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Abstract. Despite being widely known and accepted in industry, the Z formal specification language has not so
far been well supported by automated verification tools, mostly because of the challenges in handling the abstrac-
tion of the language. In this paper we discuss a novel approach to building a model-checker for Z, which involves
implementing a translation from Z into SAL, the input language for the Symbolic Analysis Laboratory, a toolset
which includes a number of model-checkers and a simulator. The Z2SAL translation deals with a number of
important issues, including: mapping unbounded, abstract specifications into bounded, finite models amenable
to a BDD-based symbolic checker; converting a non-constructive and piecemeal style of functional specification
into a deterministic, automaton-based style of specification; and supporting the rich set-based vocabulary of the
Z mathematical toolkit. This paper discusses progress made towards implementing as complete and faithful a
translation as possible, while highlighting certain assumptions, respecting certain limitations and making use of
available optimisations. The translation is illustrated throughout with examples; and a complete working example
is presented, together with performance data.
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1. Introduction

Despite being widely known and accepted by the software industry, the formal notation Z [Spi92] has for some
time lagged behind other specification languages in the provision of tools for automatically verifying specifi-
cations, whether by simulation, model-checking or theorem proving. There are a number of reasons for this,
although most are connected with the language itself and its semantics: the inherent expressivity of Z makes it
harder to build tractable tools for it.

Historically, early tools, such as fuZZ [Spi00] and CADiZ [TM95], were closely linked to the typesetting
languages, troff and LATEX, used to write Z and focused on creating, formatting and type-checking Z specifi-
cations. Later versions of CADiZ and the Z /Eves composer and proof tool [Saa97, Saa99] were able to per-
form additional functions, such as domain checking (stricter than type checking, for partial functions), schema
expansion, with redundant term elimination, and interactive theorem-proving using heuristics and proof tac-
tics suggested by the user. CADiZ is under continuous development and has since evolved towards the ISO-Z
standard.
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1.1. Community Z tools

More recently, a concerted effort has been made in the wider global Z user community to address the general
tool deficiency. The Community Z Tools (CZT) project [MFMU05] is one leading example. This group is in the
process of developing a set of open source tools for Z, based around the ZML markup language [DUT+03], an
XML dialect developed specifically for Standard ISO-Z [135]. So far, there is a parser and a type-checker for Z,
an AST package developed in Java for use in third-party modules, and a number of other proposed modules,
including cross-language translators and model-checkers, based on the same parser and AST. The tools handle
a number of input formats, including ZML and LATEX. This work is foundational and will provide long term
grass-roots support for Z. However, the progress towards finished provers and checkers is slow, partly due to the
complexity of the Z standard and the use of automatic code generation technology to develop the parser and
AST, whose API needs more user-friendly documentation, to encourage a wider take-up.

Elsewhere, others have sought a quicker route to developing model-checkers for Z by adapting existing tools
that support automated checking. An example of this is the ProZ tool [PL07], which extends and adapts the
earlier ProB tool [LB05] for Z. The B language [Abr96], though related to Z, is much closer to the state-transition
formalism used by symbolic model-checkers. ProB and ProZ both use an underlying Prolog engine to simulate
(or “animate”) a specification, by populating variable terms with ground values, chosen from restricted ranges.
Configurations of state variables form the states of the automaton, while each operation is styled as a transition
from state to state, affecting the values of variables. The validity of models is checked by simulating forwards in
time from the initial state, exploring multiple future states in parallel. Consistency is checked by verifying the
state invariant in each state, or by detecting deadlocks (failure to instantiate all variable terms). A further facility
exists for checking refinement relations between specifications.

A similar approach was taken by Bolton [Bol05], who used the Alloy SAT-solver based counter-example finder
[Jac02] to verify data refinements in Z, after translating from Z into the Alloy input language. This is similar to
our philosophy [DNS06] of translating Z into the input language for the SAL tool-suite [dMOS03], which uses
a BDD-based symbolic model checker as its core engine. We consider that this strategy of translating into the
input format of another proven toolset will result in better model-checking capabilities than building a bespoke
model-checker for Z on top of the CZT toolkit. The SAL core engine is already quite sophisticated, transforming
set-theoretic and mathematical formulae into boolean judgements on ordered variables, which are compiled to
optimized binary decision trees (BDDs), before generating Büchi automata for each theorem expressed in tempo-
ral logic to explore the compacted state space. Developing a similar tool from scratch would require considerably
more effort than building a cross-translator.

1.2. The symbolic analysis laboratory

Our choice of the symbolic analysis laboratory (SAL) tool-suite [dMOS03] as the target for the translation was
motivated by a number of reasons. Firstly, there were already a number of different tools using the SAL input
language. These included a simulator, a model-checker, a bounded model-checker and a counterexample finder,
with other tools in the pipeline. Secondly, there was a sizeable international user-group engaged in developing and
using the tools, offered gratis by SRI under an academic licence, with some support offered from the developers.
Thirdly, the SAL input language [dMOS03] is purposely designed to be formalism-neutral, positioning itself
somewhere between the highly restrictive machine-centric syntax required by Spin [Hol97] and SMV [CGL94],
and the complete expressiveness offered by conventional programming languages. The SAL input language sup-
ports finite sets, tuples, subranges, arrays, records, total functions, concurrently executing and parameterised
modules and (in principle) recursive definitions. The kinds of theorem that may be checked include first-order
predicate terms and both LTL and CTL temporal logic expressions. Finally, the core SAL engine compiles all
definitions into optimized binary decision trees (BDDs) and simulates models using Büchi automata, proven
approaches for dealing with large state spaces efficiently.

The original idea of translating Z into SAL specifications was due to Smith and Wildman [SW05]. In [DNS06]
we described the basics of our implementation, which is essentially a bespoke parser and generator, written in
Java, which translates from the LATEX encoding of Z into the SAL input language. The collection of Z schemas is
translated into a SAL finite state automaton, following a template-driven strategy with a number of associated
heuristics. Like [SW05], we aim to preserve the Z-style of specification, including postconditions that mix primed
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and unprimed variables arbitrarily, possibly asserting posterior states in non-constructive ways, and preserving
the Z mathematical toolkit’s approach to the modelling of relations, functions and sequences as sets of tuples,
permitting interchangeable views of functions, sequences and relations as sets. Given this theoretical basis, our
implementation has increasingly diverged from [SW05] as optimization issues have been tackled. In [DNS06] we
highlighted problems with countable sets. In [DNS08] we described an improved treatment for countable sets,
and new translations for relations and functions. In this extended paper, we also report on improvements in the
treatment of Z function types, a translation for sequences and an improved translation for operation schema
variables, which greatly reduces the state space.

1.3. Overview of the translation strategy

The structure of the paper is as follows. Section 2 describes the main challenges in converting an abstract
specification written in Z into a grounded format more acceptable to a BDD-based model checker. Section 3
describes the main features of our Z parser and generator, which accepts several widely-known LATEX markup
formats for Z and performs some early optimisations, prior to generating the SAL output. Section 4 describes
the basic template for translating Z types, constants, state and operation schemas into a SAL automaton.
Sections 5 and 6 describe the additional SAL modular units that translate the set, relation, function and
sequence datatypes from the Z mathematical toolkit. Section 7 describes a complete working example, show-
ing the translation of a complete Z specification, and the results of simulating and model-checking tem-
poral logic properties of the translation. The space and time performance of the SAL tool-suite on our
example is also indicated, showing how improvements to the translation strategy have brought performance
gains.

2. Challenges in translating from Z into SAL

In this section, we highlight some of the main challenges encountered when dealing with the high level of abstrac-
tion in Z. We also identify some fundamental structural obstacles caused by the mismatch between Z’s partial
function paradigm and the total, automaton-based paradigm of the SAL tool-suite. In particular, we highlight
certain limitations of the BDD-based formalism, which particularly affect Z, but which are addressed later in our
translation.

2.1. Bounding the infinite

When considering how to translate from a specification language like Z, which supports fully abstract (non-
grounded, non-constructive) specification styles, into the concrete and grounded language of a model-checker,
the first and most obvious challenge is how to deal with unbounded or infinite structures and uninterpreted
symbols. All model checkers require types with finite, bounded ranges, so that the variable product space, though
potentially large, should not result in a state-space explosion, eventually exhausting the host computer’s available
memory.

For example, Z supports the built-in numerical types Z, N and N1, all of which have infinite ranges; and while
SAL has the cognate unbounded types INTEGER, NATURAL and NZNATURAL, these may only be used
as the base types of finite subranges in actual specifications. Z also supports the declaration of arbitrary basic
types, such as [NAME ,PHONE ], which have the semantics of uninterpreted sets (sorts). It is presumed that an
infinite number of objects may populate the NAME or PHONE sets, which are not further analyzed. Clearly,
any translation must choose suitable finite enumerated ranges for each of these sets, without compromising the
ability of a model-checker to explore unusual combinations of value assignments. Our approach to bounding
ranges is discussed in Sect. 3.
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Much of the flexibility of Z comes from the practice of declaring uninterpreted symbols, such as the constants
used as range limits in predicates. In Z, this style is applauded, since it supports different concrete refinements,
where particular values are chosen for the limits. In a model-checker, all constants must be grounded from the start;
but can suitable values be chosen, without compromising the searching behaviour of the checker? Our approach
to uninterpreted symbols is subtle, treating them either as constrained variables or constants (see Sect. 4).

2.2. Mis-matched formal paradigms

The second main challenge when translating from Z into SAL is the structural mismatch between the two spec-
ification models. Consider that a specification in Z is built up incrementally, as a piecemeal collection of state
and operation schemas. The viewpoint in Z is local and functional, examining how each operation schema may
act upon its own input and output variables, or upon the variables of one (or more) included state schemas. By
contrast, a SAL specification is constructed as a monolithic finite state automaton, in which all input, output
and local (state) variables are compiled into aggregate states and all operations are styled as guarded transitions
from state configuration to state configuration. This aspect, while awkward, merely requires a re-ordering of all
the information present in the Z specification; but this is not the only structural mismatch.

Practical Z specifications make widespread use of partial functions, both to express incomplete computations
(in operation schemas) and, even more commonly, to express the associative data types, also known as maps
(in state schemas), which are dynamic in size. In SAL, functions are always total, since a BDD-based formalism
converts map-like structures into ordered sets of judgements over variables, which must cover all variable assign-
ments. In other words, for every value of a function’s domain, a mapping must exist to some range value. This
requires a work-around if we wish to represent undefined mappings for certain values; yet the need to do this
arises frequently: for example, a map initialised to the empty set is undefined for every domain value. We adopt
a totalising approach to address this problem (see Sect. 6).

In much the same way that function-valued variables are converted into ordered sets of judgements from
domain to range values, set-valued variables are represented using Bryant’s encoding [Bry86, Bry92], as an
ordered set of judgements from elements to true or false, denoting whether that element is present or absent from
the set. While this supports a very efficient and compact treatment of set operations (converting the usual union,
intersection and difference operations acting on sets into logical or, and and not operations acting on atomic
propositions, which are then collapsed in the compiled BDDs), it has the unusual side-effect that a set cannot be
treated as a monolithic whole in SAL, but only as the polylithic collection of judgements over its elements. This
has a particular deleterious effect when seeking to compute the cardinality of a set (viz. count its elements), since
there is no such countable object in SAL. We adopt a bespoke work-around to solve this problem (see Sect. 5).

2.3. Non-computable specifications

A final translation challenge is the tension between non-constructive styles of specification in Z, and the desire to
express a computable update step after each state-modifying transition in SAL. The normal style in SAL would
be to write a series of update assignments to primed variables, indicating the posterior variable states. However,
a Z postcondition need not necessarily be written in such a way and sometimes should not. For example, the
postcondition of the square root function: y � sqrt(x ) is most naturally expressed non-constructively in Z as:
y2 � x which is perfectly laudable, since it states the relationship between input and output succinctly. However,
this would not usually serve in SAL, which expects a constructive update step, such as the Newton-Raphson
algorithm for computing square roots. Our translation adopts a work-around, which asserts the posterior exis-
tence of variables, but constrains their posterior values in the precondition. This effectively turns a deterministic
update into a search for suitable posterior values, supporting non-constructive (and non-deterministic) schemas
(see Sect. 4).

3. The bespoke Z parser and SAL generator

The current version of our Z2SAL translator is a bespoke Java implementation of a Z parser accepting LATEX
input, coupled to a generator producing SAL output. We deliberately chose to go down this route, rather than
build a SAL generator on top of the CZT parser and AST toolkit [MFMU05] in the first instance. This offered
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greater flexibility and a faster route to evaluating different translation prototypes, compared with the overhead of
learning how to interpret the CZT parse tree (whose Java API was machine-generated from the Standard ISO-Z
specification and not documented beyond the automated description of syntactic interfaces). Conceptual barriers
to using CZT from the outset included that the parser has schema unfolding rules that normalise schemas to Z
base types, making it harder to know when a variable denotes a function or a product; and that the CZT parse-tree
uses multi-purpose abstract nodes, whose contents require some further interpretation according to the context.
We were therefore able to avoid having to deal with this complexity, until we had finished prototyping different
templates for the SAL translation. However, once our translation technology is stable and we have identified the
best route to overall optimisation, we expect to provide a SAL generator for the CZT toolkit. Progress towards
this goal was reported in [AWS08].

3.1. The Z analyser

The current Z analyser is a hand-written tokeniser and recursive descent parser, which scans a LATEX source file
in a single pass, extracting all LATEX elements relating to a Z specification and ignoring any other surrounding
text. Over time, we have expanded the input vocabulary of the tokeniser to accept different sets of LATEX macros
for Z, from Spivey’s original zed.sty macro package, to the more recent oz.sty macro package developed for
Object Z. These often have different conventions for expressing the same Z construct, for example, the main
division in a schema between the variable declarations and the predicates may be typeset using: \where, or
alternatively: \ST (a mnemonic for “such that”). The tokeniser signals any unrecognised tokens and the parser
likewise signals any syntactically incorrect structures, using a comprehensive error-reporting strategy, easy to
implement in a top-down, recursive-descent parser, which highlights the error context and lists what possible
legal terms were expected instead. This has proven useful across all stages of development, both to trap incor-
rect Z, and also to identify legal alternative LATEX formats and new Z structures to be added to the grammar.
We are reasonably confident that the Z analyser is now quite robust, since it has been subjected to the vaga-
ries of several different, and often inconsistent, styles of Z specification, drawn from a back-catalogue of old Z
examples.

The parser builds a memory model of the Z specification, which is essentially a list of declared types, con-
stants and schemas, in order of definition. Although the ISO-Z specification does not require definition before
usage, we make that (in practice not significant) limitation here and thus we can use a single scan (i.e., we only
accept a style of Z which defines all identifiers before usage). The parser analyses type declarations and constant
declarations. A single expression structure is also constructed incrementally, to represent the restrictions derived
from the constraints picked up from any axiomatic definitions. The parser identifies the first two schemas as the
state schema (which is typically unnamed) and the initialisation schema (which conventionally has the standard
name Init). All other schemas are assumed to be named operation schemas. Our translation strategy currently
assumes a single state schema, which is typical in small-to-medium Z specifications. This may be easily adapted
for large, multi-part specifications.

The parser is implemented in an object-oriented style, such that the memory model structures are all instances
of corresponding Java classes that implement the relevant AST nodes. The top-level structure is a list of schema
class instances, which refer to associated instances of classes representing the named constants, types and variables,
and to lists of expression trees, representing the predicates.

3.2. Bounding the ranges of types

Once the Z input has been analysed, and the types of all expressions have been checked, the translator performs
a series of optimisations, designed to map the unbounded, abstract types of Z into concrete types with small,
finite ranges, as required for the input to a model-checker (see the earlier discussion in Sect. 2). Likewise, suit-
able upper, or lower bound values must be computed for any uninterpreted constant symbols which, from their
context of usage, are identified as the limits in range constraints. Eventually, it becomes possible to optimise
predicate expressions, by reasoning symbolically about limits. All of this depends on the ranges chosen for each
type.
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The choice of a suitable range for any given type is determined by three considerations. Firstly, every type
should have a sufficient population to allow the specification model to be exercised properly. Jackson has sug-
gested that Alloy finds most counterexamples if types have at least three instances [Jac02]. We therefore take this
as the minimum population size. Secondly, the built-in rules governing Z types should be preserved, in which the
following relation between numerical types must hold:

N1 ⊂ N ⊂ Z

A consequence of this is that if N1 has at least three positive integral values, then N must also include zero (and so
has at least four values) and Z must also include -1 (so having at least 5 values). A third consideration is that the
Z specification itself may indicate particular literal values, which then are used to determine upper or lower range
limits. The default strategy is to expand the minimal range to one above the highest, and one below the lowest,
literal constant. Where possible, the smallest numerical ranges are used. The symbolic basic types of Z, which are
uninterpreted sets, are typically given three symbolic instances, where nothing to the contrary is defined in the Z
(but sets may possibly acquire a fourth bottom element: see Sect. 6). These settings are all defaults; they may be
varied by supplying the translator with different ranges as parameters.

Limiting the ranges of types could in principle make the translation unsound for some Z specifications. For
example, if a sum term caused a variable to exceed its range, the solver would eliminate terms in this variable,
eventually reporting no future states. This might affect an attempt to prove the absence of a property which
was only satisfiable outside the represented range. When proving properties, we therefore never rely on failure
as negation. Our preferred proof strategy is to propose counter-theorems and accept found counterexamples as
valid evidence. In practice, seeking to prove some range-influenced property affects how the translator bounds
the ranges, for example

count : N

count ≤ 1024

will result in the translator giving count the range 0..1025, according to the strategy described above.

3.3. Grounding uninterpreted constants

Once the ranges of types have been set, the uninterpreted Z constant symbols are revisited, to seek suitable
ground values for them. In an earlier release of the translator (see [DNS06]) arbitrary values were assigned to Z
symbolic constants (within the range of their type), grounding them as SAL constants. This was also informed by
a heuristic in which the highest or lowest value was chosen, if the constant occurred in the context of a limit in an
inequality expression. However, it turned out that the properties of the resulting SAL model were too dependent
on the translator’s choice. Instead, the current optimiser reasons symbolically about the possible intervals over
which a symbolic constant may range.

This is accomplished by collecting together all the constraints from the schemas and axiomatic definitions, in
which a symbolic constant appears. An axiomatic definition in Z is simply a way of qualifying an uninterpreted
constant by attaching a predicate, for example the constant max in:

max : N

max > 1

The same constant may also appear in the state schema predicate (the invariant), or in operation schema
predicates, where it is further constrained with respect to the ranges of input and output variables. Initially, each
of these schemas is parsed into a conventional tree structure in memory, but this is immediately transformed
by extracting the list of subtrees that represent all the conjoined predicate expressions. This is both a natural
way to represent the predicate in a Z schema and a convenient structure to modify when combining predicates
derived from different sources, which is an activity performed at various stages, starting with the predicates of
the axiomatic definitions.

The combined predicate is scanned, both to eliminate any redundant predicate expressions, and to restrict
the intervals attached to symbolic constants, according to the constraints supplied by the axiomatic definitions.
Sometimes the interval is restricted to a single value, at which point the Z symbolic constant is converted into
a grounded SAL constant. If this cannot be done, the Z symbolic constant is simply treated as another variable
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in the SAL translation, and a SAL predicate must be generated from the axiomatic definition, to constrain the
variable’s range. Clearly, where symbolic constants can be grounded, this removes the need to generate an addi-
tional SAL predicate, which can lead to further optimisation. Later, all schema predicates are scanned again, to
eliminate any redundant predicates resulting from earlier optimisations. If, during the interval restriction process,
a Z predicate proves to be unsatisfiable, the translator terminates under the assumption that the Z specification
is faulty.

3.4. Synthesising definitions and types

Another activity performed by the translator, before generating actual SAL output, is to identify any types, whose
definitions must be imported from external code units (known as SAL contexts), or for which synthetic alias
names must be constructed. This is achieved during the parser’s initial pass over the Z source. We have developed
standard SAL library contexts for each data type in the Z mathematical toolkit (see Sects. 5 and 6). The SAL
tools construct particular type-instantiations of these parametric contexts as required, and notes that the external
code units must be included, in a comment inserted at the end of the translated output. Since these are library
contexts , they may be placed in a standard include directory, visible to the SAL tool-suite.

A particular work-around is required to mitigate a fault discovered in some SAL tool-suite implementations,
which prevented certain constructed types from being passed as first-class types in the SAL type system. This
chiefly affects tuple-types, especially when these are passed as parameters to declare the element-types of relations.
(The same fault seems to affect SAL tuples in general, which are sometimes mistakenly interpreted as parameter
lists, resulting in unexpected type failures). The work-around is fortunately simple: a symbolic alias name may
be defined and used in place of the constructed type:

PERSON__X__TITLE : TYPE = [PERSON, TITLE];

and this is then processed successfully by all versions of the SAL tools. This type alias may be used as the type of
maplets (pairs), or as the element-type of the relation containing the maplets.

Another work-around is required to support counting the elements of sets. For this, the translator may gen-
erate one or more bespoke versions of the element-counting context (see Sect. 5), tailored to sets of different
maximum capacity. The code for each context is generated by algorithm, according to the capacity, with variable
numbers of context-parameters and body statements. Any generated bespoke contexts must eventually be placed
in the same directory as the master context , for the SAL tool-suite to find them.

3.5. The SAL generator

The main generation phase produces the SAL context for the automaton, whose states are formed by aggregat-
ing all the variables from the Z state schema, and whose transitions are generated from each operation schema.
Declarations are output in the overall order of the prequel, consisting of types and constants, then the main
SAL module defining the behaviour of the automaton. This has an internal ordered structure consisting of local,
input and output variable declarations, formula definitions, state initialisation and then a description of each
state transition (see Sect. 4 for a complete description of generation and examples of generated SAL output).

Within the main context , the order of generation must satisfy SAL’s definition-before-usage criterion, for
example, set and subrange types must be declared before any constructed types, and types before any constants
and variables declared of these types. Within the module, all variable names must be declared before any formula,
initialisation or transition in which they appear. Where the ordering in SAL is otherwise irrelevant, the generator
seeks to preserve the same order of declaration as in the original Z. To this end, a list of identifiers, in order of
first appearance, is kept by the lexical analyser; and this can be used to order type and constant declarations in
the prequel. This policy is useful from a human point of view, since it improves the readability of the generated
SAL, which may be inspected manually, to check for faithfulness to the original Z, before being validated by
simulation or model-checking.
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4. Exposition of the Z2SAL translation templates

A specification in the SAL input language may consist of a collection of separate input files, known as contexts , in
which all the declarations are placed. At least one context must contain the definition of a module, an automaton
to be simulated or checked. In our translation strategy, we use a master context for the main Z specification and
refer to other context files, which define the behaviour of data types from the mathematical toolkit. The master
context consists of a prequel, declaring types and constants, followed by the main declaration of a SAL module,
defining the finite state automaton, which reproduces the behaviour of the Z state and operation schemas. As
described in Sect. 2, the states of the automaton are created by aggregating the variables from the Z state schema,
and the transitions of the automaton are created by turning the operation schemas into guarded commands ,
triggered by preconditions on input and local (state) variables, and asserting postconditions on local and output
variables.

4.1. Translating fundamental Z types

The built-in types of Z are translated into finite subranges in SAL, according to the flexible scheme described in
Sect. 3. For example, the following SAL translations are typical for the Z types N1, N and Z:

NZNAT : TYPE = [1..3];
NAT : TYPE = [0..3];
INT : TYPE = [-1..3];

The basic types of Z are converted into finite, enumerated sets in SAL, consisting of three symbolic ground
elements by default (but sometimes with an extra bottom element—see Sect.6). For example, the following trans-
lation is typical for a pair of Z basic types declared as [PERSON ,TITLE ]:

PERSON : TYPE = {PERSON__1, PERSON__2, PERSON__3};
{TITLE : TYPE = TITLE__1, TITLE__2, TITLE__3, TITLE__B};

Sometimes an additional sentinel value is inserted at the end of the range, to stand for the undefined bottom
element. This is the case with TITLE where the translator has determined that an extra undefined bottom element
is needed, called TITLE__B, whereas PERSON is never used in a context requiring a bottom element.

The free types of Z are converted into similar constructed data types in SAL. For example, the free type in Z
declared as REPORT ::� ok | error〈〈MESSAGE 〉〉 is translated into the following cognate data type in SAL:

REPORT : DATATYPE
ok,
error(message : MESSAGE)

END;

In principle, the syntax of the SAL input language allows constructed data types to be recursively-defined;
however, many of the SAL tools do not yet handle recursive definitions well. This is because they expand all
recursive constructions infinitely as the definitions are compiled into BDDs. This limitation may be fixed in
future releases of the SAL tool-suite, but for the moment, our parser rejects recursive definitions.

4.2. Translating Z constants and axiomatic definitions

Any literal Z constant may be translated directly as a grounded SAL constant. Any uninterpreted symbolic
constant in the Z specification is handled according to the strategy described in Sect. 3. By default, a symbolic
constant declared in Z as: max : N will, if no further optimisation is possible, be translated as a local variable,
part of the state of the automaton, defined in the SAL module clause:

State : MODULE = BEGIN
LOCAL max : NAT
...

END;
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If the symbolic constant is introduced as part of an axiomatic definition, then its range will be restricted by
a predicate. For example, the type of max has the range [0..3], but the following declaration restricts this interval
to the smaller range [2..3]:

max : N

max > 1

However, if the interval of the constant max is further constrained to a single value (by symbolic reasoning
about interval constraints), then it is converted into a grounded SAL constant, for example:

max : NAT = 3;

In this case, nothing need be generated for the axiomatic definition, which is now redundant.

4.3. Translating the Z state schema

For the sake of the examples below we assume the principal Z state schema is called State and currently the tool
identifies it from its place in the order of parsed schemas. State is also used as the name of the cognate SAL
module defining the finite-state automaton. The following illustrates a very simple state schema, which defines
one state variable level , and restricts the range of this with a state predicate (two separate, implicitly conjoined
inequalities):

State
level : N

0 ≤ level
level ≤ max

The state variables from the Z state schema are translated into the local variables of the SAL module, which
together constitute the aggregate states of the automaton. The state predicate is treated in a particular way. SAL
supports the definition of formulae, which establish an equivalence between a variable and a longer expression,
possibly consisting of many terms. The variable may serve as an abbreviation for the longer expression, which is
useful if the expression occurs in many contexts. Our translation makes use of this facility, by introducing an extra
local boolean variable, named invariant__, and then declaring a formula for this in the definition sub-clause,
which equates the invariant__ with all the conjoined terms of the state predicate:

State : MODULE = BEGIN
LOCAL level : NAT
LOCAL invariant__ : BOOLEAN
...
DEFINITION

invariant__ = (0 <= level AND level <= max)
...
END;

The above assumes that max was translated as a grounded SAL constant. If instead max could not be
grounded, but was translated by a SAL local variable (see above), then the constraint from its associated
axiomatic definition is added to the conjuncts in the state predicate:

State : MODULE = BEGIN
LOCAL max : NAT
LOCAL level : NAT
LOCAL invariant__ : BOOLEAN
...
DEFINITION

invariant__ = (max > 1 AND 0 <= level AND level <= max)
...
END;
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The invariant may eventually be extended with further terms, to assert total properties of input and output
variables, or to assert the semantic properties of Z’s different function types (see Sect. 6).

4.4. Translating the Z initialisation schema

The principal Z initialisation schema, which is conventionally named Init , is translated into the cognate SAL
initialization sub-clause of the module clause. Initial values may optionally be assigned to any, or all SAL vari-
ables. Variables which are not initialised will range freely over all values in their type. Initialisation reduces the
number of initial states, possibly to a single state configuration.

The typical SAL initialisation style is to declare a list of initial assignments to variables. For example, the
level variable may be set to be zero initially:

State : MODULE = BEGIN
LOCAL level : NAT
...
INITIALIZATION
level = 0;

...
END;

However, this assumes that initial values can always be asserted directly, rather than derived from the model
constraints. This is not always possible, for example, we cannot assert by assignment that the invariant__ holds
initially, since this property must be derived by a formula from other model constraints. In any case, we prefer
to mimic the non-constructive style of Z specifications, which allows the model constraints to influence variable
bindings (see the discussion in Sect. 2).

The alternative SAL style for assignment uses a guarded command . This has the usual syntactic form:
guard --> assignments, in which the guard expresses a triggering condition and the assignments express
state updates to perform, when the guard holds. The trick used by our translation is to force variable bindings
to be resolved in the guard, giving full play to the model constraints:

State : MODULE = BEGIN
LOCAL level : NAT
LOCAL invariant__ : BOOLEAN
...
INITIALIZATION [
level = 0 AND invariant__
-->

]
END;

In this case, the set of updates (after the arrow) is empty, since we are in the initial state. This style also
forces the invariant to hold, as a precondition for entering the initial state. The initialization sub-clause may later
contain further terms that act to constrain the initial state of the system (see below).

4.5. Translating the Z operation schemas

Each operation schema in Z contributes in two ways to the SAL translation. Firstly, an operation schema may
optionally declare input, or output variables (or both), which are extracted and declared in the prequel of the
module clause, as SAL input and output variables. Secondly, the predicate of each operation schema is converted
into a guarded command in the transition sub-clause, the last sub-clause in the module clause.
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Continuing with the above example, two simple operation schemas are defined in Z, named Increment and
Decrement . These respectively add or subtract an input amount from the state variable level , which is imported
from the State schema. The operations are robust, and report success, overflow or underflow as an output:

Increment
�State
n? : N

r ! : REPORT

level + n? ≤ max ⇒ level ′ � level + n? ∧ r ! � ok
level + n? > max ⇒ level ′ � max ∧ r ! � message(overflow )

Decrement
�State
n? : N

r ! : REPORT

level − n? ≥ 0 ⇒ level ′ � level − n? ∧ r ! � ok
level − n? < 0 ⇒ level ′ � 0 ∧ r ! � message(underflow )

The input and output variables are understood to exist in the local scope of each operation schema, which
has consequences in the translation. The SAL translation eventually substitutes the suffix ‘_’ for ‘!’ in the output
variables, since the latter is reserved.

Previously [DNS06], we adopted the conservative policy (following [SW05]) of synthesising unique names for
all input and output variables, by prefixing their local name with the name of the schema in which they appeared.
This was to ensure that no variable names were accidentally aliased, with the undesired effect that constraints
might propagate beyond their intended scope:

State : MODULE = BEGIN
...
INPUT Increment__n?
INPUT Decrement__n?
OUTPUT Increment__r_
OUTPUT Decrement__r_
...
END;

Unfortunately, creating many unique variable names also increased the variable product-space, thereby greatly
increasing the state-space for model-checking. After consultation with colleagues working on the CZT project
[MFMU05] and some careful experiments, we have established that input and output variable names may safely
be coalesced across all operation schemas, since only one set of guard constraints are actually enforced in any one
cycle (although many are enabled ). This subtle decision has greatly improved the performance of model-checking
(see Sect. 7).

Furthermore, the initial state space may be further reduced by clamping the output variables to arbitrary
initial values (the input variables must be free to range over all legal inputs). The optimised translation is given
as:

State : MODULE = BEGIN
...
INPUT n?
OUTPUT r_
INITIALIZATION [

... AND r_ = ok
-->

]
END;
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The computation performed by each operation schema is expressed as a guarded command in the transition
sub-clause. The name of the schema is used for the transition label, which aids readability. The guarded command
has the general syntactic form: label: guard --> assignments.

The conventional SAL style would be to express preconditions on the unprimed (prior state) variables in the
guard, then assert a series of updates to primed (posterior state) variables in the assignments. Following the
non-constructive style of specification (see above), we prefer instead to express the relationship between primed
and unprimed variables in the guard, to give full play to the model constraints. However, the consequent may
not be left empty (unlike the case with initialisation, above), since SAL requires all primed variables to appear
here, if their values are to change. The unusual format of the update expression asserts that the primed variables
still exist, and potentially range over their whole type, in the posterior state.

State : MODULE = BEGIN
...
TRANSITION [
Increment : ((level + n? <= max) => ((level’ = level + n?)
AND (r_’ = ok)) AND ((level + n? > max) => ((level’ = max)
AND (r_’ = message(overflow))) AND invariant__’

-->
level’ IN {x : NAT | TRUE};
r_’ IN {x : REPORT | TRUE};

[]
Decrement : ((level - n? >=0) => ((level’ = level - n?)
AND (r_’ = ok)) AND ((level - n? < 0) => ((level’ = 0)
AND (r_’ = message(underflow))) AND invariant__’

-->
level’ IN {x : NAT | TRUE};
r_’ IN (x : REPORT | TRUE);

[]
ELSE
-->
level’ = level

]
END;

The guards for each transition include the primed invariant__’ as one of the conjuncts, which asserts the
state predicate in the posterior state of every transition. This, combined with the assertion of the unprimed
invariant__ in the initial state, ensures that the state predicate holds universally. It also illustrates the utility of
the abbreviation facility offered by formula definitions.

The transition sub-clause essentially describes a control structure analogous to the alternate block of non-
deterministic programming languages. On any one cycle, just one transition may fire, chosen randomly from
all those whose guards are enabled by the model constraints. From this, it is clear that the constraints are
only enforced upon one set of input or output variables in each cycle (the argument for coalescence). The
transition clause must also include a default ELSE -transition, which may always fire, to ensure that the transi-
tion relation is total (for soundness of model checking). In this case, we require the automaton’s state to remain
unchanged.

5. Translating counted sets and relations

The heart of the Z2SAL translation deals with the Z mathematical toolkit, which provides a rich vocabulary
of mathematical data types, including sets, products, relations, functions, sequences (and sometimes bags). The
challenge is to represent these types, and the operations that act upon them, efficiently in SAL, whilst still pre-
serving the expressiveness of Z. The basic approach is to define one or more context files for each data type in
the toolkit, which may then be included with the master context , as and when the specification requires.
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5.1. The BDD-optimal encoding for sets

An initial library example is the SAL context for the Z set data type. This is a reusable context , parameterised over
the element-type T of the set. It encodes a set as a function from elements to BOOLEAN values, which returns TRUE
if a given element is a member, otherwise FALSE. This is a standard encoding for sets [Bry86, Bry92], optimized
for symbolic model checkers that use BDDs as the core representation (see the earlier discussion about BDDs in
Sect. 2):

set {T : TYPE; } : CONTEXT = BEGIN
Set : TYPE = [T -> BOOLEAN];
empty : Set = LAMBDA (elem : T) : FALSE;
...
contains? (set : Set, elem : T) : BOOLEAN =

set(elem);
subset? (setA : Set, setB : Set) : BOOLEAN =

FORALL (elem : T) : setA(elem) => setB(elem);
...
union(setA : Set, setB : Set) : Set =

LAMBDA (elem : T) : setA(elem) OR setB(elem);
intersection(setA : Set, setB : Set) : Set =

LAMBDA (elem : T) : setA(elem) AND setB(elem);
difference(setA : Set, setB : Set) : Set =

LAMBDA (elem : T) : setA(elem) AND NOT setB(elem);
END

A set is not a single, monolithic entity, but rather a polylithic membership predicate over each of its elements.
The advantages of this are seen in the encoding of set constants and operations. For example, the empty set
constant is simply a predicate that always returns FALSE; and the set union operation constructs a new predicate
that computes the disjunction of the argument set predicates. A BDD-based model checker turns operations
upon sets into ordered binary decisions about elements. Multiple, nested set operations become binary decision
trees (BDDs) over each element, which rapidly collapse onto the two outcomes FALSE and TRUE.

This set context may be used in other contexts by instantiating the type parameter T and selecting types,
constants or operations from the context using the selector: ’!’ (which is the SAL equivalent of the record-type’s
dot selector in other languages):

LOCAL members : set{PERSON; } ! Set
... members = set{PERSON; } ! empty ...

Here, the type parameter T is replaced by the actual PERSON type, such that the type given to the set-valued
variable members is understood as the Set type selected from the set-of-PERSON context (that is, a function type
[PERSON -> BOOLEAN] in the Bryant encoding). The empty set constant is selected from the context in the same
way. The set context may instantiated by other element types, and used multiple times, as needed.

5.2. Computing the cardinality of sets

The BDD-encoding for sets causes major problems when seeking to calculate the cardinality of sets, since no
monolithic, countable set object exists in the SAL translation (see Sect. 2). The need to determine the size of a
set occurs quite frequently in Z, for example, when establishing limits. Earlier work [SW05] attempted to define
cardinality as the search for a relation between sets and natural numbers. However, in experiments, we proved
that this was inefficient to the point of being intractable [DNS06].

Our eventual preferred solution (after attempting the obvious recursive definition of sets, which failed upon
the infinite BDD expansion) was to create bespoke countN counting-contexts, parameterised over arbitrary N
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elements, according to the declared maximum capacity of the set. For example the count3-context supports the
brute-force counting of elements in sets containing at most three elements:

count3{T : TYPE; e1, e2, e3 : T} : CONTEXT = BEGIN
Set : TYPE = [T -> BOOLEAN];
size? (set : Set) : NATURAL =
IF set(e1) THEN 1 ELSE 0 ENDIF +
IF set(e2) THEN 1 ELSE 0 ENDIF +
IF set(e3) THEN 1 ELSE 0 ENDIF;

END

The context has a type parameter T and three value parameters of this type, e1, e2, e3, standing for the set
elements. The context declares a Set-type and a single operation size?, which computes the sum over a mem-
bership test by an exhaustive enumeration of each element. The context is used as follows, after instantiation
with a type and all the elements of that type:

LOCAL num : NAT
LOCAL friends : set{PERSON; } ! Set
... num = count3{PERSON; PERSON__1, PERSON__2, PERSON__3}

! size? (friends) ...

Counting-contexts may be synthesised by the translator for sets with different maximum capacity, by varying
the number of value parameters to be generated and the number of terms added to the brute-force summation.
The brute-force counting approach has proven in tests to be the most efficient method. Providing separate count-
ing-contexts to define the different versions of size? supports the counting of many kinds of sets (and relations)
without intruding on the main set context .

5.3. The encoding for standard relations

The initial idea for encoding relations was to mimic the set encoding, defining a relation as a set of pairs, to preserve
Z’s ability to view relations also as sets. So, just as a set translates into an ordered set of propositions over elements,
a relation, being a set of pairs, translates into an ordered set of propositions over pairs. Our standard SAL library
context for the Z relation data type is parameterised over the domain element type X and range element type Y,
and internally defines a number of product-types and set-types, as well as the types of the relation and its inverse:

relation{X, Y : TYPE; } : CONTEXT = BEGIN
XY : TYPE = [X, Y];
YX : TYPE = [Y, X];
Domain : TYPE = [X -> BOOLEAN];
Range : TYPE = [Y -> BOOLEAN];
Relation : TYPE = [XY -> BOOLEAN];
Inverse : TYPE = [YX -> BOOLEAN];
...
domain (rel : Relation) : Domain =
LAMBDA (x : X) : EXISTS (y : Y) :
LET pair : XY = (x, y) IN rel(pair);

range (rel : Relation) : Range =
LAMBDA (y : Y) : EXISTS (x : X) :
LET pair : XY = (x, y) IN rel(pair);

...
image (rel : Relation, set : Domain) : Range =
LAMBDA (y : Y) : EXISTS (x : X) : LET pair : XY = (x, y)
IN set(x) AND rel(pair);

inverse (rel : Relation) : Inverse =
LAMBDA (pair : YX) : LET elem : XY = (pair.2, pair.1)
IN rel(elem);

END
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This translation makes maximally-efficient use of the direct encoding of relations as boolean functions, for
example in the domain and range operations, where relations are applied directly to pairs, to test whether the pair
is a member of the relation. To work around a fault discovered in some implementations of the SAL tool-suite,
we always define a new symbolic type name for each pair-type, and, where necessary, bind a new local variable
to each constructed pair-value, using the let-construction (see Sect. 3).

Initially, we had the option of repeating all of the set-operations in the relation-context , but decided against
this, to better facilitate the treatment of relations as simple sets. When relations are used in the master context ,
they are declared as sets of pairs, such as rented in the following:

PERSON__X__TITLE : TYPE = [PERSON, TITLE];
...
LOCAL rented : set {PERSON__X__TITLE; } ! Set

This ensures that rented has the basic type of a Set. A quirk of SAL means that we may only select this type
externally from one of the contexts (SAL treats type symbols defined in different contexts as distinct, even if they
denote structurally identical types), so the other type names inside the relation-context may never be exported,
but they may safely be used internally.

In order to access both set-operations and relation-operations, both of these contexts must be instantiated
appropriately in the master context , for example, the following illustrates how to access the domain of the rented
relation, and how to perform a set membership test for a pair, using the contains? operation:

... relation {PERSON, TITLE;} ! domain(rented) ...

... set {PERSON__X__TITLE;} ! contains?(rented, (p?, t?)) ...

Note that, whereas the relation-context is instantiated with two separate types, the set-context must be instan-
tiated with the single product-type of the pair.

5.4. Special encodings for relations and sets

The success of this approach to partitioning operations over different contexts motivated our decision to split the
complete definition of Z relations over three SAL contexts , according to the number of element type parameters
required to type the basic sets being related. The standard context (above) provides all operations on relations
between two distinct sets. A separate closure-context was created to provide all operations on relations closed
over a single set (such as identity, transitive closure); while a third compose-context was created just to han-
dle relational composition, which relates three set types. For example, the latter is a context with three type
parameters:

compose{X, Y, Z : TYPE; } : CONTEXT = BEGIN
XY : TYPE = [X, Y];
YZ : TYPE = [Y, Z];
XZ : TYPE = [X, Z];
First : TYPE = [XY -> BOOLEAN];
Second : TYPE = [YZ -> BOOLEAN];
Composed : TYPE = [XZ -> BOOLEAN];

compose (relA : First, relB : Second) : Composed =
LAMBDA (pair : XZ) : EXISTS (elem : Y) :
LET pairA : XY = (pair.1, elem),

pairB : YZ = (elem, pair.2)
IN relA(pairA) AND relB(pairB);

END

The advantage of this partitioning is clear: if the standard relation context were to declare the compose
operation, it too would require three type parameters, yet the third type-instantiation would be an unnecessary
overhead for most of the time. The translator identifies when specific contexts are needed and includes them, as
required.
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Further special-purpose encodings are also provided within certain contexts to handle common Z cases more
efficiently. For example, the addition of single elements to sets is conventionally expressed in Z as the union of
a set with a constructed singleton set. Likewise, the removal of a single element can only be expressed in Z as
the difference of a set with a constructed singleton. The literal SAL translation of this is needlessly inefficient.
Instead the set-context provides bespoke operations to insert and remove single elements more efficiently:

insert (set : Set, new : T) : Set =
LAMBDA (elem : T) : elem = new OR set(elem);

remove (set : Set, old : T) : Set =
LAMBDA (elem : T) : elem /= old AND set(elem);

We treat such operations as special optimisations, rather than as first-class extensions to the public API of
the set data type. The translator identifies certain inefficient structural patterns in the parse-tree, and generates
the optimised code instead.

6. Translating partial functions and sequences

There were two possible approaches to encoding Z functions in SAL. The first followed on from the treatment of
relations as sets. A Z function may also be viewed as a set of pairs (but with the additional constraint of unique
mappings). This approach would ease the transition between the different views of a function, as a relation, or as
a set; and would presumably support dynamic maps more easily. The second approach was to use SAL’s built-in
function type, with its likely BDD-optimal encoding as a set of ordered judgements over variable mappings. The
disadvantages of this encoding included the structural mismatch between SAL’s functions and Z’s sets; and the
difficulty in representing partial functions (see Sect. 2) in a target language that only has total functions. We
conducted a series of timing experiments using a relation-style encoding and a native SAL function encoding of
Z’s function types. The results confirmed that using the native SAL encoding was far more efficient.

6.1. The BDD-optimal encoding for functions

In the light of the above experiments, we selected SAL’s native function encoding as the preferred basis for our
standard SAL library context for the Z function data type. In order to handle Z’s commonly-occurring partial
functions, we adopted a totalising strategy, in which every type appearing in a function signature is extended
with a bottom value, denoting the undefined element. Partial functions in Z may therefore be represented as total
functions in SAL, in which some domain or range values are bottom. The function-context is parameterized over
the domain element-type X and range element-type Y, but also accepts value-parameters xb and yb, denoting the
bottom element of each of these types. This allows operations on functions to detect undefined elements and treat
them specially, where required. Similar to the earlier relation-context , the function-context declares a number of
types for internal use, followed by operations for public use:

function {X, Y : TYPE; xb : X, yb : Y} : CONTEXT = BEGIN
XY : TYPE = [X, Y];
YX : TYPE = [Y, X];
Function : TYPE = [X -> Y];
Relation : TYPE = [XY -> BOOLEAN];
Inverse : TYPE = [YX -> BOOLEAN];
Domain : TYPE = [X -> BOOLEAN];
Range : TYPE = [Y -> BOOLEAN];
...
empty : Function =
LAMBDA (x : X) : yb;

contains? (fun : Function, pair : XY) : BOOLEAN =
fun(pair.1) = pair.2;

...
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domain (fun : Function) Domain =
LAMBDA (x : X) : x /= xb AND fun(x) /= yb;

range (fun : Function) Range =
LAMBDA (y : Y) : EXISTS (x : X) :
x /= xb AND fun(x) = y AND y /= yb;

...
override (f, g : Function) : Function =

LAMBDA (x : X) : IF g(x) = yb
THEN f(x) ELSE g(x) ENDIF;

...
inverse (fun : Function) : Inverse =

LAMBDA (pair : YX) : fun(pair.2) = pair.1
AND pair.2 /= xb AND pair.1 /= yb;

convert (fun : Function) : Relation =
LAMBDA (pair : XY) : fun(pair.1) = pair.2
AND pair.1 /= xb AND pair.2 /= yb;

...
END

Many of the commonly-used set operations are re-implemented for this different kind of encoding. For exam-
ple, the empty map constant is encoded as a function, which always returns the bottom range value, yb. The set
membership test contains? deconstructs the pair-argument to see whether applying the function to the first
projection yields the second projection. Many commonly-used relation operations are also re-implemented, such
as the operations to extract the domain and range sets. Other operations are specific to the function data type,
such as override, which computes the union with override of two functions. Finally, a special operation convert
is provided, in case it is desired to convert from the BDD-efficient representation back into a set of pairs, for
example, when treating a function as a relation, or as a set, prior to counting its maplets.

All of these constructions take suitable note of xb and yb, the undefined bottom values. For example, the
domain and range extractors are careful not to include these sentinels in the result. Some of the above construc-
tions can be simplified if a specification asserts f(xb) = yb globally, for any function f (see the discussion of Z’s
function types, below).

6.2. Preserving well-defined inputs and outputs

Whenever the function-context is flagged for use by the translator, it takes note of the actual domain and range
element-types, so that extra bottom values are inserted, when these types are generated. For example, the TITLE
and NAT types are extended below, prior to declaring a function relating these types:
TITLE : TYPE = {TITLE__1, TITLE__2, TITLE__3, TITLE__B};
NAT : TYPE = [0..4];
...
LOCAL stockLevel : [TITLE -> NAT];

The extra symbolic value TITLE__B denotes the bottom value for the basic type TITLE, whereas the out-of-
range sentinel value 4 is used as the bottom value for the numeric type NAT. Now, it is possible to instantiate the
function-context appropriately and select library operations, as desired. Of course, the function can always be
applied directly to a legal domain value to yield its image.
... stockLevel = function {TITLE, NAT; TITLE__B, 4} ! empty ...
... function {TITLE, NAT; TITLE__B, 4} ! domain(stockLevel) ...
... stockLevel(t?) > 0 ...

One consequence of extending types to include bottom values is that the same types may also be attached to
input and output variables. This causes a new problem, since the inputs and outputs to Z operations are always
supposed to be well-defined. One possible approach is to define both the standard type and the extended type,
using SAL’s set comprehension notation to relate these by subtyping:
NAT__X : TYPE = [1..4];
NAT : TYPE = {x : NAT__X | x /= 4};
TITLE__X : TYPE = {TITLE__1, TITLE__2, TITLE__3, TITLE__B};
TITLE : TYPE = {x : TITLE__X | x /= TITLE__B};
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The notion is that the standard types are attached to inputs and outputs, while the extended types are used
with functions. This works in one direction, but fails to type-check in SAL when an extended value is passed from
a function operation to a standard variable, since SAL has no built-in notion of retracts.

So, we are constrained by SAL’s type system to use the extended types everywhere, but instead adopt the
work-around of including extra predicates asserting that input and output variables never bind to bottom values.
These constraints are added to the state predicate after the input and output variables have been processed.

6.3. Translating Z’s family of function types

Z distinguishes many function types for plain, injective, surjective and bijective functions, in total and partial
combinations. The strategy in SAL is not to create additional function types, which would either require dupli-
cation of all function operations, or would prevent treating an injective function just as a plain function, for
example. Instead, the Z definitions of each function type are converted into predicates, that may be applied to
any function, to assert its family properties.

The function-context defines atomic predicates for total and partial functions, which may be combined with
the predicates for injective, surjective and bijective functions (it also provides convenient binary combinations,
such as totalSurjective?, defined out of the more primitive forms):

function {X, Y : TYPE; xb : X, yb : Y} : CONTEXT = BEGIN
...
Function : TYPE = [X -> Y];
...
partial? (f : Function) : BOOLEAN =
f(xb) = yb;

total? (f : Function) : BOOLEAN =
FORALL (x : X) : IF x = xb THEN f(x) = yb
ELSE f(x) /= yb ENDIF;

injective? (f : Function) : BOOLEAN =
FORALL (x1, x2 : X) : (f(x1) /= yb AND
f(x1) = f(x2)) => (x1 = x2);

surjective? (f : Function) : BOOLEAN =
FORALL (y : Y) : EXISTS (x : X) : f(x) = y;

bijective? (f : Function) : BOOLEAN =
injective?(f) AND surjective?(f);

...
END

An important property of these predicates, which seems counter-intuitive at first, is that a mapping must
always exist in SAL for the bottom domain element, even where the Z function is total. This is because the BDD
compilation of each function converts into an ordered set of mappings from every domain element to some range
element and, from SAL’s viewpoint, the bottom domain value is like any other. Initially, we had asserted totality
using: FORALL (x : X) : f(x) /= yb, but later found during testing that this led to deadlock (systems with
no future states), hence the more careful translation above.

When translating a Z function with one of these function types, the SAL output includes suitable function
family predicates, conjoining these with the state invariant. In our latest translation, one of total? or partial?
is always asserted, such that f(xb) = yb is a global property. This allows the removal of the duplicated side
conditions: x /= xb in some operations of the function-context .

6.4. The translation of Z standard sequences

Following the Z treatment of sequences as functions from element-type to N1, we wanted to model sequences as
SAL functions, which are analogous to SAL arrays, in that both compile to an ordered set of judgements on pairs
in the BDD representation. However, the ordered property of sequences suggests an optimisation in computing
the length of the sequence.
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Our SAL context for a Z sequence treats this as a tuple of a fill-counter and a function, where the counter
is the length (possibly zero) of the sequence, and the function maps from a non-zero index to a value. Typical
operations include deconstructing a sequence at the head or tail ends, or concatenating two sequences. An addi-
tional constraint for sequences is that all mapped indices must be contiguous, from 1..n, with no bottom mapping
appearing medially. Furthermore, the result of concatenating two sequences might exceed the range of the index
type, in which case it must be possible to detect overflow in the encoding. All this is facilitated by parameterising
the sequence-context by the element-type, the bottom element value and the maximum anticipated length:

sequence {X : TYPE; xb : X, max : NATURAL} : CONTEXT = BEGIN
Index : TYPE = [1..max];
Size : TYPE = [0..max];
Function : TYPE = [Index -> X];
Sequence : TYPE = [Size, Function];
...
empty : Sequence = (0, LAMBDA (n : Index) : xb);
undefined : Sequence =(max, LAMBDA (n : Index) : xb);
...
size? (seq : Sequence) : Size =

seq.1;
convert (seq : Sequence) : Function =

seq.2;
...
head (seq : Sequence) : X =

seq.2(1);
tail (seq : Sequence) : Sequence =

IF seq.1 = 0 THEN undefined ELSE (seq.1 - 1,
LAMBDA (n : Index) : IF n = seq.1 THEN xb
ELSE seq.2(add1(n)) ENDIF)

ENDIF;
...
concat (first, second : Sequence) : Sequence =

IF (first.1 + second.1 > max) THEN undefined
ELSE (first.1 + second.1, LAMBDA (n : Index) :
IF n <= first.1 THEN first.2(n)

ELSE second.2(n - first.1) ENDIF)
ENDIF;

...
valid? (seq: Sequence) : BOOLEAN =

FORALL (i : Index) : IF i > seq.1 THEN seq.2(i) = xb
ELSE seq.2(i) /= xb ENDIF;

...
END

The internal types distinguish Size, including zero, from Index, excluding zero. Apart from simple operations
such as size?, which projects the fill-counter, and convert, which projects the function, most operations have to
handle boundary cases. For example, if a sequence has zero length, headmay return the bottom element, and tail
may return the undefined sequence. Technically, the Z mathematical toolkit only defines these operations for seq1,
the non-empty sequence type, which we declare using a predicate constraint, similar to the treatment of function
family types; however, these operations must still be total over extended domains in SAL, for completeness of
model checking.

Likewise, concat may return an undefined sequence as a consequence of overflow in the representation.
This is an extra consideration forced upon the model by the limitations of the implementation. We assume that,
during model checking, we may assert that a sequence is still valid , as part of the system invariant. The heart of
this validity-check is a contiguous range check for mapped indices, which the explicit fill-counter makes easier to
implement. Having valid? as a separate predicate also offers the flexibility to distinguish between an inconsistent
specification, or a failed representation.
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Apart from this, a number of operations from the relation-context are duplicated, such as the domain and
range operations, where these may benefit from the fill-counter (like size?). Elsewhere, the expectation is that
the sequence may be treated as a function (by using convert), which in turn may be treated as a set of pairs, as
described above.

6.5. Special encodings for sequences and functions

Similar to the function types, Z provides two distinguished sequence types, seq1, the non-empty sequence, and
iseq, the injective sequence. In SAL these are encoded as predicates on sequences, rather than as separate types
(see the similar argument above for function types):

notEmpty? (seq : Sequence) : BOOLEAN =
seq.1 > 0 AND valid?(seq);

injective? (seq : Sequence) : BOOLEAN =
FORALL (i, j : Index) : (seq.2(i) /= xb AND
seq.2(i) = seq.2(j)) => (i = j);

The first of these illustrates the need to handle both parts of the sequence’s representation. It is not enough
simply to assert that the fill-counter is non-zero in notEmpty?, since this might permit the tool-suite to infer rep-
resentations of the function part which were meaningless; hence the use of valid? to ensure that the remaining
mappings are contiguous.

In the same way that special encodings were developed to handle the insertion and removal of single elements
from sets, cognate operations are also provided for both functions and sequences. Optimised operations are
provided in the function-context to insert and remove single maplets:

insert (fun : Function, pair : XY) : Function =
LAMBDA (x : X) : IF x = pair.1
THEN pair.2 ELSE f(x) ENDIF;

remove (fun : Function, val : X) : Function =
LAMBDA (x : X) : IF x = val
THEN xb ELSE f(x) ENDIF;

which is much more efficient than performing function override with a singleton function. Likewise for sequences,
optimised operations are provided to insert (prepend) or append single elements:

insert (seq : Sequence, val : X) : Sequence =
IF (seq.1 = max) THEN undefined
ELSE (seq.1 + 1, LAMBDA (n : Index) :
IF n = 1 THEN val ELSE seq.2(sub1(n)) ENDIF)

ENDIF;
append (seq : Sequence, val : X) : Sequence =
IF (seq.1 = max) THEN undefined
ELSE (seq.1 + 1, LAMBDA (n : Index) :
IF n = seq.1 + 1 THEN val ELSE seq.2(n) ENDIF)

ENDIF;

which is much more efficient than concatenation at the head or tail end with a singleton sequence. The translator
identifies structures containing singletons and uses translation templates to replace the less efficient construction
with the optimised one.

In early tests, it was found that simple arithmetic on indices did not typecheck in SAL, because of the pos-
sibility of a sum or difference going out of the range of the Index type. The work-around for this was two
helper-functions add1 and sub1, which map arithmetic to the limits of the range, purely for the sake of type
checking (the validity of the representation is handled separately).
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7. Case study

Here we present a small example to illustrate some of the ideas presented above. First, a Z specification is given,
representing the operation of a video shop which rents out videos to its subscribed members. The SAL translation
is then used as the input to the SAL tool-suite, both for simulation and for model-checking. The tools are able to
verify expected properties, but also discover incomplete properties of the specification. The performance of the
tool-suite on our latest improved SAL encodings is also presented.

In the Z specification, PERSON is the type of members and TITLE is the type of videos. The state of the
video shop business describes a set of subscribed members , a relation rented mapping from the members to the
(many) videos that they currently each rent, and a function stockLevel describing how many copies of each video
the shop owns. Initially, there are no members and there is no stock. The stock level may be modified by AddTitle,
which adds a number of copies of a video, and DeleteTitle, which removes all copies of a video (provided none
are rented). The membership only increases monotonically using AddMember . RentVideo loans a video to a
member, if the shop has available stock (and the video is not already loaned to the member). There is no facility
to return videos to the shop. CopiesOut reports how many copies of a video are currently on loan.

[PERSON ,TITLE ]

State
members : PPERSON
rented : PERSON ↔ TITLE
stockLevel : TITLE �→ N

dom rented ⊆ members
ran rented ⊆ dom stockLevel

Init
State ′

members ′ � ∅
stockLevel ′ � ∅

RentVideo
�State
p? : PERSON
t? : TITLE

p? ∈ members
t? ∈ dom stockLevel
stockLevel(t?) > #(rented � {t?})
(p?, t?) �∈ rented
rented ′ � rented ∪ {(p?, t?)}
stockLevel ′ � stockLevel
members ′ � members

AddTitle
�State
t? : TITLE
level? : N

stockLevel ′ � stockLevel ⊕ {(t?, level?)}
rented ′ � rented
members ′ � members

DeleteTitle
�State
t? : TITLE

t? �∈ ran rented
t? ∈ dom stockLevel
stockLevel ′ � {t?} −� stockLevel
rented ′ � rented
members ′ � members

AddMember
�State
p? : PERSON

p? �∈ members
stockLevel ′ � stockLevel
rented ′ � rented
members ′ � members ∪ {p?}

CopiesOut
�State
t? : TITLE
copies! : N

t? ∈ dom stockLevel
copies! � #(rented � {t?})

The following describes the SAL output, resulting from the translation of the above Z specification. This uses
the latest SAL encodings reported in this paper, and so differs from the example reported in [DNS08], in that the
number of SAL input and output variables is reduced by coalescing (see Sect. 4); and the initial values of output
variables are clamped.
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example : CONTEXT = BEGIN

PERSON : TYPE = {PERSON__1, PERSON__2, PERSON__3};
TITLE : TYPE = {TITLE__1, TITLE__2, TITLE__3, TITLE__B};
PERSON__X__TITLE : TYPE = [PERSON, TITLE];
NAT : TYPE = [0..4];

PERSON__X__TITLE__counter : CONTEXT = count12 {PERSON__X__TITLE;
(PERSON__1, TITLE__1), (PERSON__1, TITLE__2), (PERSON__1, TITLE__3),
(PERSON__1, TITLE__B), (PERSON__2, TITLE__1), (PERSON__2, TITLE__2),
(PERSON__2, TITLE__3), (PERSON__2, TITLE__B), (PERSON__3, TITLE__1),
(PERSON__3, TITLE__2), (PERSON__3, TITLE__3), (PERSON__3, TITLE__B)};

State : MODULE = BEGIN
LOCAL members : set {PERSON;} ! Set
LOCAL rented : set {PERSON__X__TITLE;} ! Set
LOCAL stockLevel : [ TITLE -> NAT ]
INPUT p? : PERSON
INPUT t? : TITLE
INPUT level? : NAT
OUTPUT copies_ : NAT
LOCAL invariant__ : BOOLEAN
DEFINITION

invariant__ = (set {PERSON;} ! subset?(relation {PERSON, TITLE;} !
domain(rented), members) AND

set {TITLE;} ! subset?(relation {PERSON, TITLE;} ! range(rented),
function {TITLE, NAT; TITLE__B, 4} ! domain(stockLevel)) AND

partial?(stockLevel) AND
t? /= TITLE__B AND
level? /= 4 AND
copies_ /= 4)

INITIALIZATION [
members = set {PERSON;} ! empty AND
stockLevel = function {TITLE, NAT; TITLE__B, 4} ! empty AND
copies_ = 1 AND
invariant__

-->
]
TRANSITION [

RentVideo :
set {PERSON;} ! contains?(members, RentVideo__p?) AND
set {TITLE;} ! contains?(function {TITLE, NAT; TITLE__B, 4} !

domain(stockLevel), t?) AND
stockLevel (t?) > PERSON__X__TITLE__counter !

size?(relation {PERSON, TITLE;} ! rangeRestrict(rented,
set {TITLE;} ! singleton(t?))) AND

NOT set {PERSON__X__TITLE;} ! contains?(rented, (p?, t?)) AND
rented’ = set {PERSON__X__TITLE;} ! insert(rented, (p?, t?)) AND
stockLevel’ = stockLevel AND
members’ = members AND
invariant__’

-->
members’ IN { x : set {PERSON;} ! Set | TRUE};
rented’ IN { x : set {PERSON__X__TITLE;} ! Set | TRUE};
stockLevel’ IN { x : [ TITLE -> NAT ] | TRUE}

[]
AddTitle :

stockLevel’ = function {TITLE, NAT; TITLE__B, 4} !
insert(stockLevel, (t?, level?)) AND

rented’ = rented AND
members’ = members AND
invariant__’

-->
members’ IN { x : set {PERSON;} ! Set | TRUE};
rented’ IN { x : set {PERSON__X__TITLE;} ! Set | TRUE};
stockLevel’ IN { x : [ TITLE -> NAT ] | TRUE}
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[]
DeleteTitle :

NOT set {TITLE;} ! contains?(relation {PERSON, TITLE;} !
range(rented), t?) AND

set {TITLE;} ! contains?(function {TITLE, NAT; TITLE__B, 4} !
domain(stockLevel), t?) AND

stockLevel’ = function {TITLE, NAT; TITLE__B, 4} !
domainSubtract(set {TITLE;} ! singleton(t?), stockLevel) AND

rented’ = rented AND
members’ = members AND
invariant__’

-->
members’ IN { x : set {PERSON;} ! Set | TRUE};
rented’ IN { x : set {PERSON__X__TITLE;} ! Set | TRUE};
stockLevel’ IN { x : [ TITLE -> NAT ] | TRUE}

[]
AddMember :

NOT set {PERSON;} ! contains?(members, p?) AND
stockLevel’ = stockLevel AND
rented’ = rented AND
members’ = set {PERSON;} ! insert(members, p?) AND
invariant__’

-->
members’ IN { x : set {PERSON;} ! Set | TRUE};
rented’ IN { x : set {PERSON__X__TITLE;} ! Set | TRUE};
stockLevel’ IN { x : [ TITLE -> NAT ] | TRUE}

[]
CopiesOut :

members = members’ AND
rented = rented’ AND
stockLevel = stockLevel’ AND
set {TITLE;} ! contains?(function {TITLE, NAT; TITLE__B, 4} !

domain(stockLevel), t?) AND
copies_’ = PERSON__X__TITLE__counter ! size?(

relation {PERSON, TITLE;} ! rangeRestrict(rented, set {TITLE;} !
singleton(t?))) AND

invariant__’
-->

members’ IN { x : set {PERSON;} ! Set | TRUE};
rented’ IN { x : set {PERSON__X__TITLE;} ! Set | TRUE};
stockLevel’ IN { x : [ TITLE -> NAT ] | TRUE};
copies_’ IN { x : NAT | TRUE}

[]
ELSE -->

members’ = members;
rented’ = rented;
stockLevel’ = stockLevel

]
END;

END

This translation demonstrates a large subset of the SAL encodings described above, including some further
relational operations, such asdomainSubtract andrangeRestrict, applied variously to the preferred set-encod-
ing and native SAL function-encoding. The singleton operation is a further special-purpose set constructor.
Note in the prequel that the translator (only) synthesised two bottom values for the types NAT and TITLE, since
these appear in the function signature, whereas PERSON does not. Also, a large count12 − context is synthesised
to support counting of the rented relation; and an abbreviated name is defined for the instantiated context, to
facilitate the readability of the translation.
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7.1. Simulating with the example

The SAL translation of the example was then animated using the sal-sim simulator from the SAL tool-
suite. This tool supports interaction with the user, who can step forward in time from the initial state(s), and
view the current states, or arbitrary traces. Timing information was also obtained from the tool. We ran all
experiments on a shared Unix server running Solaris 9, from a desktop client. Because of shared processor
usage, all times reported here and below were the average times taken across five repetitions of each timing
experiment.

The example SAL file is loaded using (import! "example"), and the tool takes approximately 0.3 s to
parse and type-check the various contexts . The example is then compiled to BDDs by invoking the com-
mand (start-simulation! "State"), where State is the name of the main SAL module driving the sim-
ulation. The compilation process takes around 6.15 s for the current example. This involves flattening the
module, simplifying the AST, expanding function applications, unfolding quantifiers and eliminating com-
mon sub-expressions, converting to a boolean flat module, then to the BDD format. This is then opti-
mised by ordering the variables to minimise support, then rearranging and compressing the BDD clusters
[dMOS03].

The current number of states in the system may be viewed using the (display-curr-states N) com-
mand, where N is the maximum number of states to display in full to the user (the tool always reports the
total number of states). An arbitrary trace may also be displayed using the (display-curr-trace) com-
mand. The trace is selected at random; and a different trace is typically displayed on subsequent invocation
(repeatedly executing this command is not guaranteed to iterate over all traces). The output is in a partic-
ular textual format, close to the BDD representation, which we convert to a more readable tabular format
below.

To illustrate the simulator’s state-exploring behaviour, the example was advanced through a series of ten
state-transitions using the (step!) command; and the number of states were counted after each step, using the
(display-curr-states N) command. To evaluate the effects of the latest revisions to the SAL translation, we
simulated three different encodings. The first is the original encoding reported in [DNS08], with replicated input
and output variables for each operation schema and no output-clamping. The second version clamps the initial
values of output variables to the first value in the range of the type (chosen arbitrarily). The third (and current)
version also coalesces input and output variables across all Z operation schemas. These measures resulted in a
progressive reduction in the state-space:

Example Original + Clamped + Coalesced
version: version init outputs i/o variables

states states states
step 0 : 11664 2916 36
step 1 : 221040 55260 600
step 2 : 1752048 438012 4524
step 3 : 7918848 1979712 19752
step 4 : 24593328 6227064 60756
step 5 : 61568640 16516764 152580
step 6 : 134093232 40250196 331212
step 7 : 256801824 87486660 641184
step 8 : 443716992 168270120 1138080
step 9 : *memory* 292802220 1878780
step 10 : *memory* 468633996 2888976
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From this, it can be seen that clamping initial outputs resulted initially in a 4.0x state reduction, tending to a
2.6x reduction by step 8 (the original version exhausted memory after this step). Since our example only has one
output variable copies_, we would expect greater reductions in examples with more outputs.

The effect of coalescing all similarly-named input and output variables had a more dramatic effect. Compared
to the intermediate version, this resulted initially in a 81.0× state reduction, tending to a 162.2× state reduction by
step 10. Coalescing variable names will give the best state reductions for Z authoring styles that choose identical
names for similar variables in different operation schemas.

Altogether, our latest translation has therefore reduced memory usage by a factor of something between
324.0× (at step 0) and 384.5× (by step 8) for this example. This reduction is useful, since it will allow the
simulation of more complex examples with more states, without exhausting memory.

To illustrate the simulator’s trace-reporting behaviour, the example was advanced through a series of
ten state-transitions using the (step!) command; and arbitrary traces were then displayed using the
(display-curr-trace) command. One illustrative example trace is the following:

Step Transition Updates
0 Init members, rented , stockLevel � ∅
1 AddTitle stockLevel (TITLE 2) � 3
2 AddMember PERSON 2 ∈ members
3 RentVideo (PERSON 2, TITLE 2) ∈ rented
4 AddTitle stockLevel (TITLE 1) � 2
5 RentVideo (PERSON 2, TITLE 1) ∈ rented
6 AddTitle stockLevel (TITLE 3) � 0
7 AddTitle stockLevel (TITLE 1) � 0
8 AddMember PERSON 1 ∈ members
9 RentVideo (PERSON 1, TITLE 2) ∈ rented
10 Else no change

From this, it can be seen that the system acquired some videos and members and rented videos to some of the
members. These behaviours were as expected, and executed in the logical order of dependency (e.g. in step 1, 3
copies of the video TITLE__2 were acquired; in step 2, PERSON__2 joined the video club; and in step 3, PERSON__2
was rented a copy of TITLE__2).

However, the simulation also reveals a semantic fault in the original Z specification, namely that it is possible
to reset the quantity of each video in stock independently of the number of copies that are already on loan
(in step 5, one copy of TITLE__1 is rented to PERSON__2, but in step 7, the stock level of TITLE__1 is reset to
zero). The semantic fault in the specification is that AddTitle merely replaces the previous stock-level, rather
than adding to it. It is also arguably pointless, in steps 6 and 7, to permit adding zero copies of a video. This
ability to view traces illustrates how useful simulation can be when initially validating a specification, looking for
obvious omissions and faults. The detection of less obvious faults may be accomplished through model-checking,
described below.

A final point to note is that, in step 10 above, the simulator has arbitrarily selected the default ELSE-transition,
a nullop that is always possible, in case a simulation would otherwise deadlock. This transition allows a step
to be taken, even if the input conditions prevent any other transition from firing. The consequences are that
the values of the LOCAL state variables must remain unchanged, even if the input conditions would violate the
invariant.

7.2. Model-checking with the example

The SAL tool-suite provides several simple and bounded model-checkers that support both LTL and CTL tem-
poral logics. We have used the simple model-checker sal-smc and also the bounded model-checker sal-bmc for
checking to known bounded depths. At the moment, we add theorems by hand to the end of the translated SAL
file. Eventually, we propose to extend the Z notation to support temporal logic expressions.
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The proof strategy adopted can either be positive, in which theorems are proved or falsified directly, or nega-
tive, following a refutation strategy, in which counter-theorems are proposed in the expectation that they will be
disproved. The latter approach is often more revealing, since the tools provide traces whenever a counter-example
is found. In the positive approach, it is sometimes difficult to distinguish between proof success and mere failure
to find a counter-example within a certain depth of exploration. Therefore we always seek to frame queries in
such a way as to force the model checker to reveal how it found the solution.

The following illustrates the refutation approach using counter-theorems. Suppose that we want to show that
videos eventually get rented to subscribed members of the video shop. In SAL, we propose the negation of this
property as a counter-theorem:

th1 : THEOREM State |- G(set {PERSON__X__TITLE;}!empty?(rented));

This says that “the State module allows us to derive that the relation rented is always empty,” using the
LTL operator G for “always”. We run this through the model-checker using the command to check theorem 1 in
the example: sal-smc exam\-ple th1 and this generates the smallest counter-example that proves the desired
property:

Step Transition Updates
0 Init members, rented , stockLevel � ∅
1 AddTitle stockLevel (TITLE 2) � 3
2 AddMember PERSON 1 ∈ members
3 RentVideo (PERSON 1,TITLE 2) ∈ rented

For this theorem, the counter-example is found in three steps. This is the shortest path which stocks 3 copies
of one video title, adds a member, then rents a video to that member. The sal-smc model-checker reports that
it finds the counter-example within 4.45 s, of which most time is taken up compiling the example. The actual
searching time is approximately 0.14 s.

To investigate further the execution times for checking counter-theorems of varying complexity in our dif-
ferent translation models, we devised a number of counter-theorems to test the searching capability of the tools
under different conditions:

th1 : THEOREM State |- G (set {PERSON__X__TITLE;} ! empty?(rented));
%% "No video copies are ever rented to people."

th2 : THEOREM State |- G (NOT (members = set {PERSON;} ! full));
%% "The video club membership is never complete."

th3 : THEOREM State |- G (copies_ /= 3);
%% "3 copies of a video are never on loan at any time."

th4 : THEOREM State |- G (FORALL (t : TITLE) : stockLevel(t) /= 3);
%% "There are never 3 video copies stocked for any title."

th5 : THEOREM State |- G (FORALL (t : TITLE) :
stockLevel(t) >= PERSON__X__TITLE__counter ! size?(
relation {PERSON, TITLE;} ! rangeRestrict(rented,
set {TITLE;} ! singleton(t))) );

%% "The number of copies in stock is never less than the number rented."
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th6 : THEOREM State |- G (NOT (
(FORALL (p : PERSON) : FORALL (t : TITLE) : (

t /= TITLE__B => LET pair : PERSON__X__TITLE = (p, t) IN
set {PERSON__X__TITLE;} ! contains? (rented, pair))
AND stockLevel(t) >= 3 ) ));

%% "It never happens that every person rents a copy of every video
%% and at least 3 copies are stocked of that video."

th7 : THEOREM State |- G (NOT (
(FORALL (p : PERSON) : FORALL (t : TITLE) : (

t /= TITLE__B => LET pair : PERSON__X__TITLE = (p, t) IN
set {PERSON__X__TITLE;} ! contains? (rented, pair))
AND stockLevel(t) >= PERSON__X__TITLE__counter ! size?(
relation {PERSON, TITLE;} ! rangeRestrict(rented,
set {TITLE;} ! singleton(t))) ) ));

%% "It never happens that every person rents a copy of every video
%% and the stock of that video equals or exceeds the number of copies
%% rented."

These ranged from simple counter-theorems designed to reveal that extreme states of the specification could
be reached, to more complex counter-theorems designed to exercise as many transitions as possible, within the
constraints of the (admittedly rather small) pedagogical example. Theorem 1 was a sanity-check, seeking to verify
that videos can be rented; Theorems 2–4 were designed to reach the maximum population of sets, or the limits of
ranges; Theorem 5 was an example of a plausible positive system property to seek to verify; and Theorems 6–7
were designed to exercise the maximum number of transitions to reach an extreme state. Theorem 7 essentially
asks the same question as Theorem 6, but in a more circumlocutory way that exercises more of the functions
from the mathematical toolkit.

Timings were collected for checking each counter-theorem in each of the three translation models (the original
encoding; the intermediate encoding with clamped initial output values; and the current encoding with clamped
initial outputs and coalesced input/output variables).

Example Steps Original +Clamped +Coalesced
version: taken version init outputs i/o variables
theorem 1 3 4.61 s 4.68 s 4.40 s
theorem 2 3 4.53 s 4.51 s 4.37 s
theorem 3 8/0* 4.39 s* 5.48 s 5.10 s
theorem 4 1 4.55 s 4.51 s 4.40 s
theorem 5 4 9.22 s 9.47 s 9.03 s
theorem 6 15 6.91 s 7.47 s 6.52 s
theorem 7 15 11.42 s 12.04 s 10.83 s
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All counter-examples were found within zero to fifteen steps. The execution times ranged from 4.37 to 12.04 s.
Broadly speaking, the current encoding demonstrates slightly improved execution times over the original encod-
ing (ranging from 0.2 to 0.6 s faster) and the intermediate version made both gains and losses over the original
encoding (ranging from 0.6 s slower, to 0.04 s faster). It should be noted that all these execution times were
dominated by the compilation time for the example, which also increased with the complexity of the theorem.
The actual verification times constitute around 20–25% of the overall execution time; and so we estimate that
verification times are around 10% faster for the current encoding.

It is interesting that clamping initial outputs alone appears to have a small time penalty in most cases, reflecting
the additional time taken to compile the assignments and execute the constraints. On the other hand, coalesc-
ing input/output variables reduces the execution time across all examples. There was one anomaly (theorem 3,
original version) where a counter-example was found in zero steps (rather than the expected eight steps) in the
original version. This was due to the fact that the output variable copies_ was not initially clamped, such that
the prover could choose to assign any value it liked in the initial state!

All of the refutation examples above showed, by counter-example, that expected properties of the specifica-
tion were present, in that certain limiting states of the specification could indeed be reached. The one positive
proof example (Theorem 5) was devised to detect the semantic fault already identified above by simulation. The
theorem asks whether there are always at least as many copies of a video in stock as there are on loan to members.
Because of the semantic fault in the original specification, which allows stock levels to be reset independently,
this property is violated. The model-checker correctly finds a counter-example within the minimum of four steps:

Step Transition Updates
0 Init members, rented , stockLevel � ∅
1 AddTitle stockLevel (TITLE 2) � 3
2 AddMember PERSON 3 ∈ members
3 RentVideo (PERSON 3, TITLE 2) ∈ rented
4 AddTitle stockLevel (TITLE 2) � 0

The model-checker had to work hardest for Theorem 7, which forced the system through 15 transitions (viz.
3 members were added, 3 copies of each video were acquired and 9 rentals were offered) to reach the limiting
state where each member has a copy of each video. The side condition that the number of copies in stock should
exceed the number of copies on loan forced the checker to evaluate an additional range restriction and set element
count, compared to Theorem 6, in which the minimum stock level was expressed directly as a constant. Compar-
ing the original encoding with the current encoding, the compilation time was reduced from 8.91 to 8.58 s; and
the verification time from 2.51 to 2.25 s.

8. Conclusion

In this paper we have discussed our current approach to translating Z into the input language of the SAL tool-
suite, with a view to providing a model-checking capability for Z. Our encoding is close to the optimal format
for the tool-suite’s internal BDD structures, and is informed by heuristics for reducing the state-space.

Whilst we have demonstrated the feasibility of a translation of a large part of Z there are still some limitations.
These fall into two areas—the limitations of our translation and the limitations of SAL. While the SAL tools are
reasonably stable, they have some deficiencies from our point of view. The most notable of these are: the failure
to cope with recursive types; and an unpredictable error when processing tuples and their types. However, new
versions of the tool-suite continue to be released and it is to be hoped that these problems will be resolved in time.
Of course there is still work to be done on our translation of Z. For example, we have yet to resolve some issues
with the representation of sequences and schema calculus expressions; and have not yet attempted the translation
of bags.

Despite these limitations, this still appears to be a promising area to explore. The frequency with which we have
discovered new adjustments to the translation which yield greatly improved performance in the model-checker
suggests that there is still useful work to be done in this area. It would also be worthwhile to explore how our
approach scales up, by conducting some performance comparisons with other similar tools such as ProB. While
this paper reports a work in progress, we have established that the approach is feasible and a promising area for
further work.
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