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ABSTRACT

Loss of genomic imprinting is involved in a number
of developmental abnormalities and cancers. ZAC
is an imprinted gene expressed from the paternal
allele of chromosome 6q24 within a region known
to harbor a tumor suppressor gene for several
types of neoplasia. p57KIP2 (CDKN1C) is a maternally
expressed gene located on chromosome 11p15.5
which encodes a cyclin-dependent kinase inhibitor
that may also act as a tumor suppressor gene.
Mutations in ZAC and p57KIP2 have been implicated
in transient neonatal diabetes mellitus (TNDB)
and Beckwith–Wiedemann syndrome, respectively.
Patients with these diseases share many character-
istics. Here we show that mouse Zac1 and p57Kip2

have a strikingly similar expression pattern. ZAC,
a sequence-specific DNA-binding protein, binds
within the CpG island of LIT1 (KCNQ1OT1), a patern-
ally expressed, anti-sense RNA thought to negatively
regulate p57KIP2 in cis. ZAC induces LIT1 trans-
cription in a methylation-dependent manner. Our
data suggest that ZAC may regulate p57KIP2 through
LIT1, forming part of a novel signaling pathway
regulating cell growth. Mutations in ZAC may, there-
fore, contribute to Beckwith–Wiedemann syndrome.
Furthermore, we find changes in DNA methylation
at the LIT1 putative imprinting control region in two
patients with TNDB.

INTRODUCTION

Genomic imprinting is a gamete-specific modification that
results in the differential expression of the two parental alleles
in somatic cells (1,2). Mutations that affect the epigenetic
status of imprinted loci are involved in a number of human
diseases, developmental abnormalities and malignant tumors
indicating a general role for imprinted genes in mammalian
development (3). Several imprinted genes, including INS2,
p57KIP2 (CDKN1C), GNAS, RASGRF1, MASH2 and ZAC
play a role in regulating the cell cycle (4).

ZAC was originally identified, along with p53, in a func-
tional screen for factors that induce expression of the pituitary
adenylate cyclase activating polypeptide (PACAP) type I
receptor gene (5). ZAC encodes a zinc finger protein and is
expressed only from the paternal allele with the maternal allele
silent and methylated (6–8). Mutations in ZAC are thought to
play a role in transient neonatal diabetes mellitus (TNDM).
The gene maps to 6q24–25, a region implicated in the origin of
several cancers (9–12). Abdollahi et al. (13) reported a high
incidence of allelic loss at this chromosomal region in ovarian
cancers. In addition, they independently cloned as Lot1 (Lost
on transformation), the rat ortholog of ZAC, from rat ovarian
surface epithelial cells that spontaneously transform in vitro.

ZAC exhibits a tumor suppressor activity characterized by
induction of apoptosis and G1 arrest. This proceeds independ-
ently of known cell cycle control proteins, such as pRB, p21,
p27 and p16 (5). Nevertheless, ZAC shares a number of similar
functions to p53. Both proteins regulate the cell cycle, apop-
tosis and nuclear receptors. They interact physically and
functionally with CBP and p300 that serve as integrators of
multiple signaling pathways (14,15). Both p53 and ZAC are
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sequence-specific DNA-binding proteins and can act as
transcriptional co-factors for other transcriptional activator
proteins (16,17). Recently, ZAC was shown to specifically
enhance the activity of p53-responsive promoters in cells
expressing wild-type p53 (18). It is, therefore, possible that
ZAC may act as a transcription factor with a similar mode of
action to p53.

Three types of mutations have been shown to result in
TNDM; paternal uniparental isodisomy of chromosome 6,
paternally inherited duplication of 6q24 and a methylation
defect at a CpG island overlapping exon 1 of ZAC/HYMAI
(19). We showed that this CpG island is differentially methyl-
ated (20). The region is unmethylated in sperm but methylated
in oocytes, a difference that persists between parental alleles
throughout pre- and post implantation development suggestive
of an imprint control region (ICR). There is a region within this
putative ICR that exhibits a high degree of homology between
mouse and human that acts as a strong transcriptional repressor
when methylated. Loss of methylation at 8 CpG sites within
this region was seen in five of six TNDM patients studied with
a normal karyotype. We proposed that the DMR adjacent to
ZAC may regulate expression of imprinted genes within the
domain, and that epigenetic or genetic mutations of this region
result in TNDM by affecting expression of ZAC in the pan-
creas and/or the pituitary (20). This is supported by the recent
findings that mice overexpressing human ZAC from a trans-
gene show impaired development of the endocrine pancreas
and impaired b-cell function (21). ZAC may mediate its
actions through transcriptional regulation of the PACAP
type I receptor gene which is a potent insulin secretagogue
and an important mediator of autocrine control of insulin
secretion in the pancreatic islet (20).

During our studies on mouse Zac1 (20), we noted a simil-
arity in the expression pattern of Zac1 with a second imprinted
gene, p57Kip2 (Cdkn1c), hereafter referred to as p57Kip2.
p57KIP2 is a maternally expressed gene that encodes a
cyclin-dependent kinase inhibitor. The protein inhibits all
G1 cyclin/Cdk complexes and negatively regulates cell pro-
liferation, acting downstream of p53. Like ZAC, p57KIP2 may
also act as a tumor suppressor through its role in regulating the
cell cycle (22–24). p57KIP2 is located on human chromosome
11p15.5, a region implicated in both sporadic cancers and
Beckwith–Wiedemann syndrome (BWS), a familial cancer
syndrome, making it a candidate tumor suppressor gene (23).
Several types of childhood tumor display a specific loss of the
maternal 11p15 allele that suggests the involvement of an
imprinted gene in this region (25).

BWS patients generally present with three major features:
exomphalos, macroglossia and giantism. Other features
include hypoglycemia, organomegaly, hemihypertrophy,
genitourinary abnormalities, cleft palate and a susceptibility
to embryonal tumors. In turn, TNDM is associated with intra-
uterine growth failure, dehydration, hyperglycemia and failure
to thrive (26,27). There have been a number of reported
associations with TNDM including umbilical hernia (7%)
and macroglossia (23%) (28). These two anomalies are also
found in patients with BWS, which typically also involves
hyperinsulinemia. The role for ZAC is a predicted gain of
function with biallelic expression of ZAC in TNDM patients
(since UPD of the region also results in TNDM). Loss
of function of p57KIP2 in BWS is implicated in patients

with point mutations within the coding sequence of the
gene (29–32).

Several imprinted genes lie within the 11p15.5 region. LIT1
(KCNQ1OT1), hereafter referred to as LIT1, is a paternally
expressed, antisense RNA located within the KCNQ1 gene that
may regulate imprinting of the 11p15.5 domain (25). Differ-
ential methylation of the LIT1 CpG island is conserved
between human and mouse (25). This differential methylation
is acquired in the germ line (33) making it an excellent can-
didate for an ICR. Frequent loss of maternal methylation at the
LIT1 CpG island has been observed in BWS patients (40–50%)
(34). A targeted deletion of LIT1 leads to loss of silencing of
p57Kip2 in both mice and in human cell lines (33,35). Finally,
the region between the Kcnq1 and p57Kip2 shows both physical
and mechanistic similarities to the imprinted domain contain-
ing Igf2r and its antisense control transcript, Air (36).

We, therefore, investigated whether the similarity in pheno-
types between BWS and TNDM is a reflection of a regulatory
association between ZAC and p57KIP2.

MATERIALS AND METHODS

Cell lines

Human ovarian cancer (HOC) cell lines (PA-1 and SKOV-3)
were used in this study. The source of these cells is as des-
cribed previously (37). They were grown in either DMEM
or RPMI1640 supplemented with 10% fetal bovine serum.

Bisulfite PCR methylation assay

Genomic DNAs from primary leucocytes from 17 TNDM
patients, 8 BWS patients and 2 normal individuals were pre-
pared as described previously (20). DNA (0.3mg) was digested
with EcoRI. Bisulfite treatment was carried using the EZ DNA
methylation kit (Zymo research) according to the manufac-
turer’s instructions. PCR was carried out using the following
primers. Primes sequences for the PCR: For ZAC: BS2F
(ZAC), 50-GTTTTTTATGTGTGATTGGGTTTTGGYGG-30

and BS2R (ZAC), 50-AAAACRCTAAAACCCCTAACRAA-
AAC-30. For LIT1: BS2F (LIT1), 50-TAGGATTTTGTTGA-
GGAGTTTTTTGG-30 and BS2R (LIT1), 50-CCACCTCACA-
CCCAACCAATACCTCACATAC-30. PCR condition was as
follows: denaturation at 95�C for 30 s, annealing at 57�C for
30 s and extension at 72�C for 30 s for 30 cycles. PCR products
were digested with the appropriate restriction enzyme (for
ZAC: BssHII and RsaI; for LIT1: AciI and MaeIII) and
electrophoresed on 2.5% agarose gels. PCR products were
subcloned into the TA-TOPO cloning vector (Invitrogen)
and sequenced.

Southern blotting

The methylation status of the LIT1 CpG island was assessed
by Southern blotting. Genomic DNAs were digested with
BamHI alone or with the methylation sensitive enzyme NotI
and electrophoresed on a 0.8% agarose gel, transferred onto
Hybond-N+ filter and fixed by UV cross-linking. The filter was
hybridized with the LIT1 CpG island 1.5 kb probe as described
previously (25). Hybridization was carried out at 65�C over-
night in Church-Gilbert buffer. Filters were washed with 0.1·
SSC, 0.1% SDS at 65�C.
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For the transient transfection assay, we examined the
methylation status of the transfected plasmids by Southern
blotting. Genomic DNAs from the transfected cultured cells
(unmethylated and methylated plasmids) were prepared and
digested with BamHI and XbaI with or without the methyla-
tion sensitive enzyme, HpaII. The plasmids were used as the
hybridization probes. Blotting and washing were described as
above.

In situ hybridization analysis

Mouse cDNA clones for Zac1 and p57Kip2 were used to pre-
pare sense and antisense RNA by in vitro transcription using
the DIG RNA labeling kit (Boehringer Mannheim). Sagittal
and transverse sections of 8 mm from mouse embryos and
placentas at E12.5 were used for in situ hybridization, essen-
tially as described previously (38). Sections were counter
stained with 4% eosin.

Band shift assay

Oligonucleotides were synthesized for the human p57KIP2

CpG island including one putative ZAC binding site (acces-
sion number AC005950 and position of sequence 89690–
89770) and for the LIT1 CpG island including three putative
ZAC binding sites (accession number U90095 and position of
sequence 67890–67810). Where stated, the oligonucleotides
were methylated with SssI methylase (New England Biolabs).
Nuclear extracts were prepared from 293T cells transfected
with the pAc5.1/V5-His, an expression vector (Invitrogen),
according to the method of Schreiber et al. (39). For a band
shift assay, the unmethylated or methylated double-strand
DNA oligonucleotides (0.2 ng) were end-labeled with
[g-32P]ATP and were incubated on ice for 30 min with the
nuclear extract in 10 ml binding buffer [20 mM HEPES
(pH 7.4), 1 mM EDTA, 3 mM MgCl2, 60 mM KCl, 10 mM
2-mercaptoethanol, 4% glycerol, 0.1% Triton X-100 and 1 mg
of poly(dI–dC)]. Excess (molar excess of 20-, 100- or 200-
fold) unlabeled competitor oligonucleotides of the LIT1 and
p57KIP2 CpG islands, either unmethylated or methylated, were
added to the reaction mixture. The DNA–protein complexes
were then electrophoresed on 5% acrylamide gels.

The super shift assay was performed by adding 0.2–1.0 mg
ZAC antibody (Sigma) after 20 min of preincubation of nuc-
lear extract with labeled unmethylated oligonucleotides of the
human LIT1 CpG island.

Methylation-dependent transcriptional
repression assay

To test the effect of DNA methylation on the human LIT1 CpG
island we used a transient transfection assay in HeLa cells.
A fragment containing the LIT1 CpG island was generated
by PCR using primers (F and R as shown in Figure 3) bearing
specific restriction sites at their 50 and 30 ends. The primer
sequences were as follows: F, 50-ACTTGAAGGAAAGCA-
GGCAGGCAGGCAGGAT-30; R, 50-CCAACTGGAAGTT-
TGAGTGGAGTCCTGTTG-30. PCR products were digested,
gel-purified and subcloned into the pGL3-Promoter Firefly
Luciferase reporter vector (Promega). Fragments LIT-W
(869 bp NotI–HpaI), LIT-X (411 bp NotI–SacI), LIT-Y
(458 bp SacI–HpaI) and LIT-Z (387 bp HpaI–R) were gener-
ated using the restriction sites present within the LIT1 CpG

island. Plasmids were prepared using a midi prep kit (Qiagen).
In vitro DNA methylation was performed by incubation with
CpG methylase. DNA constructs (2 mg) were transfected into
HeLa cells, cultured for 22 h, lyzed and luciferase reading
assayed. Firefly luciferase values were normalized against a
co-transfected Renilla luciferase reporter, as described in the
DLR assay protocol (Promega). Each construct was tested in
triplicate in each experiment and the experiment was repeated
three times.

Transactivation luciferase assay

The fragment used in the transcriptional activation assay was
cloned into PicaGene Enhancer Vector 2 (NIPPON GENE).
This fragment corresponds to LIT-X (411 bp) from within the
LIT1 CpG island. It was used unmethylated or in vitro methyl-
ated (LIT-X me). The human ZAC cDNA fragment was cloned
into the pSG5 expression vector (Promega). DNA constructs
were transfected into cultured cells with the reporter genes
using Lipofectamine (Invitrogen). Samples were taken after
48 h, lyzed and luciferase readings taken. Firefly luciferase
values were normalized against the control luciferase reporter
vector.

RESULTS

Comparison of the expression pattern of the mouse
Zac1 and p57Kip2 genes

Zac1 and p57Kip2 appear to be expressed in many of the same
tissues (7,20,40,41). Given the precedent for co-ordinated
regulation of imprinted genes (4), we decided to investigate
this more rigorously. We first compared the expression pat-
terns of Zac1 and p57Kip2 in adjacent sagittal sections of E12.5
(embryonic day 12.5) mouse embryos. The genes showed a
strikingly similar expression pattern in many tissues. There
was strong expression in the lung, tongue, sclerotome, telen-
cephalon and the labyrinth layer of the placenta (Figure 1A,
B and D). Both genes were also expressed in Rathke’s pouch
(Figure 1D), the lumen of cardiac ventricle and bronchus of
the lung (Figure 1E) and the epithelium of the adult ovary
(Figure 1F). This is the developmental origin of ovarian can-
cers. We detected some differences in the pattern of expression
of the two genes. p57Kip2 was detected in the neural epithelium
(Figure 1G), the equatorial region of the lens (Figure 1H)
and retina (Figure 1I), the nasal epithelium (Figure 1J) and
mesonephrum (Figure 1K) where expression of Zac1 was
absent.

The ZAC protein binds within the LIT1 CpG island

The striking similarity in expression between mouse Zac1 and
p57Kip2 raises the possibility of an interaction between two
genes. The presence of a zinc finger motif within the ZAC
protein suggests a DNA-binding capability. The consensus
binding sequence for the ZAC protein has been identified
as GGGGCCTC (17). We found that the CpG island of
the human p57KIP2 gene contains two ZAC binding sites
(Figure 2A and B). Given the proposed role for the LIT1
transcript in regulating the expression of p57KIP2, we also
looked for ZAC binding sites within the LIT1 CpG island
and found eight potential binding sites (Figure 2A and B).
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We used an electromobility gel shift assay to ask whether the
human ZAC protein could bind either of these regions.

Cell extracts containing the ZAC protein were incubated
with the LIT1 and p57KIP2 CpG island oligonucleotides con-
taining the putative ZAC binding sites. The probes were
either unmethylated (M�) or methylated (M+). A band
shift analysis was performed (Figure 2C). The ZAC protein
bound preferentially to unmethylated, a portion of the LIT1
CpG island probe that contained the putative ZAC binding
sites. No detectable binding was observed to the p57KIP2 CpG
island probe (data not shown). The binding was specific as
only the unlabeled, unmethylated LIT1 CpG island probe
competed out the binding and not the p57KIP2 CpG island
probe or the methylated LIT1 CpG island probe. Furthermore,
specificity of this DNA–protein complex was confirmed in a
super shift assay using an anti-ZAC antibody (Figure 2D).
This suggests that ZAC protein may bind to the LIT1

CpG island in vivo and perhaps indirectly regulate p57KIP2

expression.

Methylation-dependent transcriptional repression
assay of the LIT1 CpG island

There is evidence to suggest that the LIT1 transcript may
regulate imprinting of the 11p15.5 domain. This differentially
methylated LIT1 CpG island is conserved between human and
mouse (25). The differential methylation is acquired in the
germ line (33) making it an excellent candidate for an ICR.

To determine whether the LIT1 differentially methylated
region has the capacity to function as a regulatory element,
we tested it in a transient transfection assay in HeLa cells in
which a reporter gene (firefly luciferase) was expressed from
an SV40 promoter. Unmethylated or methylated fragments
from the human LIT1 CpG island were assayed for their effect
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on transcription of the reporter (Figure 3A). The maintenance
of their methylation status after transfection was confirmed
by Southern blotting (Figure 3B). Among the fragments we
tested, the LIT-X (411 bp NotI–SacI), which contains 57 CpG
sites, was shown to act as a strong transcriptional silencer,
but only when methylated (Figure 3A). Significantly, the
cluster of the ZAC binding sites is present within this region.
In contrast, methylation of the LIT-Y fragment, which

contains 55 CpG sites, caused negligible repression of the
reporter gene (Figure 3A). Interestingly, the LIT-X fragment
is contained within a larger fragment (LIT-W) which has a
lower repression activity. This may be due to the inclusion
of the LIT1 promoter within the larger LIT-W fragment
(M. Oshimura, unpublished data). This promoter may harbor
both transcriptional activation and repression properties in this
assay. This indicated that LIT-X within the ICR can function

Figure 1. Expression of Zac1 and p57Kip2 in mouse embryos and adult ovary. The comparison of the tissue-specific expression in adjacent sagittal sections of E12.5
embryos (A) and placenta (B) by in situ hybridization. The two genes show striking similarities in their expression patterns. (C–K) Detailed analysis of expression
during embryonic development of Zac1 and p57Kip2 in transverse and/or sagittal sections of E12.5 embryo. Tongue (C), Rathke’s pouch (D), heart and lung (E),
telencephalon (G), lens (H), retina (I), nose (J) and mesonephrum (K). Expression of the genes was examined in adult ovary (F).
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as a cis-regulatory element and capable of strong transcrip-
tional silencing in this assay.

Although a large CpG island is present in the 10th intron
of KvLQT1 in both human and mice, its primary sequence is
poorly conserved. However, in mice the region containing the
DNase I hypersensitive sites within the Lit1 CpG island, which
are upstream of the transcription initiation site, is critical for
promoter activity (42,43). The transcriptional initiation site of
human LIT1 gene has been determined in an RNase protection
assay and by primer extension analysis by M. Oshimura et al.
(personal communication). The transcription initiation site is
at 67499 nt (U90095) and lies within the LIT1 CpG island.
Also present are two putative CCAAT boxes and a Sp1-binding
site but no TATA-box. There is also an AP-1 site downstream
of this region. The distal region including F-SacI fragment
was previously reported to act as a silencer (44). In mouse,
a fragment containing both the hypersensitive sites and the
transcriptional start site displayed the strong silencing activ-
ity (42). According to the model proposed by Constancia et al.
(45) repeat sequences may play a role in the methylation
of CpG islands. It is interesting that this distal region also
contains two direct repeats.

Cell transfection assay

We established an assay to examine whether ZAC binding
activates transcription from the LIT1 promoter. We used
two ovarian cancer cell lines (PA1 and SKOV) in which
we had shown that endogenous ZAC expression was absent
(46). These lines were transfected with a luciferase reporter
vector with the LIT-X fragment. We also transiently transfec-
ted a ZAC expression construct into these cells and then
measured luciferase activity. ZAC behaved as a transcriptional

activator (Figure 4) consistent with our binding assay
results. Furthermore, when we assayed whether the ZAC
protein would activate the methylated LIT1 reporter in the
SKOV ovarian cancer cell line, we did not observe any
activation of the reporter suggesting that ZAC acts in a sig-
naling pathway only on the unmethylated, paternal LIT1
allele in vivo.

Epigenetic changes at the ZAC ICR in BWS and the
LIT1 ICR in TNDM patients

The similarity in phenotypes between BWS and TNDM may
reflect a regulatory association between ZAC and p57KIP2. Our
data suggest a possible pathway where over expression of
ZAC, possibly by loss of methylation of the ZAC CpG island,
may hyperactivate the LIT1 gene and silence p57KIP2. We
therefore examined the imprinting status of ZAC in BWS
patients and LIT1 in TNDM patients.

We examined the methylation status of the ZAC and LIT1
DMRs in both types of patients. We performed the restriction
enzyme digest and sequencing after PCR of bisulfite-modified
genomic DNA (47). After bisulfite treatment of genomic DNA
from 8 BWS and 17 TNDM patients, PCR products were
digested with AciI and MseIII for the LIT1 CpG island and
RsaI and BssHII for the ZAC CpG island (Figure 5A). In this
assay, a methylated cytosine will maintain the enzyme recog-
nition site and will be cut, whereas the unmethylated cytocine
is converted to thymidine destroying the recognition site. In
addition, sodium bisulfite-treated DNA was PCR amplified,
subcloned, sequenced and the methylation status was determ-
ined at 22 CpG sites in the ZAC locus and at 24 CpG sites
within the LIT1 locus. All 8 BWS patients showed normal
methylation patterns in ZAC (Figure 5B) but 2 TNDM patients
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Figure 2. ZAC binds to the LIT1 CpG island. (A) Map of the ZAC binding sites clustered in the LIT1 CpG island and the two sites in the p57KIP2 CpG island. Open
boxes indicate putative ZAC binding sites. (B) Sequences of the ZAC binding sites within LIT1 and p57KIP2 CpG island. (C) Band shift of DNA complexed with ZAC
protein. [g-32P]ATP-labeled oligonucleotides containing CpG islands from LIT1 were incubated without recombinant ZAC protein (lane 1) and with an ZAC protein
(lanes 2–11). The in vitro methylation of CpG sequences (me) was performed with SssI methylase. Various cold (unlabeled) competitors of LIT1, KIP2 and LIT1(me)
oligonucleotides were used in excess: 20-fold molar excess (lanes 3, 6 and 9), 100-fold (lanes 4, 7 and 10) and 200-fold (lanes 5, 8 and 11). (D) Specificity of the ZAC
protein–LIT1 CpG island probe complex was confirmed in a super shift assay using an antibody to ZAC; 0mg (lane 1), 0.2mg (lane 2), 0.5mg (lane 3) and 1.0mg (lane 4).
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showed loss of methylation in the LIT1 CpG locus (Figure 5B,
data shown for AciI). One of these patients exhibited UPD of
chromosome 6 (UPD6). The other patient had a normal karyo-
type and loss of methylation on the maternal ZAC DMR region.
Sequencing revealed that all 24 LIT1 CpG sites were predom-
inantly unmethylated in both patients (Figure 5C). The second
patient was characterized with TNDM complicated with
umbilical hernia and macroglossia, features commonly seen
in BWS patients. Finally, we confirmed loss of methylation at
the LIT1 locus in these two patients by a second technique,
Southern blotting. (Figure 5D). Both patients showed loss of
differential methylation of the LIT1 locus in association with
presumed biallelic expression of ZAC.

DISCUSSION

While investigating the function of ZAC, an imprinted tumor
suppressor gene, we found that this gene has a strikingly
similar expression pattern to a second imprinted gene,
p57Kip2. In humans, ZAC is a candidate in TNDM while

Figure 3. Methylation-dependent transcriptional repression by the LIT1 CpG
island. (A) The map indicates the regions of human LIT1 CpG island tested
in the transfection assay. The number of CpG dinucleotides present in each
fragment is indicated. The light emission obtained from the SV40 promoter
alone, either unmethylated (open bars) or after methylation with SssI methylase
(closed bars) was normalized to a value of one and the fold repression of LIT1
CpG island-containing constructs was calculated relative to these values,
shown in the graph. All firefly luciferase values were normalized against
a co-transfected Renilla luciferase reporter driven by a thymidine kinase
(TK-Renilla) promoter. Cells transfected with TK-Renilla alone demonstrated
no firefly luciferase activity. Error bars show calculated SEM values for
repeated experiments. Gray boxes show the putative binding sites for ZAC.
F and R show the locations of the primers to amplify the CpG island, Sa is SacI
site; A is AscI site; N is NotI site; Hp is HpaI site. TS is transcriptional start site
(M. Oshimura, unpublished data). (B) Maintenance of the methylation status
after transfection. Genomic DNAs from cells transfected with either unmethy-
lated or methylated plasmid DNA were examined by Southern blotting. DNAs
from unmethylated LIT-W transfected cells (lanes 1 and 2) and SssI-methylated
LIT-W (lanes 3 and 4) were digested with BamHI and XbaI without (lanes 1 and
3) and with the methylation sensitive restriction enzyme HpaII (lanes 2 and 4).

Figure 4. Transcriptional activation of the LIT1 CpG island by ZAC. Two HOC
cells (PA1 and SKOV) were transiently co-transfected either with the unmethy-
lated (LIT-X) or with the methylated [LIT-X(me)] reporter genes without the
SV40 promoter in combination with the ZAC-pSG5 expression vector. pSG5
vector DNA without the ZAC cDNA insertion was used as a control.
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p57KIP2 has been shown to play a role in BWS. In addition to
the similarity in expression, we noticed that some of the fea-
tures seen in BWS, such as tumors, intrauterine growth abnor-
malities, umbilical hernias, macroglossia and defects in insulin
are also found in TNDM patients metabolism.

We were unable to demonstrate a direct interaction
between the ZAC transcription factor and the p57KIP2 gene.
However, we found that ZAC bound to, and activated expres-
sion of a third imprinted gene, LIT1. LIT1 has been shown to act
an ICR that negatively regulates the p57KIP2 gene in cis. Though
few BWS patients have genetic mutations in the p57KIP2 gene
itself, nearly 60% showed loss of methylation of the LIT1 CpG
island. By showing that ZAC directly binds to the LIT1 CpG
island in vitro and activates transcription, we have identified a
possible role for ZAC in the regulation of p57KIP2.

We have shown that some patients with TNDM (2 out of 17)
have defects in methylation of LIT1 CpG island, supporting
a link between these genes. Furthermore, ZAC has similarities

with p53, a known tumor suppressor gene. p53 regulates p21,
a member of the same family of cyclin-dependent kinase
inhibitors as p57KIP2. Since our data suggest that ZAC may
regulate p57KIP2, the two genes may form part of a signaling
pathway for regulating cell cycle progression. p73, a homo-
logue of p53, was suggested as an imprinted gene (48) and
more recently has been shown to directly regulate p57KIP2

(49). Further work is required to link these genes but our initial
conclusion is that we have potentially identified a novel
imprinted pathway similar to the Igf2/Igf2r pathway.

Finally, our finding that ZAC may indirectly regulate
p57KIP2 indicates a potential role for ZAC in BWS. While we
did not detect changes in DNA methylation at the ZAC CpG
island in BWS patients, we were only able to survey a
small number of patients. We did find changes in LIT1
DNA methylation in two TNDM patients suggesting a
more global defect in imprinted DNA methylation in these
patients.
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