
Zab: High-performance broadcast for

primary-backup systems

Flavio P. Junqueira, Benjamin C. Reed, and Marco Serafini

Yahoo! Research

{fpj,breed,serafini}@yahoo-inc.com

Abstract—Zab is a crash-recovery atomic broadcast algorithm
we designed for the ZooKeeper coordination service. ZooKeeper
implements a primary-backup scheme in which a primary
process executes clients operations and uses Zab to propagate the
corresponding incremental state changes to backup processes1.
Due the dependence of an incremental state change on the
sequence of changes previously generated, Zab must guarantee
that if it delivers a given state change, then all other changes it
depends upon must be delivered first. Since primaries may crash,
Zab must satisfy this requirement despite crashes of primaries.

Applications using ZooKeeper demand high-performance from
the service, and consequently, one important goal is the ability
of having multiple outstanding client operations at a time.
Zab enables multiple outstanding state changes by guaranteeing
that at most one primary is able to broadcast state changes
and have them incorporated into the state, and by using a
synchronization phase while establishing a new primary. Before
this synchronization phase completes, a new primary does not
broadcast new state changes. Finally, Zab uses an identification
scheme for state changes that enables a process to easily identify
missing changes. This feature is key for efficient recovery.

Experiments and experience so far in production show that our
design enables an implementation that meets the performance
requirements of our applications. Our implementation of Zab
can achieve tens of thousands of broadcasts per second, which
is sufficient for demanding systems such as our Web-scale
applications.

Index Terms—Fault tolerance, Distributed algorithms, Primary
backup, Asynchronous consensus, Atomic broadcast

I. INTRODUCTION

Atomic broadcast is a commonly used primitive in dis-

tributed computing and ZooKeeper is yet another application

to use atomic broadcast. ZooKeeper is a highly-available

coordination service used in production Web systems such as

the Yahoo! crawler for over three years. Such applications

often comprise a large number of processes and rely upon

ZooKeeper to perform important coordination tasks, such as

storing configuration data reliably and keeping the status of

running processes. Given the reliance of large applications on

ZooKeeper, the service must be able to mask and recover from

failures. [1]

ZooKeeper is a replicated service, and it requires that a

majority (or more generally a quorum) of servers has not

crashed for progress. Crashed servers are able to recover

and rejoin the ensemble as with previous crash-recovery

protocols [2], [3], [4]. ZooKeeper uses a primary-backup

1A preliminary description of Zab was presented as a brief announcement
at the 23rd International Symposium on Distributed Computing, DISC 2009.

scheme [5], [6], [7] to maintain the state of replica processes

consistent. With ZooKeeper, a primary process receives all

incoming client requests, executes them, and propagates the

resulting non-commutative, incremental state changes in the

form of transactions to the backup replicas using Zab, the

ZooKeeper atomic broadcast protocol. Upon primary crashes,

processes execute a recovery protocol both to agree upon a

common consistent state before resuming regular operation

and to establish a new primary to broadcast state changes. To

exercise the primary role, a process must have the support of

a quorum of processes. As processes can crash and recover,

there can be over time multiple primaries and in fact the

same process may exercise the primary role multiple times. To

distinguish the different primaries over time, we associate an

instance value with each established primary. A given instance

value maps to at most one process. Note that our notion

of instance shares some of the properties of views of group

communication [8], but it presents some key differences. With

group communication, all processes in a given view are able to

broadcast, and configuration changes happen when any process

joins or leaves. With Zab, processes change to a new view (or

primary instance) only when a primary crashes or loses support

from a quorum.

Critical to the design of Zab is the observation that each

state change is incremental with respect to the previous state,

so there is an implicit dependence on the order of the state

changes. State changes consequently cannot be applied in any

arbitrary order, and it is critical to guarantee that a prefix of the

state changes generated by a given primary are delivered and

applied to the service state. State changes are idempotent and

applying the same state change multiple times does not lead to

inconsistencies as long as the application order is consistent

with the delivery order. Consequently, guaranteeing at-least

once semantics is sufficient and simplifies the implementation.

As Zab is a critical component of the ZooKeeper core,

it must perform well. Some applications of ZooKeeper en-

compass a large number of processes and use ZooKeeper ex-

tensively. Previous systems have been designed to coordinate

long-lived and infrequent application state changes [9], [10],

[11]. We designed ZooKeeper to have high throughput and

low latency, so that applications could use it extensively on

cluster environments: data centers with a large number of well-

connected nodes.

When designing ZooKeeper, however, we found it difficult

to reason about atomic broadcast in isolation. There are re-
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quirements and goals of the application that must be satisfied,

and reasoning about atomic broadcast alongside the applica-

tion enables different protocol elements and even interesting

optimizations.

Multiple outstanding transactions: It is important in our

setting that we enable multiple outstanding ZooKeeper opera-

tions and that a prefix of operations submitted concurrently by

a ZooKeeper client are committed according to FIFO order.

Traditional protocols to implement replicated state machines,

like Paxos [2], do not enable such a feature directly, however.

If primaries propose transactions individually, then the order of

learned transactions might not satisfy the order dependencies

and consequently the sequence of learned transactions cannot

be used unmodified. One known solution to this problem is

batching multiple transactions into a single Paxos proposal

and having at most one outstanding proposal at a time.

Such a design affects either throughput or latency adversely

depending on the choice of the batch size.

Figure 1 illustrates a problem we found with Paxos under

our requirements. It shows a run with three distinct proposers

that violates our requirement for the order of generated state

changes. Proposer P1 executes Phase 1 for sequence numbers

27 and 28. It proposes values A and B for sequence numbers

27 and 28, respectively, in Phase 2 with ballot number 1.

Both proposals are accepted only by acceptor A1. Proposer

P2 executes Phase 1 against acceptors A2 and A3, and end up

proposing C in Phase 2 to sequence number 27 with ballot

number 2. Finally, proposer P3, executes Phase 1 and 2, and is

able to have a quorum of acceptors choosing C for sequence

number 27, B for sequence number 28, and D for 29.

Such a run is not acceptable because the state change

represented by B causally depends upon A, and not C.

Consequently, B can only be chosen for sequence number i+1
if A has been chosen for sequence number i, and C cannot

be chosen before B, since the state change that B represents

cannot commute with C and can only be applied after A.

Efficient recovery: One important goal in our setting is

to recover efficiently from primary crashes. For fast recovery,

we use a transaction identification scheme that enables a new

primary to determine in a simple manner which sequence of

transactions to use to recover the application state. In our

scheme, transaction identifiers are pairs of values: an instance

value and the position of a given transaction in the sequence

broadcast by the primary process for that instance. Under this

scheme, only the process having accepted the transaction with

the highest identifier may have to copy transactions to the

new primary, and no other transaction requires recovery. This

observation implies that a new primary is able to decide which

transactions to recover and from which process simply by

collecting the highest transaction identifier from each process

in a quorum.

For recovery with Paxos, having the last sequence number

for which a process accepted a value is not sufficient, since

processes might accept different values (with different ballot

numbers) for every sequence number. Consequently, a new

primary has to execute Phases 1 of Paxos for all previous

P1

A1

A2

A3

27: <1b, _, _>

28: <1b, _, _> 

27: <1a,1>

28: <1a,1>

27: <1b, _, _>

28: <1b, _, _> 

27: <2a, 1, A>

28: <2a, 1, B>

27: <1, A>

28: <1, B>

27: <2a, 2, C>
P2

A1

A2

A3

27: <1a,2>

27: <1, A>

28: <1, B>

27: <2, C>27: <1b, _, _> 

27: <1b, _, _> 27: <2, C>

P3

A1

27: <1a,3>

28: <1a,3>

29: <1a,3>

27: <2a, 3, C>

28: <2a, 3, B>

29: <2a, 3, D>

A2

A3

27: <1b, 1, A>

28: <1b, 1, B>

29: <1b, _, _>

27: <2, C>

27: <1, A>

28: <1, B>

27: <2, C> 27: <1b, 2, C>

28: <1b, _, _>

29: <1b, _, _>

27: <3, C> 

28: <3, B> 

29: <3, D> 

27: <3, C>

28: <3, B>

29: <3, D>

Fig. 1. Paxos run

sequence numbers for which the primary has not learned a

value (or a transaction in our context).

Summary of contributions: We describe here the design

of Zab, an atomic broadcast protocol for the ZooKeeper coor-

dination service. Zab is a high-performance atomic broadcast

protocol for primary-backup systems. Compared to previous

atomic broadcast protocols, Zab satisfies a different set of

correctness properties. In particular, we propose a property

called primary order that is important for primary-backup

systems. This property is critical to enable the correct ordering

of state changes over time as different processes exercise the

primary role while allowing multiple outstanding transactions.

Primary order is different from causal order, as we discuss in

Section III-B. Given our use of the primary order property,

we say that Zab is a PO atomic broadcast protocol. Finally,

our scheme for identifying transactions enables faster recovery

compared to classic algorithms such as Paxos, since Zab

transaction identifiers map to at most one transaction and

processes accept them in order.

II. SYSTEM MODEL

A system comprises a set of processes Π =
{p1, p2, . . . , pn}, and each process is equipped with a

stable storage device. Processes proceed in iterations and

communicate by exchanging messages. Processes can crash
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and recover an unbounded number of times. We say that a

process is up if it is not crashed, and down otherwise. A

process that is recovering is up, and for progress, we assume

that eventually enough processes are up for sufficiently long.

In fact, we have progress if a quorum of processes is up and

able to pairwise exchange messages for sufficiently long. We

assume that a quorum system Q is defined a priori, and that

Q satisfies the following:

Definition II.1. (Quorum System) A quorum system Q over

Π is such that:
∧

∀Q ∈ Q : Q ⊆ Π
∧

∀Q1, Q2 ∈ Q : Q1 ∩Q2 6= ∅

Processes use bidirectional channels to exchange messages.

More precisely, the channel cij between processes pi and pj

is such that each of the processes has a pair of buffers: an

input buffer and an output buffer. A call to send a message

m to process pj is represented by an event send(m, pj),
which inserts m into the output buffer of pi for cij . Messages

are transmitted following the order of send events, and they

are inserted into the input buffer. A call to receive the next

message m in the input buffer is represented by an event

recv(m, pi).
To specify the properties of channels, we use the notion

of iterations, since the algorithm we propose proceeds in

iterations, and in each iteration we have three phases. Let σ
i,j
k,k′

be the sequence of messages pi sends to pj during iteration k

of pi and k′ of pj . We assume that the channel between

processes pi and pj satisfies the following properties:

Integrity: Process pj receives a message m from pi only if

pi has sent m;

Prefix: If process pj receives a message m and there is m′

such that m′ ≺ m in σ
i,j
k,k′ , then pj receives m′ before

m;

Single iteration: The input buffer of a process pj for channel

cij contains messages from at most one iteration.

Implementation of channels: To implement the properties

we state for channels and ensure liveness, it is sufficient to

assume fair-lossy links (a precise definition of fair-lossy in

the crash-recovery model appears in the work of Boichat and

Guerraoui [12]). In practice, we use TCP connections2. At

the beginning of a new iteration, we establish a connection

between pi and pj . By doing so, we guarantee that only

messages sent are received (Integrity), a prefix of the sequence

of messages sent from a process pi to a process pj are received,

and once we close a connection and establish a new one,

we guarantee that a process only has messages from a single

iteration.

III. PROBLEM STATEMENT

ZooKeeper uses a primary-backup scheme to execute re-

quests and propagate state changes to backup processes using

2RFC 793: http://tools.ietf.org/html/rfc793

PO atomic broadcast (Figure 2). Consequently, only a primary

is able to broadcast. If a primary process crashes, we assume

an external mechanism exists for selecting a new primary. It

is important, however, to guarantee that at any time there is at

most one active primary process that is allowed to broadcast.

In our implementation, the primary election mechanism is

tightly coupled with the mechanisms we use in the broadcast

layer. For specification purposes, it is sufficient to assume

that some mechanism exists to select primaries and such a

mechanism guarantees that at most one primary is active at any

time. Over time, we have an unbounded sequence of primaries:

ρ1ρ2 . . . ρeρe+1 . . ., where ρe ∈ Π. We say that a primary ρe

precedes a primary ρe′ , ρe ≺ ρe′ , if e < e′. Precedence of

primaries refers to the sequence of processes that are primaries

over time. In fact, since processes can recover, there can be

ρe and ρe′ , e 6= e′, such that ρe and ρe′ are the same process,

but refer to different instances.

PO Atomic Broadcast (Zab)

Primary

Replica

abcast abdeliver

Replica

abdeliver

Replica

abdeliver

Fig. 2. ZooKeeper overview.

To guarantee that the transactions a primary broadcast are

consistent, we need to make sure that a primary only starts

generating state updates once the Zab layer indicates that

recovery has completed. For this purpose, we assume that

processes implement a ready(e) call, which the Zab layer

uses to signal to the application (primary and backup replicas)

that it can start broadcasting state changes. A call to ready(e)

also sets the value of the variable instance that a primary

uses to determine its instance. The primary uses the value of

instance to set the epoch of transaction identifiers when

broadcasting, and we assume that the value of e is unique for

different primary instances. The uniqueness of instance values

is guaranteed by Zab.

We call transactions the state changes a primary propagates

to the backup processes. A transaction 〈v, z〉 has two fields:

a transaction value v and a transaction identifier z (or zxid).

Each transaction identifier z = 〈e, c〉 has two components: an

epoch e and a counter c. We use epoch(z) to denote the epoch

of a transaction identifier and counter(z) to denote the counter

value of z. We say that an epoch e is earlier than an epoch

e′ to denote that e < e′. Similarly, we say that an epoch e is

later that e′.

For a given primary ρe, the value of epoch(z) =
instance = e, and upon each new transaction, we in-

crement the counter c. We say that a transaction identifier

z precedes an identifier z′, z ≺z z′, to denote that ei-

ther epoch(z) < epoch(z′) or epoch(z) = epoch(z′) and
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counter(z) < counter(z′). We use z �z z′ to denote that

either z ≺z z′ or z = z′.

Once a primary has a transaction to broadcast it calls

abcast(〈v, z〉). Processes deliver (or commit) a transaction

〈v, z〉 by calling abdeliver(〈v, z〉). A call to abcast(〈v, z〉) is

not guaranteed to succeed if the primary crashes or there is a

change of primary. Consequently, from the sequence of state

changes a primary broadcasts, only a prefix of the sequence

of state updates is delivered. Upon delivering a transaction, a

process adds it to a txns set.

A. Core properties

Our system, ZooKeeper, requires the following properties

to maintain the state of processes consistent:

Integrity If some process delivers 〈v, z〉, then some process

pi ∈ Π has broadcast 〈v, z〉.
Total order If some process delivers 〈v, z〉 before 〈v′, z′〉,

then any process that delivers 〈v′, z′〉 must also deliver

〈v, z〉 and deliver 〈v, z〉 before 〈v′, z′〉.
These two properties guarantee that no transaction is created

spontaneously or corrupted and that processes that deliver

transactions must deliver them according to a consistent order.

The total order property, however, allows runs in which two

processes deliver disjoint sequences of transactions. To prevent

such undesirable runs, we require the following property:

Agreement If some process pi delivers 〈v, z〉 and some

process pj delivers 〈v′, z′〉, then either pi delivers 〈v′, z′〉
or pj delivers 〈v, z〉.

Note that the statement of agreement is different compared

to previous work. In previous work, the agreement has been

presented as a liveness property for atomic broadcast [13],

which requires an abstraction such as the one of good pro-

cesses, as in the work of Rodrigues and Raynal [3]. We instead

state agreement as a safety property, which guarantees that the

state of two processes do not diverge. We discuss liveness in

Sections V and VI.

The three safety properties above guarantee that processes

are consistent. However, we need to satisfy one more property

to enable multiple changes in progress from a given primary.

Since each state change is based on a previous state if

the change for that previous state is skipped, the dependent

changes must also be skipped. We call this property primary

order, and we split it into two parts:

Local primary order If a primary broadcasts 〈v, z〉 before

it broadcasts 〈v′, z′〉, then a process that delivers 〈v′, z′〉
must also deliver 〈v, z〉 before 〈v′, z′〉.

Global primary order Let 〈v, z〉 and 〈v′, z′〉 be as follows:

• A primary ρi broadcasts 〈v, z〉
• A primary ρj , ρi ≺ ρj , broadcasts 〈v′, z′〉

If a process pi ∈ Π delivers both 〈v, z〉 and 〈v′, z′〉, then

pi must deliver 〈v, z〉 before 〈v′, z′〉.
Note that local primary order corresponds to FIFO order

for a single primary instance, and that global primary order

prevents runs such as the one described in Figure 1.

Finally, a primary has to guarantee that the state updates

generated are consistent. A primary consequently can only

start broadcasting in an epoch once it has delivered the

transactions of previous epochs. This behavior is guaranteed

by the following property:

Primary integrity If a primary ρe broadcasts 〈v, z〉 and some

process delivers 〈v′, z′〉 such that 〈v′, z′〉 has been broad-

cast by ρe′ , e′ < e, then ρe must deliver 〈v′, z′〉 before

it broadcasts 〈v, z〉.

B. Comparison with causal atomic broadcast

PO atomic broadcast is designed to preserve the causal

order implicitly established in the generation of incremental

state updates. In this section, we compare causal atomic

broadcast and PO atomic broadcast, and argue that they are

not comparable.

The definition of causal order is based on the precedence

(or happens before) relation of events [14]. For broadcast

protocols, the events are either broadcast or deliver events.

We use 〈v, z〉 ≺c 〈v
′, z′〉 to denote that abcast(〈v, z〉) pre-

cedes abcast(〈v′, z′〉). The causal order property for atomic

broadcast protocols is typically defined as (adapted from the

definition of Défago et al. [13]):

Definition III.1. (Causal order) If 〈v, z〉 ≺c 〈v
′, z′〉 and a

process p delivers 〈v′, z′〉, then process p must also deliver

〈v, z〉 and deliver 〈v, z〉 before 〈v′, z′〉.

This property is not satisfied by PO atomic broadcast.

Figure 3 gives an example in which two transactions 〈v, z〉
and 〈v′′, z′′〉, epoch(z) < epoch(z′) < epoch(z′′), are causally

related, but transaction 〈v, z〉 is not delivered. To simplify the

discussion, we present only events for two processes.

Process pi

Process pj

abdeliver(⟨v'',z''⟩)

abdeliver(⟨v'',z''⟩)

abcast(⟨v'',z''⟩)

abdeliver(⟨v',z'⟩)abcast(⟨v,z⟩) abcast(⟨v',z'⟩)

abdeliver(⟨v',z'⟩)

Fig. 3. Example of an execution satisfying PO causal order, but not causal
order, epoch(z) < epoch(z′) < epoch(z′′).

The delivery order of PO atomic broadcast respects a

primary causal order relation ≺po that is strictly weaker than

causal order. In fact, transactions sent by different primaries

are not necessarily considered as causally related even if they

are actually sent by the same process. We say that an event ǫ

PO-precedes an event ǫ′, or equivalently that ǫ→po ǫ′, if and

only if one of the following conditions hold:

1) ǫ and ǫ′ are local to the same process, ǫ occurs be-

fore ǫ′, and at least one of the following holds: ǫ 6=
abcast(〈v, z〉), ǫ′ 6= abcast(〈v′, z′〉), or epoch(z) =
epoch(z′);

2) ǫ = abcast(〈v, z〉) and ǫ′ = abdeliver(〈v, z〉);
3) There is an event ǫ′′ such that ǫ→po ǫ′′ and ǫ′′ →po ǫ′.

The ≺po relation is defined based on the PO-precedence

relation, and we obtain the PO causal order property by

replacing ≺c with ≺po in the definition of causal order.
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PO atomic broadcast also implements a key additional prop-

erty called strict causality: if some process delivers 〈v, z〉 and

〈v′, z′〉, then either 〈v, z〉 ≺po 〈v
′, z′〉 or 〈v′, z′〉 ≺po 〈v, z〉.

Strict causality is needed because transactions are incremental

updates so they can only be applied to the state used to produce

them, which is the result of a chain of causally related updates.

With causal order, however, there can be transactions delivered

that are not causally related.

Figure 4 shows an execution satisfying causal order (and PO

causal order), but not strict causality, since 〈v, z〉 and 〈v′, z′〉
are both delivered even though they are causally independent.

This example shows that none of the two primitives is stronger

than the other.

Process pi

Process pj

abdeliver(⟨v'',z''⟩)abcast(⟨v',z'⟩) abdeliver(⟨v,z⟩)abdeliver(⟨v',z'⟩)

abcast(⟨v'',z''⟩)abcast(⟨v,z⟩) abdeliver(⟨v,z⟩)abdeliver(⟨v',z'⟩)

Fig. 4. Example of an execution satisfying causal order (and PO causal
order), but not strict causality, epoch(z) < epoch(z′) < epoch(z′′).

It follows directly from the core properties that PO atomic

broadcast implements PO causal order and strict causality [15].

IV. ALGORITHM DESCRIPTION

Zab has three phases: discovery, synchronization, and broad-

cast. Each process executes one iteration of this protocol at

a time, and at any time, a process may drop the current

iteration and start a new one by proceeding to Phase 1.

There are two roles Zab process can perform according to the

protocol: leader and follower. A leader concurrently executes

the primary role and proposes transactions according to the

order of broadcast calls of the primary. Followers accept

transactions according to the steps of the protocol. A leader

also executes the steps of a follower.

Each process implements a leader oracle, and the leader

oracle provides the identifier of the prospective leader ℓ. In

Phase 1, a process consults its leader oracle to determine

which other process ℓ it should follow. If the leader oracle

of a process determines that it is the leader, then it executes

the leader steps of the protocol. Being selected the leader

according to its oracle, however, is not sufficient to establish

its leadership. To establish leadership, a process needs to

complete the synchronization phase (Phase 2).

f.p Last new epoch proposal follower f acknowledged, initially ⊥
f.a Last new leader proposal follower f acknowledged, initially ⊥
hf History of follower f , initially 〈〉

f.zxid Last accepted transaction identifier in hf

TABLE I
SUMMARY OF PERSISTENT VARIABLES

In the phase description of Zab, and later in the analysis,

we use the following notation:

Definition IV.1. (History) Each follower f has a history hf

of accepted transactions. A history is a sequence.

Definition IV.2. (Initial history) The initial history of an

epoch e, Ie, is the history of a prospective leader of e at the

end of phase 1 of epoch e.

Definition IV.3. (Broadcast values) βe is the sequence of

transactions broadcast by primary ρe using abcast(〈v, z〉).

The three phases of the protocol are as follows:

Phase 1 (Discovery): Follower f and leader ℓ execute the

following steps:

Step f.1.1 A follower sends to the prospective leader ℓ its

last promise in a CEPOCH(f.p) message.

Step ℓ.1.1 Upon receiving CEPOCH(e) messages from a

quorum Q of followers, the prospective leader ℓ proposes

NEWEPOCH(e′) to the followers in Q. Epoch number e′

is such that it is later than any e received in a CEPOCH(e)
message.

Step f.1.2 Once it receives a NEWEPOCH(e′) from the

prospective leader ℓ, if f.p < e′, then make f.p← e′ and

acknowledge the new epoch proposal NEWEPOCH(e′).
The acknowledgment ACK-E(f.a, hf ) contains the cur-

rent epoch f.a of the follower and its history. Follower

completes Phase 1.

Step ℓ.1.2 Once it receives a confirmation from each follower

in Q, it selects the history of one follower f in Q

to be the initial history Ie′ . Follower f is such that

for every follower f ′ in Q, f ′.a < f.a or (f ′.a =
f.a)∧(f ′.zxid �z f.zxid). Prospective leader completes

Phase 1.

Phase 2 (Synchronization): Follower f and leader ℓ execute

the following steps:

Step ℓ.2.1 The prospective leader ℓ proposes

NEWLEADER(e′, Ie′) to all followers in Q.

Step f.2.1 Upon receiving the NEWLEADER(e′, T ) message

from ℓ, the follower starts a new iteration if f.p 6= e′.

If f.p = e′, then it executes the following actions

atomically:

1) It sets f.a to e′;

2) For each 〈v, z〉 ∈ Ie′ , it accepts 〈e′, 〈v, z〉〉, and makes

hf = T .

Finally, it acknowledges the NEWLEADER(e′, Ie′) pro-

posal to the leader, thus accepting the transactions in T .

Step ℓ.2.2 Upon receiving acknowledgements to the

NEWLEADER(e′, Ie′) from a quorum of followers, the

leader sends a commit message to all followers and

completes Phase 2.

Step f.2.2 Upon receiving a commit message from the leader,

it delivers all transactions in the initial history Ie′ by

invoking abdeliver(〈v, z〉) for each transaction 〈v, z〉 in

Ie′ , following the order of Ie′ , and completes Phase 2.

Phase 3 (Broadcast): Follower f and leader ℓ execute the

following steps:

Step ℓ.3.1: Leader ℓ proposes to all followers in Q in

increasing order of zxid, such that for each proposal
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〈e′, 〈v, z〉〉, epoch(z) = e′, and z succeeds all zxid values

previously broadcast in e′.

Step ℓ.3.2: Upon receiving acknowledgments from a quo-

rum of followers to a given proposal 〈e′, 〈v, z〉〉, the

leader sends a commit COMMIT(e′, 〈v, z〉) to all follow-

ers.

Step f.3.1: Follower f initially invokes ready(e′) if it is

leading.

Step f.3.2: Follower f accepts proposals from ℓ following

reception order and appends them to hf .

Step f.3.3: Follower f commits a transaction 〈v, z〉
by invoking abdeliver(〈v, z〉) once it receives

COMMIT(e′, 〈v, z〉) and it has committed all transactions

〈v′, z′〉 such that 〈v′, z′〉 ∈ hf , z′ ≺z z.

Step ℓ.3.3: Upon receiving a CEPOCH(e) message from

follower f while in Phase 3, leader ℓ proposes back

NEWEPOCH(e′) and NEWLEADER(e′, Ie′ ◦ βe′).
Step ℓ.3.4: Upon receiving an acknowledgement from f

of the NEWLEADER(e′, Ie′ ◦ βe′) proposal, it sends a

commit message to f . Leader ℓ also makes Q← Q∪{f}.
✷

Note that a realization of this protocol does not re-

quire sending complete histories with ACK-E(f.a, hf ) and

NEWLEADER(e′, Ie′), only the last transaction identifier in

the history followed by missing transactions. It is also possible

to omit values in acknowledgements and commit messages in

Phase 3 to reduce the size of messages.

The following section discusses the Zab protocol in more

detail along with some implementation aspects.

V. ZAB IN DETAIL

In our implementation of Zab, a Zab process can be looking

for a leader (ELECTION state), following (FOLLOWING

state), or leading (LEADING state). When a process starts,

it enters the ELECTION state. While in this state the process

tries to elect a new leader or become a leader. If the process

finds an elected leader, it moves to the FOLLOWING state

and begins to follow the leader. Processes in the FOLLOWING

state are followers. If the process is elected leader, it moves to

the LEADING state and becomes the leader. Given that a pro-

cess that leads also follows, states LEADING and FOLLOW-

ING are not exclusive. A follower transitions to ELECTION if

it detects that the leader has failed or relinquished leadership,

while a leader transitions to ELECTION once it observes that it

no longer has a quorum of followers supporting its leadership.

The basic delivery protocol is similar in spirit to two phase

commit [16] without aborts. The primary picks values to

broadcast in FIFO order and creates a transaction 〈v, z〉. Upon

receiving a request to broadcast a transaction, a leader pro-

poses 〈e, 〈v, z〉〉 following the order of zxid of the transactions.

The followers accept the proposal and acknowledge by sending

an ACK(e, 〈v, z〉) back to the leader. Note that a follower does

not send the acknowledgment back until it writes the proposal

to local stable storage. When a quorum of processes have

accepted the proposal, the leader issues a COMMIT(e, 〈v, z〉).
When a process receives a commit message for a proposal

〈e, 〈v, z〉〉, the process delivers all undelivered proposals with

zxid z′, z′ ≺z z.

Co-locating the leader and the primary on the same process

has practical advantages. The primary-backup scheme we use

requires that at most one process at a time is able to generate

updates that can be incorporated into the service state. A

primary propagates state updates using Zab, which in turn

requires a leader to initiate proposals. Leader and primary

correspond to different functionality, but they share a common

requirement: election. By co-locating them, we do not need

separate elections for primary and leader. Also important is

the fact that calls to broadcast transactions are local when they

are co-located. We consequently co-locate leader and primary.

A. Establishing a new leader

Leader election occurs in two stages. First, we run a leader

election algorithm that outputs a new process as the leader.

We can use any protocol that, with high probability, chooses

a process that is up and that a quorum of processes selects.

This property can be fulfilled by an Ω failure detector [17].

Figure 5 shows the events for both the leader and followers

when establishing a new leader. An elected leader does not

become established for a given epoch e until it completes

Phase 2, in which it successfully achieves consensus on the

proposal history and on itself as the leader of e. We define a

established leader and a established epoch as follows:

Definition V.1. (Established leader) A leader ℓe is estab-

lished for epoch e if the NEWLEADER(e, Ie) proposal of ℓe

is accepted by a quorum Q of followers.

Definition V.2. (Established epoch) An epoch e is established

if there is an established leader for e.

Once a process determines that it is a prospective leader by

inspecting the output of the leader election algorithm, it starts a

new iteration in Phase 1. It initially collects the latest epoch of

a quorum of followers Q, proposes a later epoch, and collects

the latest epoch and highest zxid of each of the followers in

Q. The leader completes Phase 1 once it selects the history

from a follower f with latest epoch and highest zxid in a

ACK-E(f.a, hf ). These steps are necessary to guarantee that

once the prospective leader completes Phase 1, none of the

followers in Q accept proposals from earlier epochs. Given

that the history of a follower can be arbitrarily long, it is not

efficient to send the entire history in a ACK-E(f.a, hf ). The

last zxid of a follower is sufficient for the prospective leader

to determine if it needs to copy transactions from any given

follower, and only copies missing transactions.

In Phase 2, the leader proposes itself as the leader of

the new epoch and sends a NEWLEADER(e, Ie) proposal,

which contains the initial history of the new epoch. As with

ACK-E(f.a, hf ), it is not necessary to send the complete initial

history, but instead only the transactions missing. A leader

becomes established once it receives the acknowledgments

to the new leader proposal from a quorum of followers, at

which point it commits the new proposal. Followers deliver
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ACK-E = Follower acknowledges the new epoch proposal
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ACK-LD = Follower acknowledges the new leader proposal

COMMIT-LD = Commit new leader proposal

Fig. 5. Zab protocol summary

the initial history and complete Phase 2 once they receive a

commit message for the new leader proposal.

One interesting optimization is to use a leader election

primitive that selects a leader that has the latest epoch and has

accepted the transaction with highest zxid among a quorum of

processes. Such a leader provides directly the initial history of

the new epoch.

B. Leading

A leader proposes operations by queuing them to all con-

nected followers. To achieve high throughput and low latency,

the leader has a steady stream of proposals to the followers.

By the channel properties, we guarantee that followers receive

proposals in order. In our implementation, we use TCP connec-

tions to exchange messages between processes. If a connection

to a given follower closes, then the proposals queued to

the connection are discarded and the leader considers the

corresponding follower down.

Detecting crashes through connections closing was not a

suitable choice for us. Timeout values for a connection can

be of minutes or even hours, depending on the operating

system configuration and the state of the connection. To

mutually detect crashes in a fine-grained and convenient

manner, avoiding operating system reconfiguration, leader and

followers exchange periodic heartbeats. If the leader does not

receive heartbeats from a quorum of followers within a timeout

interval, the leader renounces leadership of the epoch, and

transitions to the ELECTION state. Once it elects a leader,

it starts a new iteration of the algorithm, and starts a new

iteration of the protocol proceeding to Phase 1.

C. Following

When a follower emerges from leader election, it connects

to the leader. To support a leader, a follower f acknowledges

its new epoch proposal, and it only does so if the new epoch

proposed is later than f.p. A follower only follows one leader

at a time and stays connected to a leader as long as it receives

heartbeats within a timeout interval. If there is an interval

with no heartbeat or the TCP connection closes, the follower

abandons the leader, transitions to ELECTION and proceeds

to Phase 1 of the algorithm.

Figure 5 shows the protocol a follower executes to support

a leader. The follower sends its current epoch f.a in a current

epoch message (CEPOCH(f.a)) to the leader. The leader

sends a new epoch proposal (NEWEPOCH(e)) once it receives

a current epoch message from a quorum Q of followers. The

new proposed epoch e must be greater than the current epoch

of any follower in Q. A follower acknowledges the new epoch

proposal with its latest epoch and highest zxid, which the

leader uses to select the initial history for the new epoch.

In Phase 2, a follower acknowledges the new leader pro-

posal (NEWLEADER(e, Ie)) by setting its f.a value to e and

accepting the transactions in the initial history. Note that once

a follower accepts a new epoch proposal for an epoch e, it

does not send an acknowledgement for any other new epoch

proposal for the same epoch e. This property guarantees that

no two processes can become established leaders for the same

epoch e. Once it receives a commit message from the leader

for the new leader proposal, the follower completes Phase 2

and proceeds to Phase 3. In Phase 3, the follower receives new

proposals from the leader. A follower adds new proposals to

its history and acknowledges them. It delivers these proposals

when it receives commit messages from the leader.

Note that a follower and a leader follow the recovery

protocol both when a new leader is emerging and when

a follower connects to an established leader. If the leader

is already established, the NEWLEADER(e, Ie) proposal has

already been committed so any acknowledgements for the

NEWLEADER(e, Ie) proposal are ignored.

D. Liveness

Zab requires the presence of a leader to propose and

commit operations. To sustain leadership, a leader process ℓ

needs to be able to send messages to and receive messages

from followers. In fact, process ℓ requires that a quorum of

followers are up and select ℓ as their leader to maintain its

leadership. This requirement follows closely the properties
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of ⋄f -accessibility and leader stability of Malkhi et al. [18].

A thorough analysis and discussion of liveness requirements,

comparing in particular with the work of Malkhi et al., is out

of the scope of this work.

VI. ANALYSIS

In this section, we present an argument for the correctness

of Zab. A more detailed proof appear in a technical report [15].

We present initially a list of definitions followed by a set of

invariants that the protocol must satisfy.

A. Definitions

We use the following additional notation in this analysis.

Definition VI.1. (Chosen transaction) A transaction 〈v, z〉
is chosen when a quorum of followers accept a proposal

〈e, 〈v, z〉〉 for some e.

Definition VI.2. (Sequence of chosen transactions) Ce is

the sequence of chosen transactions in epoch e. A transaction

〈v, z〉 is chosen in epoch e iff there exists a quorum of

followers Q such that each f ∈ Q has accepted 〈e, 〈v, z〉〉.

Definition VI.3. (Sequence of chosen proposals broadcast

in the broadcast phase) CBe is the sequence of chosen

proposals during the broadcast phase of epoch e;

Definition VI.4. (Sequence of transactions delivered) ∆f

is the sequence of transactions follower f uniquely delivered,

which is the sequence induced by the identifiers of the

elements in txns.

Definition VI.5. (Sequence of transactions delivered in the

broadcast phase) Df is the sequence of transactions follower

f delivered while in the B phase of epoch f.a.

Definition VI.6. (Last committed epoch of a follower) Given

a follower f , we use f.e to denote the last epoch e such that

f has learned that e has been committed.

B. Invariants

The following properties are invariants that the protocol

maintains at each step, and that can be verified against the

protocol of Section IV in a straightforward manner. We use

them when proving the core properties of Zab.

Invariant 1. A follower f accepts a proposal 〈e, 〈v, z〉〉 only

if its current epoch f.a = e.

Invariant 2. During the broadcast phase of epoch e, a

follower f such that f.a = e accepts proposals and delivers

transactions according to zxid order.

Invariant 3. In Phase 1, a follower f promises not to accept

proposals from the leader of any epoch e′ < e before it

provides its history as the initial history of an epoch.

Invariant 4. The initial history Ie of an epoch e is the history

of some follower. Messages ACK-E(f.a, hf ) (Phase 1) and

NEWLEADER(e, Ie) (Phase 2) do not alter, reorder, or lose

transactions in hf and Ie, respectively.

Invariant 5. Let f be a follower. Df ⊑ βf.e.

C. Safety properties

We now present proof sketches for the properties we in-

troduced in Section III. Note that we use in some statements

the terms follower, leader, and primary, instead of process to

better match our definitions and the algorithm description.

Claim 1. Zab satisfies broadcast integrity: If some follower

delivers 〈v, z〉, then some primary ρe ∈ Π has broadcast

〈v, z〉.

Proof sketch:

By the algorithm and the properties of channels, only trans-

actions broadcast by primaries are delivered.

✷

Claim 2. Zab satisfies agreement: If some follower f delivers

〈v, z〉 and some follower f ′ delivers 〈v′, z′〉, then f ′ delivers

〈v, z〉 or f delivers 〈v′, z′〉.

Proof sketch:

If 〈v, z〉 = 〈v′, z′〉, then the claim is vacuously true. Assuming

that 〈v, z〉 6= 〈v′, z′〉, we have by the algorithm that no two

leaders propose different transactions with the same zxid. Sup-

pose without loss of generality that z ≺z z′. By assumption,

we have that 〈v, z〉 ∈ ∆f . By the algorithm, we have that

〈v, z〉 ∈ If.e or 〈v, z〉 ∈ Df . There are two cases:

Case epoch(z) = epoch(z′): By Invariant 2, followers accept

〈v, z〉 and 〈v′, z′〉 in zxid order. Assuming that 〈v′, z′〉 ∈ Df ′ ,

we have also by Invariant 2 that:

〈v, z〉 ∈ Df ′ (1)

Otherwise, 〈v, z〉, 〈v′, z′〉 ∈ If ′.e and by the algorithm:

〈v, z〉, 〈v′, z′〉 ∈ ∆f ′ (2)

Case epoch(z) < epoch(z′): By Invariant 1 and the algorithm,

we have that:

〈v′, z′〉 ∈ ∆f ′ ⇒ epoch(z′) has been established (3)

〈v, z〉 ∈ ∆f ⇒ ∃e
′ : 〈v, z〉 ∈ Ce′ (4)

By the choice of initial history of epoch(z′) and the defini-

tion of a chosen transaction:

Eq. 3 ∧ Eq. 4⇒ 〈v, z〉 ∈ Iepoch(z′) (5)

By the algorithm, once a transaction is in the initial history

of a established epoch, it is in the initial history of all later

epochs, and consequently we have that:

Eq. 5⇒ 〈v, z〉 ∈ If ′.e (6)

By assumption, we have that 〈v′, z′〉 ∈ ∆f . By the algo-

rithm, we have that ∆f = If.e ◦ Df , and we conclude that

〈v, z〉, 〈v′, z′〉 ∈ ∆f

✷

Claim 3. Zab satisfies total order: If some follower delivers

〈v, z〉 before 〈v′, z′〉, then any process that delivers 〈v′, z′〉
must also deliver 〈v, z〉 and deliver 〈v, z〉 before 〈v′, z′〉.
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Proof sketch:

By assumption, we have that 〈v, z〉 ≺ 〈v′, z′〉 in ∆f and

〈v′, z′〉 ∈ ∆f ′ . By the algorithm, we have that ∆f ⊑ Cf.e.

We then have that:

(∆f ⊑ Cf.e) ∧ 〈v, z〉 ≺∆f
〈v′, z′〉 ⇒ 〈v, z〉 ≺Cf.e

〈v′, z′〉
(7)

and that:

(∆f ′ ⊑ Cf ′.e) ∧ 〈v
′, z′〉 ∈ ∆f ′ ⇒ 〈v′, z′〉 ∈ Cf ′.e (8)

Case f ′.e < f.e: By the algorithm, we have that:

Cf ′.e ⊑ Cf.e (9)

and that:

Eq. 7 ∧ Eq. 8 ∧ Eq. 9⇒ 〈v, z〉 ≺Cf′.e
〈v′, z′〉 (10)

Consequently, we have that:

Eq. 10 ∧∆f ′ ⊑ Cf ′.e ∧ 〈v
′, z′〉 ∈ ∆f ′ ⇒ 〈v, z〉 ≺∆f′

〈v′, z′〉

Case f ′.e ≥ f.e: Transactions chosen in a given epoch e

are in the initial history of every epoch e′ > e. Given that

Ce = Ie ◦ CBe, we have:

Cf.e ⊑ Cf ′.e (11)

and:

Eq. 11 ∧ Eq. 8 ∧ Eq. 7⇒ 〈v, z〉 ≺Cf′.e
〈v′, z′〉 (12)

Consequently, we have that:

Eq. 12 ∧∆f ′ ⊑ Cf ′.e ∧ 〈v
′, z′〉 ∈ ∆f ′ ⇒ 〈v, z〉 ≺∆f′

〈v′, z′〉

✷

Claim 4. Zab satisfies local primary order: If a primary

broadcasts 〈v, z〉 before it broadcasts 〈v′, z′〉, then a follower

that delivers 〈v′, z′〉 must also deliver 〈v, z〉 before 〈v′, z′〉.

Proof sketch:

Let f be a follower process. There are two cases to consider:

Case f.e = e: By Invariant 5, we have that:

〈v, z〉 ≺βe
〈v′, z′〉 ∧ 〈v′, z′〉 ∈ ∆f ⇒ 〈v, z〉 ≺Df

〈v′, z′〉

Finally, since ∆f = If.e ◦Df we have that:

〈v, z〉 ≺Df
〈v′, z′〉 ⇒ 〈v, z〉 ≺∆f

〈v′, z′〉

Case f.e > e: By Invariant 2:

〈v, z〉 ≺βe
〈v′, z′〉 ∧ 〈v′, z′〉 ∈ ∆f ⇒ 〈v, z〉 ≺If.e

〈v′, z′〉

Finally, given that ∆f = If.e ◦Df :

〈v, z〉 ≺If.e
〈v′, z′〉 ∧ 〈v′, z′〉 ∈ ∆f ⇒ 〈v, z〉 ≺∆f

〈v′, z′〉

✷

Claim 5. Zab satisfies global primary order: Let transactions

〈v, z〉 and 〈v′, z′〉 be as follows:

• A primary ρe broadcasts 〈v, z〉

• A primary ρe′ , ρe ≺ ρe′ , broadcasts 〈v′, z′〉

If a follower f ∈ Π delivers both 〈v, z〉 and 〈v′, z′〉, then f

must deliver 〈v, z〉 before 〈v′, z′〉.

Proof sketch:

Since ∆f ⊑ Cf.e, we have that:

〈v, z〉 ∈ ∆f ⇒ 〈v, z〉 ∈ Cf.e (13)

〈v′, z′〉 ∈ ∆f ⇒ 〈v
′, z′〉 ∈ Cf.e (14)

Case f.e = e′: We have by Invariant 5 that 〈v, z〉 ∈ If.e and

〈v′, z′〉 ∈ Df . Since ∆f = If.e ◦Df , we have that 〈v, z〉 ≺∆f

〈v′, z′〉.
Case f.e > e′: We have by Invariant 5 that 〈v, z〉, 〈v′, z′〉 ∈
If.e. It must be the case that 〈v, z〉 ≺If.e

〈v′, z′〉, otherwise

either some process has accepted a proposal from ρe after

accepting a proposal from ρe′ or transactions in If.e have been

reordered, thus violating Invariants 3 and 4, respectively .

✷

Claim 6. Zab satisfies primary integrity: If ρe broadcasts

〈v, z〉 and some follower f delivers 〈v′, z′〉 such that 〈v′, z′〉
has been broadcast by ρe′ , e′ < e, then pi must deliver 〈v′, z′〉
before it broadcasts 〈v, z〉.

Proof sketch:

Suppose by way of contradiction that process pi broadcasts

〈v, z〉 before it delivers 〈v′, z′〉. There are two cases to

consider:

Case 1: Process pi invokes abcast(〈v, z〉) before it delivers the

initial history of epoch e. This is not possible, since a primary

only broadcasts a transaction if ready(e) has been called and

a follower only calls ready(e) once it finishes delivering the

transactions in the initial history;

Case 2: Process pi delivers 〈v′, z′〉 while in the B phase of

epoch e. This action violates Invariant 2.

✷

D. Liveness property

Claim 7. Suppose that:

• a quorum Q of followers is up;

• the followers in Q elect the same process ℓ and ℓ is up;

• messages between a follower in Q and ℓ are received in

a timely fashion.

If ℓ proposes a transaction 〈v, z〉, then 〈v, z〉 is eventually

committed.

Proof sketch:

Upon starting a new iteration of the protocol, a follower exe-

cutes Phase 1 exchanging messages with ℓ. By the algorithm,

the leader selects the new epoch number e′ to be a number

larger than any epoch number received in a CEPOCH(e)

from the followers in Q. Consequently, upon receiving a

NEWEPOCH(e′) from ℓ, a follower in Q acknowledges the

proposal and proceeds to Phase 2.

Once a quorum of followers have received, processed,

and acknowledged a NEWLEADER(e′, Ie′) proposal in Phase

2, the leader ℓ commits the NEWLEADER(e′, Ie′) proposal

253



and proceeds to Phase 3. A proposal 〈e′, 〈v, z〉〉 from ℓ is

eventually committed in Phase 3 if all processes in {ℓ} ∪ Q

remain up and message reception is timely, so that no process

suspects that ℓ is faulty.

✷

VII. EVALUATION

We have written our implementation of Zab and the rest

of the ZooKeeper server in Java. To evaluate Zab, we used a

cluster of 13 identical servers with dual quad-core processor

Xeon 2.50GHz CPUs, 16G RAM, a gigabit network interface,

and a dedicated 1T SATA hard drive for the proposal history.

The servers run RHEL 5 (kernel 2.6.18-53.1.13.el5) using the

ext3 file system. We use the 1.6 version of Sun’s JVM.

Because Zab is not separable from ZooKeeper, we wrote

a special benchmark wrapper that hooks into the internals

of ZooKeeper to interact directly with Zab. The benchmark

wrapper causes the Zab leader to generate batches of 250,000

requests and keep 1,000 requests outstanding. When Java

first starts there is class loading and incremental compilation

that takes place that adversely affects the initial runs. We

also allocate files for logging transactions in the initial runs

that are reused in later runs. To avoid these startup effects

we run some warmup batches and then run approximately

10 batches sequentially. Although we use up to 13 servers

in our benchmarks, typical ZooKeeper installations have 3-7

servers, so 13 is larger compared to a typical setting. We ran

our benchmark with 1024-byte operations, which represents a

typical operation size.
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a) Throughput: We benchmark the time it takes to

replicate operations using Zab. Figure 6 shows how through-

put varies with the number of servers. One line shows the

throughput when nothing is written to disk. This isolates

the performance of just the protocol itself and the network.

Because we have a single gigabit network interface we have

a cap on outgoing bandwidth. We also show the theoretical

maximum replication throughput given this cap. Since the

leader propagates operations to all followers the throughput

must drop as the number of servers increase.

Although we sync requests to disk using the fdatasync

system call, this call only forces the request to the disk, and not

necessarily to the disk media. By default, disks have a write

cache on the disk itself and acknowledge the write before it

is written to the disk media. In the event of a power failure,

writes can be lost if they have not reached the disk media. As

shown in this figure and the next, there is a high price to pay

when the disk cache is turned off. When running with a disk

cache, or with a battery backed cache, such as those in raid

controllers, the performance with the disk is almost identical

to network only and both are saturating the network.

When we turn the disk write cache off, Zab becomes I/O

bound and the throughput is roughly constant with the number

of servers. With more than seven servers, throughput decreases

with more servers, since the same network-only bottlenecks

are present when the transactions are logged to disk.

As we scale the number of servers we saturate the network

card of the leader which causes the throughput to decrease as

the number of servers increases. We can use a broadcast tree

or chain replication [7] to broadcast the proposals to avoid this

saturation, but our performance is much higher than we need

in production, so we have not explored these alternatives.

b) Latency: Figure 7 shows the latency of a leader to

commit a single operation. Using ping we measured the basic

latency between servers to be 100 microseconds. The timer

resolution for our benchmark is in milliseconds.
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As with throughput, turning off the disk write cache causes

a significant performance impact. We use preallocated files,

write sequentially, and use the fdatasync to only sync

the data to disk. Unfortunately, the Linux kernel does not

recognize the “only sync data” flag until version 2.6.26. When

we sync, the performance penalty should be no more than a

rotational delay and a seek (around 20 milliseconds). However,

the penalty is higher due to metadata updates. This extra access

time affects both the latency and the throughput.

VIII. RELATED WORK

Paxos. In Paxos, a newly elected leader executes two
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phases. In the first phase, called read phase, the new leader

contacts all other processes to read any possible value that

has been proposed by previous leaders and committed. In the

second phase, called write phase, the new leader proposes

its own value. Compared to Paxos, one important difference

with Zab is the use of an additional phase: synchronization.

A new prospective leader ℓ tries to become established by

executing a read phase, that we call discovery, followed by a

synchronization phase. During the synchronization phase, the

new leader ℓ makes sure that a quorum of followers delivers

chosen transactions proposed by established leaders of prior

epochs. This synchronization phase prevents causal conflicts

and ensures that this property is respected. In fact, it guarantees

that all processes in the quorum deliver transactions of prior

epochs before transactions of the new epoch e are proposed.

Once the synchronization phase completes, Zab executes a

write phase that is similar to the one of Paxos.

An established leader is always associated with an epoch

number. Similar to the ballot number in Paxos, each epoch

number can only be associated with a single process. Instead

of using simple sequence numbers, in Zab a transaction is

identified by a zxid, which is a pair 〈epoch, counter〉. Such

zxids are ordered first by epoch and then by the counter. After

reading accepted histories from each process of a quorum, the

new established leader selects a history with the highest zxid

among the followers with the latest epoch to replicate across

a quorum of followers. Such a choice is critical to guarantee

that the sequence of transactions delivered is consistent with

the order of primaries broadcasting over time. With Paxos,

the leader instead selects transactions (or values) for each

sequence number independently.

Abstract Paxos Zab follows the abstract description of

Paxos by Lampson [19]. For each instance of consensus, a Zab

leader chooses a value that is anchored, it tries to get a quorum

of agents (followers) to accept it, and it finishes by recording

the value on a quorum of agents. In Zab, determining which

value is anchored for a consensus instance is simple because

we grant the right to propose a value for a given consensus

instance to exactly one leader, and, by the algorithm, a leader

proposes at most one value to each instance. Consequently, the

anchored value is either the single value the leader proposed or

no value (no-op). With Zab, consensus instances are ordered

according to zxids. Zab splits the sequence of consensus

instances into epochs, and to the consensus instances of an

epoch, only one leader can propose values.

Lampson observes that the Viewstamped replication proto-

col has a consensus algorithm embedded [19]. The approach

proposed by Viewstamped replication combines transaction

processing with a view change algorithm [20]. The view

change algorithm guarantees that events known to a majority

of replicas (or cohorts in their terminology) in a view survive

into subsequent views. Like Zab, the replication algorithm

guarantees the order of events proposed within an epoch.

Passive replication. With passive replication, a single pro-

cess executes clients operations and propagates state changes

to the remaining replicas. Budhiraja et al. discuss algorithms

and bounds for primary-backup synchronous systems [5].

Primary-backup is also a special case of Vertical Paxos [21],

which is a family of Paxos variants that enable reconfigurations

over time and requires fewer acceptors. Vertical Paxos relies

upon a configuration master for configuration changes. Each

configuration is associated to a ballot number, which increases

for every new configuration, and the proposer of each configu-

ration uses the corresponding ballot number to propose values.

Vertical Paxos is still Paxos, and each instance of consensus

can have multiple values proposed over time under different

ballots, thus causing the undesirable behavior for our setting

we discuss previously in the Introduction.

Crash-recovery protocols. Rodrigues and Raynal propose

a crash-recovery atomic broadcast protocol using a consensus

implementation [3]. To avoid duplicates of delivered messages,

they use a call A-deliver-sequence to obtain the sequence

of ordered messages. Mena and Schiper propose to add a

commit primitive to the specification of atomic broadcast [4].

Messages that have not been committed can be delivered twice.

With Zab, messages can be delivered twice as long as they

respect the order agreed upon. Boichat and Guerraoui propose

a modular and incremental approach to total-order broadcast,

and their strongest algorithm corresponds to Paxos [12].

Group Communication Systems. Birman and Joseph pro-

pose virtual synchrony as a computational model for pro-

gramming distributed environments [22], [23]. The general

idea is to guarantee that all processes observe the same

events in the same order. This guarantee applies not only

to message delivery events, but also to failures, recoveries,

group membership changes, etc. Although atomic broadcast

is important for virtually synchronous environments, other

weaker forms of broadcast, such as causal broadcast, also

enable applications to obtain the property of virtual synchrony.

Different from such a programming model, Zab assumes

a static ensemble of processes and does not perform view

or epoch changes upon failures of processes other than the

leader, unless the leader has no quorum supporting it. Also,

different from the ABCAST protocol of Birman and Joseph,

Zab uses a sequencer to disseminate messages because it

naturally matches the ZooKeeper application.

Chockler et al. survey properties of group communication

systems [8]. They present three total order properties: strong

total order, weak total order, and reliable total order. Reliable

total order is the strongest property, and guarantees that a

prefix of messages totally ordered by a timestamp function

are delivered in a view. Zab properties match more closely this

property, with one key difference: each view has at most one

process broadcasting. Having a single process broadcasting in

a view simplifies the implementation of the property, since the

ordering is established directly by the process broadcasting.

Partitionable atomic broadcast. COReL is an atomic

broadcast protocol for partitionable environments [24]. It relies

upon Transis, a group communication layer [25] and enables

processes in a primary component to totally order messages.

Like Zab, upon a configuration change, COReL does not

introduce new messages until recovery ends to guarantee a
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causal invariant. COReL, however, assumes that all processes

can initiate messages, leading to different ordering guarantees.

Even if we restrict a single process broadcast in a given

primary component, we still cannot replace Zab with COReL

in our design because of the delivery guarantee with respect

to causality. Causality holds across configurations, leading

to executions in which a message broadcast during an ear-

lier configuration is delivered after messages from a later

configuration. Using the example of Figure 3 to illustrate,

by the causal invariant of COReL, 〈v, z〉 must be delivered

before 〈v′, z′〉 even if there has been a transaction 〈v′′, z′′〉
delivered such that epoch(z) < epoch(z′′). In our design, such

a behavior causes inconsistencies because the state updates are

not commutative.

IX. CONCLUSION

When we designed ZooKeeper, we needed an efficient

atomic broadcast protocol, able to support our use of primary-

backup with multiple outstanding transactions. Two key re-

quirements in our design were efficient recovery upon primary

changes and state consistency. We observed that primary order

was a necessary property for guaranteeing correct recovery in

our use of primary-backup. We considered protocols in the

literature like Paxos, but even though Paxos is a popular choice

for implementing replicated systems, we found that it does

not satisfy this property when there are multiple outstanding

transactions without batching.

Zab guarantees primary order and enables multiple out-

standing transactions. Our implementation of Zab has been

able to provide us excellent throughput performance while

guaranteeing these properties. To guarantee primary order

despite primary crashes, Zab implements three phases. One

particular phase critical to guarantee that the property is

satisfied is synchronization. Upon a change of primary, a

quorum of processes has to execute a synchronization phase

before the new primary broadcasts new transactions. Executing

this phase guarantees that all transactions broadcast in previous

epochs that have been or will be chosen are in the initial

history of transactions of the new epoch.

Zab uses a scheme for assigning transaction identifiers that

guarantees at most one value for each identifier. This scheme

enables efficient recovery of primary crashes by allowing

correct transaction histories to be chosen by simply comparing

the last transaction identifier accepted by a process.

Zab is in production as part of ZooKeeper and has met the

demands of our workloads. The performance of ZooKeeper

has been key for its wide adoption.
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