ZAME: Interactive Large-Scale Graph Visualization
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Figure 1: A protein-protein interaction dataset (100,000 nodes and 1,000,000 edges) visualized using ZAME at two different levels of zoom.

ABSTRACT

We present the Zoomable Adjacency Matrix Explorer (ZAME), a
visualization tool for exploring graphs at a scale of millions of
nodes and edges. ZAME is based on an adjacency matrix graph
representation aggregated at multiple scales. It allows analysts to
explore a graph at many levels, zooming and panning with inter-
active performance from an overview to the most detailed views.
Several components work together in the ZAME tool to make this
possible. Efficient matrix ordering algorithms group related ele-
ments. Individual data cases are aggregated into higher-order meta-
representations. Aggregates are arranged into a pyramid hierar-
chy that allows for on-demand paging to GPU shader programs
to support smooth multiscale browsing. Using ZAME, we are
able to explore the entire French Wikipedia—over 500,000 arti-
cles and 6,000,000 links—with interactive performance on standard

consumer-level computer hardware.

Index Terms:

H.5.1 [Information Systems]: Multimedia Infor-

mation Systems—Animations; H.5.2 [Information Systems]: User
Interfaces; 1.3 [Computer Methodologies]: Computer Graphics

*e-mail: elm@Iri.fr

fe-mail: dtnghi @1ri.fr

fe-mail: howie.goodell @ gmail.com
8e-mail: nathalie.henry @lri.fr
le-mail: jean-daniel fekete @inria.fr

1 INTRODUCTION

Protein-protein biological interactions; the collected articles of the
Wikipedia project; contributors to the Linux and other Open Source
systems; organization charts for large corporations; the World Wide
Web. All of these are examples of large, dense, and highly con-
nected graphs. As these structures become increasingly available
for analysis in digital form, there is a corresponding increasing
demand on tools for actually performing the analysis. While the
scientists and analysts who concern themselves with this work of-
ten make use of various statistical tools for this purpose, there is
a strong case for employing visualization to graphically show both
the structure and the details of these datasets.

However, where visualization in the past has mostly concerned
itself with graphs of thousands of nodes, the kind of complex graphs
discussed above typically consist of millions of vertices and edges.
There exist no general visualization tools that can interactively han-
dle data sets of this magnitude. In fact, on most desktop computers,
there are simply not enough pixels to go around to be able to display
all the nodes of these graphs.

In this article, we present the Zoomable Adjacency Matrix Ex-
plorer (ZAME), the first general tool that permits interactive visual
navigation of this kind of large-scale graphs (Figure 1). ZAME is
based on a multiscale adjacency matrix representation of the visu-
alized graph. It combines three main components:

e afast and automatic reordering mechanism to find a good lay-
out for the nodes in the matrix visualization;

e arich array of data aggregations and their visual representa-
tions; and

e GPU-accelerated rendering with programmable shaders to de-
liver interactive framerates.



The remainder of this article is organized as follows: we first
present a survey of related work. This is followed by a description
of ZAME’s features and design. We conclude with a discussion of
its current implementation and some performance results.

2 RELATED WORK

The most crucial attribute of a graph visualization is its readabil-
ity, its effectiveness at conveying the information required by the
user tasks [10, 18]. For example, Ghoniem et al. proposed a tax-
onomy of graph tasks and evaluated the effectiveness of node-link
and adjacency matrix graph representations to support them in [16].
They found that graph visualization readability depends strongly on
the graph’s size (number of nodes and edges) and density (average
edges per node). Different visualizations have better readability for
different graph sizes and densities, as well as for different tasks.

Several recent efforts visualize large graphs with aggregated rep-
resentations that present node-link and/or matrix graphs at multiple
levels of aggregation. The following sections describe several im-
portant ones.

2.1 Node-Link Visualization of Large Networks

Node-link diagrams can effectively visualize networks of about one
million vertices if they are relatively sparse. Hachul and Jiinger [13]
compared six large-scale graph drawing algorithms for 29 exam-
ple graphs, some synthetic and some real, of which the largest
had 143,437 vertices and 409,593 edges. Of the six algorithms,
only three scaled well: HDE [14], FM3 [12] and, to some extent,
GRIP [8]. However, the densities of the sample graphs were small,
typically less than 4.0. When the density or size grows, dimension-
ality reduction is needed to maintain readability.

Hierarchical aggregation allows larger graphs to be visualized
and navigated, assuming that there is an algorithm for finding suit-
able aggregations at each level in a reasonable time. An aggrega-
tion is suitable if each aggregated level can be visualized effectively
as a node-link diagram, and if navigation between levels has suffi-
cient visual continuity for users to maintain their mental map of the
whole network and avoid getting lost. No automated strategy pub-
lished to date can select an appropriate algorithm for an arbitrary
network, but there are many successful aggregation algorithms for
specific categories of graphs. For example, Auber et al. [3] present
effective algorithms for aggregating and visualizing the important
class of networks known as small-world networks [21] (which in-
cludes the Internet and many social networks), whose characteris-
tics are power-law degree distribution, high clustering coefficient,
and small diameter. Systems such as Tulip offer multiple clustering
algorithms and are designed to permit smooth navigation on large
aggregated networks [2].

Gansner et al. propose another method involving a topological
fisheye that is usable when a correct 2D layout can be computed
on a large graph [9]. After the network is laid out, it is topologi-
cally simplified to reduce the level of detail at coarser resolutions.
The fisheye selects a focus node and displays the full detailed net-
work around it, showing the remainder of the network at increas-
ingly coarse resolutions for nodes farther away from the focus. This
technique preserves users’ mental maps of the whole graph while
magnifying (distorting) the network around the focus point. How-
ever, effectively laying out an arbitrary large, dense graph remains
an open problem for node-link diagrams. All the methods require a
good global initial layout, which can be very expensive to compute.

Wattenberg [20] describes a method for aggregating networks
according to attributes on their vertices. The aggregation is only
computed according to the attribute values, much like pivot tables
in spreadsheet calculators or data cubes in OLAP databases. This
approach works best when the values are categorical or numerical
with a low cardinality. The article only refers to categorical at-
tributes on the vertices. When no categorical attribute is suitable
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Figure 2: Overview of the components of ZAME.

for computing the pivots, as with the Wikipedia hypertext network
discussed in this paper, this approach is not effective—the whole
network would be displayed as a single point. However, this can
be avoided by transforming the raw data into derived categorical
values that can be analyzed using Wattenberg’s method.

Overall, the node-link representation has two major weak-
nesses [10]: (i) it copes poorly with dense networks, and (ii) without
a good layout, it requires aggregation methods to reduce the density
enough to be readable. Because these methods are very dataset-
dependent, current node-link visualization systems leave the choice
of aggregation and layout to the users, who therefore need consid-
erable knowledge and experience to get good results.

2.2 Matrix Visualization of Large Networks

Several recent articles have used the alternative adjacency matrix
representation to visualize large networks. Abello and van Ham
demonstrated [1] the effectiveness of the matrix representation cou-
pled with a hierarchical aggregation mechanism to visualize and
navigate in networks too large to fit in main memory. Their ap-
proach is based on the computation of a hierarchy on the network
displayed as a tree in the rows and columns of the aggregated ma-
trix representation. The aggregation is a hierarchical clustering in
which items are grouped but not ordered. It is computed according
to memory constraints as well as semantic ones. The users operate
on the tree to navigate and understand the portion of the network
they are currently viewing.

Navigation in this approach is constrained by the hierarchical
aggregation: users navigate in a tree that has been computed in ad-
vance. The main challenge is to find an aggregation algorithm that
is both fast and that produces a hierarchy meaningful to the user.
Unfortunately, this choice is typically dataset-dependent. Without
a meaningful hierarchy, users navigate in clusters containing unre-
lated entries and cannot make sense of what they see.

Mueller et al. describe and compare 8 graph-algorithmic meth-
ods for ordering the vertices of a graph [17]. They are either
quadratic or reported to be not very good, except the “Sloan” al-
gorithm which has a complexity of O(log(m)|E|) where m is the
maximum vertex degree in the graph.

Henry and Fekete in [15] proposed several methods based on
reordering the rows and columns of the matrix as opposed to just
clustering similar nodes. They describe two methods based on ap-
proximate Traveling Salesman Problem (TSP) solutions, which are
computed on the similarity of connection patterns and not on the
network itself. One method uses a TSP solver directly; the other
initially computes a hierarchical clustering and then reorders the
leaves using a constrained TSP. Both algorithms yield orderings that
reveal clusters, outliers and interesting visual patterns based on the
roles of vertices and edges. Because the matrix is ordered, not just
clustered, both navigation (panning) between and within clusters of
similar items may reveal useful structure. Unfortunately, both re-
ordering methods are at best quadratic since they need to compute
the full distance matrix between all the vertices. Therefore, it is dif-
ficult to scale them to hundreds of thousands or millions of vertices.



3 THE ZOOMABLE ADJACENCY MATRIX EXPLORER

ZAME is a graph visualization system based on a multiscale adja-
cency matrix representation of a graph. Attributes associated with
the vertices and edges of the graph can be mapped to visual at-
tributes of the visualization, such as color, transparency, labels, bor-
der width, size, etc., using configurable schemes to aggregate each
attribute appropriately at higher levels. ZAME integrates all the
views of a large graph, from the most general overview down to the
details, and provides navigation techniques that operate at all levels.
Therefore, it can be used for tasks ranging from understanding the
graph’s overall structure, to exploring the distribution of results to a
content-based search query at multiple levels of aggregation, and to
performing analysis tasks such as finding cliques or the most central
vertices. Additional relevant graph tasks can be found in [16].

The main technical challenge of the system is managing the huge
scale of such graphs—on the order of a million vertices for the
protein-protein interaction or Wikipedia datasets—while delivering
the real-time framerates necessary for smooth interaction. Further-
more, the graph must be laid out (the matrix nodes reordered) to
group similar nodes so that the visualization becomes readable, i.e.
in such a way that any high-level patterns emerge and conclusions
can be drawn from the data.

To achieve these goals, our tool consists of three main compo-
nents (see the thick boxes in Figure 2):

® a hierarchical data structure for storing the graph and its at-
tributes in an aggregated format;

e an automatic reordering component for computing a usable
order for the matrix to support visual analysis; and

e an accelerated rendering mechanism for efficiently displaying
and caching a massive graph dataset.

We also provide a set of navigation techniques for exploring the
graph. The following sections describe these components in detail.

3.1 Multiscale Data Aggregation

To support multiscale graph exploration with interactive response,
we designed an index structure tailored to its visualization abstrac-
tion, the three-dimensional binary pyramid of detail levels shown
in Figure 3. Users pan across the surface of one detail level; they
zoom up and down between detail levels (along perspective lines
meeting at the tip of the pyramid, so features match between zoom
levels). Detail level zero of this abstraction, the bottom level of the
pyramid, is the adjacency matrix of the raw data with the nodes ar-
ranged (according to the reordering permutation) on the rows and
columns at the edge and the edges between them indicated at the
row/column intersections on the level’s surface. Every detail level
above the base has half the length and width (number of nodes) and
a quarter the intersection squares (possible edges) as the level be-
low it. Therefore, each node at a higher, more summary detail level
represents four nodes at the level below it (except the last node on
a level, in the case where the lower level had an odd number of
nodes), and each intersection square indicating a possible edge at
this level represents four possible edges at the level below it.
Combining nodes and edges for higher detail levels require that
we define how to aggregate the data and its corresponding visual
representation. See Sections 3.3 and 3.5 for these definitions.

3.1.1  Pyramid Index Structure

The original network at detail level O is stored as a standard graph
in the InfoVis Toolkit (IVTK) [7]. The specialized index structure
is maintained in zoomable equivalents specialized for the pyramid
index structure.

A standard IVTK graph is implemented by a pair of tables, one
for its vertices and another for its edges. Each row represents one

h = ceil(log2(n))

Figure 3: Conceptual structure of the aggregated graph pyramid.

vertex or edge. It contains attributes in internal columns that main-
tain the graph topology. For each vertex, there is a first and last
edge for each of two linked edge lists for its outgoing and incom-
ing edges. Each of these lists is maintained in a pair of columns in
the edge table: the “next edge” and “previous edge” for the outgo-
ing and incoming edge lists. To complete the topology, two more
columns of the edge table store its first and second vertex (source
and sink edge vertices for directed graphs). The doubly-linked edge
lists are an optimization for fast edge removal, but the back-link can
be omitted to reduce memory consumption if necessary. Thus, the
IVTK needs to store four numbers for each vertex, and either six or
four numbers for each edge. Its current implementation uses CERN
COLT [6] primitive integer arrays that have very little overhead; so
in a 32-bit Java implementation today, the memory consumed is 16
bytes for each vertex and 16-24 bytes for each edge.

A zoomable graph has the same basic structure. However, in-
stead of single-layer vertex and edge tables, it uses specialized
zoomable tables with multilevel indices. Also, it maintains some
invariants that accelerate important operations. Below is a descrip-
tion of the basic operations:

getRelatedTable () returns the original table that the
zoomable table aggregates;

getItemLevel (int item) returns the aggregation level for
a specified item, O for the original level and [log,(|V])] for
the highest level with only one element (|V| being the number
of vertices of the graph);

getSubItems (int item) returns a list of items in the next
lower aggregation level (two vertices or up to four edges);

getSuperItem(int item) returns the corresponding item at
the next higher aggregation level; and

iterator (int level) returns an iterator over all the ele-
ments of a specified aggregation level.

The zoomable vertex table refers to the original graph’s vertex
table (its related table). Each aggregated vertex at level O refers to
one vertex in the related table, except that their order is changed by
a “permutation” structure that implements the reordering described
in 3.2. The numbering of aggregated vertices at level 1 begins im-
mediately after those at level 0, 2 after 1, and so forth (except that an
odd number at any level is rounded up by one). Each pair of vertices
at level n is aggregated by a single vertex at level n+ 1. So, given
the number of a vertex at any level, this simple numbering scheme
makes it straightforward to compute corresponding vertices at lev-
els above and below it. It is also straightforward to calculate the



size of the index: it is bounded by the series 1/24+1/4+... < 1,
so all the index levels at most double the size of the table. Like ver-
tices at level 0, an aggregated vertex has pointers (edge numbers) to
its lists of out- and in-edges, but these refer to aggregated edges.

Unfortunately, the zoomable edge table index is much more
complicated to build and maintain, because the set of possible edges
is not sparse. The number of possible edges between N nodes is on
the order of N2; so in 32-bit signed arithmetic, calculations based
on a simple enumeration of possible edges analogous to those used
for vertex indices would overflow for more than 2!5 (32K) vertices.
As with the vertex table, edges at level n follow edges at level n — 1.
However, because the corresponding edge numbers at each level
cannot be calculated, they must be stored. Achieving fast access
requires several optimizations. To compute the level of an edge, we
perform a binary search in a vector containing the starting index of
each level. At each level, the outgoing edges are stored in order by
their first (source) vertex: the outgoing edges of vertex n follow the
outgoing edges of vertex n— 1. Similarly, all the outgoing edges for
one source vertex are sorted in order of their second (sink) vertex.
This arrangement makes it very fast to search for an edge given its
vertices using two levels of binary search. It also allows us to omit
the previous and next edge columns for aggregated edges.

Despite these memory optimizations, aggregated edge indices
are still very costly in terms of memory, several times larger than
the original data. We also need an extra column to store the “su-
per edge” (that is, the corresponding edge in the level above). This
appears wasteful since the “super vertex” corresponding to this end-
point could be calculated and the super edge found by a binary
search in the edge list of the super vertex. For example, Wikipedia
has around six million edges, so 24 Mb are required just to add this
one column to the base level, and the total including all its index
levels is around five times more. However, we still chose to store
this information, because the basic operation of aggregating edge
attributes requires going through each edge from level O up and ac-
cumulating the aggregated results on the super edge. Without direct
access, the complexity of this operation would be n x log(n) instead
of n, and it would require tens of minutes instead of minutes.

Because the amount of information used for aggregated indices
on a huge file such as Wikipedia exceeds the virtual memory ca-
pacity of a 32-bit Java Virtual Machine (JVM), we implemented a
paging mechanism that allocates columns of memory in fairly large
fixed-size chunks that are retrieved from disk on-demand. Fortu-
nately, the memory layout of the zoomable aggregated graph is very
well suited to paging. Most operations are performed in vertex- and
edge-order on a specified level, so they tend to use consecutive in-
dices likely to be allocated nearby on disk.

The total size of the aggregated edge table depends dramatically
on the quality of the ordering. A good ordering groups both edges
and non-edges; so multiple nearby edges and non-edges aggregate
at each step and the size of successive index levels rapidly dimin-
ishes. The worst case is a “salt and pepper” pattern where edges are
widely dispersed across the whole matrix. These do not aggregate
significantly for many levels, resulting in an aggregated edge table
that can be 4 to 8 times larger than the original edge table. Our cur-
rent reordering methods, though imperfect, improve this to about a
factor of 5.

3.2 Reordering

Of all the algorithms described in the literature on matrix reorder-
ing, few are sub-quadratic. We experimented with those based on
linear dimension reduction such as Principal Component Analy-
sis (PCA) or Correspondence Analysis (CA) and greedy TSP al-
gorithms such as the Nearest-Neighbor TSP (NNTSP) heuristic.

3.2.1 High-Dimensional Embedding

PCA and Correspondence Analysis were used effectively by
Chauchat and Risson [5] for reordering matrices. Their matrices
were small enough to permit computing the eigenvectors directly,
but this is obviously infeasible for hundreds of thousands or mil-
lions of points. Harel and Koren describe a modified PCA method
called “High Dimensional Embedding” [14] that can efficiently lay
out very large graphs by computing only k-dimensional vectors
where k is typically 50. This method is designed for laying out
node-link diagrams by using the two or three first components of
the PCA for positioning of the vertices. We used it and improved it
for reordering matrices.

The solution proposed by Harel and Koren consists of choosing
a set of pivot vertices that the algorithm tries to place near the outer
edges of the graph, and to use the graph distances to these pivots as
the coordinates of each vertex. With 50 pivots, these coordinates are
in 50 dimensions. PCA is computed on these dimensions and the
eigenvectors are computed using a power-iteration that converges
very quickly in real cases. The BFS algorithm is a simple breadth-
first search computed when no edge weights exist; otherwise, it is
replaced by a Dijkstra shortest path computation.

However, the original algorithm can choose pivots in a very in-
effective way. Consider a large connected network with two very
deep subtrees S; and S,, where each leaf in one subtree is very dis-
tant from each leaf in the other subtree and even two leaves in the
same subtree can be very far apart. HDE will pick a random pivot
first, then take the farthest leaf from the pivot, say around S;. The
next vertex will then be a pivot around S;. In turn, the next will
be another vertex around Sy, and so forth, until several children of
S1 and S, are enumerated, producing a very biased distribution of
pivots. This is not merely a theoretical problem; something sim-
ilar actually occurs in Wikipedia. Because the taxonomies of the
animal and plant kingdoms in biological species classifications are
the deepest tree structures in Wikipedia, unmodified HDE merely
enumerates some of the deepest leaves of these two classifications.
Obviously, any major axes determined by PCA using this highly
unbalanced pivot selection will not represent the rest of Wikipedia
very well.

To avoid this bias, we modified HDE to penalize edges progres-
sively according to the number of times they already participate in
a path between existing pivots (Figure 4). This is done by perma-
nently halving the edges involved in the shortest path selected for
each pivot pair. This penalty encourages the algorithm to place new
pivots in regions of the graph not traversed by paths between previ-
ous pivots, which hopefully represent important different features
of its overall structure.

This algorithm avoids the pathological distribution of pivots, but
it does not solve the fundamental question of how many pivots are
required to adequately represent a large graph, which is still open.

3.2.2 Nearest-Neighbor TSP Approximation

Although the Traveling Salesman Problem is NP-complete, it has
good approximations in many cases. When the edges are weighted
and the weights are not too similar, the Nearest-Neighbor TSP
(NNTSP) approximation algorithms can be effective [11]. An ini-
tial ordering can be computed in linear time by limiting the search
distance. In our NNTSP algorithm, we limit the distance to 6 since
the number of nodes examined grows by a factor of 12 (the aver-
age number of links per page in Wikipedia) for each iteration, and
we felt that nodes more than 6 hops away were unlikely to be good
matches.

Because hypertext links are not weighted, we computed various
dissimilarity functions between the source and destination pages of
the link to provide them. To date, we have tried three link-weighting
or distance-calculation algorithms. In order of increasing quality
and running time, they are dissimilarity of adjacency patterns, dis-



Function HighDimDraw(G(V = 1,...,n,E),m)
% This function finds an m-dimensional layout of G:
| % Initialize the penalized edge length E to 1 for each edge
|E[1,...,m] —1
Choose node p; randomly from V
d[l,...,n] — oo
fori=1tomdo
dp,, < BFS(G(V,E), p;)
% Compute the ith coordinate using BFS
for every j €V do
X ‘(/ ) — dp, j )
d[j] — min{d[],X'(j)}
end for
% Choose next pivot
d —0
P« undefined
forj=1tondo
d" —dlj
if j is not a pivot and d” > d’ then
| % Compute the penalized edge length
|d" = Lecpath(p; ) Ele]
ifd” > d’ then
% p' is the farthest vertex so far
d/ (—d”
P
end if
end if
pir1 =P
for all | e € path(p;, pi+1) do
| % Penalize all edges in shortest path from p; to p;;|
| Ele] — E¢
end for
end for
return X' X% ... X"
end for

Figure 4: Computation of pivots in HDE and our modifications in bold-
face starting with a bar.

tance in the HDE pivot space and distance in a randomly-selected
pivot space. (Dis)similarity of adjacency patterns is determined by
merging the set of destination vertices between the edge sets of a
pair of source vertices. Visually, an ordering that optimizes this
measure will tend to maximize the number of groups of aligned
squares on an adjacency matrix representation, which is good for
perceptual analysis. This measure can be calculated efficiently—in
time linear in the average number of vertices per node—so it was
the first one we tried.

NNTSP using this distance measure does a reasonable job of
aligning almost all the vertices of Wikipedia—about 97%, approx-
imately the first 460,000 of the 474,594 pages in its largest con-
nected component that we actually analyze (since graph distance
cannot be computed for unconnected components). However, at
the end of the NNTSP analysis, when relatively few unvisited ver-
tices remain to be placed, the chance of finding pages with common
links is small. The adjacency pattern measure is likely to be zero
for all of the remaining pages, so we cannot discriminate between
them and the search for a match becomes very long.

The second and third methods we tried differ from the first by
the adjacency pattern dissimilarity metric. First, they find some
number (currently 10) of HDE pivots, respectively either by Harel
and Koren’s method [14] or randomly. They compute the distances
between every graph point and each pivot, which takes about 20
seconds per pivot for Wikipedia. Then, each graph distance is ap-
proximated by the Triangle Inequality: the true distance between
vertices is less than the sum of the distances between the two ver-
tices and any pivot. The shortest distance is used (corresponding
to the closest pivot). Dissimilarity is computed on the distance-to-
pivots coordinate space and nearest-neighbor is also computed in

that space. These methods find better orderings for the graph than
the first (which gives up and accepts a low-quality ordering for the
last 3% of the points) at the expense of several minutes longer cal-
culation time.

3.2.3 Results

Figure 5 compares the results of HDE versus NNTSP on a relatively
small social network dataset. The HDE method (left side) provides
the best overview of the graph at a high, heavily-aggregated level,
with the majority of connected nodes grouped in the upper left cor-
ner. While the local ordering is poor compared to NNTSP, the cal-
culation is much faster, requiring just a fraction of second instead
of 30 seconds required by the standard TSP solver that produced
the figure on the right.

Figure 5: Results of the HDE (left) and NNTSP (right) reordering
algorithms applied to a social network.

In contrast, the NNTSP algorithm orders the graph reasonably
well globally, but dramatically better locally. As stated above, the
global order is not as good as HDE’s. This is reflected by a poorer
compression factor of the indices, leaving more “salt and pepper”
(i.e. unclustered) edges. However, NNTSP’s ordering is better at
local scale. Basically, it finds many large groups of closely-related
nodes, groups them in order, and orders them well. Therefore, it is
the default reordering method in ZAME.

3.3 Aggregating Data Attributes

To make views of data at a higher level useful, attributes of the
original vertices (such as article names, creation date, or number of
edits) and edges (such as link weights) must be combined to pro-
vide rapid access to details, including the original data values. This
requires considerable flexibility in order to accommodate a range
of data types and semantics as well as user intentions. There is a
new trend in the classification community to use so-called “sym-
bolic data analysis” for richer aggregation [4]. We summarize the
principle and explain how we map symbolic data to visualizations.

It is important to make it evident to the user when a particu-
lar cell is representing an aggregated—as opposed to an original—
attribute. Section 3.5 describes some of the visual representations
we employ for this purpose. Typically, if enough display space is
available, a histogram can faithfully visualize the aggregated values
for each item. If less space is available, a min/max range or Tukey
diagram can be used. In the worst case, where only one or a few
pixels are available, the aggregated value can be used to modulate
the color shade of the whole cell.

3.3.1 Categorical Attributes

Categorical attributes—including Boolean values—have a cardinal-
ity: the number of categories. At the non-aggregated level, a cate-
gorical variable can hold one categorical value, such as a US state.
When aggregating categorical values, we compute a distribution,
i.e. the count of each item aggregated per category.



3.3.2 Numerical Attributes

Numerical attributes may be aggregated by various methods such as
mean, maximum or minimum. They can also be transformed into
categorical values by binning the values in intervals. Numerical
data permits a wide range of analysis such as calculating standard
deviations and other statistics. ZAME internally computes a dis-
crete distribution for the aggregated values using a bin width com-
puted according to [19]. We also keep track of the mean, extreme,
and median values.

3.3.3 Nominal Attributes

Unlike even ordinal data, there is no inherent relationship between
nominal attributes such as article names, authors, or subject titles.
Unfortunately, nominal attributes are often vital to understanding
what elements of the visual representation refer to. For example,
article titles for the Wikipedia dataset are vital for understanding its
structure.

Like numeric attributes, nominal attributes of specific datasets
can be aggregated using special methods such as concatenation,
finding common words, or sampling representative labels. Specifi-
cally, in ZAME we aggregate text by simply selecting the first label
to represent the whole aggregate. A more general solution is obvi-
ously needed for real-world use.

3.4 Visualization

For the visualization component of our matrix navigation tool, we
are given an elusive challenge: to efficiently render a matrix repre-
sentation of a large-scale aggregated graph structure consisting of
thousands if not millions of nodes and edges. The rendering needs
to be efficient enough to afford interactive exploration of the graph
with a minimum of latency.

We can immediately make an important observation: for ma-
trices of this magnitude, it is the screen resolution that imposes a
limitation on the amount of visible entities. In other words, there is
no point in ever drawing entities that are smaller than a pixel at the
current level of geometric zoom. In fact, the user will often want
the entities to be a great deal larger than that at any given point in
time. This works in our favor and significantly limits the depth we
need to traverse into the aggregated graph structure to be able to
render a single view of the matrix.

At the same time, we must recognize that accessing the aggre-
gated graph structure may be a costly operation and one which is
not guaranteed to finish in a timely manner. Clearly, to achieve
real-time framerates, we must decouple the rendering and interac-
tion from the data storage.

Our system solves this problem by utilizing a tile management
component that is responsible for caching individual tiles of the
matrix at different detail levels. Missing tiles are temporarily ex-
changed for coarser tiles of a lower detail level until the correct tile
is loaded and available. The scheme even allows for predictive tile
loading policies, which try to predict user navigation depending on
history and preload tiles that may be needed in the future.

In the following text, we describe these aspects of tile manage-
ment and predictive loading in more depth. We also explain our
use of programmable shaders and textures for efficiently rendering
matrix visualizations.

3.4.1 Basic Rendering

Instead of attempting to actively fill and stroke each cell represent-
ing an edge in our adjacency matrix, we use 2D textures for storing
tiled parts of the matrix in video memory. Textures are well-suited
for this purpose since they are regular array structures, just like ma-
trix visualizations. Also, they are accessible to programmable ver-
tex and fragment shaders running on the GPU (graphical processing
unit) of modern 3D graphics cards. This allows us to avoid sending
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Figure 6: Matrix visualization rendering pipeline.

excessive geometry data to the GPU and instead render a few large
triangles with procedural textures representing the matrix.

Our basic matrix rendering shader accesses the texture informa-
tion for a given position and discards the fragment if no edge is
present. If there is an edge there, the data stored in the texture is
used to render a color or visual representation (see Section 3.5).
Stroking is performed automatically by detecting whenever a pixel
belongs to the outline of the edge—in this case, black is drawn in-
stead of the color from the visual representation of the edge.

3.4.2 Tile Management

Adjacency matrices may represent millions of nodes on a side, and
thus storing the full matrix in texture memory is impossible. Rather,
we conceptually split the full matrix into tiles of a fixed size and
focus on providing an efficient texture loading and caching mecha-
nism for individual tiles depending on user navigation.

In our implementation, we preallocate a fixed pool of tiles of a
given size. We use an LRU cache to keep track of which tiles are in
use and which can be recycled. As the user pans and zooms through
the matrix, previously cached tiles can be retrieved from memory
and drawn efficiently without further cost. Tiles which are not in
the cache must be fetched from the aggregate graph structure—this
is done in a background thread that keeps recycling and building
new tiles using the cache and the tile pool.

While an unknown tile is being loaded in the background thread,
the tile manager uses an imposter tile. Typically, imposter tiles are
found by stepping upwards in detail zoom levels until a coarser tile
covering the area of the requested tile is eventually found in the
cache. The imposter is thus an aggregation of higher zoom levels
and therefore not a perfectly correct view of the tile, but it is suffi-
cient until the real tile has finished loading.

3.4.3 Predictive Tile Loading

Beyond responding to direct requests from the rendering, our tile
caching mechanism can also attempt to predictively load tiles based
on an interaction history over time. For example, if the user is in-
creasing the detail zoom level of the visualization, we may try to
preload a number of lower-level tiles in anticipation of the user con-
tinuing this operation. Alternatively, if the user is panning in one
direction, we may try to preload tiles in this direction to make the
interaction smoother and more correct.

Our tile manager implementation supports an optional predic-
tive tile loading policy that plugs into the background thread of the
tile manager. Depending on the near history of requested tiles, the
policy can choose to add additional tile requests to the command
queue. Furthermore, the visualization itself can give hints to the
policy on the user’s interaction.
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Figure 7: Eight different glyphs for aggregated edges (color shade,
average, min/max histogram, min/max range, min/max tribox, Tukey
box, smooth histogram, step histogram).

3.5 Aggregated Visual Representations

By employing programmable fragment shaders to render procedu-
ral textures representing matrix tiles, we get access to a whole new
set of functionality at nearly no extra rendering cost. In our system,
we use this capability to render visual representation glyphs for ag-
gregated edges. As indicated in Section 3.3, we can use these to
give the user an indication of the data that has been aggregated to
form a particular edge.

Currently, we support the following such glyphs (Figure 7 gives
examples for each of these):

e Standard color shade: Single color to show occupancy, or a
two-color ramp scale to indicate the value.

e Average: Computed average value of aggregated edges
shown as a “watermark” value in the cell.

e Min/max (histogram): Extreme values of aggregated edges
shown as a smooth histogram.

e Min/max (band): Extreme values of aggregated edges shown
as a band.

e Min/max (tribox): Extreme values of aggregated edges
shown as a trio of boxes (the center box signifies the range).

o Tukey box: Average, minimum, and maximum values of ag-
gregated edges shown as Tukey-style lines.

e Histogram (smooth): Four-sample histogram of aggregated
edges shown as a smooth histogram.

e Histogram (step): Four-sample histogram of aggregated
edges shown as a bar histogram.

Each glyph has been implemented as a separate fragment shader
and can easily be exchanged. Furthermore, new representations can
also be added. Depending on the availability and interpretation of
the data contained in the tile textures, the user can therefore switch
between any of these representations at will and with no perfor-
mance cost.

Figure 8 shows a general overview of the fragment shaders used
in our system. The texture representing the matrix tile is first ac-
cessed to see whether there is an edge to draw at all; if not, the
fragment is discarded and nothing is drawn. The next step is to
check whether the current fragment resides on the outer border of a
cell, in which case the fragment is part of the stroke and the color
black is produced as output. Finally, the last step depends on the
actual visual representation chosen, and determines the color of the
fragment depending on its position in the cell. The output color can
either be the currently active OpenGL color for flat shading, or a
ramp color scale indexed using the edge data.

3.6 Navigation

Navigation techniques for the ZAME system control both geomet-
ric zoom and detail zoom:

e Geometric zoom encodes the position and dimensions of the
currently visible viewport on the visual substrate.
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Figure 8: Schematic overview of the glyph fragment shader.

e Detail zoom describes the current level of detail of the adja-
cency matrix.

In other words, the viewport defined by the geometric zoom gov-
erns which part of the matrix is mapped to the physical window on
the user’s screen. This is a continuous measure. The detail zoom,
on the other hand, governs how much detail is shown in the window,
i.e. at which discrete level in the hierarchical pyramid structure we
are drawing the matrix. Since the hierarchy has discrete aggrega-
tion levels, detail zoom is also a discrete measure.

ZAME provides all of the basic navigation and interaction tech-
niques of a graph visualization tool. Users can pan around in the
visualization by grabbing and dragging the visual canvas itself, or
by manipulating the scrollbars.

4 RESULTS
4.1 Implementation

Our implementation is built in Java using only standard libraries
and toolkits. Rendering is performed using the JOGL 1.0.0 with
OpenGL 2.0 and the OpenGL Shading Language (GLSL). The im-
plementation is built on the InfoVis Toolkit [7] and will be made
publicly available as an extension module to this software.

4.2 Performance Measurements

Performance measurements of the different phases of the ZAME
system for several graph datasets are presented in Table 1. Figure 9
shows ZAME in use for the French Wikipedia dataset. The mea-
surements were conducted on an Intel Core 2, 2.13 GHz computer
with 2 GB of RAM and an NVIDIA GeForce FX 7800 graphics
card with 128 MB of video memory. For the navigation, the visual-
ization window was maximized at 1680x 1200 resolution.

5 CONCLUSION AND FUTURE WORK

This article has presented ZAME, our tool for interactively visual-
izing massive networks on the scale of millions of nodes and edges.
The article describes the technical innovations we introduced:

e a fast reordering mechanism for computing a good layout;

e aset of data aggregations and their visual representations; and



Figure 9: Overview (left image, with aggregation) and detail (right image, no aggregation) from visualizing the French Wikipedia using ZAME.

Dataset Nodes Edges Load Order
(secs)  (secs)
InfoVis04 1,000 1,000 10 30
Protein-protein 100,000 1,000,000 10 30
Wikipedia (French) 500,000 6,000,000 50 50

Table 1: Performance measurements for standard graph datasets.
Rendering performance was interactive (>10 frames-per-second) for
all three datasets.

e GPU-accelerated rendering with shader programs to deliver
interactive framerates.

In the future, we intend to continue exploring the problem of
multiscale navigation and how to provide powerful yet easy-to-use
interaction techniques for this task. We will also investigate the use
of additional matrix reordering algorithms, such as the “Sloan” al-
gorithm described in [17]. Furthermore, we are interested in explor-
ing the human aspects of detail zoom versus geometric zoom and
suitable policies for coupling these together. We would also like to
study the utility of the aggregate visual representations introduced
in this work.
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