T , F1 non-minimal - 0

{a2 = 0} ∩ {a3 = 0} T , F2,1 E6 10× 10× 5′′ 27

{a2 = 0} ∩ {a7 = 0} T , F1, F2,2 SO(12) 10× 5̄′ × 5̄′′′ 18

Table 3. Yukawa couplings involving only non-Abelian representations. Note that all the couplings

are located on the GUT divisor defined by e0 = 0. The multiplicities were evaluated explicitly for

the example manifold given in subsection 3.5 after transitioning to the conifold point and resolving

the singularities appearing there.

Equation Involved curves Singularity Coupling Multiplicity

- F1, F2,1 SU(7) 1× 5′ × 5̄′′ 54

- F1, F2,2 SU(7) 1× 5′ × 5̄′′′ 54

{a3 = 0} ∩ {a7 = 0} F2,1, F2,2 SU(7) 1× 5′′ × 5̄′′′ 54

Table 4. Yukawa couplings involving both non-Abelian and Abelian representations. Note that all

the couplings are located on the GUT divisor defined by e0 = 0. The multiplicities were evaluated

explicitly for the example manifold given in subsection 3.5 after transitioning to the conifold point

and resolving the singularities appearing there.

3.3 Curve splitting and conifold transition

Before going into the details of the particular base we used in order to compute the precise

number of Yukawa points given in the above tables, let us first, in the spirit of [19], go to the

conifold locus in moduli space, where we obtain a model with two sections, or equivalently

an extra massless U(1). This gives a curve of conifold singularities located at a3 = a7 = 0.

As noted above, this corresponds to tuning a8 → 0. Interestingly, this transition has an

effect on the 5-curves in the geometry, since F2 becomes reducible:

F2|a8=0 = − a3
︸︷︷︸

F2,1

· a7
︸︷︷︸

F2,2

(3.14)

If we denote the fundamentals at F2,1 = 0 by 5′′ and those at F2,2 = 0 by 5′′′ then we find

the Yukawa couplings listed in table 3.

Furthermore, in table 4 we summarize the couplings that do not involve the antisym-

metric representation.

We do not give explicit expressions for the singlet curve involved in the first two

couplings, as they are not complete intersections and contain a large number of terms.

At the conifold locus in complex structure moduli space, we can also compute the

U(1) charges of the matter states using well-known techniques [14]. After rescaling the

U(1) factor to avoid fractional charges, we find the following charge assignments:

10 = 103 , 5′ = 5−1 , 5′′ = 5−6 , 5′′′ = 54 (3.15)
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Furthermore, we find that the singlet involved in the 1×5′′× 5̄′′′ coupling has U(1)-charge

10, while the singlets in the other two 5× 5̄ couplings have U(1)-charge 5.

3.4 Discrete charges and forbidden Yukawa couplings

Finally, let us move away from the conifold locus again by deforming ã8 6= 0. Looking

at the multiplicities of the Yukawa couplings given in tables 1, 2, 3, and 4, the following

picture about the physics of the deformation process suggests itself rather naturally. The

action takes place on the 5′′ = 5−6 and 5′′′ = 54 curves, since they have the same Z2 charge

according to (2.23). We observe that precisely where these two curves intersect, they have

a Yukawa coupling with the 110 singlet parameterizing the deformation. As this singlet

gets a VEV, the two curves recombine into a single object that we called 5′′ in section 3.2.

Since this is a local operation close to the intersection of the two curves, we expect the

rest of the Yukawa couplings involving the 15 singlets to simply come along for the ride.

And indeed, the multiplicities of the Yukawa points are conserved, if one compares with

the results in the previous section.

To finish this subsection, let us quickly summarize the Z2 charges of the matter curves

away from the conifold locus. There one finds that8

QZ2
(5′) = 1 , QZ2

(5′′) = 0 , QZ2
(10) = 1 , (3.16)

which is compatible with the couplings we found in table 1. Note that this is precisely what

we expect based on the discussion of section 2.3. In particular, we find that the coupling

10× 10× 5′ (3.17)

is not invariant under the Z2 action and is not realized geometrically, although it would be

allowed by all massless continuous symmetries.

3.5 An explicit example without non-minimal singularities

After keeping much of the previous discussion independent of the actual choice of base

manifold, let us now present the toric data of an explicit example here. In doing this,

it is important to recall that as soon as one considers three-dimensional base manifolds,

there will generally be non-minimal singularities corresponding to non-flat points of the

fibration [16]. We took this into account in the above discussion, making tables 1 and 3 both

contain an entry corresponding to such a non-minimal singularity. The relevant conditions

will generically have non-trivial solutions at codimension three in the base manifold. The

fact that there generically are such non-flat points does not imply that examples without

them are impossible, or particularly convoluted. The condition one needs to satisfy is

{a1 = 0} ∩ {a2 = 0} = ∅ (3.18)

and as we will now show some simple geometries admit solutions to this equation.

Our explicit model is as follows. Take a toric ambient space defined by a fine star

triangulation of the rays given in table 5. As can be seen from the defining data, the

generic ambient fiber space is P112.

8Note that since we are not at the conifold locus anymore, 5′′ corresponds to the matter curve F2 = 0.
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u0 u1 u2 v1 e0 e1 e2 e3 e4 y2 y1 w

-3 0 0 0 0 -1 -2 -2 -1 -1 -1 1

-3 0 0 -1 0 1 1 0 0 -1 1 0

0 0 0 -1 1 1 1 1 1 0 0 0

1 0 -1 0 0 0 0 0 0 0 0 0

0 1 -1 0 0 0 0 0 0 0 0 0

Table 5. Homogeneous coordinates of the ambient toric space and the corresponding rays of the

toric fan.

The base manifold is P
1 × P

2 and the resolved SU(5) singularity discussed in subsec-

tion 3.1 lies on the base divisor {pt} × P
2 ⊂ P

1 × P
2. Note that making the geometric

transition by going to the conifold locus and resolving the conifold singularities corresponds

torically to introducing another ray with entries (0, 1, 0, 0, 0) as in [19], which automatically

imposes a8 = 0.

Given the explicit data of the ambient space in which our Calabi-Yau manifold is

embedded, there is an easy way of confirming the absence of non-flat points. As discussed

in [16], at the non-flat points one of the irreducible fiber components grows an extra

dimension. In the notation of table 5, the irreducible fiber components are the horizontal

parts of the exceptional divisors ei = 0. The irreducible fiber component which generically

jumps in dimension is the one whose ray does not correspond to a vertex of the top,

i.e. e4 = 0.

Let us therefore examine this component with care. On the divisor e4 = 0 the hyper-

surface equation (3.1) reduces to

p112|e4=0 = ã1 · y
2
1w + ã2 · y

2
2w . (3.19)

However, for the above choice of space, one finds that

ã1 = e1e2 · (α1e0 + α2v1)
︸ ︷︷ ︸

a1

, (3.20)

with αi two generically non-zero constants. In the base, e0 and v1 are just the homogeneous

coordinates of a P1 and in particular e0 = v1 = 0 is forbidden. As a consequence, there are

no solutions to e0 = a1 = 0.

4 Conclusions

In this paper we studied the physical implications of the presence of geometrically massive

U(1) gauge fields in F-theory compactifications without section. F-theory on a genus-one

fibered Calabi-Yau fourfold X4 yields a four-dimensional N = 1 effective theory that can

admit an SU(5) GUT group upon engineering appropriate singularities of the fibration.

We considered the case in which X4 does not admit a section, but rather a bi-section. This

implies that the fourfold cannot be brought into Weierstrass form, but we showed that
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an SU(5) non-Abelian gauge symmetry can be explicitly implemented. The absence of a

section was argued to correspond to the presence of a massive U(1) under which the matter

states of the GUT are charged. This imposes stringent condition on the allowed Yukawa

couplings, which we analyzed in detail for a specific example.

We provided two perspectives on the massive U(1) gauge field. Firstly, we discussed

a closed string perspective, where the U(1) becomes massive by ‘eating’ a closed string

axion. This axion arises from the R-R or NS-NS two-form in F-theory and the Stückelberg

gauging is dependent purely on the geometry of the seven-brane configuration. A dual

open string interpretation was given by introducing GUT singlets that carry U(1) charge.

Geometrically, these singlets are most naturally identified at special loci in the complex

structure moduli space of the Calabi-Yau fourfold at which a curve of conifold singulari-

ties is generated. At these loci in moduli space the U(1) is massless and the spectrum of

the four-dimensional theory can be extracted using the techniques developed for F-theory

compactifications with multiple U(1)s [9, 14, 30]. Moving away from the singular locus

can be interpreted as a Higgsing of certain GUT singlets in the open string picture, which

corresponds to a recombination of seven-branes in F-theory. We also found that geometri-

cally a recombination of certain 5 matter curves occurs in this transition. Such behavior is

consistent with discrete selection rules imposed by the now massive U(1) after integrating

them out.

The study of Yukawa couplings has revealed that even when restricting to massless

modes only, the allowed couplings are restricted by discrete selection rules. In the open

string picture this is due to the well-known fact that after Higgs mechanism only a dis-

crete symmetry remains. This also implies that the triple couplings in the superpotential

involving the Higgsed singlets turn into mass terms, corresponding precisely to the fact

that some of the 5 matter curves recombine in the Higgs branch. Remarkably, the closed

string interpretation of the couplings involving the Higgsed singlets requires the presence

of new instanton effects that are not suppressed by a volume modulus. The precise inter-

pretation of the instanton effects in F-theory or its weak string coupling Type IIB limit is

still lacking and would be of importance. In M-theory the non-perturbative effects arise

from M2-branes wrapped on the shrinking 3-spheres along the conifold curve. We argued

that this geometric picture allows to identify the key ingredients of the field theory setup

including the massive U(1) arising from the expansion into non-closed forms. Clearly, it

would be interesting to complete this picture further elucidating the Yukawa couplings and

their relation to T-branes.
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[45] M. Berasaluce-Gonzalez, L.E. Ibáñez, P. Soler and A.M. Uranga, Discrete gauge symmetries

in D-brane models, JHEP 12 (2011) 113 [arXiv:1106.4169] [INSPIRE].
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[55] R. Blumenhagen, M. Cvetič, S. Kachru and T. Weigand, D-brane instantons in type II

orientifolds, Ann. Rev. Nucl. Part. Sci. 59 (2009) 269 [arXiv:0902.3251] [INSPIRE].

[56] A. Strominger, Massless black holes and conifolds in string theory,

Nucl. Phys. B 451 (1995) 96 [hep-th/9504090] [INSPIRE].

[57] B.R. Greene, D.R. Morrison and A. Strominger, Black hole condensation and the unification

of string vacua, Nucl. Phys. B 451 (1995) 109 [hep-th/9504145] [INSPIRE].

– 22 –

http://dx.doi.org/10.1007/JHEP08(2011)152
http://arxiv.org/abs/1104.2609
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.2609
http://dx.doi.org/10.1007/JHEP11(2011)098
http://arxiv.org/abs/1108.1794
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.1794
http://dx.doi.org/10.1007/JHEP03(2013)140
http://arxiv.org/abs/1211.6529
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.6529
http://dx.doi.org/10.1007/JHEP11(2013)125
http://arxiv.org/abs/1307.8089
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.8089
http://arxiv.org/abs/hep-th/9812141
http://inspirehep.net/search?p=find+EPRINT+hep-th/9812141
http://arxiv.org/abs/hep-th/0103170
http://inspirehep.net/search?p=find+EPRINT+hep-th/0103170
http://dx.doi.org/10.1007/JHEP12(2011)113
http://arxiv.org/abs/1106.4169
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.4169
http://dx.doi.org/10.1007/JHEP03(2013)011
http://arxiv.org/abs/1211.1017
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.1017
http://dx.doi.org/10.1007/JHEP10(2013)146
http://arxiv.org/abs/1303.4415
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.4415
http://dx.doi.org/10.1007/JHEP12(2011)004
http://arxiv.org/abs/1107.3842
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.3842
http://dx.doi.org/10.1007/JHEP07(2014)028
http://arxiv.org/abs/1402.4054
http://inspirehep.net/search?p=find+EPRINT+arXiv:1402.4054
http://dx.doi.org/10.1016/j.nuclphysb.2004.11.009
http://arxiv.org/abs/hep-th/0409098
http://inspirehep.net/search?p=find+EPRINT+hep-th/0409098
http://dx.doi.org/10.1016/0550-3213(96)00283-0
http://arxiv.org/abs/hep-th/9604030
http://inspirehep.net/search?p=find+EPRINT+hep-th/9604030
http://dx.doi.org/10.1016/S0550-3213(00)00091-2
http://arxiv.org/abs/hep-th/9912181
http://inspirehep.net/search?p=find+EPRINT+hep-th/9912181
http://dx.doi.org/10.1016/j.nuclphysb.2010.11.018
http://arxiv.org/abs/1008.4133
http://inspirehep.net/search?p=find+EPRINT+arXiv:1008.4133
http://dx.doi.org/10.1016/j.physletb.2014.10.043
http://arxiv.org/abs/1404.4268
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.4268
http://dx.doi.org/10.1146/annurev.nucl.010909.083113
http://arxiv.org/abs/0902.3251
http://inspirehep.net/search?p=find+EPRINT+arXiv:0902.3251
http://dx.doi.org/10.1016/0550-3213(95)00287-3
http://arxiv.org/abs/hep-th/9504090
http://inspirehep.net/search?p=find+EPRINT+hep-th/9504090
http://dx.doi.org/10.1016/0550-3213(95)00371-X
http://arxiv.org/abs/hep-th/9504145
http://inspirehep.net/search?p=find+EPRINT+hep-th/9504145


J
H
E
P
1
1
(
2
0
1
4
)
1
2
5

[58] B.R. Greene, D.R. Morrison and C. Vafa, A geometric realization of confinement,

Nucl. Phys. B 481 (1996) 513 [hep-th/9608039] [INSPIRE].

[59] H. Ooguri and C. Vafa, Summing up D instantons, Phys. Rev. Lett. 77 (1996) 3296

[hep-th/9608079] [INSPIRE].

[60] K. Intriligator, H. Jockers, P. Mayr, D.R. Morrison and M.R. Plesser, Conifold transitions in

M-theory on Calabi-Yau fourfolds with background fluxes,

Adv. Theor. Math. Phys. 17 (2013) 601 [arXiv:1203.6662] [INSPIRE].

[61] T.W. Grimm, T.-W. Ha, A. Klemm and D. Klevers, Computing brane and flux

superpotentials in F-theory compactifications, JHEP 04 (2010) 015 [arXiv:0909.2025]

[INSPIRE].

[62] N.C. Bizet, A. Klemm and D.V. Lopes, Landscaping with fluxes and the E8 Yukawa point in

F-theory, arXiv:1404.7645 [INSPIRE].

[63] V. Bouchard and H. Skarke, Affine Kac-Moody algebras, CHL strings and the classification

of tops, Adv. Theor. Math. Phys. 7 (2003) 205 [hep-th/0303218] [INSPIRE].

– 23 –

http://dx.doi.org/10.1016/S0550-3213(96)00465-8
http://arxiv.org/abs/hep-th/9608039
http://inspirehep.net/search?p=find+EPRINT+hep-th/9608039
http://dx.doi.org/10.1103/PhysRevLett.77.3296
http://arxiv.org/abs/hep-th/9608079
http://inspirehep.net/search?p=find+EPRINT+hep-th/9608079
http://dx.doi.org/10.4310/ATMP.2013.v17.n3.a2
http://arxiv.org/abs/1203.6662
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.6662
http://dx.doi.org/10.1007/JHEP04(2010)015
http://arxiv.org/abs/0909.2025
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.2025
http://arxiv.org/abs/1404.7645
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.7645
http://dx.doi.org/10.4310/ATMP.2003.v7.n2.a1
http://arxiv.org/abs/hep-th/0303218
http://inspirehep.net/search?p=find+EPRINT+hep-th/0303218

	Introduction
	F-theory compactifications without section and Yukawa structures
	Physics of F-theory compactifications without section
	Discrete gauge symmetries
	Four-dimensional Yukawa structures
	String interpretation of the Higgsing

	A class of elliptic fibrations with discrete symmetries
	Hypersurface equation in P(112)
	Non-Abelian matter curves and Yukawa points
	Curve splitting and conifold transition
	Discrete charges and forbidden Yukawa couplings
	An explicit example without non-minimal singularities

	Conclusions

