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Decision making, reasoning, and analysis in real-world problems are complicated by imperfect information. Real-world imperfect
information is mainly characterized by two features. In view of this, Professor Zadeh suggested the concept of a �-number as an
ordered pair � = (�, �) of fuzzy numbers � and �, the 
rst of which is a linguistic value of a variable of interest, and the second
one is a linguistic value of probability measure of the 
rst one, playing a role of its reliability. 	e concept of distance is one of the
important concepts for handling imperfect information in decisionmaking and reasoning. In this paper, we, for the 
rst time, apply
the concept of distance of�-numbers to the approximate reasoning with �-number based IF-THEN rules. We provide an example
on solving problem related to psychological issues naturally characterized by imperfect information, which shows applicability and
validity of the suggested approach.

1. Introduction

Decision making, reasoning, and analysis in real-world
problems are complicated by imperfect information. Real-
world imperfect information is mainly characterized by two
features. On the one hand, real-world information is o�en
described on a basis of perception, experience, and knowl-
edge of a human being. In turn, these operate with linguistic
description carrying imprecision and vagueness, for which
fuzzy sets based formalization can be used. On the other side,
perception, experience, and knowledge of a human being are
not sources of the truth. 	erefore, the reliability is a degree
of a partial con
dence of a human being, which is naturally
partial. 	is partial reliability is also naturally imprecise and
can be formalized as a fuzzy value of probability measure. In
order to ground the formal basis for dealing with real-world
information, Zadeh suggested the concept of a �-number [1]
as an ordered pair � = (�, �) of continuous fuzzy numbers
used to describe a value of a random variable �, where � is
a fuzzy constraint on values of � and � is a fuzzy reliability
of� and is considered as a value of probability measure of�.
Nowadays a series of works devoted to �-numbers and their

application in decision making, control, and other 
elds [2–
13] exists. A general and computationally eective approach
to computation with discrete �-numbers is suggested in [14–
16]. 	e authors provide motivation of the use of discrete �-
numbersmainly based on the fact that NL-based information
is of a discrete framework. 	e suggested arithmetic of
discrete�-numbers includes basic arithmetic operations and
important algebraic operations.

	e concept of distance is one of the important concepts
for decision making and reasoning [17, 18]. In this paper,
we for the 
rst time apply the concept of distance of �-
numbers to the approximate reasoning with�-number based
IF-THEN rules. An approximate reasoning refers to a process
of inferring imprecise conclusions from imprecise premises
[17–38]. As one can see, this process o�en takes place
in various 
elds of human activity including economics,
decision analysis, system analysis, control, and everyday
activity. 	e reason for this is that information relevant to
real-world problems is, as a rule, imperfect. According to
Zadeh, imperfect information is information which in one or
more respects is imprecise, uncertain, incomplete, unreliable,
vague, or partially true [39]. We can say that in a wide sense
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approximate reasoning is reasoning with imperfect informa-
tion.

	epaper is structured as follows. In Section 2,we present
some prerequisite material including de
nitions of a discrete
fuzzy number, a discrete �-number, and probability measure
of a discrete fuzzy number. In Section 3, we propose several
distance measures for �-numbers. In Section 4, we describe
the statement of the problem and the suggested approach to
reasoningwith�-rules on the basis of distance of�-numbers.
In Section 5, we illustrate an application of the suggested
approach to a real-world problem which involves modeling
of psychological aspects. Section 6 concludes.

2. Preliminaries

2.1. Main De�nitions

De�nition 1 (a discrete fuzzy number [40–43]). A fuzzy sub-
set� of the real lineRwith membership function �� : R →[0, 1] is a discrete fuzzy number if its support is 
nite; that is,
there exist �1, . . . , �� ∈ R with �1 < �2 < ⋅ ⋅ ⋅ < ��, such that
supp(�) = {�1, . . . , ��} and there exist natural numbers �, �
with 1 ≤ � ≤ � ≤ � satisfying the following conditions:

(1) ��(��) = 1 for any natural number � with � ≤ � ≤ �;
(2) ��(��) ≤ ��(��) for natural numbers �, � with 1 ≤ � ≤� ≤ �;
(3) ��(��) ≥ ��(��) for natural numbers �, � with � ≤ � ≤� ≤ �.

De�nition 2 (a discrete random variable and a discrete prob-
ability distribution [44]). A random variable,�, is a variable
whose possible values � are outcomes of a random phe-
nomenon. A discrete random variable is a random variable
which takes only a countable set of its values �.

Consider a discrete random variable � with outcomes
space {�1, . . . , ��}. A probability of an outcome � = ��,
denoted �(� = ��), is de
ned in terms of a probability
distribution. A function � is called a discrete probability
distribution or a probability mass function if

� (� = ��) = � (��) , (1)

where �(��) ∈ [0, 1] and ∑��=1 �(��) = 1.
De�nition 3 (arithmetic operations over discrete random
variables [44, 45]). Let �1 and �2 be two independent dis-
crete random variables with the corresponding outcome
spaces �1 = {�11, . . . , �1�, . . . , �1�1} and �2 = {�21, . . . �2�, . . .,�2�2} and the corresponding discrete probability distributions�1 and �2. 	e probability distribution of �12 = �1 ∗ �2,∗ ∈ {+, −, ⋅, /}, is the convolution �12 = �1 ∘ �2 of �1 and �2
which is de
ned for any � ∈ {�1 ∗ �2 | �1 ∈ �1, �2 ∈ �2},�1 ∈ �1, �2 ∈ �2, as follows:

�12 (�) = ∑
�=�1∗�2

�1 (�1) �2 (�2) . (2)

De�nition 4 (probability measure of a discrete fuzzy number
[46]). Let � be discrete random variable with probability

distribution �. Let � be a discrete fuzzy number describing a
possibilistic restriction on values of�. A probability measure
of � denoting �(�) is de
ned as

� (�) = �∑
�=1
�� (��) � (��)

= �� (�1) � (�1) + �� (�2) � (�2) + ⋅ ⋅ ⋅
+ �� (��) � (��) .

(3)

De�nition 5 (a scalar multiplication of a discrete fuzzy num-
ber [16]). A scalar multiplication of a discrete fuzzy number� by a real number � ∈ R is the discrete fuzzy number �1 =��, whose �-cut is de
ned as

��1
= {� ∈ � ⋅ supp (�) | min (���) ≤ � ≤ max (���)} , (4)

where

� ⋅ supp (�) = {�� | � ∈ supp (�)} ,
min (���) = min {�� | � ∈ ��} ,
max (���) = max {�� | � ∈ ��} ,

(5)

and the membership function is de
ned as

�	� (�) = sup {� ∈ [0, 1] | � ∈ (���)} . (6)

De�nition 6 (addition of discrete fuzzy numbers [40–43]).
For discrete fuzzy numbers �1, �2, their addition �12 =�1 + �2 is the discrete fuzzy number whose �-cut is de
ned
as

��12 = {� ∈ {supp (�1) + supp (�2)} | min {��1 + ��2}
≤ � ≤ max {��1 + ��2}} , (7)

where supp(�1) + supp(�2) = {�1 + �2 | �� ∈ supp(��), � =1, 2}, min{��1 + ��2} = min{�1 + �2 | �� ∈ ��� , � = 1, 2},
max{��1 + ��2} = max{�1 + �2 | �� ∈ ��� , � = 1, 2}, and the

membership function is de
ned as

��1+�2 (�) = sup {� ∈ [0, 1] | � ∈ {��1 + ��2}} . (8)

De�nition 7 (a discrete �-number [15, 16]). A discrete �-
number is an ordered pair � = (�, �) of discrete fuzzy
numbers � and �. � plays a role of a fuzzy constraint on
values that a randomvariable�may take.� is a discrete fuzzy
number with a membership function �
 : {�1, . . . , ��} →[0, 1], {�1, . . . , ��} ⊂ [0, 1], playing a role of a fuzzy constraint
on the probability measure of �, �(�) = ∑��=1 ��(��)�(��),�(�) ∈ supp(�).
3. Distance between Two �-Numbers

Denote byF the space of discrete fuzzy sets ofR. Denote by
F[�,�] the space of discrete fuzzy sets of [ , �] ⊂ R.
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De�nition 8 (the supremum metric on D [47]). 	e supre-
mummetric ! onF is de
ned as

! (�1, �2) = sup {! (��1, ��2) | 0 < � ≤ 1} ,
�1, �2 ∈ F, (9)

where ! is the Hausdor distance.(F, !) is a complete metric space [47, 48].

De�nition 9 (fuzzy Hausdor distance [16]). 	e fuzzyHaus-
dor distance !� between �1, �2 ∈ F is de
ned as

!� (�1, �2) = ⋃
�∈[0,1]

�!�� (�1, �2) , (10)

where

!�� (�1, �2) = { sup
�≤�≤1

! (��1, ��2)} , (11)

where � is the value which is within �-cut and 1-cut. (F, !�)
is a complete metric space.

Denote byZ the space of discrete �-numbers:

Z = {� = (�, �) | � ∈ F, � ∈ F[0,1]} . (12)

De�nition 10 (supremummetrics onZ [16]). 	e supremum
metrics onZ are de
ned as

'(�1, �2) = ! (�1, �2) + ! (�1, �2) ; (13)

(Z, ') is a complete metric space. 	is follows from the fact
that (F, !) is a complete metric space.'(�1, �2) has the following properties:

'(�1 + �,�2 + �) = ' (�1, �2) ,
' (�2, �1) = ' (�1, �2) ,

' (��1, ��2) = |�|' (�1, �2) , � ∈ R,
' (�1, �2) ≤ ' (�1, �) + ' (�, �2) .

(14)

De�nition 11 (fuzzy Hausdor distance between �-numbers
[16]). 	e fuzzy Hausdor distance !�� between �-num-
bers �1 = (�1, �1), �2 = (�2, �2) ∈ Z is de
ned as

!�� (�1, �2) = !� (�1, �2) + !� (�1, �2) . (15)

De�nition 12 (�-valued Euclidean distance between discrete�-numbers [16]). Given two discrete �-numbers �1 = (�1,�1), �2 = (�2, �2) ∈ Z, �-valued Euclidean distance !�(�1,�2) between �1 and �2 is de
ned as

!� (�1, �2) = √(�1 − �2)2. (16)

4. �-Valued IF-THEN Rules Based Reasoning

A problem of interpolation of �-rules termed as �-
interpolation was addressed by Zadeh as a challenging prob-
lem [33]. 	is problem is the generalization of interpolation
of fuzzy rules [49]. 	e problem of �-interpolation is given
below.

Given the following �-rules,
if �1 is ��1 ,1 = (��1 ,1, ��1 ,1) and so on and �� is��� ,1 = (��� ,1, ��� ,1), then - is �� = (��,1, ��,1),
if �1 is ��1 ,2 = (��1 ,2, ��1 ,2) and so on and �� is��� ,2 = (��� ,2, ��� ,2), then - is �� = (��,2, ��,2),
if �1 is ��1 ,� = (��1 ,�, ��1 ,�) and so on and �� is��� ,� = (��� ,�, ��� ,�) then - is �� = (��,�, ��,�),

and a current observation

�1 is ���1 = (���1 , ���1) and so on and �� is ���� =
(���� , ����),


nd the�-value of-. Here3 is the number of�-valued input
variables and � is the number of rules.

	e idea underlying the suggested interpolation approach
is that the ratio of distances between the resulting output and
the consequent parts is equal to one between the current input
and the antecedent parts [49]. 	is implies for �-rules that
the resulting output ��� is computed as

��� =
�∑
�=1

4���,� = �∑
�=1

4� (��,�, ��,�) , (17)

where ��,� is the �-number valued consequent of the �th
rule, 4� = (1/5�)/(∑��=1 1/5�), � = 1, . . . , � are coe�cients

of linear interpolation, and � is the number of �-rules.5� = ∑��=1'(���� , ��� ,�), where ' is the distance between

current �th �-number valued input and the �th �-number
valued antecedent of the �th rule. 	us, 5� computes the
distance between a current input vector and the vector of the
antecedents of �th rule.

In this paper, we will consider discrete �-numbers. 	e
operations of addition and scalar multiplication of discrete�-numbers are described below.

Addition of Discrete �-Numbers. Let �1 = (�1, �1) and�2 = (�2, �2) be discrete �-numbers describing imperfect
information about values of variables �1 and �2. Consider
the problem of computation of addition �12 = �1 + �2.
	e 
rst stage is the computation addition of discrete fuzzy
numbers �12 = �1 + �2 on the basis of De
nition 6.

	e second stage involves stage-by-stage construction of�12 which is related to propagation of probabilistic restric-
tions. We realize that, in �-numbers �1 = (�1, �1) and�2 = (�2, �2), the “true” probability distributions �1 and �2
are not exactly known. In contrast, the information available
is represented by the fuzzy restrictions:

�1∑
�=1

��1 (�1�) �1 (�1�) is �1,
�2∑
�=1

��2 (�2�) �2 (�2�) is �2,
(18)
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which are represented in terms of the membership functions
as

�
1 (
�1∑
�=1

��1 (�1�) �1 (�1�)) ,

�
2 (
�2∑
�=1

��2 (�2�) �2 (�2�)) .
(19)

	us, one has the fuzzy sets of probability distributions of�1 and �2 with the membership functions de
ned as

��1 (�1) = �
1 (
�1∑
�=1

��1 (�1�) �1 (�1�)) ,

��2 (�2) = �
2 (
�2∑
�=1

��2 (�2�) �2 (�2�)) .
(20)

	erefore, we should construct these fuzzy sets. ��, � =1, 2, is a discrete fuzzy number which plays the role of a
so� constraint on a value of a probability measure of ��.
	erefore, basic values ��� ∈ supp(��), � = 1, 2, 8 = 1, . . . , 3, of
a discrete fuzzy number��, � = 1, 2, are values of a probability
measure of ��, ��� = �(��). 	us, given ���, we have to 
nd
such probability distribution ��� which satis
es

��� = ��� (��1) ��� (��1) + ��� (��2) ��� (��2) + ⋅ ⋅ ⋅
+ ��� (����) ��� (����) .

(21)

At the same time, we know that ��� has to satisfy
��∑
�=1

��� (���) = 1, ��� (���) ≥ 0. (22)

	us, the following goal programming problem should be
solved to 
nd ��:

��� (��1) ��� (��1) + ��� (��2) ��� (��2) + ⋅ ⋅ ⋅
+ ��� (����) ��� (����) ?→ ���,

(23)

subject to

��� (��1) + ��� (��2) + ⋅ ⋅ ⋅ + ��� (����) = 1,
��� (��1) , ��� (��2) , . . . , ��� (����) ≥ 0. (24)

For each 8 = 1, . . . , 3 and each @ = 1, . . . , �� denote A� =���(���) and V
�
� = ���(���), @ = 1, . . . , ��. As A� and ��� are

known and V�� are unknown, we see that problem (23)-(24) is
nothing but the following goal linear programming problem:

A1V�1 + A2V�2 + ⋅ ⋅ ⋅ + A�V�� ?→ ���, (23�)

subject to

V
�
1 + V
�
2 + ⋅ ⋅ ⋅ + V

�
� = 1,

V
�
1, V�2, . . . , V�� ≥ 0. (24�)

Having obtained the solution V
�
�, @ = 1, . . . , ��, of prob-

lems (23�)-(24�) for each 8 = 1, . . . , 3, recall that V�� = ���(���),@ = 1, . . . , ��. As a result, ���(���), @ = 1, . . . , ��, is found,
and, therefore, distribution ��� is obtained.	us, to construct���� , we need to solve 3 simple problems (23�)-(24�). Let us
mention that in general, problems (23�)-(24�) do not have a
unique solution. In order to guarantee existence of a unique
solution, the compatibility conditions can be included:

��∑
�=1

������ (���) = ∑���=1 ������ (���)
∑���=1 ��� (���) . (25)

	is condition implies that the centroid of �� is to coin-
cide with that of ���.

Probability distributions ���(���), @ = 1, . . . , ��, naturally
induce probabilistic uncertainty over the result� = �1 +�2.
	is implies, given any possible pair �1�, �2� of the extracted
distributions, the convolution �12� = �1� ∘ �2�, � = 1, . . . , 32,
is to be computed as follows:

�12 (�) = ∑
�1+�2=�

�1� (�1) �2� (�2) ,
∀� ∈ �12; �1 ∈ �1, �2 ∈ �2.

(26)

Given �12�, the value of probability measure of �12 can be
computed:

� (�12) = �∑
�=1

��12 (�12�) �12 (�12�) . (27)

However, the “true”�12� is not exactly known as the “true”�1�
and�2� are described by fuzzy restrictions. In otherwords, the
fuzzy sets of probability distributions �1� and �2� induce the
fuzzy set of convolutions �12�, � = 1, . . . , 32, with the mem-
bership function de
ned as

��12 (�12) = max
�1,�2

[��1 (�1) ∧ ��2 (�2)] , (28)

subject to

�12 = �1 ∘ �2,
��� (��) = �
� (

��∑
�=1

��� (���) ��� (���)) , (29)

where ∧ is min operation.
As a result, fuzziness of information on �12� described

by ��12 induces fuzziness of the value of probability measure�(�12) as a discrete fuzzy number�12.	emembership func-
tion �
12 is de
ned as

�
12 (�12�) = sup (��12� (�12�)) , (30)
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subject to

�12� = ∑
�
�12� (��) ��12 (��) . (31)

As a result, �12 = �1 + �2 is obtained as �12 = (�12, �12).
ScalarMultiplication of Discrete�-Numbers. Let us consider a
scalar multiplication of a discrete �-number �� = (��, ��):�� = � ⋅ ��, � ∈ R. 	e resulting �� = (��, ��) is found as
follows. �� = ��� is determined based on De
nition 5.

In order to construct ��, at 
rst probability distributions��,�, 8 = 1, . . . , 3, should be extracted by solving a linear

programming problem analogous to (23�)-(24�). Next, we
realize that ��,�, 8 = 1, . . . , 3, induce probability distributions��,�, 8 = 1, . . . , 3, related to �� as follows:
�� = �� (H1) \ H1 + �� (H2) \ H2 + ⋅ ⋅ ⋅ + �� (H�) \ H�, (32)

such that

H� = ���,
�� (H�) = �� (��) . (33)

	e fuzzy set of probability distributions �� with mem-
bership function ���(��,�) = �
̃�(∑��=1 ��̃�(��)��,�(��))
induces the fuzzy set of probability distributions ��,� with the
membership function de
ned as

��� (��,�) = ��� (��,�) , (34)

taking into account (32)-(33).
Next, we compute probability measure of ��, given ��.

Given a fuzzy restriction on�� described by��� , we construct
a fuzzy number �� with the membership function �
� :

�
� (��,�) = sup (��� (��,�)) , (35)

subject to

��,� = ∑
�
��,� (��) ��� (��) . (36)

As a result, �� = � ⋅ �� is obtained as �� = (��, ��).
Let us now consider the special case of the considered

problem of �-rules interpolation, suggested in [50, 51].
Given the �-rules

If� is ��,1 then - is (��,1, �)
If� is ��,2 then - is (��,2, �)

...
If� is ��,� then - is (��,�, �)

(37)

and a current observation

� is (��, ��) , (38)


nd the �-value of -.

For this case, as the reliabilities of the �-number based
consequents of the considered rules are equal, ��,� = �,
according to formula (17) the�-number valued output of the�-rules, ��� = (���, ���), is computed as

��� =
�∑
�=1

4���,� = �∑
�=1

4� (��,�, ��,�)

= �∑
�=1

4� (��,�, �) ,
(39)

where4� = (1/5�)/(∑��=1 1/5�) and 5� = ∑��=1'(���� , ��� ,�) =∑��=1'((���� , 1), (��� ,�, 1)) = ∑��=1 !(���� , ��� ,�) as both

inputs and the antecedents of the considered �-rules are of
a special �-number; that is, they are represented by discrete
fuzzy numbers with the reliability equal to 1.

5. An Application

Let us consider modeling of a fragment of a relationship
between the student motivation, attention, anxiety, and edu-
cational achievement [52].	e information on the considered
characteristics is naturally imprecise and partially reliable.
Indeed, one deals mainly with intangible, nonmeasurable
mental indicators. For this reason, the use of �-rules, as
rules with �-number valued inputs and outputs based on
linguistic terms from a prede
ned codebook, is adequate
way for modeling of this relationship. 	is rules will help to
evaluate a student with given�-number based evaluations of
the characteristics. Consider the following �-rules:

�e 1st rule: If motivation is (I,J), attention is(K,J), and anxiety is (L, J), then achievement is(M, J).
�e 2nd rule: If motivation is (I,J), attention is(I,J), and anxiety is (I,J), then achievement is(N, J).

Here, the pairs (⋅,⋅) are �-numbers where uppercase
letters denote the following linguistic terms:K, High; L, Low;I, Medium; N, Good; M, Excellence; J, Usually. 	e code-
books containing linguistic terms of values of antecedents
and consequents are given in Figures 1, 2, 3, and 4. 	e
codebook for the degrees of reliability of values of antecedents
and consequents is shown in Figure 5.

	e considered �-numbers are given below.
	e 1st rule inputs:

��	 = 02.6 + 0.53.3 + 14 + 0.54.7 + 05.4 ,
�

 = 00.7 + 0.50.75 + 10.8 + 0.50.85 + 00.9 ;
��� = 057.5 + 0.568.75 + 180 + 190 ,
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Figure 1: Linguistic terms for a value of motivation.
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Figure 2: Linguistic terms for a value of attention.

�

 = 00.7 + 0.50.75 + 10.8 + 0.50.85 + 00.9 ;
��� = 01.19 + 0.51.6 + 12 + 0.52.4 + 02.8 ,
�

 = 00.7 + 0.50.75 + 10.8 + 0.50.85 + 00.9 .

(40)

	e 1st rule output:

��� = 080 + 0.585 + 190 + 0.595 + 0100 ,
�

 = 00.7 + 0.50.75 + 10.8 + 0.50.85 + 00.9 .

(41)

	e 2nd rule inputs:

��	 = 02.6 + 0.53.3 + 14 + 0.54.7 + 05.4 ,
�

 = 00.7 + 0.50.75 + 10.8 + 0.50.85 + 00.9 ;
��	 = 035 + 0.546.25 + 157.5 + 0.568.75 + 080 ,
�

 = 00.7 + 0.50.75 + 10.8 + 0.50.85 + 00.9 ;
��	 = 02 + 0.52.4 + 12.8 + 0.53.2 + 03.6 ,
�

 = 00.7 + 0.50.75 + 10.8 + 0.50.85 + 00.9 .

(42)

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

HighLow MediumVery low

Figure 3: Linguistic terms for a value of anxiety.
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Figure 4: Linguistic terms for a value of achievement.

	e 2nd rule output:

��� = 070 + 0.575 + 180 + 0.585 + 090 ,
�

 = 00.7 + 0.50.75 + 10.8 + 0.50.85 + 00.9 .

(43)

Consider a problem of reasoningwithin the given�-rules
by using the suggested�-interpolation approach. Let the cur-
rent input information for motivation, attention, and anxiety
be described by the following �-numbers �1 = (��1 , �
1),�2 = (��2 , �
2), and �3 = (��3 , �
3), respectively:

��1 = 02.5 + 0.53 + 13.5 + 0.54 + 04.5 ,
�
1 = 00.6 + 0.50.65 + 10.7 + 0.50.75 + 00.8 ;
��2 = 025 + 0.535 + 145 + 0.555 + 065 ,
�
2 = 00.6 + 0.50.65 + 10.7 + 0.50.75 + 00.8 ;
��3 = 01.3 + 0.52.3 + 13.3 + 0.53.65 + 04 ,
�
3 = 00.6 + 0.50.65 + 10.7 + 0.50.75 + 00.8 .

(44)

�-interpolation approach based reasoning consists of two
main stages.

(1) For each rule compute dist as distance 5� between
the current input �-information �1 = (��1 , �
1), �2 =(��2 , �
2), and �3 = (��3 , �
3) and �-antecedents of �-
rules base ��1 = (��1, ��1), ��2 = (��2, ��2), and ��3 =
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Figure 5: Linguistic terms for reliability of antecedents and conse-
quents.

(��3, ��3), � = 1, 2. For simplicity, we will use the supremum
metric'(��, ���) (13):

5� = 3∑
�=1
'(��, ���) . (45)

Consider computation of 5� for the 1st and 2nd rules.

	us, we need to determine 5� = ∑3�=1'(��, �1�), where
values '(�1, �11), '(�2, �12), and '(�3, �13) are computed
on the basis of (13). We have obtained the results:

'(�1, �11) = ! (�1, �11) + ! (�1, �11)
= 0.9 + 0.1 = 1,

' (�2, �12) = 40.1,
' (�3, �13) = 1.4.

(46)

	us, the distance for the 1st rule is

51 = 42.5. (47)

Analogously, we computed the distance for the 2nd rule
as

'(�1, �2,1) = 1,
' (�2, �2,2) = 15.1,
' (�3, �2,3) = 0.8,

52 = 16.9.
(48)

(2) Computation of the aggregated output�� for �-rules
base by using linear �-interpolation:
�� = 41��,1 + 42��,2,

41 = 1/511/51 + 1/52 , 42 =
1/521/51 + 1/52 .

(49)

	e obtained interpolation coe�cients are41 = 0.28 and42 = 0.72. 	e aggregated output �� is de
ned as

�� = 0.28��1 + 0.72��2 = (��, ��) . (50)

We have obtained the following result:

��� = 072.8 + 0.578.2 + 182.6 + 0.584 + 089 ,
�
� = 00.68 + 0.50.73 + 10.78 + 0.50.81 + 00.84 .

(51)

In accordancewith the codebooks shown in Figures 4 and
5, we have achievement is “High” with the reliability being
“Usually.” 	is linguistic approximation is made by using
similarity measure between the obtained output and fuzzy
sets in the codebooks.

6. Conclusion

A concept of a �-number suggested by Zadeh is a key to
computation with imprecise and partial reliable information.
In this paper, we propose applying distance of �-numbers
to approximate reasoning within IF-THEN rules with �-
numbers-based antecedents and consequents.

A real-world application of the suggested research has
been provided to illustrate its validity and potential applica-
bility.
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