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monopoles are confined. 
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1. Introduction and surrmary of results. 

We consider tile standard rrodel of an SU(2) gauge field theory without 

fermions on a hypercubic lattice 1\ in 4--dimensional Euclidean space time. 

It was introduced by Wilson [11 and is defined as follows (notations and 

definitions as in [2.] ) • 

The (randcrn) variables of tile theory are tile socalled "string bit 

variables" U [ 6 1 E G = S U (2) : A configuration U is a mp which 

assigns an element U [ b 1 E G to every directed link 6 between nearest neigh­

bour vertices x, yon tile lattice in such a way that U [b}-•U[br
1
under re­

versal of direction of tile link b. 

If C is an oriented path (with prescribed initial point if it is closed) 

which =nsists of links b
1 
••• bn then we write 

U [ C ] = U [ bn] . · · U [ 6,] ( 11 Q) 

In particular, a plaquette p (=2--dimensional unit cell) has a boundary p = 

op consisting of four links b 1 ••• b 4 - So 

(11 b) 

U [ C 1 is called tile parallel transporter arolmd C. 

The Euclidean action of tile model is (1. 2) 

L(U)= L: .C(u[pl) wdh J:. ( V) = f3 .ft. V for V €. S U (2). 
p 

Sum over p is over all plaquettes in tile lattice . Their orientation is 

jmnaterial since £. ( V) = [. ( v-•) . 

Boundary conditions will be specified in Sect. 2. 

Observables are (real) functions F (U) of tile randc:m variables U [b ]. 

Their expectation value in tile standard model is 

(1. 3) 

( 1.1!-) 

Integrations over U [b J are always over G; dU (b 1 is normlized Haar measure 

on G. (Norml\Lzed rreans JG dU [b 1 = 1) . The product over b runs over all 

links in tile. lattice. 
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The center of the gauge group G will be denoted by r . It consists of 

mtrices ± 1L. We will not distinguish them in notation fran numbers :t 1 . 

r"' z2 (the integers 0' 1 with addition rrcdulo 2) 0 

We will show that the rrcdel can be reinterpreted as a Z 2 gauge theory 

with rronopoles and fluctuating coupling constants~ 1 This new theory has as 
its variables 

u[b] £ Gjr an cl (1. 5) 

They are associated with links b resp. plaguettes p. They are not completely 

independent. The variables U [6] specify the values of a function \'[c1 = :t 1 <. r 

for every 3-cell (cube) c of the lattice. Given U , the variables o-[p1 

must satisfy 

Tf cr[p1 = p[c1 
"P (. ac 

for every cube c (1.6) 

Product is over the 6 plaguettes in the boundary d c of a cube c. 

The meaning of this equation becorres clear if we go over to additive language. 

Let~ be the unit lattice vector in )A-direction, and e_l" =- el" • Let ·p= pi'" (x) be 

the plaguette with corner points x , x + el" , x +e)-' + e v , x + e v Similar 1 y, let 

c = cf'v).(X) be the cube with corner points x, x+ ef', ... , x+~+e,+ex We define 

field strength F and curre:>t j taking values in t.he field Z 2 = [ 0, I } by the 

formulae 

= exp l.1r T (x) 
j-'V 

Then Eq. ( 1 . 6) takes the form 

cf 
(1. 7) 

(1.6') 

Af' is the difference operator on the lattice (viz. ll/-'f(x)= t(x+~~-f(x) ). 
Eq. ( 1 • 6') is to be regarded as an equation beh.;een elements of :Z2, i.e. 

integers rrcdulo 2. 

Eq. (1 .6') is of the form of 2nd Maxwell equations in the presence of 

a mgnetic =ent j. This =ent is a gauge invariant function 

of the variables u [ 61 . It is conserved. The conservation law reads 

lT ? [c] = 1 
c.:ch 

Or, equivalently, if we 

tation of 1234, then 
\ 

Ill' J;u (x) = o 

for every hypercube h ( 1.8) 

set j , ( x) = j~ (x) 
f'""' ~ 

for /'vAp a cyclic permu-

(1.8') 

• Another model with monopoles has recently been studied by Yoneya ~] • 
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Explicit expressions for I' or j and for the po!th measure in terms of the 
new variables will be derived in the next section. 

Let.us draw some tentative conclusions from the observed existence of 
nonopoles in tlle standard SU(2) nodel, and canp3.re with the nodified su (2) 

*) nodel studied in ref. [2 J 

The nodified nodel is obtained by ruling the rronopoles out of existence. 
This is done by including in tlle po!th rreasure a factor 1f e ( 11., .).,. u [p l ) . 

c p< oC 

Product over c runs over all cubes in the lattice. This arrounts to admitting 

only configurations U such that l'[c 1 = 1 for all cubes c, cp. Eq. (2.3) below. 

Both theories have formlly the same continuum limit, and the rronopoles 

in the standard nodel be=ne unimportant as A - oo in the following sense. be /-
Let X ,any non~ty set of J X j cubes. Then 

( 
LJxl 

( 1f B -\'~1)> c D(B)~ 
CEX I (1 9) 

with D((3)~const·e-f3 113 --<>0 as (3-+oo. 

This follows from inequalities (1 .23) of ref. [2] since I' [c 1 = -1 implies 

by Eq. (2. 3) below that +.- U [p] < 0 for at least one plaquette p E d c, and at 
rrost four cubes in X can have a comron plaquette in their toundaries. 

Next, let us l=k at tlle 't H=ft disorder paranEter [51. Let L: be tlle time 
t = 0 hyperplane in tlle lattice A and S a set of lin.\.;:s in L: • Its cobounda.ry 
' oS consists of these plaquettes p in L: which have an odd number of links of 

s in their boundary Op. We are rrainly interested in s' as of the fom 
' shown in Fig. 1 ; oS is a closed l=p bounding the surface S in the dual lattice 

of I.. T'ne t'H=ft disorder pararreter < B[S]> is defined as in ref. [21 . 
We give anotller definition which will be shown to be equivalent. The't H=ft 
disorder paranEter is equal to the expectation value of the Wilson l=p integral 

' [ 1 1 for a nonopole transported around oS . Equivalence is proven by perfor-
ming a duality transformtion on tlle :Z2 tlleory. In place of the variables 
cr[p] one is then dealing with new variables w[c]=:t1 attached to cubes c of 

the lattice II . These cubes rray be considered as links on the dual lattice. 

of A • We may go over to additive language as in Eq. (1. 7). To this end one 

introduces vector potentials AI' (x) taking values in the field Zz = { 0,1} by 

w[c] = exp i;rrAf' (x) = exp LlrA[c] (1.10) 

if c = cvxp(x) , f'YAf = pemutation of 1234 

(Signs are U{limportant since -A = A for elements A of Zz). The duality trans­
formation interchanges the role of electric and rragnetic fields. As a result, 

• The proof of inequality (1.12) of ref. [2] for the modified model 
has been extended to the standard model by Frohlich [4-] • 
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the cu=ent j nCM appears as an electric cu=ent coupled to the vector poten­

tial A , cp. Eq. (3. 10b) of Sect.3 for the new action, and the discussion 
follCMing it. 

h 

Let c the set of cubes protruding from plaquettes p € as in positive 
time direction. C is a closed path on the dual lattice of A • It will be 

shown that the 't H=ft disorder paran:eter takes the fonn 

where 

< :s [s) > ~ < exp c-.r f A > 
c 

,PA' c 
= L A [c 1 

CEC 

' 

{111) 

Let the closed path o S bound a rectangular area S of L · T lattice 

squares as in Fig. 1, with T » L. The Wilson I=p fonnula ( 1.11) implies 

- according to argunents due to lhlson [ 1 ] - that 

< :B [S] > ~ cond · e -TV(L) for T» L (1.12) 

and V(L) my be interpreted as potential energy of a pair of external =no­

poles a distance L apart. 

Since dynamical l!Dnopoles exist in ti1e standard l!Ddel, it seEmS reasonable to 

expect that V(L) stays bc=ded as L....,. oo . For even if strings fonn that 

tend to confine the external rronoD(Jles, t.l-tey car1 b_reak, creating a l!Dnopole 
ihe nuMbel'" of plaqueHes Jn as is 

pair out of the vacuum. Since A: as i ~ 2L + 2T this =uld al!Dill1t to a bound, 

valid for all values of (3 , of the fonn 

-<X 1-as 1 < E[s] > ~ c(LJ e 

i.e. a perimeter law. c>. my de~'id on (3 . 

(1.13) 

't H=ft has argued that boill1d (1.13) together with a mss gap should be 

a sufficient condition for confinement of static quarks~JUnfortunately it is 

not at all clear that this assertion applies to theories with dynamical nona­

poles. Therefore, even if the bound (1.13) is indeed true for the standard 

SU(2) lattice gauge theory l!Ddel, not.cl-ting can be concluded fran that. 

For the l!Ddified SU(2) l!Ddel rrentioned above it was shown in ref. [2] 

that the bound (1.13) is not satisfied for large enough (3 . Instead one 

finds an area law 

(1.14-) 

for large.enough (3 in the l!Ddified l!Ddel (low temperature phase). 
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One ITB.y ask how validity of- ( 1 • 1 3) for the standard model and ( 1 . 1 4) 

for the modified model can be compatible with the assertion ITB.de earlier that 

the rronop::>les become unimportant as (" .._,. o<> • A likely answer is that V (L) 

increases linearly with L in the standard model before it bends over,and is 

approxi!TB.tely equal to V(L) in the modified model so long as L { L 0 Cf) , 
and L0 (f)--'> oo as (' __,. oo 

One ITB.Y also ask whether the Z 2 rronop::>les are confined or not in the 

low te:rrperature phase of the standard model (B large). It is instructive 

to inquire first whether the analog of the Wilson criterium for quark 

ccnfinement is satisfied. This arrounts to looking at the 

corresp::>nding theory without the ITOnop::>les and determining the behaviour of 

the expectation value of the Wilson loop integral (for external ITOnop::>les) 

in this theory. The theory without ITOnop::>les is just our modified model. In 

view of Eq. (1.11), the question is then answered by the bound (1.13) for 

that model: The monop::>les are confined. Appeal to a Wilson criterion seems 

reasonable for large B since the result (1.9) assures then that the monop::>le 

pairs are dilute. 

It remains yet to be investigated whether the onset of dissociation of 

ITOnop::>le pairs corresp::>nds to a phase transition in the classical sense 

(p::>int of nonanalyticity in B of the Gibbs p::>tmtial). We reiTB.rk that one 

may interp::>late between the standard model and t.he modified model by using 

action 

For large values of ). the ITOnop::>le pairs will still be dilute when they start 

to dissociate. It should be rerremembered, however, that ar1 elaborate argurrent 

was needed for the two dimensional plane rotator model [ 6 ] to show that the 

onset of dissociation of vortex pairs produces observable consequences of a 

phase transition. 

In his recent paper [ 7 J 1 t Hccft argues that one cannot have both elec­

tric and ITB.gnetic confinerrent. H~ver, confinerrent of the rronop::>les discussed 

here until now does not irrply ITB.gnetic confinerrent in the sense of 1 t Hccft, 

and - as we have p::>inted out already in our papers [2,8]- one cannot con-

clude fran our result that static quarks are not confined when B is sufficient­

ly large. In fact, the rronop::>les discussed sc far are merely the snallest ones 

of a family of nonop::>les of increasing size. This will be discussed in Sect. 5. 
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It turns out that nDnoroles of any given size are confined (in a sense that 

will be made precise in Sect. 5) for sufficiently large B.But it depends on 

the monop:>le' s size how large B has to be and the rossibility remains open that 

for any B rronop:>les of sufficiently large size (depending on B) are not con­

fined. 
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2. .~ 2 theory with monopoles. 

Let U be a configuration of the standard m:xl.el. We introduce auxiliary 

variables 
U. [b] = u[b]r e G./r "'so(3) 

cr[-p] = sc.sntrU[p] =±1 £r 

(2 .1 a) 

(2 .1 b) 

We admit free boundary =nditions, or a mixture of free and cyclic boundary 

conditions in ~nich U[b] satisfies cyclic boundary conditions, (and also 

crfp] if one so chooses) but not the variables U[b] themselves. 

The variables (2. 1) are invariant under gauge transfonrations by elerrents 

of r , vj_z. 
u[b]- r[x,Ju[bh[x,r' 

}([><] = :!:1 £ r 

Let us introduce 

x>[c] = 1T sc_gn j,. U[p] 
-p< Clc 

It follows fran the definition (2.1b) of u[p] that 

(2. 2) 

(2.3) 

-p'!roc cr[-p1 = p[c1 (2.4-) 

We will show t.loat {' [c 1 depo__nds on the configuration U only through cosets 

U[b]. Tl<.is :implies that Eq. (2.4) is a relation beTh'een variables o[p] and U[bJ. 
As is explained in the introduction, it is of the form of a field equation 

for field strengt.los o- [ -p J . 

Let u ru~d U'betwoconfigurations such that u[b] = U'[b] for all b. Then 

U' I b)= U[bh [b) with 'db] € r . Therefore u'[ -p ]= u (p J ~ [p] with 

~ r -p 1 ~ lT d 6 1 c2 .s) 
b~ Clp 

It follows fran this definition that 

for every cube c . (2.6) 

Upon substituting U' for U, ~ [c 1 changes to p [c J -TT:, t [p] = p [c 1 . Thus 
-p<oc 

~ [c 1 rsnains unchanged and depends therefore on the =nfiguration U only 

through the =sets U[bL as was to be shown. 

It follc:ws fran the definition (2.3) of ~[c] that 

\ 

1T ~[cl= 1 
c£ ah 

for every hypercube h . (2.7) 
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since every factor sign tr U[p] appears twice. As was explained in the 

introduction, this expresses conservation of the magnetic current. 

Let us nCM suppose that we are given any collection of el8llellts U [b 1 of 

G./rand cr[p] of r which is such that relation (2.4) is satisfied for all 

cubes c. We shCM that there exists then a configuration U - i.e. a collection 

of elements U(b]E G- such that Eqs. (2.1) hold, and U is unique up to gauge 

transformations (2.2) by elements of r. 

To canpute p[cl frcxn given U, one selects in an arbitrary way represen­

tatives u1[b)€ G of the cosets U[b] so that u[b)=U.fblr.Then £>[c) is 

computed from Eq. (2.3), with u 1 substituted for U. The result does not depend 

on the choice of representative by the argurrent given earlier. 

Let cr
1
[p] =sign tr u

1
[p] whence o ( c ] ~ lT.., <:r1 ( [' 1 . By hypothesis, 

\ "f'€ oc 
Eq. (2.4) is fulfilled. Therefore 

-II oTp1 
pe:ac 

Let us write 

-1\ o-[pl 
-p € oc 1 

cr[p1 = o-, [p1t[p1 

with ¥ [? l = :t 1 e: r . Then ¥ [ p 1 satisfies the relation 

TI
0 

y[p1 = 1 
"f>E C 

for every cube c (2. 8) 

It follCMs that there exists for every link b a t
1
[bl=:t1Er such that 

1! [ p 1 =biT ¥ [ b] for all plaquettes p. ¥ r b 1 need not satisfy cyclic boundar.f 
<Op I 1 

conditions even if d p 1 do. Obviously, U [ b 1 = u,[bl ~1 [ b J fulfills relations 

(2.1). This proves existence of the configuration U. 

NCM we turn to uniqueness. Suppose configurations U and U' produce the 

sane values of the auxiliary variables defined by Eqs. (2.1). This requires 

that U'[b1 = u[bJ;j'[b] with ;f[b]=:tte:r, and 

II ¥(6] = 
bcap 

for every plaquette p. The last requirement implies that -g [ 61 is a pure 

gauge, and therefore U and U' are related by a gauge transformation (2.2) 

by el8llellts of 1~ as was to be shown. The gauge transformation need not obey 

cyclic boundary conditions. 



-to-

Let us also note that ?tc1 is invariant under S0(3) gauge trans­

formations 

wl+h V[x] E G/r"' S0(3) (2.9) 

With a one to one correspondence between old and new variables established, 

we can rewrite the path measure. We introduce 

(2 .10) 

Clearly, because of the absolute signs it depmds only on cosets U [b], and 

it is invariant under S0(3) gauge transforrrations (2.9). 

The action ( 1 • 2) becomes 

L : L ( u' CT) = L K? ( u ) () [ p 1 (2 1f) 
l' 

Of course the path measure also has to include £ - functions to take care of 

the constraint (2.4). 

Any gauge invariant function F (U) may be regarded as a function of the 

new variables 

T(u)=~(u,CT) 

(For local observables, defined as in , this is always true. For more 

general functions, which may depmd on variables attached to cells on the 

boundary of the lattice A , it follows fran our choice of boundary conditions) . 

Expectation values take t.'1e form 

(2.12) 

with 

(2 .13) 

A new expression for the partition function Z results from < 1 > = J <Ju = 1 

Notations are as follows. The S -function is a Kronecker-~ defined by 

s (1) : 1 S(-1) = o (2.14-) 

aU is normalized Haar rreasure on G/r, and 

Jd<r(···) :..L.L. (···) 2 0": t 1 

(2 .15) 

Products over b, p, c in ( 2 . 13) run over all links, plaquettes, and cubes in 

the lattice )\ , respectively. 
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3. Duality transfomtion. 

Electric-magnetic duality has been extensively studied in the literature, 

see e.g. Mandelstams recent paper [9,rol It was also noted there and before 

that the t' Hooft disorder pararreter may be viewed as expectation value of a 

Wilson loop integral for rronopoles. Nevertheless it appears necessary to give 

proof of assertion ( 1 . 11) in the introduction. It is based on perfonning a 

duality transfomtion on the z2 theory of section 2. The duality transfom­

ation is perfonned in the same way as for the rrodified ITOdel of ref. [l] . 

It arrounts to a Fourier transfomtion on the Abelian group r. 

A 

The variables of the dual ITOdel take values in the dual group r = group 

of characters of unitary irreducible representations of r. For r., z 2 there 

are t= such characters, and r,. Z
2 again. We identify then with numbers 

w = ± 1. The corresponding characters are functions on r given by 

.:f "' = 1 

if <.)=-j 
(3 1 ) 

A variable Q[c] is assigned to every 3-cell c of the lattice. It takes values 

w[c ]=:±"1. The corresponding crBracters will be denoted by we(¥). 

A 

It will be convenient to use the coboundary operator Cl (= boundary 

operator on the dual lattice) . It is defined by saying that a 3-cell 

A 

c" ap if and only if -p £ Clc 

p is a plaquette. One writes accordingly 

"'[ap] = TI, w[c] = 1T w[cl 
c<ap pioc 

, etc. (3.2) 

(3.3) 

. 
For convenience we shall use a non-nomalized Haar rreasure on r , 

. 
Temporarily we shall neglect indicating U -dependence of functions (such 

A 

as K , J: , F below) explicitly. 
p p 

One expands in Fourier series on r . 
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• 
kpo-[-p1 (d .Cp(wp) ~ ( [ l)-1 

e = j wp e w? cr p (35a) 

S(()r~r'rr cr[p1) = r clw[cJ c3c(?fc11r..,cr[-pr') 
' pEOC J p<oc 

~ fclw[c1 w (?[c])lr w (cr[-pJr' 
.) c p<<lc c 

(3.56) 

And, for a function F that depends on variables u[p] with p E Y 

r({o[p1} )=J-F(jwp'\ )TI /c:/(o-[p1Y'clwp'} (35c) 
p£Y p<Y t><Y P 

One inserts these expansions into the definition of <F> Summations 

over variables o[p1 may then be perfonned with the help of orthogonality 

relations of characters. They produce S -functions. The QP -surrrnations can 

be performed next, mking use of the presence of these S -functions. As a 

result one obtains ( w [ ap] ; IT.. w [c]) 
C€ Bp 

<r> ~1.. Jrrdu[b]-lldw[c] rlT olw' (3.6) 
. Z b c j t><Y P 

• • 
If p </. Y one is to put w; = 1 . .l.p , t' [c 1 and, in general, also T de-

pend also on variables U [. b 1 . }'ill explicit formula for i: p is obtained fran 

its definition (3.5a) 

• 
fo~ w ~ ± 1 < r (3 .7) 

• 
Kp = ± .fn. coth l<p(U) "3' 0 

MP =}: {.-.(4cn.h.Kp(u)coshkp(u)) 

Expression (3. 6) involves the new path measure 

dil =_!__-II w(?[cJ) eEPip(w[ap]) TfdU[b]Ticl<.:>[c] 
/ z c b c 

(3.8) 

Because of the factors c3 c ( p [ c 1 ) = :t 1 this measure is not positive. 

It is amusing to see formula (3.8) translated into additive language. 

It involves then the vector potential A and the =rent j . They take 

values in the field z2 = I o, 1 } and were defined in terms of w [c J resp. 

p [c 1 in Eqs. (1.10) resp. (1. 7) and f. of the introduction. 

We introduce 
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(3.9) 

It is defined as an element of the field z
2 = \ O, 1 1 addition is addition 

in z2' i.e. m:::dulo 2. 

In this la'1guage one finds 
' A 1 c0 = z eL ITdu[b1Tr dA (x! 

b X,f' f' 

with action L that can be written in the form 

L - L: { ,;,(u)+kP(u) -2k-P(Cl)-Ff'Y(x)~)x!} 

+ ;_,. 2:: A (x) j- (x) 
f" f' 

(3. lOa) 

(3. Wb) 

The current J is also a function of Ll The first sum goes over all pla-

quettes p = p}'0 (x) , and the second one over all links (x, x+el') (they are 

in one to one co=esponde,"lce with cubes cv>.l' (x)) . Finally 

Apart frOIC\ the fluctuating =upling =nstant 2K (U) , expression (3. 10b) p 
has a familiar look, except for the strange iJTBginary factor i:Jr multiplying 

the last term. This factor v.Duld not have been expected fran analogy with 

electrodynamics. h'e note however that canplete analOC)'.f carmot hold. In electro-­

dynamics, the Coulanb force tetweo--.n like charges is repulsi vc, between opp:>­

site charges it is attractive. In a z2 gauge field t.'1e0ry there can be no dis­

tinction between like cu;d opposite charges, since -1 = +1 in z
2 . The factor 

Lll" in (3.10b) rrakes eL invariant underj (x)~-T (xl. At t."le sarre time it is 
fA ~ 

responsible for the lack of positivity of the measure df.. 

The new path measure ci? is t.'1at of a Z 2 gauge field theory. We show 

that it is invariant under the folloding local gauge transfoDTBtions 

if " oc=h,-h, (3.11) 

' for tr [ h 1 = :!: 1 E r 

Interpreted as elements of the dual lattice, c is a link and h
1

, ~ are the 

bM:l endpoints of this link. (In the original lattice they are 4-dilrensional 

hypercubes t~uching each other along the cube c) • 
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In terms of the vector potential A, these gauge transformations are 

of the familiar form 

with f(x) E z
2 = {o,1} • Gauge invariance of the measure (3.10) follows 

therefore frcrn the fact that the current j is identically conserved. That 

is, for any configuration U = {ufb}} the values of the functions ~(x) 
of the random variable u[bJ satisfy Eqs. (1.8'). 

We conclude this section with a ccrnment on the lack of positivity of the 

measure df . Physical positivity in the quantum field theoretic sense - also 
known as reflection positivity or Osterwalder Schrader (OS) positivity [11] 

holds in spite of it. Basically this is a =nsequence of the fact that the 

measure is obtained by a duality transformation frcrna rrodel that is known 

to respect as-positivity [121 

Let F be a local observable which is a real gauge invariant fLmction of the 
vari.ables w[c1 ,u[b] attached to cubes c resp. links bin the halfspace 

i: = x":':1- o only. Define 

(3 13) 

Time reflection 

obvious way. 

1 2 3 4 1 2 3 4 8: (x x x ,x ) ~ (x x x ,-x ) acts on cells c, b in the 

Any such function F can be regarded as a function which depends on 
' variables w[c] only through gauge invariants w[opl ass=iated with plaquettes 

p in the halfspace x 4 -.. o. By doing the duality transformation backwards and 
using as-positivity of the original model one can show that 

(3.14) 
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4. Wilson loop for z
2 

monopoles. 

Let S be a set of links in the time t = 0 hyperplane L . The t' Hooft 

operator B[S 1 is defined by its action on wave functions in the quantum 

field theoretic Hilbert space of states, and < B [ s] > is the vacuum expecta­

tion value of this operator, cp. [2] . By using the path integral fonnula for 

the vacuum state it was shCJVJI1 there (cp. Eq. (4.11) of [2] ) that <E[S] > 
is equal to the expectation value of a multiplication operator, viz. 

< B [ s J > = < .,. > = I d? + ( u) (4.1) 

+(u) = exp L. l .£(-u[pb1)-.L(u[pb1)} 
b<S 

This holds ge'"lerally, both for the standard and the modified model. 

pb is the plaquette protruding from the spacelike link b in positive time 

direction. In the variables of Sect. 2 

r = exp - 2 L. KP ( u ) o-[ -pb 1 
b<S b 

(4 2) 

NO\v one can use formula (3. 6) to rewrite < !'" 7 in the language of the 

dually transfonned ra:xJ.el. A short ca;-putation (the sarre as is carried out 

in Eqs. (4. 12) ... (4. 13) of ref. [2] ) gives the result 

(4.3) 

c is the cube protruding from the spacelike plaquette p in positive time 
p 

direction. In additive language (1.10) this is the desired formula (1.11). 
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5. ~2 monopoles of larger size. 

Let us for a mc:rnent restrict attention to the t=O plane 2: in the 

lattice 1\, and consider a configuration U = fu[b]}b<l: . Let c be a 
cube in I:. If t'[c ]= -1 then there is a monopole located at c. By Eq. (1.6) 
it is end point of a string of magnetic flux, cp. Fig. 2. We attribute 

size 1a3 
to the monopole (a = unit of length given by the lattice spacing in 

A.) The string has cross section 1a2
. 

Besides these small monopoles there are monopoles of larger size, they 
are end points of strings of magnetic flux of larger cross section. To discuss 

the.'11 we introduce sublattices 1\ N of 1\ with larger lattice spacing 2Na. We 

consider AN as cell CCX!l[llexes consisting of vertices x 1
, links b 1

, plaquettes 

p 1
, cubes C

1
, and hypercubes h 1

• The links b 1 in AN are paths in A consisting 
of 2N links of 1\ . A plaquette p 1 in 1\ N is CCX!l[lOsed of 4N plaquettes of 1\ • 

Its boundary -?'· 'dp' is a path in 1\ and so the parallel transporter U [ -p'] can be 

defined by Eq. (1. 1a). 

We may nO\v pr=eed as in Sect. 2. For plaquettes p'E 1\ N we define 

(5.1) 

' For cubes c E /\N we oonsider the rronopole distribution fw1ction 

(5.2) 

It follO\VS that 

(5.3) 

Products are of course over plaquettes in AN . 

A substitution of variables U[b] _,. U[b];f[b] 
in the original lattice A ) takes U [ b' 1 -+ U [ b' ]"j' [ b' J for b 1 

E 1\ N with 

~ [ b' 1 = :!: 1 . Therefore, by the same argwrent as in Sect. 2, the rrono­

pole distribution function t'N is a function of the cosets U[b]=U[b]r (bE/\) 

only. Thus the oonfiguration U also detennines the distribution of =no­

poles of size 8Na3 . 



A rronopole of size 8Na3 in the t = 0 plane :L is end point of a 

string of magnetic flux of =oss section 4Na2 , cp. Fig. 2. 

Next we derive an estimate for the cost in action of quanta of magnetic 

flux. 

N N 
Let p' be a rectangle of 2 ' " 2 ~ plaquettes -pc p' in 1\ • We will 

shCM that 

trU[-p']-2 N,+W2 ( ) } 2 L. +ru[pJ-2 
-pep' 

(5.4) 

Specializing to a plaquette p' in AN we see that making o-.,[p'J=-1 =sts at 
-N -N 

least an arrount of 2B·4 of action. The factor 4 represG1ts a bound on 
-N 2 the possible savings achieved by spreading the flux over an area of 4 a . 

To prove inequality (5.4) we divide the rectangle p' into tv.c> rectangles 
N -< N Pi and P2 of 2 1 x 2 z plaquettes each (for N

1 
"} N

2
). One has then 

u [ p'] 

where U,= U[p:l and V= u[b'J . pj_ 
choice of initial point as indicated by dots 

these initial points. 

We introduce 4--dlinensional unit vectors 

(S. S") 

is the boundary of p ~ wi L'ct a 
l 

in Fig. 3; the path b' joins 

-4s.-(s .. ±) 
J ~ J ' J by 

(s 6) 

a-= ( cr', cr 2
, cr 3

) are Pauli matrices. In this notation -
(5. 1a) 

tr u [p'] = 2 ( t t. - 1< s . s ) 1 .._ _, Ml (5.76) 

R = R(V) is a 3-rotation given by (the fundamental formula of spinor cal­

culus) Vcrkv"=cre'R(v)/. 

It follCMs that 
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where - 1 , ti ,; 1 . For fixed value of t = t
1 

+ t 2 the minimum of the 

r .h. s. is attained at -1:
1 
= t

2 
=-} t . This gives 

2 
= (t-2)+4(-1:-2)+2. 

Therefore 

± ( tr u [ -p, 1 - 2 ) ~ 2 e+- 2 ) = ( tr u r ?; 1 - 2 ) + ( ~-r u r -p; J- 2 ) 

Iterating the procedure gives inequality (5.4). q.e.d. 

From inequality (5.4) one can derive conclusions concerning confinement 

of the larger rronopoles. 

LetT be a set of \T\ plaquettes in AN. By using chess-board estimates [13] 

in the same way as in Sect. 8 of cur first paper [2 ] one deduces from in­

eq~ality (5.4) that 

< rr e(-t.-ufp'l)>" 
p'£T 

with 
(58) 

]) ( !3) { C exp- f3 (-'-- 4--N- E) ___,. 0 as /3 ~"" 
N I <,N I - 12 I 

E.-,. 0 may be token arbitrarily srrall. The constant C E,N may depend onE, N but 

not on B , (In inequality ( 1. 9) we chose E. = 1~ - ,'3 l . 

Let us nCM look at our (standard) rrodel with the eyes of a quantum field 

theorist. The Hilbert space of physical states consists of wave functions 

¥ (U) which depend on argurrents U [ b] associa toed with links b in the time 0 

plane L: • Arrong them is the wave function [2 of a vacuum state (eigenstate of 

the transfer matrix wit!-) eigenvalue 1) which is given by a path integral 

formula, Eq. (1.15) of ref. [2]. Let us ask for the probability PN[c
1

,c
2] 

of finding in this vacuum state a pair of (virtual) rronopoles of size 

ff"'a3 located at cubes c
1 resp. c

2 of ANn L and linked by a string of mag­

netic flux (cp. Fig. 2). This probability is less than or equal to the proba-
'" bility of finding a string from c

1 
to c

2
. From the path integral fonnula for 
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n it follows then that 

-p ( C1 , c 2 1 ,; L: <: 1! 8 (- h U [ p' l) 
N T -p~T 

(5. 9) 

SWTITB.tion is over all jX)Ssible strings T. If c
1 

and c
2 

are a distance L apart 

in units of 2Na (" lattice spacing in liN) then the number IT I of plaquettes 

in T obeys IT I 9 L. The number of strings of length /T I is rounded by 

e"'/TI, K a constant. It follows therefore by carbining inequalities (5.8) and 

(5.9) that the probability PN[c1,c21 decreases exponentially with the distance 

L between the ITOnojX)les if B is sufficiently large. We may regard 

such an exponential falloff as a defining feature of 11DDO]Xlle confinement. 

Ho.v large J3 has to be may depend on N because of the N-dependence of CE,N 

and the factor 4-N multiplying J3 in inequality (5.8). 
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Figure captions. 

Fig. 1. A set S of links (heavy lines) in the time 0 plane L. and plaquettes 

in as (squares). 

Fig. 2. A pair of llDnopoles in the time 0 plane L. and a string of magnetic 

flux joining thEm. The ITDnopoles are located at cubes c 1 , c 2 where ~ Lc ,1=-1, 
and the string consists of a sequence of plaquettes p for which G ( p 1 = -1. 

Considered as elEments of the dual lattice of L: these plaquettes fonn a path 

joining points c
1 

and c
2

. 

The same figure applies to llDnopoles of arbitrary size tfa3 and a string of 

mgnetic flux of cross section 4Na2 joining thern. In this case the cubes and 

plaquettes are of the lattice A N • 

Fig. 3. Illustration to Eq. (5.5). 
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