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Abstract—This paper presents a Z-source inverter system and
control for general-purpose motor drives. The Z-source inverter
system employs a unique LC network in the dc link and a small
capacitor on the ac side of the diode front end. By controlling the
shoot-through duty cycle, the Z-source can produce any desired
output ac voltage, even greater than the line voltage. As a result,
the new Z-source inverter system provides ride-through capability
duringvoltage sags, reduces line harmonics, improves power factor
and reliability, and extends output voltage range. Analysis, simu-
lation, and experimental results will be presented to demonstrate
these new features.

Index Terms—Line harmonics, motor drives, voltage sags,
Z-source inverter.

I. INTRODUCTION

T
HE TRADITIONAL general-purpose motor drive (or

adjustable speed drive—ASD) system is based on the

voltage-source inverter (V-source inverter), which consists of a

diode rectifier front end, dc link capacitor, and inverter bridge,

as shown in Fig. 1. In order to improve power factor, either

an ac inductor or dc inductor is normally used. The dc link

voltage is roughly equal to 1.35 times the line voltage, and

the V-source inverter is a buck (or step-down) converter that

can only produce an ac voltage limited by the dc link voltage.

Because of this nature, the V-source inverter based ASD system

suffers the following common limitations and problems.

1) Obtainable output voltage is limited quite below the input

line voltage. Fig. 1 illustrates voltages of a three-phase

230-V drive system. The diode rectifier fed by the 230-V

ac line produces about 310-V dc on the dc-link, which is

roughly 1.35 times the line-to-line input voltage under the

assumption of heavy load and continuous “double-hump”

input current for large ( 50 kW) drives that typically

have an approximately 3% of inductance on the ac or dc

side. For light load operation or small drives with no sig-

nificant inductance, the line current becomes discontin-

uous “double-pulse,” and the dc voltage is closer to 1.41

times the line-to-line input voltage (i.e., 325-V dc for a

230-V ac input). The inverter can only produce a max-

imum 190-V ac in the linear modulation range given the

310-V dc under the heavy load operation when the voltage

is needed the most. For a 230-V motor, the low obtain-

able output voltage significantly limits output power that

is proportional to the square of the voltage. This is a very
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Fig. 1. Traditional variable speed drive system configuration.

Fig. 2. Voltage sag results in dc link voltage drop and shut down.

undesirable situation for many applications because the

motor and drive system has to be oversized for a required

power.

2) Voltage sags can interrupt an ASD system and shut

down critical loads and processes. Over 90% of power

quality related problems are from momentary (typically

0.1–2 s) voltage sags of 10–50% below nominal (Fig. 2

illustrates voltage sags). The dc capacitor in an ASD is

a relatively small energy storage element, which cannot

hold dc voltage above the operable level under such

voltage sags. Lack of ride-through capacity is a serious

problem for sensitive loads driven by ASDs [1]–[6]. [6]

details the vulnerability of a ASD and the dc voltage

under three-phase and two phase voltage sags. Solutions

have been sought to boost ride-through [2]–[6]. The

ASD industry provides options using flyback converter

or boost converter with energy storage or diode rectifier

(Fig. 3) to achieve ride-through; however, these options

come with penalties of cost, size/weight, and complexity.

3) Inrush and harmonic current from the diode rectifier can

pollute the line. Low power factor is another issue of the

traditional ASD system.

4) Performance and reliability are compromised by the

V-source inverter structure, because 1) miss-gating from

EMI can cause shoot-through that leads to destruction

of the inverter, 2) the dead time that is needed to avoid

shoot-through creates distortion and unstable operation

at low speeds, and 3) common-mode voltage causes shaft

current and premature failures of the motor.

A recently developed new inverter, the Z-source inverter [7],

has a niche for ASD systems to overcome the aforementioned

problems [10]. A Z-source inverter based ASD system can:

0885-8993/$20.00 © 2005 IEEE
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Fig. 3. Traditional variable speed drive system utilizes a dc–dc boost converter
with energy storage or diode rectifier to provide ride-through.

1) produce any desired output ac voltage, even greater than

the line voltage, regardless of the input voltage, thus re-

ducing motor ratings;

2) provide ride-through during voltage sags without any ad-

ditional circuits;

3) improve power factor and reduce and harmonic current

and common-mode voltage.

This paper presents the Z-source inverter ASD system config-

uration, its equivalent circuit, analysis, and control. Simulation

and experimental results are included to prove the concept and

demonstrate the features of the new ASD system.

II. Z-SOURCE ASD SYSTEM

Fig. 4 shows the main circuit configuration of the proposed

Z-source inverter ASD system. Similar to that of the traditional

ASD system, the Z-source ASD system’s main circuit consists

of three parts: a diode rectifier, dc-link circuit, and an inverter

bridge. The differences are that the dc link circuit is imple-

mented by the Z-source network ( , and ) and small

input capacitors ( , and ) are connected to the diode rec-

tifier. These changes can be easily retrofitted and implemented

from the traditional ASD systems. Since the Z-source inverter

bridge can boost the dc capacitor ( and ) voltage to any

value that is above the average dc value of the rectifier, a de-

sired output voltage is always obtainable regardless of the line

voltage. Using the 230-V ASD system as an example, the dc

capacitor voltage can be boosted to 350-V or greater in order to

produce 230-V ac output regardless of the line voltage. Theoret-

ically, the dc capacitor voltage can be boosted to any value above

the inherent average dc voltage (310–325 V for a 230-V line)

of the rectifier, by using shoot-through zero switching states

[7] when a higher output voltage is needed or during voltage

sags. The dc capacitor voltage is, however, limited by the de-

vice voltage rating in practical use.

Fig. 4. Main circuit configuration of proposed Z-source inverter ASD system.

Fig. 5. Six possible conduction intervals per fundamental cycle. Each
conduction interval is formed from a combination of one upper diode
(D ;D , or D ), one lower diode (D ;D , or D ), and one capacitor
(C ;C , or C ).

Fig. 6. Equivalent circuit of the diode bridge viewed from the Z-source
network.

III. EQUIVALENT CIRCUIT, OPERATING PRINCIPLE,

AND CONTROL

The basic operating principle and control of the Z-source in-

verter fed by a dc source such as fuel cell stack have been de-

tailed in [7]. In the proposed ASD system in Fig. 4, a diode recti-

fier bridge with input capacitors ( , and ) serves as the

dc source feeding the Z-source network. The input capacitors

are used to suppress voltage surge that may occur due to the line

inductance during diode commutation and shoot-through mode

of the inverter, thus requiring a small value of capacitance. At

any instant of time, only two phases that have the largest poten-

tial difference may conduct, carrying current from the ac line to

the dc side. Fig. 5 shows the rectifier’s six possible conduction

intervals per cycle. The two diodes ( or and or )

conduct as a pair with the corresponding capacitor or ,

respectively. Therefore, as viewed from the Z-source network,

the diode bridge can be modeled as a dc source in series with

two diodes, as shown in Fig. 6. Note that the order of the suffixes



PENG et al.: Z-SOURCE INVERTER FOR MOTOR DRIVES 859

Fig. 7. Reduced circuit during the interval when the potential difference
between phases “a” and “b” is the largest.

corresponds with their six combinations, e.g., and con-

ducting as a pair with capacitor and conducting as

a pair with capacitor , and so on. Furthermore, the two diodes

conduct in a pair and in series acting like one when viewed from

the Z-source network. As a result, the proposed Z-source ASD

system is reduced to the basic Z-source inverter that has been

presented in [7] and illustrated in Fig. 7 of [7].

Take one interval as an example to further explain the oper-

ating principle and operating modes illustrated in Figs. 5 and

6. When the potential difference between phases “a” and “b” is

the largest, diodes and conduct as a pair in series with

capacitor as shown in Figs. 5 and 6. The other diodes are

reversely biased and cut off. Therefore, phase “c” has no line

current (or a small resonant/or residual current may exist be-

tween the line impedance and capacitors and ). Ignoring

this small current in phase “c,” Fig. 4 can be reduced into Fig. 7.

During this interval and from this reduced circuit, there are three

operation modes depending on the inverter bridge’s switching

state.

A. Mode I

The inverter bridge is operating in one of the six traditional

active vectors, thus acting as a current source viewed from

the Z-source circuit. The diodes ( and ) conduct and

carry currents. Fig. 8(a) shows the circuit of this mode. In

the traditional ASD system, the diode bridge may not con-

duct depending on the dc capacitor voltage level. However,

the Z-source circuit always forces diodes ( and ) to

conduct and carry the current difference between the inductor

current and inverter dc current as shown

in Fig. 8(a). Note that both inductors have an identical current

value because of the circuit symmetry. This unique feature

widens the line current conducting intervals, thus reducing

harmonic current.

B. Mode II

The inverter bridge is operating in one of the two traditional

zero vectors and shorting through either the upper or lower three

devices, thus acting as a open circuit viewed from the Z-source

circuit. The diodes ( and ) conduct and carry currents.

Fig. 8(b) shows the circuit for this mode. Again, under this

mode, the two diodes (( and ) have to conduct and carry

the inductor current, which contributes to the line current’s har-

monic reduction.

(a)

(b)

(c)

Fig. 8. (a) Mode I circuit when the inverter bridge is producing one of the
six traditional active vectors. (b) Mode II circuit when the inverter bridge is
producing one of the two traditional zero vectors. (c) Mode III circuit when the
inverter bridge is producing one of the shoot-through states.

C. Mode III

The inverter bridge is operating in one of the seven shoot-

through states. During this mode, both diodes are off, separating

the dc link from the ac line. The line current flows to the ca-

pacitor . Fig. 8(c) shows the resultant circuit. This is the

shoot-through mode to be used every switching cycle during

the traditional zero vector period generated by the PWM con-

trol. Depending on how much a voltage boost is needed, the

shoot-through interval or its duty cycle is deter-

mined [7]. It can be seen that the shoot-through interval is only

a fraction of the switching cycle; therefore it needs a relatively

small capacitor to suppress voltage.

In summary, there are six diode conduction/rectification inter-

vals per line cycle that are determined by the line side voltage;

each interval has three operation modes that are determined

by the inverter bridge’s switching states. There are a total of

15 switching states: six traditional active states, two traditional

zero states, and seven shoot-though states. The shoot-through

switching states provide both challenges and opportunities in

terms of PWM control. A simple PWM control for the Z-source

inverter bridge was proposed in [7] and more sophisticated con-

trol methods can be found in [8] and [9]. The following para-

graph will describe the shoot-through operation in more detail

and provide a summary of the theoretical relationships.
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The operating principle and control of the Z-source inverter

itself have been detailed in [7]. The traditional three-phase

V-source inverter has six active states in which the dc voltage

is impressed across the load and two zero states, in which the

load terminals are shorted through either the lower or upper

three devices, respectively. However, the three-phase Z-source

inverter bridge has additional zero states when the load termi-

nals are shorted through both the upper and lower devices of

any one phase leg (i.e., both devices are gated on), any two

phase legs, or all the three phase legs. These shoot-through

zero states are forbidden in the traditional V-source inverter,

because it would cause a shoot-through. There are seven dif-

ferent shoot-through states: three shoot-through states via any

one phase leg, three shoot-through states from combinations

of any two phase legs, and one shoot-through state by all

the three phase legs. The shoot-through zero states boost dc

capacitor voltage while producing no voltage to the load. It

should be emphasized that both the shoot-through zero states

and the two traditional zero states short the load terminals

and produce zero voltage across the load, thus preserving the

same PWM properties and voltage waveforms to the load. The

only difference is the shoot-through zero states boost the dc

capacitor voltage, whereas the traditional zero states do not.

For the proposed ASD system, the three-phase inverter bridge

is controlled the same way as the traditional PWM inverter

without shoot-through when a desired output voltage is less

than 190-V ac, which is the maximum voltage obtainable from

230-V line using the linear region PWM. The diode rectifier

produces about 310 V across the dc capacitors ( and ).

When a higher output voltage is required or when the line

voltage is experiencing sags, the shoot-through zero states are

employed to boost the dc capacitor voltage. The longer time the

shoot-through zero states are used, the higher voltage one gets.

By controlling the shoot-through zero state interval, a desired

dc voltage can be maintained. All the relationships described in

detail in [7] about the dc capacitor voltage, shoot-through time

interval (or duty cycle), and output voltage hold true for the

proposed ASD system. These relationships are summarized as

and

where and are voltages across the dc capacitors,

and , respectively, and have an equal value because of the

symmetry of the circuit. is the shoot-through interval over

one switching cycle, . is the peak phase voltage produced

by the inverter. is the boost factor and is the modulation

index of the inverter. is the inherent dc voltage of the rectifier

fed from the line with a line-to-line rms value of , assuming

that voltage drop on the line impedance is negligible. In addition

to the above equations, it should be noted that the equivalent dc

voltage across the inverter bridge, is different from the dc

Fig. 9. Simulation waveforms showing line and load voltages and currents
under the nominal line voltage, 230 Vac.

capacitor voltage, or when the boost factor is greater

than 1. is expressed as

IV. SIMULATION AND EXPERIMENTAL VERIFICATION

OF THE Z-SOURCE ASD SYSTEM

To confirm the operating principle of the new ASD system,

simulations have been carried out and a 20-kVA prototype has

been built. In order to show clearly the output voltage obtained

from the inverter, an LC filter with 1-kHz cutoff frequency is

placed in between the inverter bridge and the motor. The sim-

ulation and experimental system are setup with the following

parameters.

1) Three-phase line voltage: 230 V, line impedance: 3%.

2) Load: three-phase 230-V 20-KW induction motor.

3) Input capacitors ( , and ): 10 F;

4) Z-source network: H

.

5) Switching frequency: 10 kHz.

Figs. 9 and 10 show simulation waveforms under the nom-

inal line voltage of 230-V ac. The inverter modulation index

was 1.0, producing the same PWM waveform ( ) as the tra-

ditional inverter. However, the magnitude of the output voltage

was boosted to 230 V rms and was confirmed by the sinusoidal

waveform ( ) after the 1-kHz LC filter. The traditional PWM

inverter cannot produce 230 V rms output voltage. Fig. 10 shows
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Fig. 10. Simulation waveforms of Z-source capacitor voltage and inductor
current under the nominal line voltage.

Fig. 11. Simulation waveforms showing line and load voltages and currents
under 50% voltage sag.

the inductor current and dc capacitor voltages, which have been

boosted to 343 V. Note that the traces of and coincided

with each other and so did the two inductor currents and

. The equivalent dc voltage across the inverter bridge,

was boosted to 376 V (which was confirmed from the line-to-

line inverter voltage shown in Fig. 9) and should be limited

Fig. 12. Simulation waveforms showing Z-source network capacitor voltage
and inductor current under 50% voltage sag.

Fig. 13. Prototype of the Z-source ASD system.

below the device voltage rating, which is 450 V for the 600-V

IPM. The boost factor was 1.21. Also, it is noted that the line

current contains much less harmonics than the traditional ASD

system without dc inductors and appreciably less harmonics

than the traditional ASD system even with dc inductor because

of both the Z-source inductors and input capacitors. Figs. 11 and

12 show simulation waveforms during 50% voltage sag (the line

voltage drops to 115 V ac). The waveforms clearly demonstrate

that the dc capacitor voltage can be boosted and maintained to a

desired level, which in this case is above 300 V. The boost factor

was 2.8 at a modulation index of 0.82. Again, the line current

harmonics have been reduced greatly.

A prototype has been built to further verify the operation, the-

oretical relationships of voltage boost, and simulation results of

the presented Z-source ASD system. Fig. 13 shows a photo of

the system. It should be noted that the inductors and capaci-

tors were oversized in the prototype for possible regenerative

operation during deceleration or inverter trips. The requirement

of Z-source network has been discussed in [7], which should

not differ much from the traditional drives. For large (50 kW or

above) drives, a dc inductor is commonly used to minimize line

harmonic current and voltage distortion. The inductor used in

the Z-source has the similar effect on the line current harmonic
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Fig. 14. Experimental waveforms under the nominal line voltageof 230 Vac.

reduction, which was confirmed in the above simulation results.

For a motor drive system, the required dc capacitance is rela-

tively small for a tolerable voltage ripple mainly resulted from

rectification. The dc capacitance should be sized for possible re-

generative operation.

Fig. 14 shows experimental waveforms under the nominal

line voltage of 230-V rms with the same conditions as the sim-

ulation shown in Figs. 9 and 10. Again, the inverter produced a

230-V rms value, by boosting the dc capacitor voltage to 343 V.

The dc voltage across the bridge was boosted to 376 V with a

boost factor of 1.21. Also, it can be seen that the line current

contains much less harmonics than the traditional ASD without

dc inductors, although the wave shape is different from the sim-

ulation. This is because the line voltage is distorted in the lab,

which was not considered in the simulation.

Fig. 15 shows experimental waveforms during 50% voltage

sag (the line voltage dropped to 115-V rms), the same conditions

as in the simulation of Figs. 11 and 12. The waveforms clearly

demonstrate that the dc capacitor voltage can be boosted and

maintained to a desired level, which is above 300 V. It can be

confirmed from the results that the boost factor was 2.8 and the

modulation index was 0.82.

V. CONCLUSION

This paper has presented a new ASD system based on the

Z-source inverter. The operating principle and analysis have

been given. Simulation and experimental results verified the op-

eration and demonstrated the promising features. In summary,

Fig. 15. Experimental waveforms under 50 % voltage sag.

the Z-source inverter ASD system has several unique advan-

tages that are very desirable for many ASD applications, it

1) can produce any desired output ac voltage, even greater

than the line voltage;

2) provides ride-through during voltage sags without any ad-

ditional circuits and energy storage;

3) minimizes the motor ratings to deliver a required power;

4) reduces in-rush and harmonic current.
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