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forecasts. The explainability of the condition-decision 
support system is demonstrated/visualized using a 
flow graph that maps rough-rule-based different deci-
sion paths between input and output with strength, 
certainty, and coverage. The investigation resulted in 
an advanced intelligent environmental decision sup-
port system (IEDSS) for air-quality prediction.

Keywords  AQI · Condition-decision support 
system · Explainable AI · Flow graph · Machine 
intelligence · PM2.5 · PM10 · Rough sets · Z-numbers

Introduction

Prediction of air quality is a major challenge in early 
warning and control of urban air pollution. With the 
steep increase of urbanization and the advancement 
of industrialization, the problem of urban air pollu-
tion has become significantly important, as it accel-
erates climate change and affects human health. The 
post-monsoon months of October, November, and 
December coincide with Diwali, India’s most impor-
tant religious holiday. As a part of the celebration, 
a large amount of firing crackers get burnt starting 
from late evening to late night on the Diwali day, as 
well as before and after Diwali. Metallic chemicals 
such as salts of potassium, sodium, strontium, barium 
and copper, charcoal, iron, sulphur, manganese, and 
aluminum dust powder are found in fireworks. After 
these chemicals get burnt, gaseous pollutants are 

Abstract  Kolkata has a reputation for being one of 
the world’s most polluted cities, particularly in the 
post-monsoon months of October, November, and 
December. Diwali, a Hindu festival, coincides with 
these months where a large number of firecrackers 
are set off followed by high emissions of air pollut-
ants. As a result, the air quality index (AQI) deterio-
rates to “very poor” (301 ≤ AQI ≤ 400) and “poor” 
(201 ≤ AQI ≤ 300) categories. This situation stays for 
several days to a month. The present study aims to 
identify the thresholds for PM2.5 and PM10 that cause 
the AQI of Kolkata to deteriorate to “very poor” and 
“poor.” For this purpose, we have used a rough set 
theory-based condition-decision support system to 
predict the aforementioned categories of AQI. We 
have developed a Z-number-based novel quantifica-
tion measure of semantic information of AQI to assess 
the reliability of the outcomes, as generated from the 
condition-decision-based decision rules, during post-
monsoon season. The result reveals the best possible 
forecast of AQI with linguistic summarization of the 
reliability or confidence for different threshold ranges 
of PM10 and PM2.5. Inverse-decision rules based on 
rough set theory are utilized to justify and validate the 
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generated which are harmful for the environment and, 
in turn, put our health at stake.

Air pollution is one of the most serious global 
health and environmental concerns  which is more 
prevalent in urban areas. It is caused by anthropo-
logical activities that degrade ecological balance 
and kill millions of people each year. In many cit-
ies where unplanned urbanization occurs, air pollu-
tion exceeds danger limits in terms of human health, 
posing a health threat or affecting life quality (Cetin 
& Sevik, 2016a; Singh et  al., 2020). Cetin (2016) 
showed how the indoor CO2 parameters influence 
the students’ performance of activity in the examina-
tion halls. Cetin and Sevik (2016b) studied the effects 
of indoor plants on the concentration of CO2 in an 
indoor environment under certain light conditions. 
Cetin et  al. (2019) evaluated the air quality based 
on CO2 amount and amount of particulate matter in 
6 different dimensions and determined the change 
in sound level on a regional basis depending on the 
time of day and the season in different areas of Bursa 
City Center. In Elsunousi et  al. (2021), the regional 
and periodic change of CO2 and particulate matter 
pollution in the city of Misurata were illustrated. Cli-
mate has a direct impact on a plant’s characteristics 
(Kaya et al., 2019; Sevik et al., 2021). Heavy metals 
are especially critical among the components of air 
pollution because they can be poisonous and deadly 
even at low concentrations, and even the necessary 
elements for organisms can be harmful at high con-
centrations (Jo et al., 2020). Since they are not easily 
decomposed, they tend to bioaccumulate, and some 
of them have toxic or carcinogenic effects even at 
low concentrations (Cetin & Jawed, 2022; Waaijers 
et  al., 2012). Sevik et  al. (2020a, b) determined the 
variation of Pb and Mg accumulation depending on 
plant species, plant organ, washing status, and traffic 
density in some landscape plants grown in the city 
center of Kastamonu. Cetin et  al. (2020) used blue 
spruce (Picea pungens) tree organs to calculate the 
concentration of heavy metals, such as Ca, Cu, and 
Li in the city of Ankara. Fruits and vegetables cul-
tivated in industrial and urban areas with significant 
levels of heavy metal pollution can be detrimental 
to public health if consumed as crops (Sevik et  al., 
2020a, b). The most preferred method for determin-
ing the changes in heavy metal concentrations in the 
atmosphere is the use of biomonitors, especially with 
the help of the annual growth rings of trees (Cesur 

et al., 2021). In this study, the changes in heavy metal 
concentrations in the annual rings of Cupressus ari‑
zonica  tree growing in the city center of Kastamonu 
were observed. The effects of enhanced UV-B radia-
tion on plant growth, development, biomass accu-
mulation, yield, metabolism, and morphological 
characteristics of both germination and seedlings are 
significant (Kumar & Bhardwaj, 2019; Ozel et  al., 
2021). Excessive phosphorus and nitrogen pose a 
significant threat to the quality of freshwater lakes 
in Malaysia (Huang et al., 2015; Varol et al., 2022).  
In the worst scenarios, urban runoff contains enough 
pollutants to make it impossible for us to swim in or 
fish in our local waters. Porous plastic asphalt pave-
ments provide an alternative technology for stormwa-
ter management (Cetin, 2013).

There have been many studies that show the impact 
of firework activities on air quality during the Diwali 
celebration in India. It has been found that fireworks 
cause short-term variation and degradation in air 
quality, as well as major changes in pollutant concen-
trations. In Hisar, for example, PM10 and TSPM con-
centrations are seen to increase by two to three times 
(Ravindra et  al., 2003). Barman et  al. (2008, 2009) 
found a considerable rise in PM2.5 levels in Lucknow. 
In case of Kolkata, the mass concentrations of PM10 
and SO2 were found to be ~ 5 times the standard lim-
its, as prescribed (Chatterjee et  al., 2013). Mandal 
et al. (2022) recently examined the effect of pollution 
during Diwali celebrations of COVID-19 outbreak. 
Though most of the research has studied the change 
of air quality and its effect on the environment during 
Diwali compared to normal periods, modelling the air 
quality in terms of “cause-effect” relation for the pur-
pose of predicting the probable ranges of pollutants 
during Diwali months remains an issue for research-
ers. Such modelling is helpful for environmentalists 
to mitigate the deterioration on air quality, and its 
consequences.

Intelligent decision support systems (IDSS) are 
developed by integrating the idea of decision sup-
port system (DSS) and artificial intelligence (AI) 
techniques judiciously. It often applies expert system 
technology to assist in the resolution of complex deci-
sion problems by adopting the knowledge of human 
experts with logical reasoning. An IDSS is expected, 
ideally, to act like a user-friendly human expert or 
consultant in  providing support to decision-makers, 
e.g., by gathering and analyzing evidence, diagnosing 
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problems, suggesting possible courses of actions, and 
evaluating those actions. Here, the use of AI tech-
niques attempts to make these tasks performed effi-
ciently by a machine with enhanced tractability to 
handle difficulties, while achieving close resemblance 
with human-like decision-making. Environmental 
problems are among the set of crucial domains in 
which inappropriate management decisions can have 
severe social, economic, and environmental implica-
tions. Decision provided by intelligent environmental 
decision support systems (IEDSSs) is significant in 
the interaction of humans and ecosystems as they are 
the instruments developed to deal with the multidisci-
plinary nature and high complexity of environmental 
challenges. In this scenario, statistical and artificial 
intelligence-based various data analysis tools and 
techniques can be judiciously integrated and used 
to give valuable environmental knowledge for the 
IEDSS decision-making process. AI techniques have 
been applied to environmental management problems 
for a long period with good results. AI tools like case-
based reasoning, artificial neural networks, genetic 
algorithms, swarm intelligence, and decision trees 
were employed to develop various knowledge-based 
systems, expert systems, and fuzzy inference sys-
tems for this purpose (Ahmed et al., 2003; Riga et al., 
2009; Dutta & Chaudhuri, 2014; Ong et  al., 2015; 
Corominas et al., 2018; Qi et al., 2018; Abdul-Wahab 
et al., 2019; Zhao et al., 2019; Liu et al., 2019; Kuri-
Monge et al., 2021).

Rough set theory, introduced by Pawlak (1991), 
provides important AI techniques for modelling 
complex data structures. It can effectively analyze 
various kinds of imprecise, inconsistent, incomplete, 
or imperfect information in order to find the hidden 
knowledge that can be used to discover a potential 
rule (Qu et  al., 2020). Lin et  al. (2011) used rule-
based decision-making technique of rough set theory 
to predict customer churn in credit card accounts; 
they used a flow network graph and a path-dependent 
approach to infer decision rules and variables. Liou 
et  al. (2016) used the rough set theory (RST) with 
flow graph in developing strategies to improve service 
quality. Stević et al. (2017) developed a multicriteria 
decision model with eight criteria and eight alterna-
tives. Kundu and Pal (2018) introduced a new vari-
ant of rough set, namely, double bounded rough set, 
to quantify the tension force and proposed an algo-
rithm based on tension measure is for link prediction. 

Chakraborty and Pal (2021) proposed rough set-based 
moving object background classification and motion 
uncertainty analysis with newly defined motion 
entropy. Rough set theory along with decision rules 
was employed for estimation of raw silk quality (Kar 
et al., 2021). The importance of the theory stems from 
the fact that it can show the probabilistic structure of 
the data being evaluated without having any prior 
knowledge. As a consequence, it is ideal for analyzing 
the probabilistic structures of data related to dynamic 
and non-linear meteorological phenomena. In mete-
orological research, the theory of rough sets is widely 
used. For example, Shan (2001) used a rough set-
based approach to classify weather data. This theory 
was introduced for the prediction of drought by Liu 
and Qiao (2009). In addition, it was applied to assess 
the pollution sources of the atmospheric particulates 
of Jilin City both during the heating and non-heating 
periods (Fang et  al., 2010). Chaudhuri and Dutta 
(2013) investigated the significance of GPT (general-
ized potential temperature) to define the humid con-
dition of moist atmosphere for the predominance of 
the natural hazards by generating rough set theoretic 
“if–then” rules. Sudha (2017) proposed intelligent 
decision support system using rough sets and fuzzy 
logic for short-range rainfall prediction. A rough 
set-based decision support system has been used by 
Matarazzo (2018) for managing the air pollution in 
the industrial area. Rough set is found to be extremely 
suitable for classifying the air pollutant index in 
Malaysia and Singapore (Wibowo et al., 2018). Fur-
thermore, the theory has been used to various uncer-
tainty handling, and multicriteria decision-making 
applications (Kazemitash et al., 2021; Naouali et al., 
2020; Pal et al., 2018; Saha et al., 2010; Suresh et al., 
2012; Tang et  al., 2020; Wang & Zhang, 2014; Ye 
et al., 2021). In our present study, we have used rough 
set-based “if–then” rules and inverse-decision rules 
for air-quality prediction and interpreting/explaining 
the decision-making process, respectively.

Decision-making in real-world problems is gen-
erally performed based on information that is often 
uncertain, ambiguous, incomplete, and/or imprecise. 
Fuzzy set theory of Zadeh (1965) is reputed in deal-
ing with this kind of information. The effectiveness 
of the theory has been demonstrated in different 
domains, e.g., engineering, meteorology, economics, 
biological, social sciences, and computer science. In 
2011, he defined Z-numbers (Zadeh, 2011), another 
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new concept/measure concerning computing with 
words (CWW). This number provides a more general 
framework or structure for modelling/representing 
the uncertain information arising in real-world phe-
nomena by incorporating the reliability of informa-
tion. Since then, Z-number has been widely used in 
different fields like psychological research (Aliev & 
Memmedova, 2015), medical diagnosis (Wu et  al., 
2017), marketing (Alizadeh & Serdaroglu, 2016),  
multicriteria game model (Peng et  al., 2019b), 
investment risk analysis (Peng et  al., 2019a), natu-
ral language understanding (Banerjee & Pal, 2015),  
video tracking (Pal et al., 2019), and safety analytics 
(Das et  al., 2020). Hendiani and Bagherpour (2019) 
used the concept of Z-numbers to model a possibil-
istic approach with the purpose of calculating the 
sustainability index in the context of reliability. A 
nice review on Z-numbers with different applications 
since its inception in 2011 has been recently reported 
(Banerjee et al., 2021). Z-numbers have not been used 
in the prediction of air quality so far. The present 
study is an attempt to demonstrate the significance of 
Z-numbers for quantifying the air quality in terms of  
linguistic abstraction. This concept is unique.

National air quality standards may vary depending 
on the approach adopted for balancing health risks, 
technological feasibility, economic considerations, 
and various other political and social factors, which, 
in turn, is influenced by other things such as the level 
of development and national capability in air qual-
ity management (Beig et al., 2010). Air quality index 
(AQI) is aimed at making decisions about how to pro-
tect the health of people by optimizing the short-term 
exposure to air pollution and controlling the activity 
levels when pollution levels are high. It assesses the 
current air quality, which is dependent on the spe-
cific level of concentration of an individual air pol-
lutant. One may note that the air quality deteriorates 
during the Diwali festival in October–November, and 
the AQI remains high for several days to a month. 
For the post-monsoon months of October, November, 
and December, we consider AQI categories of “poor” 
(AQI within 201–300) and “very poor” (AQI within 
301–400).

The present article describes the development of 
an intelligent environmental decision support system. 
It demonstrates the effectiveness of rough set theory-
based decision rules, inverse-decision rules, flow 
graphs, and z-numbers in doing so. Interpretability is 

the ability to identify the relationships and counterfac-
tuals between input and output, and the ability to search 
for evidence in the data that supports a particular out-
come (Kovács et  al., 2021). The use of the proposed 
inverse-decision rules provides interpretation/explana-
tion of the decisions made on air-quality prediction. 
Flow graph that maps the rough-rule-based different 
paths between input and output with strength, certainty, 
and coverage enables visualization of the explainability 
of the condition-decision support system. Inverse rules 
in conjunction with Z-numbers thus enable interpret-
ability of the proposed decision support system.

The novelty of the paper mainly lies in the following:

1.	 Modelling the AQI in terms of particulate mat-
ter (PM2.5 and PM10) using rough set theoretic 
“cause-effect”/ “if–then” relation for prediction 
of air quality during Diwali months

2.	 Developing a Z-number-based AQI that quanti-
fies the abstraction of decision-making informa-
tion concerning AQI prediction, which is first of 
its kind

3.	 Using rough set-based inverse-decision rules for 
determining the possible ranges of particulate 
matter (PM2.5 and PM10) that are responsible for 
a given air quality; this demonstrates the explain-
ability of the system towards a decision

4.	 Designing an information flow graph between 
input and output that clearly demonstrates/visual-
izes the explainability of the condition-decision 
support system

All these novel features precisely illustrate how 
to integrate the merits of AI tools such as rough set-
based condition-decision support system, inverse-
decision rules with flow graph having explainability, 
and Z-numbers for quantification of semantic infor-
mation to define AQI so as to design an advanced 
IEDSS for prediction and quantification of air quality 
during Diwali.

Material and methods

Study area

Kolkata (erstwhile Calcutta) is one of the large met-
ropolitan cities of India. It is in the Ganges Delta at 
22°33′North and 88°20′East, along the eastern side of 
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the Hooghly River at an elevation of about 9 m. Kol-
kata is a densely populated city with a population of 
14.4 million. It is included in the world’s twenty-five 
severely polluted cities including ten others from India 
(Bera et al., 2020) facing rising air pollution and multi-
pollutant crisis. The city’s economic and industrial 
expansion, as well as different industries (paper and 
pulp, rubber, iron, plastic, textile, and food), vehicu-
lar emissions, dust from construction sites, solid waste 
burning, wind-blown dust from open lands, and ther-
mal power plants, all contribute significantly to air pol-
lution in Kolkata. As a result, the air quality in this area 
has deteriorated considerably. According to a study 
conducted at major traffic intersections in Kolkata, the 
levels of significant pollutants, such as PM10, NO2, 
CO, SO2, and lead, are found to be substantially higher 
than the permitted values (Ghose et al., 2004). Kolkata, 
like the rest of India, celebrates Diwali together along 
with “Kali Puja” festival with eagerness and devotion. 
A large number of crackers and sparklers of different 
kinds and intensities get burnt on the day of Diwali and 
also the adjacent days before and after.

Data collection and data pre‑processing

The location of Kolkata and the data from twenty 
monitoring stations are shown in Fig. 1. These twenty 
monitoring stations are Dunlop Bridge, Rabindrab-
harati, Shyambazar, Victoria Memorial, Ultadanga, 
Beliaghata, Moulali, Salt Lake, Minto Park, Topsia, 
BITM, Hyde Road, Gariahat, Jadavpur, Fort William, 
Rabindra Sarobar, Tollygunge, Mominpore, Behala 
Chowrasta, and Baishnabghata. We have conducted 
our study based on the data and observations of 
7 years from 2015 to 2021 over Kolkata, India, dur-
ing October, November, and December. The data of 
daily air quality of Kolkata city is obtained from the 
West Bengal Pollution Control Board (WBPCB). Our 
present study considers two pollutants, namely, PM2.5 
and PM10 (particulate matter of size 10  μm or less 
and 2.5 μm or less, respectively).

After collecting the data, pre-processing is executed 
to improve the data quality. Missing data is a common 
problem for most air pollution monitoring stations due 
to instrument failure, data entry error, maintenance, and 
other unmanageable factors. Though there are a few 
missing values in our data record, to fill the empty val-
ues, a linear interpolation technique is used.

Methodology: tools and definitions

Here, we provide some basic definitions and AI tools 
which are employed in formulating the proposed 
methodology for air-quality prediction. These include 
information table, decision table, and characteristics 
of decision rules in the framework of rough set theory. 
These are followed by the concept of flow graph and 
Z-numbers.

Information system and decision table

An information system (Pawlak, 2004) can be viewed 
as a data table (matrix) where columns denote different 
attributes, the rows denote different objects of interest, 
and the entries of the table represent attribute values. 
This is represented as a pair of sets as (Pawlak, 2004)

Here, U and A represent the universe of objects and 
the set of attributes, respectively. These are non-empty 
finite sets.  a ∶ U → Va , where Va is the set denot-
ing all values of a, referred to as the domain of a, for 
each a ∈ A . Any subset B of A characterizes/determines 
a binary relation I(B) on U. This is also known as an 
indiscernibility relation, described as (Pawlak, 2004)

Here, a(x) denotes the value of the attribute a cor-
responding to element x . I(B) is an equivalence rela-
tion. U∕I(B) or simply by U∕B denotes the family of 
equivalence classes caused by I(B) , i.e., partitions on 
U as determined by B . B(x) represents the block of the 
partition U∕B that contains x.

If (x, y) ∈ I(B) , then x and y are said to be B- 
indiscernible (indistinguishable) with respect to attribute- 
subset B.

If we arrange an information system in two distinct 
classes of attributes, namely, condition and decision 
attributes, then it is called a decision system, defined by 
(Pawlak, 2004)

where C and D are two disjoint sets of condition and 
decision attributes. C ∪ D = A . C(x) and D(x) denote 
the condition class and decision class as introduced 
by x , respectively.

(1)S = (U,A)

(2)(x, y) ∈ I(B) if f a(x) = a(y) for every a ∈ A

(3)S = (U, C, D)
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A decision system may also be referred as a deci-
sion table that represents various decisions (e.g., 
actions and results) made when some conditions get 

satisfied. That means, each row of the table represents 
a decision rule that characterizes decisions in terms 
of conditions.

Fig. 1   Location of the Kolkata metropolitan area and air monitoring stations
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Decision rules: characteristic features (Pawlak, 
2004)

Let S = (U,C,D) represent a decision table as men-
tioned above. Let every x ∈ U determine a sequence 
given by

where 
{
c1, ..., cn

}
= C and 

{
d1, ..., dm

}
= D.

The sequence (Eq. 4) may be called a decision rule 
induced by x (in S ) and represented as

In brief, C →

x
D.

This decision rule is characterized by the following 
features:

(a)	 Support of the decision rule C →

x
D

Support is a number defined as

(b)	 Strength of the decision rule C →

x
D

where |.| denotes the cardinality of a set ε.ε.
(c)	 Certainty factor of C →

x
D

If cerx(C,D) = 1, then C →

x
D indicates a certain deci-

sion rule; otherwise not.
(d)	 Coverage factor of C →

x
D

(e)	 Inverse-decision rule of C →

x
D

If C →

x
D represents a decision rule, then D →

x
C 

represents its inverse-decision rule.

c1(x), ..., cn(x), d1(x), ..., dm(x)

(4)c1(x), ..., cn(x) → d1(x), ..., dm(x)

(5)Suppx(C, D) = |A(x)| = |C(x) ∩ D(x)|

(6)�x(C, D) =
Suppx(C,D)

|U| ,

(7)

cerx(C, D) =
|C(x) ∩ D(x)|

|C(x)| =
suppx(C,D)

|C(x)| =
�x(C,D)

�[C(x)]
,

(8)where[C(x)] =
|C(x)|
|U| .

(9)

covx(C, D) =
|C(x) ∩ D(x)|

|D(x)| =
suppx(C,D)

|D(x)| =
�x(C,D)

�[D(x)]
,

(10)where D(x) ≠ 0 and �[D(x)] =
|D(x)|
|U| .

Inverse-decision rules have been utilized in our 
proposed prediction methodology to provide expla-
nations (reasons) or justification behind any decision 
taken.

Information flow graph

Information flow graph (Pawlak, 2005) maps the 
decision paths from input to output of a rough rule 
base. Accordingly, it provides a special kind of data-
base in which statistical features of different objects 
are described in terms of information flow distribu-
tion rather than the raw data about individual objects. 
This type of data representation provides new insights 
into data structures and enables data analysis in more 
intelligent way.

A flow graph is a directed acyclic finite graph defined 
as (Pawlak, 2005)

Here, N denotes a set of nodes, B ⊆ N × N rep-
resents a set of directed branches, and � ∶ B → R+ 
denotes a flow function where R+ is the set of non-
negative reals. Each node of the flow graph represents 
an attribute of the information system.

The basic concepts (Pawlak, 2005) of the flow 
graph G are as follows:

–	 If   (x, y) ∈ B , then x is an input of y, and y is an 
output of x.

–	 If  x ∈ N , then I(x) and O(x) denote the sets of all 
x’s inputs and outputs.

–	 Input and output of G are defined as

Every node x in G is associated with its inflow and 
outflow as (Ramanna & Chitcharoen, 2013)

Similarly, the inflow and outflow for the whole 
flow graph G are represented as

(11)G = (N, B, �).

(12)
I(G) = {x ∈ N ∶ I(x) = ∅} and O(G) = {x ∈ N ∶ O(x) = ∅}

(13)� + (x) =
∑

y∈I(x)�(y, x)

(14)� − (x) =
∑

y∈O(x)�(x, y)

(15)� + (G) =
∑

x∈I(G)� − (x)
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The inflow and outflow of an internal node of a 
graph are supposed to be the same, and hence of the 
graph G (Pal & Chakraborty, 2017).

A normalized flow graph can be characterized by 
G∗ = (N,B, �).

Here, N and B are as in Eq. (11).
� denotes the strength of a branch (x, y) in G∗ , 

where

� of a branch indicates the percentage of the total 
flow through it. Its higher value means larger per-
centage of flow.

Certainty (cer) and coverage (cov) factors of a 
branch (x, y) in G∗ are expressed as

Z‑numbers

Z-number (Zadeh, 2011) is based on fuzzy set the-
ory. This has been useful in computing with words 
(CWW) (Zadeh, 1996). In CWW, the perceptions are 
encoded in the words and phrases that are used to 
describe various events. This phenomenon is inspired 
by the exceptional ability of the human brain in mak-
ing perception-based decisions. The underlying con-
cept of Z-number characterizes the certainty of infor-
mation (Pal et al., 2019).

A Z-number has two tuples, and is defined as

Tuple A, which is a constraint, is allowed to take 
the values of X (a real-valued uncertain variable, 
interpreted as the subject of Y). Tuple B is a measure 
of reliability of A. They are usually fuzzy numbers 
representing words or clauses in a natural language 
(Banerjee & Pal, 2013).

Let us consider a statement Y = Tropical cyclones 
are likely to become severe.

(16)� − (G) =
∑

x∈O(G)� + (x)

(17)�(x, y) =
�(x, y)

�(G)
, 0 ≤ �(x, y) ≤ 1

(18)cer(x, y) =
�(x, y)

�(x)

(19)cov(x, y) =
�(x, y)

�(y)

(20)Z = ⟨A, B⟩

Here,
X = intensity of tropical cyclones, A = severe, B = likely, 

and the Z-based information of the statement is,

Thus, the uncertainty and fuzziness that occur 
in linguistic terms best suit the restriction and the 
reliability metric of Z-numbers. Z-number in terms 
of linguistic terms provides a natural way of inter-
pretation and enhances the flexibility and reliabil-
ity of decision-making systems. A detailed review 
on Z-numbers with its various applications made 
so far since its inception in 2011 is available in 
Banerjee et al. (2022). In our present study, we have 
employed Z-numbers as the linguistic measure of 
the reliability of the condition-decision support sys-
tem to characterize the different criteria of the AQI.

Formulation of methodology

Different ranges of pollutants

The air quality index or AQI is a daily air quality 
measure which can be used to quantify concentra-
tion of pollutants. It is a measurement of how air 
pollution affects a person’s health with a small dura-
tion. The air quality index is composed of eight pol-
lutants, i.e., particulate matters PM2.5 (size 2.5 μm 
or less) and PM10 (size 10 μm or less), sulphur diox-
ide (SO2), ammonia (NH3), nitrogen dioxide (NO2), 
carbon monoxide (CO), lead (Pb), and ozone (O3). 
The Central Pollution Control Board (CPCB) used 
the following methodology to calculate the AQI:

The general equation for the sub-index ( Ip ) for 
pollutant P for a given pollutant concentration ( Cp ) is

Here,
Ip = sub-index for pollutant P
Cp = rounded concentration of pollutant P
BPHI = breakpoint that is greater than or equal to 

Cp

BPLO = breakpoint that is less than or equal to Cp

IHI = AQI value corresponding to BPHI

ILO = AQI value corresponding to BPLO

(21)Z = ⟨severe, likely⟩.

(22)Ip =
(IHI − ILO)

BPHI − BPLO

(Cp − BPLO) + ILO
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The highest sub-index, Ip , represents the AQI of 
the location.

The sub-indices for individual pollutants are calcu-
lated using its 24-hourly average concentration value 
(8-hourly in case of CO and O3) at a monitoring loca-
tion. It is not always possible that all the eight pollutants 
to be monitored in all the locations. The overall AQI 
is determined only if the data for at least three pollut-
ants are available, one of which must be either PM2.5 or 
PM10. Otherwise, the data is considered insufficient for 
computing the AQI. For sub-index calculation, a mini-
mum of 16 h of data is required. Even if the data are 
insufficient to determine the AQI, the sub-indices for 
monitored pollutants are computed and disseminated. 
In that case, the individual pollutant-wise sub-index 
will provide the air quality status for that pollutant. The 
AQI is provided in real-time basis through the web-
based system. It is an automated system that collects 
data from continuous monitoring stations without the 
need for human interaction and displays the AQI based 
on running average values (for example, AQI at 6 a.m. 
on a day will incorporate data from 6 a.m. on previous 
day to the current day). For manual monitoring stations, 
an AQI calculator has been developed where data can 
be manually entered to obtain AQI value.

The AQI classifications used below are provided 
by the CPCB of India. Here, AQI is measured on a 
six-point scale: severe, very poor, poor, moderate, sat-
isfactory, and good. Table  1 illustrates different cat-
egories of AQI and the corresponding health impacts. 
The AQI values and corresponding ambient concen-
trations (health breakpoints) for the identified eight 
pollutants are presented in Table 5.

Due to Diwali festival during October–November, 
AQI deteriorates to “very poor” and “poor” catego-
ries and remains high for about a month. In our pre-
sent study, we have dealt with the cases of two AQI 
categories, viz., “very poor” (AQI within 301–400) 

and “poor” (AQI within 201–300) during the post-
monsoon month of October, November, and Decem-
ber. For the purpose of the identification of the influ-
ence of the burning of firecrackers on AQI, we have 
considered two pollutants, viz., PM2.5 and PM10, as 
these are most important to affect the air quality.

The air quality data of the year 2015–2019 are 
used as design set and that of 2020–2021 are used 
for validation (validation set). The concentration of 
PM2.5 during the post-monsoon months is found to be 
in the range of (91–270) µg/m3 having AQI catego-
ries “poor” and “very poor” with our 7 years of study 
period. The concentration values of PM2.5 are divided 
into four parts using normal probability distribu-
tion as follows: 91 ≤ PM2.5 ≤ 135, 136 ≤ PM2.5 ≤ 180, 
181 ≤ PM2.5 ≤ 225, and 226 ≤ PM2.5 ≤ 270. Similarly,  
the concentration of PM10, having the range of (143– 
334) µg/m3 with AQI categories “poor” and “very 
poor” is categorized using normal probability distribu-
tion as follows: 143 ≤ PM10 ≤ 190, 191 ≤ PM10 ≤ 238, 
239- ≤ PM10 ≤ 286, and 287 ≤ PM10 ≤ 334.

Framing of decision rules

The decision rules are constructed in terms of “condition– 
decision,” “cause–effect,” or “if–then” relations using 
rough set theory. The effectiveness of these rules is dem-
onstrated by confirming the ranges of PM10 and PM2.5 for 
the predominance of the “poor” and “very poor” AQI. 
The decision rules with different conditions are framed as 
follows:

Fact 1: If (91 ≤ PM2.5 ≤ 135), then (AQI is poor or 
very poor)
Fact 2: If (136 ≤ PM2.5 ≤ 180), then (AQI is poor or 
very poor)
Fact 3: If (181 ≤ PM2.5 ≤ 225), then (AQI is poor or 
very poor)

Table 1   Different 
categories of national air 
quality index (AQI) with 
health impact (CPCB, 
2014)

AQI Remark Possible health impacts

0–50 Good Minimal impact
51–100 Satisfactory Minor breathing discomfort to sensitive people
101–200 Moderate Breathing discomfort to the people with lung, heart 

disease, children and older adults
201–300 Poor Breathing discomfort to people on prolonged exposure
301–400 Very poor Respiratory illness to the people on prolonged exposure
 > 400 Severe Respiratory effects even on healthy people
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Fact 4: If (226 ≤ PM2.5 ≤ 270), then (AQI is poor or 
very poor)
Fact 5: If (143 ≤ PM10 ≤ 190), then (AQI is poor or 
very poor)
Fact 6: If (191 ≤ PM10 ≤ 238), then (AQI is poor or 
very poor)
Fact 7: If (239- ≤ PM10 ≤ 286), then (AQI is poor 
or very poor)
Fact 8: If (287 ≤ PM10 ≤ 334), then (AQI is poor or 
very poor)

Flow graphs are generated corresponding these 
two sets of rules. These graphs depict different paths 
between input and output representing different deci-
sion rules with their respective strength, certainty, 
and coverage values.

Z‑number‑based AQI

In our investigation, the concept of Z-numbers is 
employed to develop metrics (indices) characteriz-
ing the air quality in the month of October, Novem-
ber, and December during Diwali time. As stated 
before, our objective is to identify different thresh-
old ranges of PM2.5 and PM10 responsible for AQI 
value to be “poor” and “very poor.” Rough set theo-
retic condition–decision support system is used to 
quantify the information associated with decision 
rules. Every decision rule has certainty and cover-
age factors. The certainty value describes the con-
ditional probability that an object belongs to the 
decision class indicated by the decision rule as well 
as it meets the condition of the rule. In contrary, 
coverage value illustrates the conditional prob-
ability of justifications behind a particular decision 
(Chaudhuri & Dutta, 2013). Based on the results 
obtained using rough set theory, the Z-based infor-
mation of B is provided (Eq. 20). A of the Z-number 
is defined as a group of classes having similar cri-
teria that define AQI. Here, we only consider two 
criteria of AQI, namely, poor and very poor. That 
is, A = {poor, very poor} where “poor” denotes AQI 
value within the range of 201–330 and “very poor” 
denotes AQI value within the range of 301–400. B 
is a measure of the degree of sureness regarding 
the value of A. As mentioned, while defining the 
Z-numbers above, A and B are usually fuzzy num-
bers denoting words or phrases. Determination of B 
is done with the help of the certainty and coverage 

values obtained from Eqs. (7) and (9). B is the set of 
reliability values, e.g., B = {Certainly, Most Likely, 
Likely, Less Likely, May be, Unlikely}.

The criteria for Z-number are defined as in Table 2.  
For example, if certainty is within the range of 
0.70 ≤ Certainty ≤ 1 and coverage also lies within the 
range of 0.70 ≤ Coverage ≤ 1 or vice versa, then it is 
labeled as “Certainly.” If the said AQI is “poor,” then 
the Z-based information can be written as Z =  < poor, 
Certainly > . Thus, this Z-based metric can also be 
used as an index to determine whether an AQI is 
“poor” or “very poor.” The label “May be” denotes 
an unusual range where the certainty lies within the 
range of 0.60 ≤ Certainty ≤ 1 and the coverage lies 
within the range of 0.01 ≤ Coverage < 50, or vice 
versa.

Validation and inverse‑decision rules

We validate the decision rules using the post-monsoon 
air quality data of the years 2020 and 2021. As men-
tioned earlier, inverse-decision rules are framed during 
validation time with the validation set. These inverse-
decision rules are used to provide justifications (rea-
sons) for given decisions. These are as follows:

Inverse Fact 1: If AQI is (poor or very poor), then 
(91 ≤ PM2.5 ≤ 135)

Table 2   Ranges of certainty and coverage and corresponding 
linguistic description using Z-number

Ranges of certainty and 
coverage

Z-number-based information

0.70 ≤ Certainty ≤ 1 and 
0.70 ≤ Coverage ≤ 1

Certainly

0.60 ≤ Certainty ≤ 1 and 
0.50 ≤ Coverage ≤ 1 or

0.60 ≤ Coverage ≤ 1 and 
0.50 ≤ Certainty ≤ 1

Most Likely

0.50 ≤ Certainty < 70 and 
0.50 ≤ Coverage < 70

Likely

0.20 ≤ Certainty < 0.50 and 
0.20 ≤ Coverage < 0.50

Less Likely

0.60 ≤ Certainty ≤ 1 and 
0.01 ≤ Coverage < 50 or

0.60 ≤ Coverage ≤ 1 and 
0.01 ≤ Certainty < 50

May be

0.00 ≤ Certainty < 0.20 and 
0.00 ≤ Coverage < 0.20

Unlikely
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Inverse Fact 2: If AQI is (poor or very poor), then 
(136 ≤ PM2.5 ≤ 180)
Inverse Fact 3: If AQI is (poor or very poor), then 
(181 ≤ PM2.5 ≤ 225)
Inverse Fact 4: If AQI is (poor or very poor), then 
(226 ≤ PM2.5 ≤ 270)
Inverse Fact 5: If AQI is (poor or very poor), then 
(143 ≤ PM10 ≤ 190)
Inverse Fact 6: If AQI is (poor or very poor), then 
(191 ≤ PM10 ≤ 238)
Inverse Fact 7: If AQI is (poor or very poor), then 
(239- ≤ PM10 ≤ 286)
Inverse Fact 8: If AQI is (poor or very poor), then 
(287 ≤ PM10 ≤ 334)

The same criteria for Z-number as mentioned in 
Table  2 are used while implementing inverse rules. 
The overall research framework is illustrated in a 
block diagram (Fig. 2).

Results and discussion

Variation in PM2.5 and PM10 during Diwali

On a normal, pre-Diwali, Diwali, or post-Diwali day, 
the diurnal variation (6–6 a.m.) of PM10 and PM2.5 
is illustrated in Fig. 3 based on the Diwali data dur-
ing 2019, as an example. It is observed that the day-
time PM10 and PM2.5 concentrations on normal and 
pre-Diwali days are clearly similar and lower than 
those on Diwali and post-Diwali days. However, the 
concentrations of PM10 and PM2.5 were consistently 
greater at night than during the day time. During the 
Diwali, as well as before (pre) and after (post) Diwali, 
the night-time concentrations of PM10 and PM2.5 
peaked between 8 p.m. and 3 a.m., indicating that 
the majority of the firework activity took place dur-
ing that time. The influence of firework activity dur-
ing the night lasted until the next day morning, as we 
found that the concentrations of these two pollutants 
increase on the Diwali and post-Diwali days during 
6 a.m.–1 p.m. as compared to pre-Diwali and normal 
days. The pollution levels remained high from several 
days to about a month instead of subsiding after the 
Diwali. PM, generated during firecracker burning, has 
an important part in the environment since various 
ions and particles adsorbed by them. Both PM10 and Fig. 2   Block diagram showing proposed research framework
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Fig. 3   Diurnal variation of a PM2.5 and b PM10 during Diwali, pre-Diwali, post-Diwali, and normal day
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PM2.5 can penetrate the respiratory system; however, 
atmospheric particulate matter PM2.5 which is about 
3% the diameter of a human hair is more harmful 
because it can travel deep into the lungs and cause a 
wide range of respiratory and cardiovascular diseases, 
as well as cancer.

Flow graph and explainability

As stated earlier, a flow graph is associated with a 
decision table. It is a directed acyclic graph in which a 
directed branch x connects the input and output nodes 
(viz., C(x) and D(x), respectively) corresponding to a 
decision rule C →

x
D . The through flow of a branch is 

represented by the decision rule’s strength factor 
(Pawlak, 2004). Figures 4 and 5 show graphical repre-
sentation of two flow graphs corresponding to PM2.5 
and PM10. As mentioned earlier, the concentrations of 
PM2.5 and PM10 are divided into four ranges, so there 
are four roots for each of PM2.5 and PM10 satisfying 
the decisions — “poor” and “very poor” AQI. Every 
root covers some strength, certainty, and coverage val-
ues which are visualized easily with the help of flow 
graph. This representation enables determining the 
probable roots for each prediction with priority.

The term “explainable AI” or “interpretable AI” 
refers to human being able to understand the path that 
artificial intelligence technology took to make a deci-
sion using dynamically generated graphs or textual 
descriptions. Flow graphs in Figs.  4 and 5 that rep-
resent two decision tables provide a clear insight into 
the decision-making process with strength, certainty, 
and coverage values; thereby demonstrating the inter-
pretation ability or explanation ability of the proposed 
condition-decision support system to make air-quality 
prediction.

Results of condition‑decision support system using 
design set

In this study, we apply rough set theory to identify 
the threshold ranges of PM2.5 and PM10 that make 
degradation of air quality in the months of October, 
November, and December during Diwali over Kol-
kata. We consider the certainty and coverage val-
ues of a rough set theoretic rule for a specific deci-
sion with different conditions. These values were 
obtained using Eqs. (7) and (9), respectively. Higher 

values of certainty and coverage mean better predic-
tion. Every decision rule has two parts — condition 
(i.e., different ranges of pollutants) and decision (i.e., 
AQI categories). Figure 6 displays “poor” and “very 
poor” AQI which are caused by different threshold 
ranges of PM2.5. With the range (91–135) µg/m3, i.e., 
91 ≤ PM2.5 ≤ 135 (Fact 1), the higher values of cer-
tainty (0.70) and coverage (1.00) are obtained when 
AQI is “poor” (Fig. 6a). Here, the certainty factor of 
0.70 for the said rule means, 70% of the days fulfil 
the condition and the decision of the same rule, and 
30% are missed predictions. Furthermore, the cer-
tainty factor of 1.00 for the aforementioned rule 
indicates that 100% of the days which fulfil the deci-
sion also fulfil the condition of the rule. These two 
values together led to overall superior prediction by 
that rule. The results further imply that the certainty 
of occurrence of the “very poor” AQI is maximum 
(1.00) when PM2.5 remains within 136 ≤ PM2.5 ≤ 180, 
181 ≤ PM2.5 ≤ 225, and 226 ≤ PM2.5 ≤ 270 (Facts 2, 3, 
and 4). However, coverage values in those cases are 
found to be 0.57, 0.18, and 0.01, respectively, thereby 
giving an overall moderate prediction. For the other 
range 91 ≤ PM2.5 ≤ 135, the certainty and coverage 
values for “very poor” air quality are seen to be 0.30 
and 0.24, respectively, thereby indicating poor predic-
tion (Fig. 6b).

Figure  7 depicts the values of the certainty and 
coverage factors for different threshold ranges of 
PM10 for the prevalence of “poor” and “very poor” 
air quality during the post-monsoon season. Here, 
the certainty for the occurrence of “poor” air quality 
is 0.90 and its coverage is 0.54 when PM10 remains 
within the range of 143 ≤ PM10 ≤ 190 (Fig. 7a). This 
leads to an overall good prediction. For the same air 
quality, the certainty and coverage values are 0.35 
and 0.46 respectively for the range 191 ≤ PM10 ≤ 238. 
The optimum value of certainty factor, i.e., 1.00, 
is found for the air quality being “very poor” in the 
range of (239- ≤ PM10 ≤ 286) and (287 ≤ PM10 ≤ 334), 
as shown in Fig. 7b (Facts 7 and 8). However, cov-
erage values here are obtained as 0.34 and 0.15, 
respectively, implying that 66% and 85% of predic-
tions are missed, indicating moderate prediction. Fur-
thermore, certainty and coverage factors are 0.65 and 
0.48 respectively for the AQI being “very poor” in 
the range of 191 ≤ PM10 ≤ 238. This leads to overall 
moderately good prediction. Again, these two factors 
are seen to be 0.10 and 0.03 respectively for the range 
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143 ≤ PM10 ≤ 190, indicating bad prediction with 
huge number of false alarms.

Z‑number‑based information

Since unreliability is an indissoluble aspect of real-
world data, precise decision-making necessitates accu-
rate information. The idea of Z-number deals with this 

unreliability and vagueness by incorporating them into 
mathematical calculations. The use of Z-numbers to 
obtain a linguistic description of an AQI has various 
implications. Certainty and coverage values and cor-
responding linguistic descriptions using Z-number for 
different rules are presented in Table 2. Table 3 depicts 
Z-number describing AQI criteria, i.e., “poor” and 
“very poor,” for different threshold ranges of PM2.5 

Fig. 4   Flow graph for the decision algorithm of PM2.5
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and PM10 with decision rules. For example, when 
PM2.5 is within the range of 91 ≤ PM2.5 ≤ 135, Z-based 
information of AQI can be computed as Z =  < poor, 
Certainly > and Z =  < very poor, Less Likely > . That 
means, with the aforesaid range of PM2.5, the reliabil-
ity of “poor” AQI is “Certainly” having certainty and 
coverage values 0.70 and 1.00, respectively, and the 
reliability of “very poor” AQI is “Less Likely” with 

certainty and coverage values 0.30 and 0.24, respec-
tively. Similarly, in the range of 143 ≤ PM10 ≤ 190, 
the measurement of Z-based AQI can be written 
as Z =  < poor, Most Likely > and Z =  < very poor, 
Unlikely > . One may note that, when both certainty 
and coverage values are equal to or below 0.20, 
their Z-numbers would contain reliability value as 
“Unlikely.” Likewise, for all the threshold ranges of 

Fig. 5   Flow graph for the decision algorithm of PM10
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Fig. 6   The variations of the certainty and coverage factors with the facts corresponding to the different ranges of PM2.5 as condition 
and occurrences of a poor and b very poor AQI as decision
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PM10 and PM2.5, linguistic summarization of AQI has 
been carried out (Table 3). From this, one can infer that 
the reliability of our prediction of different criteria of 
air quality (AQI), viz., “poor” and “very poor,” can be 
represented efficiently with the help of Z-numbers.

Validation based on inverse‑decision rules

Inverse-decision rules are described earlier. These 
are used for validating the decisions of the decision 
rules of design set with explanations for air-quality 
prediction. Every inverse-decision rule has two parts 
— condition (i.e., AQI categories) and decision (i.e., 
ranges of pollutants). That means, for a given predic-
tion, say AQI is “poor,” we just traverse back to the 
inverse direction, i.e., from output towards the input 
side, and compute the certainty and coverage values 
of that inverse-decision rule using Eqs. (7) and (9). 
The rule having higher certainty and coverage values 
gives a better prediction.

Figure 8 depicts the certainty and coverage values 
of the AQI categories, viz., “poor” and “very poor,” 
for the prediction of the appropriate range of PM2.5 
and PM10 using inverse-decision rules. Given that 
AQI is “poor,” the maximum value of the certainty 
factor here is 1.00, and the coverage factor is 0.71 for 
the prediction of PM2.5 concentrations when PM2.5 
lies within the range of 91 ≤ PM2.5 ≤ 135. This indi-
cates that for this range of PM2.5, one gets excellent 
prediction of air quality being “poor” (Fig. 8a). The 

certainty and coverage values for all other thresh-
old ranges are seen to be 0.00 when AQI is “poor.” 
Thus, it is clear that during the post-monsoon months 
of October, November, and December, the range 
of PM2.5, i.e., 91 ≤ PM2.5 ≤ 135, is alone contribut-
ing to air quality being “poor.” These results also 
validate the decisions obtained from the design set 
(Fig.  6a). Similarly, in the case of PM10, when AQI 
is “poor,” the optimum value of the certainty is 0.56 
and that of the coverage factor is 0.81 correspond-
ing to the range 143 ≤ PM10 ≤ 190, thereby inferring 
that a good prediction comes because of this range 
(Fig.  8b). On the other hand, for the same air qual-
ity “poor,” the certainty factor for PM10, lying within 
the range of 191 ≤ PM10 ≤ 238, is 0.41 and the cov-
erage factor for the same range is 0.46. This means, 
the range 191 ≤ PM10 ≤ 238 of PM10 is responsible 
for moderate prediction of “poor” air quality. With 
the range 239- ≤ PM10 ≤ 286, these two factors are 
0.03 and 0.09 respectively causing a bad prediction. 
Thus, the range 143 ≤ PM10 ≤ 190 contributes mostly 
to air quality being “poor” which validates the result 
obtained in the case of design set.

Figure 8a depicts that when AQI is “very poor,” the  
maximum values of certainty (= 0.53) and coverage  
(= 1.00) are found for PM2.5, lying in the range of 136 ≤  
PM2.5 ≤ 180. That means, PM2.5 is responsible at most 
for good prediction of “very poor” air quality, and this 
too is possible for the range 136 ≤ PM2.5 ≤ 180. For  
PM10, with the same AQI category, the certainty and 

Table 3   Linguistic 
description of AQI 
using Z-number-based 
information obtained from 
decision rules for design set

Decision rules Z-number-based information 
of air quality

Fact 1: If (91 ≤ PM2.5 ≤ 135), then (AQI is poor or very poor) Z =  < poor, Certainly > 
Z =  < very poor, Less Likely > 

Fact 2: If (136 ≤ PM2.5 ≤ 180), then (AQI is poor or very poor) Z =  < poor, Unlikely > 
Z =  < very poor, Most Likely > 

Fact 3: If (181 ≤ PM2.5 ≤ 225), then (AQI is poor or very poor) Z =  < poor, Unlikely > 
Z =  < very poor, May be > 

Fact 4: If (226 ≤ PM2.5 ≤ 270), then (AQI is poor or very poor) Z =  < poor, Unlikely > 
Z =  < very poor, May be > 

Fact 5: If (143 ≤ PM10 ≤ 190), then (AQI is poor or very poor) Z =  < poor, Most Likely > 
Z =  < very poor, Unlikely > 

Fact 6: If (191 ≤ PM10 ≤ 238), then (AQI is poor or very poor) Z =  < poor, Less Likely > 
Z =  < very poor, May be > 

Fact 7: If (239- ≤ PM10 ≤ 286), then (AQI is poor or very poor) Z =  < poor, Unlikely > 
Z =  < very poor, May be > 

Fact 8: If (287 ≤ PM10 ≤ 334), then (AQI is poor or very poor) Z =  < poor, Unlikely > 
Z =  < very poor, May be > 
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Certainty Coverage Certainty Coverage

PM2.5 <poor> PM2.5 <very poor>

91-135 1.00 0.71 0.42 0.29

136-180 0.00 0.00 0.53 1.00

181-225 0.00 0.00 0.05 1.00

226-270 0.00 0.00 0.00 0.00
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143-190 0.56 0.81 0.13 0.19
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Fig. 8   The variations of the certainty and coverage factors of inverse-decision rules for a PM2.5 and b PM10 during validation
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coverage factors for the range 143 ≤ PM10 ≤ 190 are 0.13 
and 0.19, and for the range of 239- ≤ PM10 ≤ 286 are 
0.26 and 0.91, respectively. For the other two ranges, 
viz., 287 ≤ PM10 ≤ 334 and 191 ≤ PM10 ≤ 238, these two 
factors are found to be 0.11 and 1.00, and 0.50 and 0.54, 
respectively (Fig. 8b). From these, it can be inferred that 
PM10 is responsible at most for moderate prediction of 
“very poor” air quality and that would happen for its 
range 191 ≤ PM10 ≤ 238.

Validation of Z‑number‑based information

Table  4 depicts Z-numbers describing AQI criteria 
of different inverse-decision rules. Inverse-decision 
rules are just reverse to that of decision rules and pro-
vide interpretability of the same. Validation is done 
to validate the decision rules of the design set. So, a 
comparative study of Z-based information is made 
with respect to the design set during validation. For 
example, when PM2.5 is “poor,” the Z-measure for the 
range 91 ≤ PM2.5 ≤ 135 is Z =  < poor, Certainly > and 
Z =  < very poor, Less Likely > (Inverse Fact 1), which 
are exactly the same as Z-measures obtained from the 
Fact 1. Thus, it can be said that when the value of PM2.5 
lies within the range of 91 ≤ PM2.5 ≤ 135, the air quality 
is < poor, Certainly > and there is a chance of breathing 
discomfort to people on prolonged exposure (Table 1). 
In this way, this study correlates air pollution meas-
urement with possible health impacts. Except a few 

deviations, the Z-measures obtained from the inverse-
decision rules are exactly similar to those of the decision 
rules and also validate the same. Below are examples of 
some deviations though negligible. Z-measure for Fact 
4 is < very poor, May be > , while Inverse Fact 4 for the 
same is Z =  < very poor, Unlikely > . Z-measure for deci-
sion rule 6 (Fact 6) is < very poor, May be > , while the 
same for the inverse-decision rule 6 (Inverse Fact 6) 
is < very poor, Likely > . The confusion in reliability lies 
mostly between two adjacent metrics (linguistic hedges). 
In this context, one may note that the metric “May be” 
corresponds to an unusual case where the certainty 
for the prediction lies within the range of 0.60 ≤ Cer-
tainty ≤ 1 while the coverage lies within the range of 
0.01 ≤ Coverage < 50, or vice versa, and this makes the 
conclusion on a prediction very difficult.

Further, it may be mentioned that the certainty and 
coverage factors of the rules (and hence their linguis-
tic matrices) depend to some extent on the size of 
the dataset. In the aforesaid results, the sizes of the 
design set and validation set are different. In a part of 
the investigation, to corroborate this, we have divided 
the design set into two equal parts and obtained the 
decision rules separately. Interestingly, the rules 4 
and 6 obtained from both the parts are seen to match 
the corresponding inverse-decision rules in terms of 
Z-based information.

The AQI values and corresponding ambient con-
centrations (health breakpoints) are presented in 

Table 4   Linguistic description of AQI using Z-number-based information obtained from inverse-decision rules for validation set

Inverse-decision rules Z-number-based information of air quality

Inverse Fact 1: If AQI is (poor or very poor), then (91 ≤ PM2.5 ≤ 135) Z =  < poor, Certainly > 
Z =  < very poor, Less Likely > 

Inverse Fact 2: If AQI is (poor or very poor), then (136 ≤ PM2.5 ≤ 180) Z =  < poor, Unlikely > 
Z =  < very poor, Most Likely > 

Inverse Fact 3: If AQI is (poor or very poor), then (181 ≤ PM2.5 ≤ 225) Z =  < poor, Unlikely > 
Z =  < very poor, May be > 

Inverse Fact 4: If AQI is (poor or very poor), then (226 ≤ PM2.5 ≤ 270) Z =  < poor, Unlikely > 
Z =  < very poor, Unlikely > 

Inverse Fact 5: If AQI is (poor or very poor), then (143 ≤ PM10 ≤ 190) Z =  < poor, Most Likely > 
Z =  < very poor, Unlikely > 

Inverse Fact 6: If AQI is (poor or very poor), then (191 ≤ PM10 ≤ 238) Z =  < poor, Less Likely > 
Z =  < very poor, Likely > 

Inverse Fact 7: If AQI is (poor or very poor), then (239 ≤ PM10 ≤ 286) Z =  < poor, Unlikely > 
Z =  < very poor, May be > 

Inverse Fact 8: If AQI is (poor or very poor), then (287 ≤ PM10 ≤ 334) Z =  < poor, Unlikely > 
Z =  < very poor, May be > 
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Table  5 as indicated by the CPCB. The assessment 
results of our present study reveal that the value of 
PM2.5 when lies within the range of 91 ≤ PM2.5 ≤ 135, 
the maximum probability of AQI is to be “poor” 
(Z-based information of AQI is < poor, Certainly >) 
during the Diwali periods over Kolkata (Table  3). 
From Table  5, AQI is “poor” when the value of 
PM2.5 lies within the range of (91–120), which 
matches our observations. Similarly, from Table  5, 
when AQI is “poor,” the breakpoint concentrations 
of PM10 lie within the range of (251–350) which 
contradicts the results obtained in our study. For 
example, for both the ranges of (239- ≤ PM10 ≤ 286) 
and (287 ≤ PM10 ≤ 334), the Z-measure of the AQI 
is < poor, Unlikely > . Meanwhile, when PM10 lies 
within the range of 143 ≤ PM10 ≤ 190, Z-based infor-
mation of AQI is < poor, Most Likely > . Likewise, 
during Diwali over Kolkata, when PM2.5 lies within 
the range of 136 ≤ PM2.5 ≤ 180, then the maximum 
probability of occurrences of “very poor” AQI is 
maximum (Z-based information of AQI is < very 
poor, Most Likely >) which falls within the range 
of (121–250) as mentioned in Table  5, i.e., when 
AQI is “very poor,” the breakpoint concentrations 
of PM2.5 lie within the range of (121–250). Also, 
from our study, when PM2.5 lies within the range of 
181 ≤ PM2.5 ≤ 225, Z-based measure of AQI is < very 
poor, May be > . Similarly, from Table 5, when AQI 
is “very poor,” the breakpoint concentrations of 
PM10 lie within the range of (351–430) µg/m3. But 
maximum concentration of PM10 obtained during the 
Diwali period of Kolkata is 334 µg/m3 which is lower 
than the aforesaid range of (351–430) µg/m3. Thus, 
there is a wide gap between the assessment result of 
determining particulate matter concentrations (i.e., 

PM10) and the index value in the case of both “poor” 
and “very poor” AQI (Table 5). Thus, concentrations 
of pollutants can differ from the index value as indi-
cated by the CPCB regarding location and situation.

Conclusions

Despite not being as filthy as Delhi, Kolkata is becom-
ing as India’s second most polluted metropolis (WHO, 
2018). Like other metro cities, Kolkata has recognized 
several issues that contribute to air pollution. The air 
quality of the highly polluted mega city Kolkata has 
deteriorated as a result of the rampant cracker burst-
ing on Diwali, despite the restrictions. Furthermore, 
the temperature inversion causes a blanket of smog to 
grow over the research area. As a result, air quality as 
measured by the AQI has deteriorated significantly.

In the present study, rough set theoretic approach 
is used for analyzing air quality data to obtain pre-
diction during the post-monsoon months of Octo-
ber, November, and December. The findings of the 
present study led to the conclusion that the certainty 
and coverage values, as obtained for different rough 
set theoretic decision rules under various conditions, 
play the most crucial role in prediction. Combining 
the impact of certainty and coverage factors of a deci-
sion rule provides an information measure (AQI) of 
the prediction.

The method of using Z-numbers to provide a lin-
guistic description of such prediction of two differ-
ent categories in terms of AQI is unique. With the 
use of such linguistic summarization, Z-numbers 
describe the predictability of the results as obtained 
from the rough set-based condition-decision support 

Table 5   Breakpoints for AQI scale 0–500 (units: μg/m3 unless mentioned otherwise) (CPCB, 2014)

* One hourly monitoring (for mathematical calculation only)

AQI category (range) PM10
24-h

PM2.5
24-h

NO2
24-h

O3
8-h

CO 
8-h
(mg/m3)

SO2
24-h

NH3
24-h

Pb
24-h

Good (0–50) 0–50 0–30 0–40 0–50 0–1.0 0–40 0–200 0–0.5
Satisfactory (51–100) 51–100 31–60 41–80 51–100 1.1–2.0 41–80 201–400 0.6–1.0
Moderate (101–200) 101–250 61–90 81–180 101–168 2.1–10 81–380 401–800 1.1–2.0
Poor (201–300) 251–350 91–120 181–280 169–208 10.1–17 381–800 801–1200 2.1–3.0
Very poor (301–400) 351–430 121–250 281–400 209–748* 17.1–34 801–1600 1201–1800 3.1–3.5
Severe (401–500) 430 +  250 +  400 +  748 +* 34 +  1600 +  1800 +  3.5 + 
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system. This measure is also treated as a quantitative 
index for determining the threshold ranges of PM2.5 
and PM10 that cause the degradation of air quality in 
the aforementioned months during Diwali leading to 
AQI “poor” and “very poor.” Thus, the public can 
track the status of their local, regional, and national 
air quality without knowing the details of the moni-
toring data on which they are based. Moreover, a 
more sophisticated technique has been developed to 
convey the health risk associated with the ambient 
concentrations.

The interpretation of the decision is done using the 
concept of explainable artificial intelligence (XAI). 
We have applied flow graph as an explanation method 
to represent the rough set-based condition-decision 
support system for the prediction of air quality. This 
determines all possible PM2.5 and PM10 ranges with 
different strength, certainty, and coverage values for a 
given prediction by indicating the corresponding mul-
tiple probable pathways.

Traditional computational approaches do not appear 
to be flexible or capable enough to address complicated 
real-world environmental challenges successfully. On 
the other hand, uncertainty management, temporal rea-
soning, spatial reasoning, and evaluation are among the 
major concerns behind designing IEDSS. The primary 
purpose of the study is to demonstrate how to combine 
the notion of rough set-based condition-decision sup-
port system with decision rules, inverse-decision rules 
with flow graph for decision-making, and Z-numbers 
for quantification of semantic information towards the 
measurement, prediction, and explanation. Combina-
tion of these techniques can therefore be viewed as a 
hybrid system in soft computing paradigm leading to 
an advanced IEDSS for air pollution monitoring and 
prediction. The work is significant not only in the area 
of air pollution but also in the domain of soft comput-
ing and machine intelligence.

Our study has certain concerns because of some 
assumptions made, and these may lead to several 
scopes for future research in the areas we have high-
lighted. (1) We have split the ranges of PM2.5 and 
PM10 that make the air quality in Kolkata “very poor” 
and “poor” in four intervals. One may consider split-
ting these ranges at different intervals. Then the results 
may vary, though the way of representation will be the 
same. (2) When splitting the dataset, it is assumed that 
there is no initial overlapping.

Our study demonstrates that for assessing “poor” 
and “very poor” AQI during the Diwali period in 
Kolkata, satisfactory results are obtained for different 
ranges of PM2.5. However, a significant discrepancy 
is found between the observed concentration range of 
PM10 and the breakpoint concentrations for predicting 
AQI “poor” and “very poor.” Moreover, the observed 
concentration ranges of PM10 during the Diwali 
period, signifying “poor” and “very poor” AQI, are 
lower than the breakpoint concentrations. Thus, con-
centrations of pollutants may vary depending on the 
location and situation. It may be mentioned that the 
AQI is utilized by national and local environmental 
organizations to provide real-time air quality infor-
mation for a particular location. WHO (2006) recom-
mends that when formulating policy targets, such as 
AQI, governments should consider their own local 
circumstances carefully before implementing the 
guidelines directly as legally based standards. Focus-
ing on the aforementioned, it is suggested that the 
regulatory and enforcement agencies should review 
the present air quality monitoring requirements. Fur-
thermore, it is essential to develop a more comprehen-
sive monitoring system, regulations, and appropriate 
implementation to obtain the most effective and effi-
cient method of improving air quality. Additionally, 
there are several secondary pollutants that are formed 
in the lower atmosphere as a result of chemical reac-
tions of primary pollutants. While paying more atten-
tion to the combined effects of several pollutants, low 
level exposure, and quick public reporting, there is 
still a lot of progress to be made. This study suggests 
the formulation of an improved AQI.

Finally, we propose that the future work on this 
topic be expanded to include other pollutants, e.g., 
nitrogen dioxide (NO2) and ozone (O3), to measure 
their impact on the deterioration of air quality. The 
novel concept of Z-number-based AQI, as developed 
here, can be implemented to characterize other tasks 
in pollution analytics.
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