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Abstract As a global polynomial optimization problem, the best rank-one approx-
imation to higher order tensors has extensive engineering and statistical applications.
Different from traditional optimization solution methods, in this paper, we propose
some Z-eigenvalue methods for solving this problem. We first propose a direct
Z-eigenvalue method for this problem when the dimension is two. In multidimensional
case, by a conventional descent optimization method, we may find a local minimizer
of this problem. Then, by using orthogonal transformations, we convert the underlying
supersymmetric tensor to a pseudo-canonical form, which has the same E-eigenvalues
and some zero entries. Based upon these, we propose a direct orthogonal transforma-
tion Z-eigenvalue method for this problem in the case of order three and dimension
three. In the case of order three and higher dimension, we propose a heuristic or-
thogonal transformation Z-eigenvalue method by improving the local minimum with
the lower-dimensional Z-eigenvalue methods, and a heuristic cross-hill Z-eigenvalue
method by using the two-dimensional Z-eigenvalue method to find more local mini-
mizers. Numerical experiments show that our methods are efficient and promising.
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1 Introduction

In this paper, we consider the following global polynomial optimization problem

min f (x) = Axm =
n∑

i1,i2,...,im=1
ai1,i2,...,im xi1 xi2 . . . xim

s.t. x�x = 1
(1)

where x ∈ �n , m, n ≥ 2 are integers, f is a homogeneous polynomial of degree m
with n variables, and A is an m-th order n-dimensional real supersymmetric tensor.
The tensor A is an m-way array whose entries are addressed via m indices, and it is
said to be supersymmetric if its entries ai1···im are invariant under any permutation of
their indices {i1, · · · , im} [8,15,20]. In this paper, unless stated otherwise, all tensors
involved are supersymmetric.

Let Axm−1 be a vector in �n with its i th component as

(Axm−1)i =
n∑

i2,...,im=1

ai,i2,...,im xi2 . . . xim .

Obviously, the critical points of (1) satisfy the following equations for some λ ∈ R:

{Axm−1 = λx,

x�x = 1.
(2)

A real number λ satisfying (2) with a real vector x is called a Z-eigenvalue of A in
[20]. We call the real vector x with which a Z-eigenvalue λ solves (2) a Z-eigenvector
of A associated with the Z-eigenvalue λ. Then problem (1) is equivalent to finding
the smallest Z-eigenvalue λmin and the corresponding Z-eigenvector. The properties of
Z-eigenvalues were studied in [17,20–22]. In [18,20,22], the number of Z-eigenvalues
of an m-th order n-dimensional real supersymmetric tensor was discussed. For other
types of eigenvalues/eigenvectors of tensors, see [17,20].

An important application of problem (1) is the best rank-one approximation to a
higher order supersymmetric tensor. A rank-one tensor means that it can be expressed
as an outer product of a number of the identical vectors [8,15]. Given a higher order
supersymmetric tensor A, if there exist a scalar λ and a unit-norm vector u such that

the rank-one tensor Ā �= λum minimizes the least-squares cost function

τ(Ā) = ‖A − Ā‖2
F
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Z-eigenvalue methods for a global polynomial optimization problem 303

over the manifold of rank-one tensors, where ‖ ·‖F is the Frobenius norm, then λum is
called the best rank-one approximation to tensor A. The best rank-one approximation
to a supersymmetric tensor has applications in signal processing, wireless commu-
nication systems, signal and image processing, data analysis, higher-order statistics,
as well as independent component analysis [6–9,11,15,19,25]. As shown in [20], the
Z-eigenvalue λ of A with the largest absolute value and its Z-eigenvector x form the
best rank-one approximation λxm to A. The same result is available in [8,15] and pos-
sibly others as well. When m is odd, if λ is a Z-eigenvalue of A with a Z-eigenvector
x , then −λ is a Z-eigenvalue of A with a Z-eigenvector −x . Hence, in this case, the
smallest Z-eigenvalue λmin is the Z-eigenvalue of the largest absolute value. On the
other hand, when m is even, the Z-eigenvalue of the largest absolute value can be
found by comparing the absolute values of λmin and the largest Z-eigenvalue λmax,
which is the smallest Z-eigenvalue of −A.

Another application of problem (1) is the positive definiteness identification prob-
lem for the multivariate form f (x), defined in (1). The multivariate form f (x) is called
positive definite if f (x) > 0 for all x ∈ �n, x �= 0. This only applies to the case that
m is even. Clearly, f (x) is positive definite if and only if the smallest eigenvalue λmin
of A is positive. The positive definiteness of such a homogeneous polynomial form
f (x) plays an important role in the stability analysis of nonlinear autonomous systems
via Liapunov’s direct method in automatic control [1–4,10,12,13,16,24].

When m = 2, A is a symmetric matrix, and we may use some direct or iterative
transformation methods to convert it to a canonical form, i.e., its diagonal form, to find
its eigenvalues. Can this idea be extended to the higher dimensional case? If so, what
is the canonical form for a supersymmetric tensor when m ≥ 3? A notable property of
Z-eigenvalues is that all of the Z-eigenvalues of a supersymmetric tensor are invariant
under orthogonal transformation [20]. Can we use orthogonal transformation to find
a “canonical form” of a supersymmetric tensor A when m ≥ 3? In this paper, we will
define some “canonical forms” for a supersymmetric tensor, discuss their properties
when m ≥ 2, and propose some orthogonal transformation Z-eigenvalue methods for
finding such “canonical forms” and hence solve problem (1) when m = 3 and n ≥ 2.
In the literature, there are discussions on “orthogonal tensor decomposition” [14],
which is not related to “orthogonal transformation” discussed here.

When n = 2, all the Z-eigenvalues can be found easily. In the next section, we
describe a direct Z-eigenvalue method for this case.

In Sect. 3, we will define the pseudo-canonical form of a supersymmetric tensor A
when m ≥ 2. Such a pseudo-canonical form can be found by a conventional descent
optimization method and orthogonal transformations. In Sect. 4, we show that we may
find all the Z-eigenvalues and their Z-eigenvectors of a supersymmetric tensor A when
m = n = 3, based upon such a pseudo-canonical form. We call such a method a direct
orthogonal transformation Z-eigenvalue method.

We may use a conventional method to find a critical point of (1), hence a
Z-eigenvector of A. Is such a Z-eigenvector a local minimizer of (1)? In Sect. 5,
we give a sufficient condition and a necessary condition for this.

When n ≥ 4, it is not efficient to find all the Z-eigenvalues directly. In Sect. 6,
we first define the canonical form of a supersymmetric tensor A. The canonical form
always exists. If we have the canonical form, then we know the smallest Z-eigenvalue
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λmin. However, such a canonical form is unknown and cannot be used as the target
of an algorithm directly. Thus we define the r -th order pseudo-canonical form which
is a good approximation to the canonical form. In Sect. 7, we propose a heuristic
orthogonal transformation Z-eigenvalue method to find λmin in the case that m = 3
and n ≥ 4. The target of this method is to find the third order pseudo-canonical form
of A. The direct methods studied in Sects. 2 and 4 for the cases that m = 3, n = 2 and
3 are subroutines of this method. We use them to improve the local minimum obtained
by a conventional descent optimization method.

In Sect. 8, we propose another heuristic Z-eigenvalue method for the case that
m = 3 and n ≥ 3. After finding one local minimizer of the problem (1), we use
the two-dimensional Z-eigenvalue method to find more local minimizers. We call this
method a heuristic cross-hill Z-eigenvalue method.

Numerical results are reported in Sect. 9. They show that our algorithms are efficient
and promising.

We use the entry ai1,...,im with the natural order for its indices, i.e., i1 ≤ i2 ≤ · · · ≤
im to represent other entries which are equal to it because of the supersymmetry. For
example, when m = 3 and n = 3, a123 = a132 = a213 = a231 = a312 = a321. We use
a123 to represent them. When we assume that a123 = 0, it means that all of these six
entries are zero.

By [20], if we know a Z-eigenvector x of A, we may calculate the corresponding
Z-eigenvalue by

λ = Axm . (3)

For j = 1, . . . , n, we denote by e( j) the unit vector in �n , whose j-th element is
1 and other elements are zero. Similarly, we denote by e(1, j) the unit vector in � j ,
whose first element is 1 and other elements are zero.

2 A direct Z-eigenvalue method For n = 2

We assume that n = 2 in this section. Denote

α j = ai1,...,im ,

where i1 = · · · = im− j = 1, im− j+1 = · · · = im = 2 and 0 ≤ j ≤ m.

Theorem 1 Suppose that n = 2.
If α1 = a1,...,1,2 = 0, then λ = α0 = a1,...,1 is a Z-eigenvalue of A, with a

Z-eigenvector x = (1, 0)�. If furthermore m is odd, then λ = −a1,...,1 is also a
Z-eigenvalue of A, with a Z-eigenvector x = (−1, 0)�.

The other Z-eigenvalues and corresponding Z-eigenvectors of A can be found by
finding real roots of the following one dimensional polynomial equation of t :

m−1∑

j=0

(
m − 1
j

)[
α j t

m− j − α j+1tm− j+1
]

= 0, (4)
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Z-eigenvalue methods for a global polynomial optimization problem 305

and substituting such real values of t to

x1 = ± t√
1 + t2

, x2 = ± 1√
1 + t2

, (5)

and

λ =
m∑

j=0

(
m
j

)

α j xm− j
1 x j

2 . (6)

Proof When n = 2, (2) has the form

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑m−1
j=0

(
m − 1
j

)

α j xm− j
1 x j

2 = λx1

∑m−1
j=0

(
m − 1
j

)

α j+1xm− j
1 x j

2 = λx2

x2
1 + x2

2 = 1

(7)

and (3) has the form (6). By the second equation of (7), (7) has a solution with x2 = 0
if and only if α1 = 0. In all the other cases, x2 �= 0. Let t = x1

x2
. From the first two

equations of (7), we have (4). By the third equation of (7), we have (5). The conclusions
follow now. 
�

Obviously, Eq. (4) has at most m + 1 real roots. After finding all the Z-eigenvalues
of A, and the Z-eigenvectors associated with them, we may easily solve (1). Clearly,
the case that n = 2 is trivial. But as stated in the introduction, we will use it as a
subroutine for the higher dimensional case.

3 Orthogonal transformation and the pseudo-canonical form

Let A be an m-th order n-dimensional supersymmetric tensor, P = (pi j ) be an n × n
real matrix. Define B = PmA as another m-th order n-dimensional tensor with entries

bi1,i2,...,im =
n∑

j1, j2,..., jm=1

pi1 j1 pi2 j2 · · · pim jm a j1, j2,..., jm .

Then B is also a supersymmetric tensor. If P is an orthogonal matrix, then we say that
A and B are orthogonally similar.

By [20], we have the following theorem.

Theorem 2 (Qi 2005) Suppose that A is an m-th order n-dimensional supersymmetric
tensor, B = PmA, P is an n × n orthogonal matrix. Then A and B have the same
Z-eigenvalues. If λ is a Z-eigenvalue of A with a Z-eigenvector x, then λ is a
Z-eigenvalue of B with a Z-eigenvector y = Px.

Suppose that λ is a Z-eigenvalue of A with a Z-eigenvector x . Let P be an orthogonal
matrix with x� as its first row. Let B = PmA. Then we see that y = Px = e(1). By
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(2), we see that

b1,...,1 = λ

and
b1,...,1,i = 0, (8)

for i = 2, . . . , n. Based upon this, we now define the pseudo-canonical form of A.

Definition 1 An m-th order n-dimensional supersymmetric tensor B is said to be a
pseudo-canonical form of another m-th order n-dimensional supersymmetric tensor
A if A and B are orthogonally similar and

bi,...,i, j = 0 (9)

for all 1 ≤ i < j ≤ n.

If m = 2, then a pseudo-canonical form is a diagonal matrix.
Let A be an m-th order n-dimensional supersymmetric tensor and 1 ≤ j ≤ n.

Denote A( j) as an m-th order (n− j +1)-dimensional supersymmetric tensor obtained
by the entries ai1,...,im , with i1, . . . , im = j, . . . , n. By (2), we have the following
observation:

Proposition 1 An m-th order n-dimensional supersymmetric tensor A is a pseudo-
canonical form if and only if the diagonal elements a j,..., j are Z-eigenvalues of A( j)

with e(1,n− j+1) as their Z-eigenvectors respectively for j = 1, . . . , n.

Suppose now we have found a local minimizer of (1) via a conventional descent
optimization method. Then this local minimizer and its objective function value are a
Z-eigenvector and the corresponding Z-eigenvalue. Using the method described after
Theorem 2, we may convert A to another tensor B which is orthogonally similar
to A and satisfies (8) for i = 2, . . . , n. Now, by applying the conventional descent
optimization method to B(2), we may convert B to a new tensor C which is orthogonally
similar to B and hence A, and satisfies (9) (with the letter b replaced by c in (9)) for
i = 1, 2 and i < j ≤ n. Continuing this process at most n − 1 times, we may find a
pseudo-canonical form of A.

4 A direct orthogonal transformation Z-eigenvalue method for m = n = 3

Suppose that m = n = 3 and A is a pseudo-canonical form. We now describe a
method to find all the Z-eigenvalues and corresponding Z-eigenvectors of A.

Theorem 3 Suppose that m = n = 3 and A is a pseudo-canonical form.

(a) Then λ = ±a111 are Z-eigenvalues of A with Z-eigenvectors x = ±(1, 0, 0)�
respectively.

(b) If a122 = 0, then λ = ±a222 are Z-eigenvalues of A with Z-eigenvectors
x = ±(0, 1, 0)� respectively.
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Z-eigenvalue methods for a global polynomial optimization problem 307

(c) If a123 = 0, then

λ = ±2a122t + a222√
t2 + 1

(10)

are Z-eigenvalues of A with Z-eigenvectors

x = ± 1√
t2 + 1

(t, 1, 0)� (11)

where t is a real root of the following quadratic equation of t :

(a111 − 2a122)t
2 − a222t + a122 = 0. (12)

(d) The other Z-eigenvalues and corresponding Z-eigenvectors of A can be found by
finding real solutions of the following polynomial equations of u and v:

{
2a123u2v+(2a133− a111)u2+ 2a233uv+ a333u−a122v

2−2a123v−a133 =0,

2a123uv2+2(a133− a122)uv− 2a123u+ (2a233− a222)v
2+a333v−a233 =0,

(13)
and substituting such real values of u and v to

x = ± 1√
u2 + v2 + 1

(u, v, 1)� (14)

and

λ = ±2a123uv + 2a133u + 2a233v + a333√
u2 + v2 + 1

. (15)

Proof Since A is a pseudo-canonical form, we have a112 = a113 = a223 = 0. Then
(2) has the form

⎧
⎪⎪⎨

⎪⎪⎩

a111x2
1 + a122x2

2 + a133x2
3 + 2a123x2x3 = λx1,

2a122x1x2 + 2a123x1x3 + a222x2
2 + a233x2

3 = λx2,

2a123x1x2 + 2a133x1x3 + 2a233x2x3 + a333x2
3 = λx3,

x2
1 + x2

2 + x2
3 = 1.

(16)

The conclusions (a) and (b) follow from (16) directly.
By the third equation of (16), if a123 = 0 and x3 = 0, (16) becomes

⎧
⎨

⎩

a111x2
1 + a122x2

2 = λx1,

2a122x1 + a222x2 = λ,

x2
1 + x2

2 = 1.

(17)

Let t = x1
x2

. From the first two equations of (17), we have (12). By the third equation
of (17), we have (11). By the second equation of (17), we have (10). This proves (c).

It is easy to verify that the conclusions (a), (b) and (c) cover all the case that x3 = 0.
Assume that x3 �= 0. Let u = x1

x3
and v = x2

x3
. From the first three equations of (16),
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we have (13). By the fourth equation of (16), we have (14). By (3), (15) holds. The
conclusion (d) follows now. 
�
Remark The second equation of (13) is linear in variable u. By eliminating u in (13),
we have

h(v) ≡ h0v
6 + h1v

5 + · · · + h5v + h6 = 0,

where

h0 = −4a122a2
123,

h1 = 2a123a2
222 − 8a122a123a133 + 8a2

122a123 − 8a3
123 − 4a123a222a233,

h2 = −2a123a222a333 + 2a133a2
222 − 4a133a222a233 − 4a111a2

233 − a111a2
222

+4a111a222a233 + 8a122a2
233 − 4a122a222a233 − 4a122a2

133 − 4a3
122

+8a2
122a133 + 24a122a2

123 − 20a2
123a133,

h3 = −2a133a222a333 − 4a111a233a333 + 2a111a222a333 + 8a122a233a333+4a123a2
233

−2a122a222a333 + 32a122a123a133 − 16a2
122a123 − 16a123a2

133 + 16a3
123,

h4 = −4a133a2
233 + 4a133a222a233 − a111a2

333 + 4a111a2
233 − 2a111a222a233

−4a122a2
233 + 2a122a2

333 + 6a123a233a333 − 2a123a222a333 − 20a122a2
123

+24a2
123a133 − 4a3

133 + 8a122a2
133 − 4a2

122a133,

h5 = −2a123a2
233 − 2a133a233a333 + 2a111a233a333 − 2a122a233a333 + 2a123a2

333

+8a123a2
133 − 8a122a123a133 − 8a3

123,

h6 = 2a133a2
233 − a111a2

233 − 2a123a233a333 − 4a2
123a133.

Note that h0 = h1 = 0 when a123 = 0. For each real root of h(v) = 0, if it satisfies

2a123v
2 + 2(a133 − a122)v �= 2a123,

then we have

u = − (2a233 − a222)v
2 + a333v − a233

2a123v2 + 2(a133 − a122)v − 2a123
;

if it satisfies

2a123v
2 + 2(a133 − a122)v = 2a123

and

(2a233 − a222)v
2 + a333v = a233,

then we may substitute it to the first equation of (13) to find all possible real solution
of u. In this way, we may find all real solutions (u, v) of (13).

123
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5 Conditions for local minimizers

We now give a necessary condition and a sufficient condition for a Z-eigenvector to
be a local minimizer of (1).

Theorem 4 Assume that m ≥ 2. Suppose that x is a Z-eigenvector of A, associated
with a Z-eigenvalue λ. Then λ is an eigenvalue of the symmetric matrix A � Axm−2,
and x is an eigenvector of A, associated with the eigenvalue λ. Suppose that λi , i =
2, . . . , n, are the other eigenvalues of A. Then the vector x is a local minimizer of (1)
only if

λi ≥ 1

m − 1
λ (18)

for i = 2, . . . , n; and the vector x is a local minimizer of (1) if

λi >
1

m − 1
λ, (19)

for i = 2, . . . , n.

Proof Since x is a Z-eigenvector of A, associated with a Z-eigenvalue λ, by (2), we
have

Ax = Axm−1 = λx .

This shows that λ is an eigenvalue of the symmetric matrix A, and x is an eigenvector
of A, associated with the eigenvalue λ. The Lagrangian function of (1) can be written
as

1

m
Axm − λ(x�x − 1).

Certainly, any local minimizer of problem (1) with the optimal Lagrange multiplier
constitute a Z-eigenpair of tensor A. Now, we consider the Hessian of the Lagrangian
function at x , i.e. (m − 1)A − λI , where I is the n × n unit matrix. Then by the
optimization theory, x is a local minimizer of (1) only if for any unit vector u in the
critical cone of (1) at x ,

u�[(m − 1)A − λ]u = (m − 1)u� Au − λ ≥ 0. (20)

Since the feasible region of (1) is the unit sphere in �n , the critical cone of (1) is the
set of all vectors perpendicular to x . Since A is a real symmetric matrix and λ is an
eigenvalue of A, with x as an eigenvector of A, associated with λ, by the properties
of eigenvalues and eigenvectors of real symmetric matrices, we see that the condition
(20) is equivalent to the condition (18). Similarly, we may show that (19) is a sufficient
condition for x to be a local minimizer of (1). This completes the proof. 
�

As a referee pointed out, this theorem has a similar flavor to Theorem 2 of [23]. It
is possible to reconcile these two results under appropriate conditions. This may be
studied further in future.
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6 The canonical form and the rth order pseudo-canonical form

We now define the canonical form.

Definition 2 An m-th order n-dimensional supersymmetric tensor B is called a canon-
ical form of another m-th order n-dimensional supersymmetric tensor A if it is
a pseudo-canonical form of A and bi,...,i is the smallest Z-eigenvalue of B(i) for
i = 1, . . . , n.

The canonical form always exists. When n ≥ 4, it is not realistic to use the canonical
form as a direct target for an algorithm. A pseudo-canonical form is an approximation to
the canonical form. We now define some better approximations to the canonical form.
In the next section, we will use such approximations as targets to guide a conventional
descent optimization method to go further from a local minimizer of (1).

Definition 3 For two m-th order n-dimensional supersymmetric tensors A and B,
tensor B is called a first order pseudo-canonical form of tensor A if it is a pseudo-
canonical form of A and bi,...,i ≤ b j,..., j for 1 ≤ i < j ≤ n.

Let 1 ≤ j < k ≤ n. We use B( j, k) to denote the m-th order two dimensional
supersymmetric tensor whose entries are bi1,i2,...,im , where i1, i2, . . . , im = j, k, and
use [B( j, k)]min to denote the smallest Z-eigenvalue of B( j, k).

Definition 4 An m-th order n-dimensional supersymmetric tensor B is called a second
order pseudo-canonical form of another m-th order n-dimensional supersymmetric
tensor A if it is a first order pseudo-canonical form of A and

b1,...,1 = min
1≤ j<k≤n

[B( j, k)]min. (21)

Let 1 ≤ j < k < l ≤ n. We use B( j, k, l) to denote the m-th order three dimen-
sional supersymmetric tensor whose entries are bi1,i2,...,im , where i1, i2, . . . , im =
j, k, l, and use [B( j, k, l)]min to denote the smallest Z-eigenvalue of B( j, k, l).

Definition 5 For two m-th order n-dimensional supersymmetric tensors A and B,
tensor B is called a third order pseudo-canonical form of tensor A if B is a first order
pseudo-canonical form of A and

b1,...,1 = min
1≤ j<k<l≤n

[B( j, k, l)]min. (22)

It is not difficult to see that a third order pseudo-canonical form is also a second order
pseudo-canonical form. A third order pseudo-canonical form is a better approximation
to the canonical form as (22) involves all entries of B. We may define higher order
pseudo-canonical forms similarly. We do not go to such details.
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Z-eigenvalue methods for a global polynomial optimization problem 311

7 A heuristic orthogonal transformation Z-eigenvalue method For m = 3
and n ≥ 4

In this section, we assume that m = 3 and n ≥ 4. Suppose that we have a conventional
descent optimization algorithm, called Algorithm M. Given a unit vector x ∈ �n , we
may use Algorithm M to find a local minimizer y of (1) such that f (y) ≤ f (x). In
the algorithm given below, there are three optional stopping places, at Steps 8, 9 and
10, respectively. Then we get a first order, or a second order, or a third order pseudo-
canonical form of tensor A, respectively. The higher order implies more works and
better global optimality.

Algorithm 1 Step 0 Let P be the unit n × n matrix I .
Step 1 Let

|aiii | = max
1≤ j≤n

|a j j j |.

Let x = e(i) if aiii ≤ 0. Otherwise, let x = −e(i).
Step 2 Use Algorithm M to find a local minimizer y of (1) such that f (y) ≤ f (x).

Replace x by y.
Step 3 Use vector x� as the first row to construct an orthogonal matrix Q such that

b111 = f (x), where B = Q3A. Replace P by Q P .
Step 4 Let i = 1.
Step 5 If

|biii | = max
i≤ j≤n

|b j j j |

and

bii j = 0

for all j satisfying i < j ≤ n, go to Step 6. Otherwise, go to Step 7.
Step 6 If i = n, go to Step 8. Otherwise, replace i by i + 1 and go to Step 5.
Step 7 Assume that

|bkkk | = max
i≤ j≤n

|b j j j |.

Add additional constraints xl = 0 for 1 ≤ l < i to problem (1). Denote this problem
as (1)i and its objective function as f (i)(x). Take w = e(k) ∈ �n as an initial point to
find a local minimizer z of (1)i via Algorithm M such that f (i)(z) ≤ f (i)(w) = bkkk .
Use (e(1))�, . . . , (e(i−1))�, z� as the first i rows to construct an orthogonal matrix Q
such that

c j j j = b j j j
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for 1 ≤ j < i , and

ciii = bkkk,

where C = QmB. Replace B by C and P by Q P . Go to Step 4.
Step 8 For the first order heuristic orthogonal transformation Z-eigenvalue method,

we stop here and the output is x = P�e(1). Otherwise go to the next step.
Step 9 Search all possible j and k such that

[B( j, k)]min < −|b111|.

As long as we find such a pair ( j, k), let y be a vector in �n such that its j-th and
k-th components form a Z-eigenvector of B( j, k) and other components are zero.
Let x = P�y and P = I . Go to Step 2. If such a pair ( j, k) does not exist, stop
here with the output x = P�e(1) if we conduct the second order heuristic orthogonal
transformation Z-eigenvalue method; otherwise go to the next step.

Step 10 Search all possible j, k and l such that

[B( j, k, l)]min < −|b111|.

As long as we find such a triple ( j, k, l), let y be a vector in �n such that its j-th,
k-th and l-th components form a Z-eigenvector of B( j, k, l) and other components are
zero. Let x = P�y and P = I . Go to Step 2. If such a triple ( j, k, l) does not exist,
stop with the output x = P�e(1).

Note that we have used the lower dimensional methods discussed in Sects. 2 and
4 as subroutines in Steps 8 and 9 of Algorithm 1. We may use a simple orthogonal
transformation to convert all the diagonal elements of B to be non-positive. Now it is
not difficult to prove the following theorem.

Theorem 5 Algorithm 1 terminates in a finitely many iterations. It will find a first, or
second, or third order pseudo-canonical form of A, depending upon the termination
criterion set at Steps 8, 9 or 10.

8 A heuristic cross-hill Z-eigenvalue method For m = 3 and n ≥ 3

In this section, we would propose another heuristic Z-eigenvalue method to solve (1)
for m = 3 and n ≥ 3.

Certainly, the global minimum of (1) is negative unless A is a zero tensor. Suppose
that we have found a local minimizer y = y(1) of (1) with a negative objective
function value. We may find n − 1 unit vectors y(i) of �n for i = 2, . . . , n such that
{y(i) : i = 1, . . . , n} constitute an orthogonal basis of �n . Now, for i = 2, . . . , n,
restrict problem (1) on the plane spanned by y and y(i). Certainly, this is a two-
dimensional form of problem (1) and the current local minimizer y of (1) is also a
local minimizer of the restricted problem. By Theorem 1, this two dimensional problem
has at most two local minimizers with negative objective function values. Then we
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may use the method discussed in Sect. 2 to find z(i), the other local minimizer of the
two-dimensional problem with a negative objective function value for i = 2, . . . , n.
Since z(i) may not be a local minimizer of (1), and y and z(i) are separated by a “hill” of
the objective function value in two dimensional case, if we use a conventional descent
optimization method with z(i) as the starting point, we will find a local minimizer
w(i) of (1), which has a negative objective function value and is different from y. We
may continue this process until no new local minimizers can be found. Comparing
the objective function values of these local minimizers of (1), we may have a better
solution. Assume that m = 3 and n ≥ 3. Our algorithm is as follows.

Algorithm 2 Step 1 Let

|aiii | = max
1≤ j≤n

|a j j j |.

Let x = e(i) if aiii ≤ 0. Otherwise, let x = −e(i).
Step 2 Use Algorithm M to find a local minimizer y = y(1) of (1) such that

f (y) ≤ f (x). Let P = {y(1)}.
Step 3 Find n − 1 unit vectors y(i) of �n for i = 2, . . . , n such that {y(i) : i =

1, . . . , n} is an orthogonal basis of �n .
Step 4 For i = 2, . . . , n, consider the restriction problem of (1) on the plane spanned

by y and y(i). Use the method discussed in Sect. 2 to find another local minimizer z(i)

with a negative objective function value, of the restricted two-dimensional problem, if
such a point exists. Then use Algorithm M to find a local minimizer w(i) of (1), such
that f (w(i)) ≤ f (z(i)).

Step 5 For each local minimizer {w(i)} found in Step 4, if it is not in P , add it to P ,
and put it as y(1) and repeat Steps 3–4, until no new local minimizers can be found.

Step 6 Compare the function value of f for all local minimizers found in P . The
point with smallest value of f is the solution found by this algorithm.

Clearly, this algorithm also terminates in a finitely many iterations as long as the
number of local minimizers is finite. This covers the nonsingular cases.

9 Numerical results

In this section, we present preliminary numerical experiments for some third order n
dimensional supersymmetric tensors with Algorithms 1 and 2. The computation was
done on a personal computer (Pentium IV, 2.8 GHz) by running Matlab 7.0. As for
the descent solution method for solving the constrained optimization problem, i.e.,
Algorithm M used in Algorithms 1 and 2, we adopt the projected gradient method
proposed in [5] as the projection from a point in Rn to the unit sphere can easily be
computed.

To construct the testing problems in our numerical experiments, we take two sets of
third order supersymmetric tensors of different dimensions. The elements of tensors
in one set are generated by a uniform distribution in the interval (−1,1); while the
elements of tensors in another set are generated by a standard normal distribution.
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Table 1 Results of TPI
Dim Num Alg1 Alg2

RS (%) AT (s) RS (%) AT (s) AN

3 1,000 100.0 0.013 99.4 0.038 2.9

4 1,000 96.6 0.031 99.5 0.103 3.6

6 1,000 91.6 0.089 99.7 0.335 4.6

8 100 88 0.196 99.0 0.728 5.6

10 100 89 0.379 99.0 1.359 6.4

Table 2 Results of TPII
Dim Num Alg1 Alg2

RS (%) AT (s) RS (%) AT (s) AN

3 1,000 100.0 0.014 99.2 0.042 2.9

4 1,000 96.5 0.031 99.3 0.097 3.6

6 1,000 92.2 0.085 99.8 0.265 4.5

8 100 88 0.178 99.0 0.521 5.3

10 100 87 0.331 99.0 0.933 6.2

In the following, these two sets of testing problems are labeled as TPI and TPII,
respectively.

To analyze the numerical results of our algorithms, we compute the global min-
imizers of the testing problems by the uniform grid method along with the descent
solution method.

Tables 1 and 2 show the performance of Algorithms 1 and 2 for problems TPI and
TPII, where Dim denotes the dimension of the tensor A, Num denotes the number
of tests for each dimension, Alg1 and Alg2 denote Algorithms 1 and 2, respectively,
RS denotes the success ratio of finding the global minimizers, AT denotes the average
time for each sample, and AN denotes the average number of local minimizers found
by Algorithm 2 for each sample.

Numerical results show that Algorithms 1 and 2 are efficient and promising. They
show that Algorithm 2 has higher success ratios, while Algorithm 1 uses less compu-
tational time.

The following example shows the procedures of Algorithms 1 and 2 in detail.

Example 9.1 Consider a supersymmetric 6 × 6 × 6 tensor whose entries are aiii = i
for i = 1, 2, . . . , 6, and aii,i+1 = 10 for i = 1, 2, . . . , 5, and zero otherwise. The
global minimizer of (1) for this example is

x∗ = −(0.0, 0.0, 0.0, 0.6577, 0.6802, 0.3237)�

and the global minimum value is f (x∗) = −16.235. By the projection gradient descent
method, the initial estimate is x (0) = −(0, 0, 0, 0, 0, 1)� and f (x (0)) = −6.

By Algorithm 1, the output of the first order termination criterion is x (1) = x (0)

and f (x (1)) = −6, the output of the second order termination criterion is
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x (2) = −(0.0, 0.0, 0.0, 0.0, 0.8249, 0.5653)� and f (x (2)) = −15.430, and the output
of the third order termination criterion is x (3) = x∗ and f (x (3)) = −16.235.

By Algorithm 2, based on x (0), the local minimizers found by one round of the
heuristic cross-hill Z-eigenvalue method are

x̄ (1) = −(0.0, 0.0, 0.0, 0.6577, 0.6802, 0.3237)�

and

x̄ (2) = −(0.0, 0.0, 0.0, 0.0, 0.8249, 0.5653)�.

We have f (x̄ (1)) = −16.235 and f (x̄ (2)) = −15.430. Based on x̄ (1), the local
minimizers found by a new round of the heuristic cross-hill Z-eigenvalue method are

x̄ (3) = −(0.0, 0.0, 0.0, 0.2061, 0.8139, 0.5432)�

and

x̄ (4) = (0.0, 0.0, 0.0, 0.0, 0.6923,−0.7216)�.

We have f (x̄ (3)) = −15.455 and f (x̄ (4)) = −10.971. However, based on x̄ (2) or
x̄ (3) or x̄ (4), there are no new local minimizers which can be found by a round of the
heuristic cross-hill Z-eigenvalue method. Therefore, Algorithm 2 terminates in five
iterations and the global minimizer found by this Algorithm is, i.e., x∗ = x̄ (1).
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5. Calamai, P.H., Moré, J.J.: Projected gradient methods for linearly constrained problems. Math. Pro-
gram. 39, 93–116 (1987)

6. Cardoso, J.F.: High-order contrasts for independent component analysis. Neural Comput. 11, 157–
192 (1999)

7. Comon, P.: Independent component analysis, a new concept?. Signal Process. 36, 287–314 (1994)
8. De Lathauwer, L., De Moor, B., Vandewalle, J.: On the best rank-1 and rank-(R1, R2, . . . , RN )

approximation of higher-order tensor. SIAM J. Matrix Anal. Appl. 21, 1324–1342 (2000)
9. De Lathauwer, L., Comon, P., De Moor, B., Vandewalle, J.: Higher-order power method—application in

indepedent component analysis. In: Proceedings of the International Symposium on Nonlinear Theory
and its Applications (NOLTA’95), Las Vegas, NV, 1995, pp. 91–96

10. Fu, M.: Comments on ‘A procedure for the positive definiteness of forms of even-order’. IEEE Trans.
Autom. Control 43, 1430 (1998)

123



316 L. Qi et al.

11. Grigorascu, V.S., Regalia, P.A.: Tensor displacement structures and polyspectral matching. In: Kailath,
T., Sayed, A.H., (eds.) Fast Reliable Algorithms for Structured Matrices, Chap. 9. SIAM Publications,
Philadeliphia (1999)

12. Hasan, M.A., Hasan, A.A.: A procedure for the positive definiteness of forms of even-order. IEEE
Trans. Autom. Control AC-41, 615–617 (1996)

13. Jury, E.I., Mansour, M.: Positivity and nonnegativity conditions of a quartic equation and related
problems. IEEE Trans. Autom. Control AC26, 444–451 (1981)

14. Kolda, T.G.: Orthogonal tensor decomposition. SIAM J. Matrix Anal. Appl. 23, 243–255 (2001)
15. Kofidis, E., Regalia, P.A.: On the best rank-1 approximation of higher-order supersymmetric ten-

sors. SIAM J. Matrix Anal. Appl. 23, 863–884 (2002)
16. Ku, W.H.: Explicit criterion for the positive definiteness of a general quartic form. IEEE Trans. Autom.

Control 10, 372–373 (1965)
17. Lim, L.-H.: Singular values and eigenvalues of tensors: A variational approach. In: Proceedings of the

First IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing
(CAMSAP), December 13–15, 2005, pp. 129–132

18. Ni, G., Qi, L., Wang, F., Wang, Y.: The degree of the E-characteristic polynomial of an even order
tensor. J. Math. Anal. Appl. 329, 1218–1229 (2007)

19. Nikias, C.L., Petropulu, A.P.: Higher-Order Spectra Analysis, A Nonlinear Signal Processing Frame-
work. Prentice-Hall, Englewood Cliffs (1993)

20. Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40, 1302–1324 (2005)
21. Qi, L.: Rank and eigenvalues of a supersymmetric tensor, a multivariate homogeneous polynomial and

an algebraic surface defined by them. J. Symb. Comput. 41, 1309–1327 (2006)
22. Qi, L.: Eigenvalues and invariants of tensors. J. Math. Anal. Appl. 325, 1363–1377 (2007)
23. Regalia, P.A., Mboup, M.: Properties of some blind equalization criteria in noisy multi-user environ-

ments. IEEE Trans. Signal Process. 49, 3112–3122 (2001)
24. Wang, F., Qi, L.: Comments on ‘Explicit criterion for the positive definiteness of a general quartic

form’. IEEE Trans. Autom. Control 50, 416–418 (2005)
25. Zhang, T., Golub, G.H.: Rank-1 approximation of higher-order tensors. SIAM J. Matrix Anal.

Appl. 23, 534–550 (2001)

123


	Abstract
	1 Introduction
	2 A direct Z-eigenvalue method For n = 2
	3 Orthogonal transformation and the pseudo-canonical form
	4 A direct orthogonal transformation Z-eigenvalue method for m = n = 3
	5 Conditions for local minimizers
	6 The canonical form and the rth order pseudo-canonical form
	7 A heuristic orthogonal transformation Z-eigenvalue method For m = 3and n 4
	8 A heuristic cross-hill Z-eigenvalue method For m=3 and n 3
	9 Numerical results
	Acknowledgments

