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Abstract. We demonstrate the existence of data structures for half-space and 

simplex range queries on finite point sets in d-dimensional space, d > 2, with linear 

storage and O(n ~) query time, 

d ( d - 1 )  
c~= FT for all T>0.  

d ( d - 1 ) + l  

These bounds are better than those previously published for all d >-2. Based on 

ideas due to Vapnik and Chervonenkis, we introduce the concept of an e-net of a 
set of points for an abstract set of ranges and give sufficient conditions that a random 

sample is an e-net with any desired probability. Using these results, we demonstrate 

how random samples can be used to build a partition-tree structure that achieves 

the above query time. 

1. Introduct ion 

Rapid processing of  geometric range queries has proven to be of  fundamen ta l  

importance in  computa t iona l  geometry, both  as an  end in itself and  as a technique  

in the efficient so lut ion of  other geometric problems.  Yao and  Yao [23] have 

* D. Haussler gratefully acknowledges the support of ONR grant N00014-86-K-0454. 
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recently demonstrated that a wide variety of  range query problems can be reduced 
to half-space query problems, the basic form of  which may be described as 
follows: given a set of  n points in d-dimensional Euclidean space E a, find a data 
structure that uses linear storage such that the number of points in any query 
half-space can be determined quickly (i.e., in sublinear time). This problem is 
called the (linear storage) half.space counting problem. A common variant of  this 
problem is the reporting problem, in which the set of points in the half-space has 
to be determined. 

The first sublinear time bounds for half-space counting queries with linear 
storage were given by Willard [20], who showed that queries are possible in 
O(n ~) time in E 2 for ot ~0.774. Subsequently, Edelsbrunner and Welzl [14] 
improved this to a-=-0.695. In E 3, the first nontrivial bound is Yao's [22] 

( a - 0 . 9 3 6 ) ,  which is followed by Dobkin and Edelsbrunner [7] (a~0 .916) ,  
Edelsbrunner and Huber [12] (a  ~0.909), and Dobkin et al. [8] (a  ~0.899). 
Shortly after Cole [6] showed ot ~ 0.977 in E 4, Yao and Yao [23] gave a generalized 

version o f  this result, showing that a = [log(2 a - 1)] /d  can be achieved for all 
d > 2. This bound is the best published for d >- 4. In this paper we exhibit a data 
structure that allows linear storage half-space counting queries in O(n ~) time in 
E a for 

d ( d - 1 )  
a -  ~-y for any Y >0 ,  

d ( d - 1 ) + l  

which improves on previous bounds for all d -> 2; specific bounds are: a ----0.667 
in two dimensions, a =0.857 in three dimensions, and a =0.923 in four 
dimensions. The technique also works with the same asymptotic bounds for 
counting queries when ranges are simplices in d dimensions. Bounds for reporting 

are similar to those for counting, except that the number of points reported must 
be added to the time bound. It should be noted that better bounds are possible 
for reporting in two dimensions (specifically O(log n + t) time, where t is the 
number of  points reported [3]), but these techniques only work for half-planes. 

Our techniques are fundamentally similar to previous techniques employed 
for range queries. A partition tree is defined so that a recursive divide-and-conquer 
strategy can be efficiently applied to any query. The main difference is that our 
construction is probabilistic, using random sampling to build each level of the 
partition tree. It is related to the technique used by Clarkson to build efficient 
data structures for nearest neighbo~ queries [4]. 1 

The construction of  the partition tree in E 2 can be described as follows: 

Given a set A of  n points in the plane, create a root node and choose at 
random a subset N of  A of  size ~,. Form the line arrangement consisting of  

1 Recently, other applications of random sampling in computational geometry have been found, 
including better partition trees for the half-space range query problem where query time must be 
O(log n) but nonlinear storage is allowed [5]. 
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all lines defined by pairs of  points in N. For each cell in this arrangement, 
create a child of the root that contains the number of points of A that lie in 
this cell. Now proceed recursively for each of these children, creating a subtree 
for the points in its cell until each cell contains less than v points. 

This tree is queried in the usual manner. Given a half-plane determined by a 
line, the point counts from all cells at the first level of the tree that are completely 
contained in the half-plane are summed, and recursive calls are made for any 
cells that are cut by the line. The trick in establishing the time bound is to choose 
~, such that with high probability: 

(1) the total number of points in all cells that are intersected by any line is 
less than el for some small positive e, where I is total number of  points 
at the current level of  recursion, and 

(2) the total number of  cells intersected is reasonably small (this number is 
bounded by 0(~,2)). 

Thus, in contrast to previous techniques, we do not rely on subdivisions of the 
points into parts of  certain sizes. We show that it is enough to choose v to be 
Uc(1/e)( log(1/e)+log(1/8))J,  for some constant c, to get (1) with probability at 
least 1 -  8 at any internal node of the tree. The key point is that for half-plane 
queries, the number 1, is essentially a constant that is independent of l, depending 
only on the parameters e and 8. As e approaches zero, we obtain the asymptotic 
results stated above with arbitrarily small y, and as B approaches zero, this 
happens with arbitrarily high probability. It should be noted that the partition 
tree is guaranteed to give the correct answer to any query independently of the 
choice of  8. It is only the time bound for queries that is achieved with probability 
depending on 8. On the other hand, this shows that for every point set and every 
y > 0 there exists a partition tree that gives the claimed time bound. Moreover, 
as in [4], we can modify the construction algorithm so that at each internal node 
we repeatedly draw a random sample of  size v until we get property (1). Since 
property (1) can be checked in O(l) time (the constant depending on v) and l, 
can be chosen such that property (1) holds with probability ½ for each draw, this 
leads to an O(n log n) expected time algorithm for constructing a partition tree 
for n points that is guaranteed to realize the claimed time bound. We have not 
been able to show that such a tree can be efficiently constructed by a non- 
probabilistic algorithm. 

In establishing the existence of the number v described above, we build on 
concepts due to Vapnik and Chervonenkis on uniformly approximating classes 
of events by their empirical distributions [17]. In extending their results, we 
introduce a new geometrical concept that may be of  independent interest. Let R 
be a class of  ranges in E d for some d ~ 1. Elements of  R can be any subsets of  
E d. Given a finite point set A c _ E  d and e > 0 ,  an e-net of  A for R is a set of  

points N _  A such that N contains a point in r for every r ~ R with IA c~ rt/IA I > e. 

For example, if e = 0 and R is the set o f  half-spaces, then the smallest e-net of  

A for R is the set of  all extreme points of  A. It follows that when all points of  
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A are extreme, the smallest 0-net of A for half-spaces is A itself. We show that 
this cannot occur for e > 0 and R the set of  d-dimensional half-spaces. In fact, 
for any e > 0 and any finite point set A c E d, there exists an e-net of  A for 
half-spaces with at most [(8(d+l)/e)log(8(d+l)/e) 1 points. (Here, and 
throughout the paper, logs are base 2.) 

More generally, we characterize the classes of  ranges for which there exists a 

function f (E)  for e S 0  such that any finite point set A has an e-net of  size f ( e ) ,  
independently of  the size of  A. These are precisely the classes of  ranges with 
finite Vapnik-Chervonenkis dimension, known as Vapnik-Chervonenkis classes 
[17], [9], [19], [1]. From this characterization result, it follows that if there exists 

a function f ( e )  such that any finite point set has an e-net for R of  size f ( e ) ,  then 
in fact any finite point set has an e-net for R of  size at most [ (8d /e )  log (8d /e ) l ,  
where d is the Vapnik-Chervonenkis dimension of  R. Since the Vapnik- 
Chervonenkis dimension of  the class of  half-spaces in E d is d + 1, the above-cited 
result is a special case of  this theorem. Moreover, we show that if R has 
Vapnik-Chervonenkis dimension d < oo then for any e, 8 > 0 and any finite point 
set A, if at least max((4/e) log(2/8),(8d/e)log(8d/e)) points are drawn 
independently at random from A then these points form an e-net of  A for R 
with probability at least 1 -  8. This latter result is used to obtain the crucial 
number ~, for our partition tree construction. Using the related notion of an 
e-approxirnation (directly from [17]), we also point out trivial data structures of 
constant size that give approximate solutions to the counting problem for half- 

spaces in constant time (compare [13]). 

Since the Vapnik-Chervonenkis dimension of  half-spaces and balls in d- 
dimensions is d + 1 [9], the probabilistic aspects of  Clarkson's RPO construction 
for nearest-neighbor queries [4] can also be derived from the general properties 
of  e-nets and Vapnik-Chervonenkis classes. These concepts, in slightly more 
general form, have also proven useful in the investigation of learning algorithms 
for concepts defined by geometrical regions in feature space [2]. It is our 
expectation that these concepts, along with the e-approximation concept, will 
find other applications in computational geometry as well. 

2. Geometric Fundamentals 

For d > 1, let E d denote d-dimensional Euclidean space. We will use h* to denote 
one of  the two open half-spaces bounded by a hyperplane h in E d. An open 

half-space h* is called positive if  either h is vertical or h* is the open half-space 
above/1, i.e., h* intersects the positive vertical axis in a half-line. By/~* we denote 
the closure o f  h*. H*  and H~ denote the set of  all open half-spaces in E d and 
the set of  all positive open half-spaces in E d, respectively. If  N is a set of  at 
least d points in general position in E d, then Hd(N) denotes the set o f  all 

hyperplanes that contain d of  the points in N. 
For d->0, and n_>0 integers, ~d(n) is defined as follows: Od(0)=  1 for all 

d->0, O0(n)=  1 for all n>_0, and Od(n)=Od(n--1)+Od-l(n--l) for d, n_>l. 
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a ( n )  i f d < n ,  otherwise~Pd(n)=2~. Proposition 2.1. ~a(n)  =~k=o k 

We assume familiarity with basic notions about arrangements of  hyperplanes 
in Ed; in particular, we use the notion of  a cell in an arrangement of a set H of  
hyperplanes, which can be defined as a maximal connected subset in the dissection 
of E a induced by H. See, e.g., [11] for a general treatment of arrangements. 

Proposition 2.2. Let H be a set of n hyperplanes in E a. Then the number of cells 

in the arrangement of H is at most Oa(n) and if the hyperplanes in Hare in general 

position, i.e., no two hyperplanes are parallel and no d + 1 have a common point, 

then the number of cells in the arrangement equals ~ a (n). I fh is any other hyperplane 

in E ~ then the number of  cells in the arrangement of  H intersected by h is at most 

~d-l(n). 

3. Finite Dimensional Range Spaces, e-Nets and e-Approximations 

In this section we introduce abstract range spaces and give upper bounds on the 
number of  points needed to form e-nets and e-approximations for sets in these 
spaces. The key concepts and proof techniques of  this section are based on the 
pioneering work of  Vapnik and Chervonenkis [17]. 

Definition. A range space S is a pair (X, R), where X is a set and R is a set of 
subsets of  X. Members of  X are called elements or points of S and members of 

R are called ranges of S. S is finite if X is finite. 

The critical combinatorial parameter associated with a range space is its 

dimension, introduced in the following definition. 

Definition. Let S = ( X , R )  be a range sp~ce and let A ~ X  be a finite set of 
elements o f  S. Then IIR(A) denotes the set of  all subsets of  A that can be obtained 

by intersecting A with a range of  S, i.e., 

I l r ( A ) = { A n  r: re  R}. 

If I I r ( A ) =  2 A, then we say that A is shattered by R. The Vapnik-Chervonenkis 

dimension of S (or simply the dimension of  S) is the largest integer d such that 
there exists a subset A of  X of  cardinality d that is shattered by R. If no such 

maximal d exists, we say the dimension of  S is infinite. 

We give now a number of  examples that illustrate the notion of Vapnik- 

Chervonenkis dimension. 

Example 1. Suppose that S = (X, R) where R is finite. In particular, this case 
occurs whenever X is finite. Since it requires 2 d distinct ranges in R to shatter 
d points in X, it follows that the cardinality of the largest subset of  X that is 
shattered by R is at most d = [log[RI]. Hence the dimension of S is finite, and 

this is an upper  bound on it. 
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Example 2. Consider the range space S~ = (E ~, H~) consisting of the real line 
and all open half-lines that are unbounded on the right. For any two points a 
and b with a < b, only the three subsets O, {b}, and {a, b} of{a, b) can be formed 
by intersections with ranges in H~, hence no two points of St are shattered. Since 
it is obvious that a singleton set is shattered, this implies that the dimension of 
St is 1. If  we extend S~ to (E t, H*) by adding half-lines unbounded on the left, 
it is readily verified that two points can be shattered, but three points cannot, 
thus the dimension is 2. 

These results generalize to higher dimensions, so that for any d > 1, (E d, H~) 
is of  dimension d and (E a, Hd*) is of dimension d + 1. To see this, consider the 
dual image of  a set A of n points in E d (see, e.g., [11]). This yields a set of n 
hyperplanes that partition E d into <--OPal(n) cells, with equality whenever the 
points in A are in general position. Each of these cells corresponds to a unique 
intersection of a half-space in H~ with A. Since ~ d ( n ) = 2  n for n = d  and 
O d ( n ) < 2  n for all n >  d, this implies that the dimension of (E d, H~) is d. The 
other bound follows from an easy extension of this argument. 

There are a great variety of  natural "geometric" range spaces of finite 
dimension, e.g., disks or triangular regions in the plane or their higher-dimensional 
counterparts. The next example, however, shows that there are also nongeometric 
examples of finite-dimensional range spaces. 

Example 3. Let G be an undirected (possibly infinite) graph with node set N. 
For each node x, let rx be the set of neighbors of x in G plus x itself. By S~ we 
denote the range space (N, R) with R = {rx: x E N}. If  G is"a planar graph then 
Sa is of dimension at most 4. This can be shown by demonstrating that a shattered 
subset of  five nodes in N forces the graph G to contain a subgraph that is a 
homeomorphic image of  the complete graph on five nodes. 

We give another example which shows that there are natural "geometric" 
range spaces of infinite dimension. 

Example 4. Consider the range space (E 2, C), where C is the set of convex 
polygonal regions in the plane. It is clear that every finite subset A of  E 2 on a 
circle is shattered by C: for each A' c_ A the convex hull r of A' is a range in C 
with A n  r = A'. This shows that the dimension of (E 2, C) is infinite. 

When (X, R) is of finite dimension, Dudley calls R a Vapnik-Chervonenkis 

Class. (VCC) [9], [19]. Dudley's notion of  the Vapnik-Chervonenkis number of 
R corresponds to the dimension of (X, R) plus one. Translating into our ter- 
minology, Dudley shows that whenever (X, R) is of finite dimension, then (X, Rk) 

is also of  finite dimension, where Rk is the set of all Bollean combinations formed 
from at most k ranges in R. Thus, for example, since the set Ck of convex k-gons 
in E d for fixed k >  d is formed by k-fold intersections of half-spaces, (E a, Ck) 
is of  finite dimension for any finite k: We give bounds on the dimension of related 
spaces below. Dudley and Wenocur also prove more general results that imply 
that the range space formed by the set of all half-spaces bounded by polynomial 
curves of  fixed degree also has finite dimension. 
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The funct ion CYPd(n ) plays a fundamental  role in all range spaces o f  finite 

dimension. The following lemma has been proven independent ly  in [ 16] and [ 18]. 

L e m m a  3.1. Let (X, R)  be a finite range space of dimension d with IX[ = n. Then 

IRI--- ~'a(n). 

Proof. The assertion is trivially true for d = 0 and n = 0. Assume the assertion 

is true for any finite range space o f  dimension at most  d - 1, and for  any range 

space o f  d imension d with at most  n - 1 elements, for  some d - 1 and n - 1. 

Let (X, R)  be a range space o f  dimension d with IX[ = n and x ~ X. Consider  

the range spaces S -  x = ( X  - {x}, R - x), where R - x = { r -  {x}: r ~ R} and S ~x~ = 

(X  - {x}, R(X)), where R (x) = { r e R:  x ~ r, r w {x} ~ R}. Obviously S -  x is o f  

dimension at most  d ;  hence,  by assumption,  IR-x t -O~(n -1 ) .  We show that 

S ~x) is o f  d imension at most  d - 1. 
Let A be a subset o f  X - { x }  that  can be shattered by R (x~. Then it is easy to 

see that A u { x }  can be shattered by R. (For  A'c_A there is an r ~ R  tx) with 

A ' = A n r .  Since x~r ,  A ' = ( A u { x } ) c ~ r  and A ' u { x } = ( A u { x } ) c ~ ( r u { x } ) ,  

where both  r and r u { x }  are in R.) Since A u { x }  can be shattered by R, 

IA u {x}[- d, so [ A [ -  d - 1. Thus S (x) is o f  dimension at most  d - 1. 

Since S ~x) is o f  dimension at most  d -  1, by assumption, IR(~)I ~ ~ _ , ( n - 1 ) .  
Observing that IRI = tR - xl + IR(% this yields - 1) + * a - l ( n  - 1) = 

• ~(n). [] 

As in Example  2, taking X to be a set o f  n points in general position in E a 

and R the set o f  all intersections o f  X with positive half-spaces shows that the 

above lemma is the best possible. This lemma extends to arbitrary range spaces 

of  finite d imension as follows. 

Theorem 3.2. Let (X, R)  be a range space of  dimension d. For every finite subset 

A of X, IHR(A)I_<@~(IAI). 

Proof. We need only observe that if Ac_ X, where (X, R)  is a range space o f  

dimension d, then (A, H a ( A ) )  is a finite range space o f  dimension at most  d, and 

use the above lemma. [ ]  

The original motivat ion for the study o f  Vapnik-Chervonenkis  classes was to 

determine the classes o f  sets whose probabili ty measures could be uniformly 

approximated by r andom sampling. Since we are only concerned with finite point  

sets in this paper ,  we make the following: 

D e f i n i t i o n .  Let (X, R)  be a range space and A a finite subset o f  X. For  

any e, 0 -  < e < - 1, and  Vc_ A, V is an e-approximation of  A (for R)  if for  all r e  R, 

t lA r~ rlllAI -I Vn rill vii--- e. 
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Theorem 3.3 [ 17]. There is a positive real constant c with the following property: 

if  ( X, R)  is a range space of  dimension d, A c X is a finite set and e and 8 are real 

numbers, 0 <  e, 8--- 1, then a random sample V of A formed by at least 

independent draws from A is an e-approximation of A for R with probability at least 

1 -8 .  

Clearly Theorem 3.3 immediately implies that if (X, R) is of  dimension d, 
A ~ X and e > 0 then there exists an e-approximation of  A for R of  size at most 

Example 5. Let A be a set of n points in E 2. Since the dimension of  (E  2, H~-) 
is 2, the results in [17, Theorem 2] show that there exists a 0.01-approximation 
V of  A for positive half-planes (and thus for all half-planes) with I VI = 2,525,039. 

That is, for every half-plane h*, I n n  h*l and (I Vc~ h*l/[ Vl)n differ by at most 
1% o f n .  

This leads to a simple data structure for point sets that answers half-plane 
counting queries to any desired accuracy en, where n is the size of  the point set, 
in constant time. We use an e-approximation V, count the fraction of points of 
V in the half-plane and multiply by n. Moreover, the set V can be found with 
arbitrarily high probability by simply drawing a random sample of  the point set 
of appropriate size. Since Theorem 3.3 holds for any range space of finite 
dimension, similar results hold when half-planes are replaced by disks, triangular 
regions, etc., as well as their higher-dimensional counterparts. The drawback is 
that the constants, if deri~,ed from the results in [17], can be quite large. 

Our main goal, however, is to find algorithms for half-space queries that give 
exact answers using linear space and sublinear time. To this end, we introduce 
a new concept related to that of an e-approximation. 

Definition. Let ( X , R )  be a range space, A a finite subset of X and 0-<e-<l .  
Then RA.~ denotes the set of  all r e R that contain a fraction of the points in A 
of size greater than e, i.e., such that IAn r[/lAl> e. A subset N of  A is an e-net 

of A (for R) if N contains a point in each r e  RA.~. 

It is readily seen that every e-approximation of  a set A is an e-net of  A. The 
following example exhibits a case where it is easy to show that small e-nets exist 

for e > 0 .  

Example 6. Consider n points A on a circle in E 2. For any e > 0, an e-net of 

A for half-planes can be found by choosing a subset N of  A such that among 
any [enJ + 1 consecutive points on the circle at least one point is in N. This can 

clearly be done using at most El /e]  points. 
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We now give better bounds on the sizes of  e-nets for arbitrary finite-dimensional 
range spaces than those given above for e-approximations. 

For the following two lemmas, let (X, R) be a fixed finite range space of 
dimension d. The following will make our arguments clearer. 

Notation. For any e > 0, Rx., will be abbreviated by R,.  For m > 1, X"* denotes 
the m-fold cross product o f  X. A vector x~ • • • x,, ~ X m will be denoted £ when 

m is clear from the context. Similarly, y denotes Y~" • "Ym. For any Z c X " ,  
Pro(Z) denotes the probability that a vector in Z is obtained in m independent 

draws with replacement from 3/, i.e., Pro(Z)= Izl/Ixl 

Definition. For any m - 1 and e > 0, let Qm be the set of  all m-vectors whose 

elements do not form an e-net of  X, i.e., 

Q~ = {~ e X " :  there exists r ~ R~ such that x~ ~ r, 1 -< i -< m}. 

Let 

j~,n = {T~ ~ X 2m (where ~ 37 e Xm): there exists r ~ R~ such that x~ ~ r, 

1 --- i -< m, but y~ e r for at least em/2  indices i, 1 --- i -< m}. 

Lemma 3.4. pm(Qm) < 2p2ra(j2m) for  all e > 0 and m >>- 8/e. 

Proof. For r~  R~ let 

Z, = {y e Xm: y~ e r for at least em/2  indices i, 1 -< i -< m}. 

We first claim that P " ( Z , ) > ½  for all r e  R~. To establish this, we show that 

P"(2~)  <½, where Z r = X m - - z r .  Since Pl(r)>-e for each r~R~ and 37 is in 2r 

only if Yt~ r for fewer than s m / 2  indices i, Pm(z , )  is maximized as P~(r) 

approaches e. In this case, for random 37 e X m the expected number of  indices i 

such that Yi ~ r is em and the variance is e ( 1 -  e)m. Thus for each )7 ~ 2 ,  the 

number of  y{s in r differs by at least em/2  from the expected value. Hence by 

Chebyshev's inequality 

p , , . = ,  e ( 1 - e ) m  4 1 

since m > 8/e, establishing the claim. 

Now consider a fixed g e QT. By definition, there exists r~ e R~ such that 

x~ ~ r~, 1 < i-< m. From the above, it follows that 37 e Zr~ for more than half  of  
the f ie  Xm; hence ~ e j2, ,  for more than half  of  the y e X m. Thus p2,,,(j~m) > 
t r~t m ~e (Q,). [] 

Lemma 3.5. I f  ( X , R )  is o f  finite dimension d and e > 0 ,  p2m(j2ra)< 
dPa(2m)2 -em/2. 
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Proof For each j, 1-<j-< (2m)!, let ¢r~ be a distinct permutation of the indices 
1 , . . . ,  2m. For each ~ e X 2m, let 0 (2)  = l{J: ¢r~(~) e J~m}l. It is easily verified that 
p2m(j~m) < max~x2,~(O(~)/(2m)!). Consider a fixed £ e X 2m. Let E be the set 

of  distinct elements of  X that appear in ~. For each permutation ¢rj(£) in j~m 
there is a subset T of  E that is a witness to the fact that wi(£) ~ j2m in the sense 
that there exists r E Re such that T = r :~ E, all occurrences of members of  T (and 
so of  r) appear in the second half of ¢rj(~), and there are at least em/2 such 
occurrences. However, a given T can be a witness for only a small fraction of 
all permutations of 2. In particular, if there are ! occurrences of  members of T 
in ~ and l > em/2, then T is a witness for at most 

( ? )  m ( m - 1 ) . . . ( m - l + l )  _~ 2 -I <_ 2-era~ 2 

( 2 ; )  2 m ( 2 m - 1 ) . . . ( 2 m - l + l )  

of  all permutations of  ~ (and if 1 < em/2, then T is a witness for no permutation 
of  ~). Since [E[<-2m and (X, R) is of dimension d, by Theorem 3.2 there are at 
most ~e  (2m) distinct subsets of  E induced by intersections with r e Re. Hence, 

there are at most q~d(2m) distinct witnesses. It follows that 

@(Y~) <_ Oa(2m)2_~m/2" [] 
(2m)! 

Directly from the above two lemmas we get the following: 

Theorem 3.6. I f  ( X, R) is a range space of  finite dimension d, A is a finite subset 

of  X, e > O, and m >-8/e then a set N ~_ A obtained by m random independent 

draws from A fails to be an e-net of A for R with probability less than 

2~d(2m)2 -~m/2. 

Proof. This follows from Lemma 3.4 and Lemma 3.5 by observing that 
(A, HR(A)) is a finite range space of dimension at most d. [] 

Corollary 3.7. For any ( X, R) of  finite dimension d, finite A ~_ X and 0 < e, 8 < 1, 

if N is a subset of A obtained by 

2 8d, 8d~ 
m > m a x ( 4  log ~ , -~- ,og-~  -- ] 

random independent draws, then N is an e-net of A for R with probability at least 

1 -8 .  

Proof We claim that for m of  this size, the bound given in Theorem 3.6 is less 
than 8. Hence the sample N will be an e-net of A with probability at least 1 - 8. 

This claim follows from Lemma 7 of [2], but, for completeness sake, we sketch 

the proof. 
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We establish this claim for the ease d > 1. The proof for d = 1 is similar. It 
follows from Proposition 2.1 that for d>-2, ~a(2m)<_(2m) a. Thus it suffices to 
show that 2(2m) a <- 82 "m/2, which is equivalent to era~2 >_ d log (2m)+ log (2/8). 

The first bound of  the two bounds on m implies em/4  >- 1og(2/8). Thus it suffices 
to show that em/4 > - d log(2m). If this inequality holds for some value of  m, it 
will also hold for larger values, so suppose m is equal to the second bound in 
the statement of the theorem. We need only show that 

2d l o g ~ - >  d l o g ( ~ l o g  ~ ) ,  

which is equivalent to 4d /e  >-log(8d/e) and this certainly holds. [] 

Although only the upper bound is used in what follows, for any finite- 
dimensional range space (X, R) we can, using the above corollary, give upper 
and lower bounds on the size of  the smallest e-net of any finite Ac_ X for R in 
terms of  the dimension of (X, R), independent of the size of A. To this end, we 
make the following: 

Definition. For any range space (X, R), e > 0 and finite Ao c_ X, 

F((X ,  R), e, Ao)= min{]N]: N is an e-net of  Ao for R}, 

f (  ( X, R ), e) = max{ F( ( X, R ), e, A ): A is a finite subset of  X}. 

For any e > 0 and d -> 1, 

f (d ,  e) = max{f((X, R), e): (X, R) is of  dimension d}. 

Theorem 3.8. Forany f in i ted>-I  and O < e < l , f ( d , e )  existsand 

Proof. The above corollary shows that if m = [ (8d /e )  log(8d/e)  ], for any (X, R) 
of dimension d, a sample N obtained by m independent random draws of any 
finite A ~ X will be an e-net of  A with probability greater than 0. Hence there 

always exists an e-net of this size. For the lower bound, let X = {1, 2 , . . . ,  s} and 

Rk be'the set of all k-fold unions of intervals on X, where k -  > 1, i.e., 

Rl={{ i  , i + l , . . . , j } :  l<i<-- j< s} 

and 

Rk={rlur2: r l~R~-i  and r2E R1} ( k >  1). 

Assume that s>-2k+ 1. We first claim that the dimension of (X, Rk) is 2k  It is 
easily verified that the set { 1 , 2 , . . . , 2 k } c _ X  is shattered by Rk, hence the 

dimension is at least 2k; On the other hand, i fA = {x~, x 2 , . . . ,  X2k+~} is any subset 
of X of cardinality 2k+1 ,  where without loss of  generality we assume that 
xi<xi+~,l<-i<-2k, then there is no range r in Rk such that r n A =  

{Xl, Xa , . . . ,  X2k-1, X2k+~}. Hence A is not shattered by Rk and thus the dimension 

of (X, Rk) is 2/¢ 
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Now let N = {xl, x 2 , . . . ,  xc} be an e-net of X for Rk for some 0 < e < 1 and 

c-> 1, where, as above, we assume that x~ < x~+l, 1 < i < c. I f  G c X is such that 

G = { 1 , 2 , . . . ,  x l - 1 } ,  

G={x~+l ,x~+2, . . . ,x~+~-l}  ( 1 - < i < c ) ,  

o r  

G = { x c + l , x ~ + 2 , . . . , s } ,  

then G will be called a gap (generated by N).  (Some gaps may be empty). Since 

N is an e-net of  X for Rk, 

k 

Y. es, 
i=1 

where Ol ,  . . . ,  Gk are the k largest gaps generated by N (breaking ties arbitrarily). 

Since N generates c + 1 gaps and the total size of all gaps is s - c, 

Hence 

which implies that 

k $-¢ 

Thus if s is large enough, we must have c > - k / e -  1. Since the dimension of 

(X, Rk) is d = 2k, this shows that there exist finite range spaces of dimension d 

that have no e-nets o f  size less than d / ( 2 e ) - l ,  for all even d ~ 2 .  The lower 

bound given above follows easily. [] 

It  is easily verified that  f ( (X ,  R), e) does not exist for any e, 0---e < 1, if  the 

dimension of  (X, R) is infinite: whenever (X, R)  has infinite dimension then for 

each n >- 1 we can find a subset A, of  X of  size n that is shattered by R. To 

obtain an e-net of  A, it is clear that at least ( 1 - e) n points must be used, otherwise 

there is a subset of  A, in RA,, with~no points in it. Clearly, this function grows 

arbitrarily large as n grows. Thus the existence of  e-nets of  fixed size for arbitrarily 

large subsets is a characteristic property of  finite-dimensional range spaces. While 

the sizes of  e-nets are considerably smaller than the sizes of  e-approximations 

obtained using Theorem 3.3, they are still quite large, as is evidenced in the 

following: 

Example 7. For  any set A of points in E z there is a 0.01-net N of  A of  size at 

most 5,355, i.e., a subset N such that every positive half-plane that contains at 
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least 1% of  the points of A contains at least one point in N. This estimate can 
be obtained by using Theorem 3.6 directly, setting the bound given there to be 
less than 1. Since the Vapnik-Chervonenkis dimension of the set of all triangular 
regions in E 2 is 7, if the size of  N is increased to 19,045, the same result holds 

for triangular regions. It is likely that these results actually hold for considerably 
smaller numbers. 

We conclude this section by examining the relationship between the notion 
of an e-net and the established notion of  a centerpoint [21], [11] in combinatorial 
geometry. Let A be a set of  n points in E a. A point x (not necessarily in A) is 
called a centerpoint if every half-space that contains more than [d/(d + 1)]n 
points of  A contains x as well. It is known that every point set in E d has a 

centerpoint. 
Let a set N be a weak e-net of  a point set A for a set of ranges R if it satisfies 

the conditions of  an e-net except that N is not necessarily a subset of A. Clearly, 
a point x is a centerpoint of  a point set A in E d if and only if  {x} is a weak 
d / (d  + D-net  of  A for half-spaces. Hence the existence of centerpoints implies 
the existence of  weak d/ (d  + 1)-nets for half-spaces of  cardinality one in E d. 
Moreover, there are always at most d + 1 points N in A such that their convex 
hull contains a centerpoint. This set N then forms a (strong) d / ( d +  1)-net of  A 
for half-spaces. 

In general, it makes a significant difference whether or not we choose the 
points in the e-net from the point set under consideration. For example, every 
finite point set A in E d is contained in the convex hull of d + l  points. These 
points form a weak 0-net of A for half-spaces, while all of the extreme points of  

A are required for a (strong) 0-net. 

4. Range Search Data Structures 

We now describe linear storage data structures that support half-space and simplex 
counting and reporting queries for point sets in E d. In our discussion of these 

data structures we treat only half-space counting queries, the extension to simplex 
counting is considered briefly at the end of this section and the extension to 
reporting queries will turn out to be obvious. In order to simplify the exposition, 

we restrict ourselves to point sets in general position in E d. 

Definition. Let d >-2 and ~, > d be integers and 0-< e < 1 be a real number. A 
rooted tree T is called an (e, v).partition tree for a finite point set A in general 

position in E d, if the following hold: 

(1) Every node p of  T corresponds to some open region reg(p) of  E ~, set(p) 

denotes reg(p) n A. 
(2) The root r of  T corresponds to reg(r)= Ed; hence set(r)= ,4. 

(3) Let p be a node of  Z 
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If [set(p)] > v, then p is an internal node of T and contains: 

(i) The number size(p) = [set(p)[. 
(ii) A set points(p)~_ set(p) of cardinality v. 

(iii) The arrangement art(p) of all hyperplanes that contain d of  the 
points in points(p). 

(iv) For each cell f in arr(p) with f n  set(p) # 0 ,  a pointer to a child Ps 
of  p with reg(p¢) = f n  reg(p). 

If ]set(p)]<-v, then p is a leaf of T and contains: 

(i) The number size(p)= ]set(p)[. 
(ii) The set points(p) = set(p). 

(4) For every internal node p in T and every hyperplane h in E a 

] f n  set(p)] <- elset(p)[, 
f~F 

where F is the set of  all cells f in arr(p) with f n  h • 0 .  

Condition (4) in the definition of an (e, v)-partition tree is trivially satisfied 
for e = 1. For smaller e, we will see below that this condition leads to sublinear 

counting query times for half-spaces. 
The objects contained in the nodes of  the tree are used to support half-space 

counting queries, which will be performed by the procedure ENUM(p, h*), p a 
node in the tree and h* a half-space. We assume the global variable ANSW is 

set to zero prior to the query. Upon termination, ANSW will hold the integer 
IAn h*l. The query is accomplished by the call ENUM(r, h*), where r is the 
root of  the (e, t,)-partition tree storing the point set A. The procedure 

ENUM(p, h*) can be described as follows: 

ENUM(p, h*): 

ANSW:= ANSW +lpoints(p)n h'l; 
i fp is an internal node do: 

for each cell f in arr(p) for which child Ps exists do: 
if f c_ h*, then ANSW:= ANSW + size(ps); 
else if f is intersected by h, then ENUM(py, h*). 

Note that we make the call ENUM(Ps, h*) under condition " f  is intersected by 
h'" and not under the condition "'reg(ps) is intersected by h." Since, in general, 
reg(ps) is a proper subset of  f, the latter rule would avoid some unnecessary 

recursive calls, i.e., calls on Ps when f is intersected by h* but reg(ps) is not. 
The drawback is that this requires storing reg(p) for each node, and these regions 

can become quite complex. Using the former rule, we simply store art(p), for 
example as a linked list of  records, each o f  which corresponds to a cell f with 
f n  set(p) # 0 .  The record f o r f  contains a pointer to the child Ps and a representa- 
tion o f f  that allows one to test i f f  is intersected by h or contained in h* for 
any hyperplane h. An appropriate choice for this representation uses O(~ d2) 

storage for an internal node,  and supports all the necessary computations for the 

node (excluding reeursive calls) in O(z ,a2) time. 
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This leads to the following observations on the query time and space require- 
ments for this structure. 

Observation 4.1. Let Qr(p,h*) be the query time required by the call 
ENUM(p,  h*) in an (e, v)-partition tree T storing a point set in E d for a 

half-space h*. 

(1) I f p  is an internal node then 

QT(P, h*) <- 0(I'd2) + ~. QT(py, h*), 
f e F  

where F is the set of all cells f in art(p) with fc~ h # 0 .  
(2) I f p  is a leaf then QT(p, h*)<_ 0(1,). 

Observation 4.2. An (e, ~,)-partition tree uses o(vd:n) storage to represent a set 
of n points in E d in general position. 

Lemma 4.3. An ( e, v )-partition tree T, 0 < e < l ,  storing a set A of n points in E d 

in general position, supports the computation of [A n h* I for every half-space h* in 
d 2 

0(9  n ~) time with 

log~/~ ~d- i  d 

P 

Proof. By Observation 4.1, for a node p in T and a half-space h*, the time 
required by the call ENUM(p,  h*) is 

Qr(P, h*) -< O(v't2) + F. Qr(pf, h*) 
f e F  

(where F is the set of all cells f in art(p) with f •  h ~ O i fp  is an internal node 
and F is empty otherwise). Moreover, we know that by Proposition 2.2 

and by condition (4) of the definition of an (e, ~,)-partition tree 

~, Iset(pf )l <- elset(p)l. 
feF 

Let Q(O)= 0 and for any integer n-> 1, let Q(n) be the maximal time required 
by a call ENUM(p,  h*) for any node p in any (e, v)-partition tree storing a set 
A in E d and any half-space h*, where [set(p)[< n. Then, for all n->-1, 

Q ( n ) <  d2 
- -  COY +max Q(ni), 

iffil 

where Co>0 is some constant, m = ~ d _ l ( ( d )  ) and the maximum is taken over 
% ~ - - / l  

m 

all nonnegative integers (nl, n 2 , . . . ,  rim) with ~-i=1 n, <-en. It can be shown that 
this implies that Q(n) is O(~'d2n "~) (see the appendix), which gives the claimed 

time bound. [] 
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It is clear that (e, ~,)-partition trees do not exist for every point set A in E d 

and every e and ~,. For example, a (0, ~,)-partition tree exists for a set A in E d 

(in general position) if and only if ~, >- IAI. In the next few lemmas we show that 
for e > 0, (e, ~,)-partition trees always exist with ~, "reasonably small" compared 
with 1/e. 

Lemma 4.4. Let  N be a set o f  ~, > d points in E d in general position and let h* be 

a half-space in E d. 

(1) I f  Nc_ h* then there exist k half-spaces h*l, h * , . . . ,  h*, where k < - d, such 

that hi e Hd(  N )  and N c_ g* for  each i, 1 <- i <_ k, and 

k 

h c _ E d - r )  h*. 
i=1 

(2) I f  both N1 = h* c~ N and No = N -  h* are nonempty, then there exist k 

half-spaces h*, h*, . . . , h*, where k < - d +  1, such that h ie  Hd( N ) ,  N1 c _ £* 

and No c~ h* = f~ f o r  each i, 1 <- i <- k, and 

k k 

hc_ U h * - n  h*. 
i=1 /=1 

Proof  We outline here only the idea for (2). An illustration of  this case for 

d = 2 is given in Fig. 1. 
Let H*  be the set of all half-spaces g* with g e H d ( N )  such that N1 c_ ~* and 

No rag*= 0 .  Then it is easy to see that 

h~_ U ~ * - N  g*. 
g*~H*  g * ¢ H *  

Now the assertion can be seen as the dual formulation of  Caratheodry's theorem 
(see [15], Theorem 2.3.5), which states that if a point x is in the convex hull of 
a set A in E d, then there exists a subset A' of A such that JA'I -< d + 1 and x is 

in the convex hull of A'. [] 

Our existence proof  for (e, ~,)-partition trees will use the interiors of  regions 
such as those given in part (2) of  the above lemma. 

Def in i t ion .  Let H*  be a set of  open half-spaces in E d  Then the corridor defined 

by H*, denoted corr(H*) ,  is the open region of  the form 

c o r r ( H * ) =  U h * -  r )  h*. 
h * ~ H *  h * ~ H *  

I f  [H*I-< k then we call corr(H*)  a k-corridor. 

We obtain upper bounds on the Vapnik-Chervonenkis dimension of  k- 

corridors in E d from the following general result. 

Lemma 4.5. A s s u m e  k >  1 and ( X ,  R )  is a range space o f  dimension d >-2. Let 

Ui=l r i - - n i = l  rt, where ri ts a range m R, R '  be the set o f  all sets o f  the form k k . • 

1 <- i < k. Then (X ,  R ' )  has dimension less than 2dk  log(dk). 
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1- 

O 

J 

points in N1 are labeled  x 

points  in No are labeled  0 

3 - -  3 , 
L J  hi * " r~ hi is shown  as the shaded  region.  
i-=1 i=1 

Fig. 1 

Proof. Clearly we m a y  assume that  k -  > 2. Cons ider  a finite set A c_ X with 

[A|= m -> 3. By Theorem 3.2, IIIR(A)I-< Od(m). Every set in rlr,(A) is of  the form 
k k • 

[,J~=l ri-(- ')~=l ri, with ri e HR(A),  1-< i -  < k. This shows that 

III R,(A)I--IH~(A)I~-- (@d(m))  k < m dk. 

Hence,  if  mdk--<2 m, then A cannot be shat tered by R' and the d imens ion  of  

(X, R') is at most  m - 1. It is easy to show that  m dk < 2'n for  dk-> 4 and m = 

2dk log(dk).  [ ]  

Corollary 4.6. The Vapnik-Chervonenkis dimension o f  the set o f  all k-corridors 

in E d is at most 2(d + 1)k log((d  + 1)k). 

Lemma 4.7. Let A be a set of  n points in general position in Ed, let N be an 8-net 

of A for ( d + 1).corridors and let h* be a half-space. If  F is the set of all cells in 

the arrangement formed by Hd( N )  that are intersected by h, then 

f ~ F  
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Proof. Assume first that there are points in N on both sides of h and let 
h*, h * , . . . ,  h*, where k < d + l ,  be half-spaces with h ~ e H d ( N )  as they are 
described in Lemma 4.4(2). Then h is contained in the closure of C = 
[--~1 h*--['-~k 1 /~*, and C contains all cells in the arrangement of H d ( N )  that 
are intersected by/I. Since C c~ N = O and N is an e-net of  A for (d + 1)-corridors, 
IC n A[ < - en. If  one side of h contains no points in N, the result is established 

by a similar reasoning using Lemma 4.4(1). [] 

Lemma 4.8. For each d >- 2 there is a constant Cd > 0 such that an ( e, ),)-partition 

tree exists f o r  every e and ~,, where 0 <  e < 1 and p = [ cd( l / e ) l og ( l / e ) ] ,  for  every 

f inite point set A in E d in general position. 

Proof  Let T be a (1, v)-partition tree for a finite point set A in E d and let 
0 < e < 1. From Lemma 4.7 we know that if for all internal nodes p in T, points(p)  

is an e-net of  se t (p )  for (d + 1)-corridors, then T is an (e, z,)-partition tree for 
A. By Theorem 3.8 and Corollary 4.6, there exists a constant Cd for each d > 0, 
such that for all e, 0 <  e < 1, there exists an e-net for (d + 1)-corridors of size 

v = [Cd(1/e) Iog(1/e) j .  [] 

Theorem 4.9. Let  T > 0 and d >- 2 be fixed. For every set A o f  n points in E d there 

exists an O( n ) storage data structure that supports the computation o f  [ A n  h*[ for  

every half-space h* in O ( n  a) t ime with 

d ( d -  1) 
a -  ~'T. 

d ( d - 1 ) + l  

(The  constants for  storage and time depend on 3' and d.) 

Proof. Consider an (e, v)-partition tree T for a finite point set A in E d with 

i, = [Cd(1/e) Iog(1/e)J where Cd is the constant from the above lemma. Linear 
storage complexity follows from Observation 4.2. By Lemma 4.3, the time com- 

plexity for a query in T is in O(J /2n  ~*) where 

((')) logl/. (~d-I d log1/~ //d(d-1) 

log~/~ ~d-~ + 1 

d ( d  - 1) log1/, Cd(1/e) l o g ! ! / e )  ' _< 
d ( d  - 1) log1/, Cd(1/e) l o g ( I / e ) +  1 

d ( d  - 1)(1 + logl/~ Cd + logl/~ l o g 0 / e ) )  

d ( d  - 1)(1 + logl/~ Cd + log~/~ l o g 0 / e ) ) +  1 

Now we observe that log~/, Cd-)0 and log1/, log( I / e ) ->0  as e->0. Thus for 

any Y > 0, 

d ( d - 1 )  

a.--< d(d"-  1)+ 1 +T 

for small enough e. [ ]  
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As far as construction of (e, v)-partition trees is concerned, we briefly outline 
a probabilistic algorithm analogous to the algorithm in [4] that runs in O(n log n) 
expected time: 

Let A be a set of n points in E a. 

If ]A I < v then create a leaf, else: 
(1) Create an internal node p. 
(2) Repeatedly select a random sample points(p) of A of size v until 

you get one such that property (4) of  the definition of an (e, v)- 
partition tree is satisfied. 

(3) Construct the arrangement of  Ha(points(p)). 

(4) Recursively build the subtrees for all nonempty cells of  this 
arrangement using only the points o f  A that lie in the cel l  

If ~, is chosen such that the probability of getting an e-net for (d + D-corridors 
is at least ½ then property (4) is satisfied with probability at least ½ for any random 
draw (by Lemma 4.7) and thus the expected number of  random draws for each 
internal node is at most 2. By Corollaries 3.7 and 4.6, this requires only that 
v-> c(1 /e)  log( l / e )  for some constant c depending on d. For each random draw, 
we can test if points(p) satisfies property (4) by constructing the arrangement of  
Ha(points(p)) and checking, for each set of cells in this arrangement that can 
be intersected by a hyperplane, whether or not this set of cells contains at most 
elset(p)l points. Since v is constant, the number of such sets of cells is constant, 

hence the checking procedure takes O(Iset(p)[) time. To complete the timing 
analysis, we need only observe that the depth of an (e, v)-partition tree is O(log n) 
and for each level of the tree, the union of all set(p) over all nodes p at that 
level contains at most n points. It follows that the total expected construction 

time is O(n log n). 
The extension of  the result for half-space counting to simplex counting can 

be seen as follows: a simplex s* in E a is defined by d + 1 hyperplanes. Thus the 
boundary s of  s* is a subset of  the union of d + 1 hyperplanes. If we use now 
an (e, v)-partition tree to answer a query for simplex s* in E d in the obvious 
way, then we recur in each cell intersected by s, and these cells contain at most 

a total of  (d + 1)e times the current number of  points. Just as in the case of  
half-spaces, the constant d + 1 is absorbed as e approaches 0. 

Finally, we mention the implication of  the above result to a purely geometric 
problem as it was raised by Edelsbrunner [ 10]. The known bounds to this problem 
are the same as for the half-space range counting problem, as these problems 
are closely related. Thus we have also improved the exponents in this result for 

all dimensions d, d -> 2. 

Theorem 4.10. For each d >- 2 and y > 0 there exist constants kl and k2 such that 

for every finite point set A in E a there is a cell complex C(A)  that partitions E d 

and has the following properties: 

(i) Each cell of  C (A)  is a d-dimensional convex polytope. 

(ii) No cell contains a point of  A in its interior. 
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(iii) The number of  cells in C(A) is at most k~]A I. 

(iv) The maximum number of  ceUs in C ( A ) intersected by an arbitrary hyperplane 

is at most k21AI ~, where 

d ( d -  1) 
a =  ~-~/. 

d ( d - l ) + l  

Proof. Consider an (e, ~,)-partition tree T for A in E d that realizes O(n '~) query 

time. Then the regions reg(p), p a leaf in T, form a cell complex that obviously 

satisfies (i), (iii), and (iv) for appropriate constants. However, since every region 

considered contains at most u points, it is also easy to ensure property (ii). 
[] 

5. Open Problems 

One outstanding problem is to determine where the function f (d ,  e), which 
bounds the size of  e-nets in terms of the dimension d of  the range space, actually 

lies between the l'~(d/e) and O((d/e)  log(d/e))  bounds given in Theorem 3.8. 

Furthermore, while the existence of "small"  e-nets for spaces of  finite dimension 

plays a crucial role in our results, we give only probabilistic algorithms for 

constructing them. Efficient deterministic algorithms for constructing such nets 

remain to be determined. Here they might be some tradeoffs in size versus time 

of  computation. Perhaps more significantly, we have yet to determine the size of  

the smallest e-nets possible for many natural range spaces of  finite dimension. 2 
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Appendix 

The function we consider is defined by 

Q(O) = 0 

and for n -> 1 

m 
Q(n) = c + m a x  ~ Q(ni), 

i = 1  

where the maximum is over all nonnegative integers (n 1, • • •, nm) with ~, i~ 1 n~ <- en, 
c > 0 ,  m--_2, and 0 < e <  1. 

We first claim that 

Q ( n + l ) < - Q ( n ) + c  for all n>-0. (1) 

2 For half-planes in E 2 w e  can efficiently construct e-nets of size O(l/e) for any finite point set. 
However, our construction does not generalize to higher dimensions. 
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Since Q(0) = 0  and Q(1) = c, this is true for n =0 .  Now assume that it is true for 

all O<-k<-n, where n - > l .  By definition o f  Q, there exist nonnegative integers 
m 

a l , . . . ,  a,, such that  ~i=~ n~ -< e(n + 1) and 

Q(n+l)=c+ ~ Q(a,). 
i = l  

I f  a i = 0  for  all i, 1-<i---m, then Q(n+l)=c. Hence,  since Q is nonnegative,  

Q(n + 1) <- Q(n) + c. Otherwise, there exists i such that tie # 0. Assume without 

loss o f  generality that i = 1. Then 

Q(n+l)=c+ ~ Q(~,) 
i=1  

<-c+Q(a~-l)+c+ ~ Q(a,) (by i.h.) 
i = 2  

where the maximum is over all nonnegative 

nl ,  • • •, n,,, such that ~ n~ <- en 

=c+Q(.). 

This establishes the claim. It follows from (1) that 

Q(n + 1) + Q(0)-< Q(n) + Q(1). 

Hence, whenever  we have n l , . . . ,  n,, -> 0, and there exist i and j such that n~ = 0 

and nj-> 2, we can replace n~ with 1 and nj with nj-1 without decreasing 

~,i~i Q(ni). Thus if en < m + 1, max Z,~=l (n~) over n l , . . . ,  n,~ such that Y.~=im ni -< 

en is achieved for n~ = 1 . . . .  , n t ~  j = 1, nt~,j+~ = 0  . . . . .  nm = 0. Thus 

m + l  
Q(n) = c( [enJ + 1) for all n, 1 -< n < (2) 

E 

We want  to consider a slightly different funct ion to obtain our  final result, namely 

~(o) =0, 

m 

7 ( n ) -  [m/e]_ l  (n-1)+ l 

3 , ( n ) = l + m a x  ~ ~,(n,) for 
i = 1  

for i<n<I  1 
(m  ,os.o t atm   1 / 

n ~  
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where, as above, the maximum is over all nonnegative integers (nl,  • • •, nm) with 
m 

~,~=1 n~ <- en. First we show that 

Q(n) <- c(1 + e )y(n)  

then 

y(n) --< m-1 1 ( m n ' ~  - 1) 

for n > 0  (3) 

logl/, m 
for n > l ,  where a =  (4) 

logz/~ m + 1" 

Clearly (3) is true for n=O. Assume 1-<n---Ira~el .  Then en<-e[m/e]< 
e (m/e + 1) = m + e < m + 1 so by (2) it suffices to show 

( m ( n - 1 ) + l )  c([enJ+l)-<c(l+e) [ m / e ] - I  

However, 

(l + e)( ,[m/~]_ l ( n - 1 )  + l )  -> (l + e ) ( ~ /  e ( n - 1 ) +  l ) 

= (1 + e)(e(n - 1)+ 1) = (1 + e)(en - e + 1) 

= ( e n - e +  l + e2n-e2 + e)=(en+ l + e 2n -e  2) 

>--en+ l > - [en] +1, 

and the result follows. 
For n > [m/e] we do a simple proof by induction. 

" ,  . ~  m 
Let t i l , . ,  t~,~ be nonnegative integers such that Q(n)=c ~,i=1Q(ai) and 

m 
~i=1 ni <- en. Then 

Q(n)=c+ ~. Q(fi,)<-c+c(l+e) ~ y(ri,) 
i = 1  i = 1  

,(1+max; ,) <--c+c(l+e).max y(n~)<--c(l+e ~ y(n~ 
t = l  

=c(l +e)y(n),  

where, as above, the maximum is over all nonnegative integers (n l , .  • •, nm) with 
m 

~,i=1 n~ ~ en. This concludes the proof of  inequality (3). 
In order to prove (4) we define the positive real function 

f (x )  . ( m x ~ -  1), 

where x > 0 and a is as above. Observe that the first derivative f ' (x) is positive 
for all x > 0 and that the second derivative i f (x)  is negative for all x > O. Hence 

f (x )  is a monotone increasing convex function. 
First, we show that 

y(n)<--f(n) fora l l  n, l < - n - r m ] .  (5) 
l e !  
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We have 3,(1)= 1, f (1)  = 1, 

The last equality is verified by observing that 

log1/, m log1/, m =log,, / ,  m, 
logl/~ m + l  log~l~ (re~e) 

and thus 

f ( ~ ) =  ! (m(---mY~-l)m-l\ \e, =ml~-I (m2-1)=m+l" 

Thus 3,(1) ~ f (1 )  and 3,(fm/el)<-f(fmlel). Moreover, 3, grows linearly in n in 
the range 1 <-n <- [m/e ]. Hence (5) follows by the convexity of f (x) .  

Second, we observe that 

3,(n.+l)<.3,(n)+l for all n, 0 - < n < / m / .  (6) 

This is,true for n =0. For n > 1, we have to show 

m 
3,(n+ 1 ) -  . n + l - - -  

tin/el-1 

m 

tin/el-1 

°_<Ira1-, 
¢*, 

rn 

Third, we prove 

Ira/el-1 
• ( n - 1 ) + l + l  = 3 , ( n ) + l  

F,,,q 
y ( n + l ) - < y ( n ) + l  for n = / ~ : / .  (7) 

First, we recall that y( [m/e ]) = m + 1. So we have to show that y( [m/e ] + 1) - 
m + 2. To this end we first observe that 

= [ m + 2 e J - m + l .  

Hence, there exist ~1 , . . . ,  ~,~ such that 

• 

(since ~ >  1) 

which holds, because E < 1. 
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m 

where ~,=t n, = m or ~%1 t~ = m + 1 (because y(n) -< y(n + 1)) and ~i # 0 for all 
i (because y ( n + l ) + y ( 0 ) ~  y (n )+y (1 )  for 0 - < n <  Ira~el by (6)). Thus either 
all ~ = 1, whence y ( [ m / e ] +  I) = r e + l ,  or all fi~ = 1 but one, which is 2, whence 

y([~] +1)= l + ( m - l ) + ( [ m / ~ _  1 • ( I )+  I )  

m 
= m + 1 4  < m + 2  

[ m / e ] - I  

as in the verification of equation (6). As a consequence, (7) holds. 
We can now extend (6) and (7) by induction to 

y ( n +  1)< y (n )+  1 for all n - 0 ,  (8) 

using (6) and (7) as a basis case and proceeding as in the verification of (1) above. 
We conclude by showing 

1 
y(n)<-:m_l(mn'~-l) for n>---1. 

By (5), we may assume that n > Ira~ e ]. Then by (8), for some t i l , . . . ,  ti,,, a~ # 0, 
1 <- i<_ m, where Y ~  fi~ < en we have 

1 
y(n)  = 1 + L Y(ff,) -< 1 + L ~ _ ~ _  1 (ran, - 1) (by i.h.) 

i = l  i = l  

m ~ = 1 + ~  i=i = 1 +  . 6 ~ _  m m 2 

m - 1  i=l m - 1  m - 1  m 

m 2 ~ n 
m <,inceo  ) 

- < l + m - 1  m - 1  

m' m 
(since a-< 1) 

- < l + m - 1  m - 1  

m' m 
- < 1 +  

m - i  m - 1  

_ l + m .  ( m 
m - 1  m - 1  

m m 
m - 1  (n") m _ l + l  (bydef.  o f a )  

m 1 1 

i ( - -  =m2 n") m - l - m - 1  "(mn~-l)" 

m 

m - 1  

This proves (4) by induction. 



e-Nets and Simplex Range Queries 151 

We now summarize (3) and (4) as 

c - ( l + ~ )  
Q ( n )  < - . ( r a n  ~" -1 )  

m - 1  

< - - - "  m n  ~ = c .  ( l + e ) .  • n ~  < - - c .  2 . 2 .  n ~ = 4 c n  ~,  
m - 1  

Hence Q(n) is O(cn'~). 
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