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Abstract: Exposure to ionizing radiations (IRs) is ubiquitous in our environment and can be categorized
into “targeted” effects and “non-targeted” effects. In addition to inducing deoxyribonucleic acid
(DNA) damage, IR exposure leads to epigenetic alterations that do not alter DNA sequence.
Using an appropriate model to study the biological effects of radiation is crucial to better understand
IR responses as well as to develop new strategies to alleviate exposure to IR. Zebrafish, Danio rerio,
is a scientific model organism that has yielded scientific advances in several fields and recent studies
show the usefulness of this vertebrate model in radiation biology. This review briefly describes both
“targeted” and “non-targeted” effects, describes the findings in radiation biology using zebrafish as a
model and highlights the potential of zebrafish to assess the epigenetic effects of IR, including DNA
methylation, histone modifications and miRNA expression. Other in vivo models are included to
compare observations made with zebrafish, or to illustrate the feasibility of in vivo models when
the use of zebrafish was unavailable. Finally, tools to study epigenetic modifications in zebrafish,
including changes in genome-wide DNA methylation, histone modifications and miRNA expression,
are also described in this review.

Keywords: zebrafish embryos; epigenetic effects; ionizing radiation

1. Introduction

All living organisms including humans are continuously exposed to ionizing radiations (IRs) that
can be categorized into terrestrial, cosmic and man-made radiations. IR is a significant genotoxic agent
that can generate deleterious deoxyribonucleic acid (DNA) lesions leading to serious consequences
such as cancer induction [1]. The biological effects of IR can be categorized into “targeted” and
“non-targeted” effects, both effects being involved in radiation damage to cells. While the “targeted”
effect occurs in the irradiated cells or organisms, a “non-targeted” effect refers to the propagation
of effects from irradiated cells or organisms to non-irradiated or bystander cells or organisms.
The IR-induced targeted and non-targeted effects will be briefly reviewed in Section 2.

In recent years, transgenerational effects of IR have attracted a lot of research interest. In relation,
there have been extensive studies on IR-induced epigenetic effects which do not involve alterations in
the DNA sequence. These effects modulate gene expression patterns without modifying the actual
DNA sequence, and as such can lead to heritable changes in gene expression not encoded by the DNA
sequence [2]. Epigenetic alterations have profound effects on a range of cellular expressed genes [3].
DNA methylation, histone modifications and microRNA profiles will be discussed in Sections 3.1–3.3.
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The present paper reviews the potential of zebrafish, Danio rerio, as an in vivo model to assess
epigenetic effects of IR. Zebrafish, Danio rerio, is a scientific model organism that has yielded scientific
advances in several fields. The zebrafish genome has been assembled at high resolution [4,5]. Zebrafish
share 70% of their genes with human beings, including conservation of most DNA repair-related
genes [6]. The popularity of this model is also due to the transparency of early embryos, the rapid
development and well-characterized developmental stages, as well as convenient husbandry. Section 4
will describe epigenetic effects of IR in zebrafish. The use of zebrafish as a model organism in various
studies will be briefly outlined in Section 4.1 while the epigenetic effects in zebrafish will be reviewed
in Section 4.2. DNA methylation, histone modifications and miRNA profiles in regulating IR effects in
zebrafish will be discussed in Sections 4.3–4.5. Studying epigenetic effects of IR using zebrafish is still
in its infancy, and therefore results have not yet been as plentiful as expected. Other in vivo models
are included to compare observations made with zebrafish, or to illustrate the feasibility of in vivo
models when the use of zebrafish was unavailable. Wherever necessary and appropriate, descriptions
of in vitro studies will also be included. Interestingly, most applicable information was available in
and before 2013. Finally, Section 5 will give a brief summary.

2. Ionizing Radiation, Targeted Effects and Non-Targeted Effects

Traditionally, detrimental effects of IRs were thought to occur only in the directly irradiated
nuclear targets, i.e., the effects were restricted to “targeted” effects. DNA double-strand breaks
(DSBs) induced by IRs are considered the most relevant lesion for mutations and carcinogenesis,
and unrepaired or mis-repaired DSBs are a serious threat to genomic integrity [7,8]. Since the 1990s,
“non-targeted” effects of IRs, i.e., the propagation of effects from irradiated cells or organisms to
non-irradiated or bystander cells or organisms, were revealed and characterized. These included
the bystander effect, adaptive response, rescue effect, genomic instability, changed profiles of gene
expression and of non-coding RNAs. Radiation-induced bystander effects (RIBEs) refer to biological
effects which occurred in unirradiated cells/organisms after they were put in contact with the irradiated
cells/organisms or immersed in the medium having previously been conditioned by the irradiated
cells/organisms [9–31]. Adaptive response (AR) referred to mitigation of the biological effectiveness of
a large challenging dose in cells/organisms through application of a small preceding priming dose [32],
and the first in vitro study demonstrating AR was reported by Olivieri et al. [33]. Radiation-induced
rescue effect (RIRE) on targeted irradiated cells/organisms referred to the benefits they derive from
feedback signals released from non-targeted bystander cells/organisms [34–36]. Radiation-induced
genomic instability (RIGI) referred to delayed lethal mutations or reproductive cell death, as well as
elevations in the rate of de novo appearance of chromosomal aberrations and gene mutations, in the
progeny of irradiated cells [37–41]. RIGI could be observed in progeny which were many generations
after the initial irradiated cells, while the irradiated cells themselves or their immediate progeny could
appear healthy but were in fact unstable and mutation-prone [13,42–46]. Changes in gene profiles
induced by IRs were widely characterized through microarray hybridization techniques [47,48] with
enhanced detection accuracy of differential expression [49]. These non-traditional effects caused by
IRs had raised concerns about the low-dose radiation risk and the linearity of the relationship between
cancer risk and radiation dose.

Over the past ten years, accumulating evidence has supported that zebrafish is an excellent
in vivo model for studying the biological effects of IRs. Some of the findings on targeted effects as well
as non-targeted effects are summarized in the following.

As regards IR-induced targeted effects, the study of Geiger et al. was among the first to ascertain
the dose responses of zebrafish to γ-rays, which reported that the damage level and caspase activation
in zebrafish were proportional to the radiation dose [50]. The dose responses of zebrafish embryos to
low-dose α particles, protons, X-rays and neutrons were further established using apoptotic events in
whole zebrafish embryos at 24/25 h post-fertilization (hpf) [51–54]. In particular, biphasic/triphasic
dose responses were suggested as a common phenomenon in the low-dose regime [51–54].
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A dose-response curve with a hormetic zone typically has a “J” shape or inverted “U” shape,
and is thus nonlinear and biphasic, while a dose-response curve with an extra “subhormetic” zone
in addition to a hormetic zone is “triphasic”. Gagnaire et al. studied the effects of γ-irradiation in
zebrafish larvae by examining physical parameters such as mortality and hatching rate as well as
several biomarkers such as reactive oxygen species (ROS) production and detoxification enzyme [55].
Their results showed that IR-induced oxidative stress led to DNA damages [55]. Ryan et al. identified
a hyper-radiosensitive (HRS) response in the ZEB-2J (zebrafish cell line) cells upon γ-irradiation with
a dose <0.5 Gy [56]. Guo et al. revealed that the p53 protein in mutant p53 zebrafish embryos upon
ionizing radiation exposure maintained a very high level when compared to wild-type embryos,
thereby suggesting that the p53 protein played a crucial role in IR-induced carcinogenesis [57].
Bladen et al. suggested that Ku70 and Ku80 were essential in repairing IR-induced DNA damages
in zebrafish embryos through the nonhomologous end-joining (NHEJ) pathway [58,59]. Jaafar et al.
studied the long-term effects of γ-rays in adult zebrafish and in zebrafish embryos in terms of gene
expression in the liver tissue using Affymetrix microarray [60], and found that more than 300 transcripts
were modified in the liver of adult zebrafish liver upon γ-irradiation with doses of 0.1 and 1.0 Gy [60].
More recently, Kong et al. showed that exogenous nitric oxide (NO) protected zebrafish embryos from
damages induced by X-rays in a dose-dependent manner [61].

As regards IR-induced non-targeted effects, some of the findings on AR, RIBE and RIRE are
summarized in the following. AR was shown to be successfully induced by α particles and protons
in zebrafish embryos [62–64]. Interestingly, no AR was observed to be induced by neutrons [65],
which was attributed to the presence of neutron-induced hormesis as well as γ-ray hormesis [65].
RIBE was demonstrated in zebrafish [66], while RIBE and RIRE were demonstrated in zebrafish
embryos exposed to α particles [67,68]. Smith et al. demonstrated that RIBE could transcend
taxonomic group (zebrafish and medaka) and trophic level in fish (irradiated California blackworms
and non-irradiated rainbow trout), and suggested that RIBE signals could be transmitted through an
ecosystem [69]. Saroya et al. [70] demonstrated that zebrafish injected with reserpine, an inhibitor
of serotonin, before X-ray exposures could eliminate the RIBE. This suggested that serotonin was
involved in the bystander signaling. RIBE arising from neutron irradiation was more equivocal.
Ng et al. reported RIBE in naive zebrafish embryos partnered with zebrafish embryos having
been irradiated with neutron doses between 20 and 50 mGy [71], while Wang et al. did not
detect RIBE in naive zebrafish partnered with zebrafish having been irradiated with a neutron dose
of ~100 mGy [72]. The different observations were attributed to different γ-ray hormesis arising from
γ-ray contamination of the neutron sources [71]. RIBE was also shown to be totally suppressed by
the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) [73],
which suggested that NO was involved in the bystander response between zebrafish embryos.
Interestingly, AR was also induced in bystander zebrafish embryos upon partnering with irradiated
zebrafish embryos [74,75]. RIRE was observed in zebrafish embryos induced by α particles [68].
In relation, exogenous carbon monoxide (CO) was shown to be able to suppress RIBE [76],
which agreed with previous results [77], but unable to suppress RIRE induced by α particles [76].
A previous study on cells revealed that CO could protect bystander cells from the toxicity of NO [78].
It was suggested that the bystander zebrafish embryos did not need NO-induced damages to initiate
their release of the RIRE signals [76].

3. Epigenetic Effects of Ionizing Radiation

The relationship between epigenetics and IR was comprehensively reviewed [79–81].
Accumulating evidence has demonstrated that IR exposures can lead to epigenetic alterations,
which play an important role in genomic instability that can affect the next generations [82–84].
Previous studies had confirmed DNA damages and chromatin alterations in the progeny of irradiated
male mice [82,85]. On the other hand, epigenetic regulation can also be affected by mitochondrial
functions, which are important in maintaining metabolic homeostasis and play a critical role
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in IR responses [86,87]. Recently, the impact of metabolic defects on epigenetic processes was
summarized and the link between the mitochondrial function and epigenetics was outlined [88,89].
Shaughnessy et al. demonstrated that dysfunction of mitochondria affected epigenetic regulation [90].
The roles of mitochondria in cellular response to IR and in carcinogenesis-related epigenetics were
comprehensively reviewed [91–93]. Accumulating evidence has indicated that ROS play a crucial role
in epigenetic processes through the oxidative stress [94]. A cross-interaction between expression
of miRNA and mitochondrial function was found, which suggested that epigenetic regulatory
mechanisms were involved in RIGI arising from mitochondrial dysfunction [95]. Furthermore,
Szumiel reviewed that mitochondrial (mt) DNA could be damaged by high levels of ROS generated by
IRs [96]. The mutated mtDNA would affect the activity of methyltransferases and then lead to global
DNA hypomethylation [96]. Collectively, these findings suggested that dysfunction of mitochondria
would lead to RIGI by altering the DNA methylation status.

The first epigenetic alterations identified in cancer initiation and progression were changes in DNA
methylation [97,98]. Epigenetic alterations and failures to properly maintain heritable epigenetic marks
were suggested as potential causes of cancers [99,100]. In particular, in addition to genetic alterations,
global epigenetic abnormalities were revealed in human cancer cells [99,101]. DNA methylation,
histone modifications, and microRNA profiles that change during the initiation and progression of
cancer were reviewed [102–104].

3.1. DNA Methylation

DNA methylation refers to the process in which a methyl group (CH3–) is added to the DNA,
which often modifies the functions of the involved genes [105]. It is a major epigenetic modification in
the genomes of higher eukaryotes. DNA methylation was the first identified epigenetic alteration and
has been the most studied. The most extensively characterized DNA methylation process is the addition
of the methyl group to the 5-carbon of the cytosine ring leading to the formation of 5-methylcytosine
(5-mC), which can inhibit transcription [106,107]. In somatic cells, most 5-mC occurs at CpG sites
within the DNA sequence (where a cytosine nucleotide and a guanine nucleotide are separated by
only one phosphate, i.e., 5′-C-phosphate-G-3′) in form of a paired symmetrical methylation. However,
in embryonic stem (ES) cells, a large amount of 5-mC is also found at non-CpG sites [108]. In the
genomic DNA, most CpG sites are heavily methylated, except those in CpG islands (DNA sequences
containing an atypically high frequency of CpG sites) in germ-line tissues and those close to promoters
of normal somatic cells, which remain unmethylated to enable gene expression [109–111].

In general, there are three types of DNA methylation alterations, namely, hypermethylation,
hypomethylation and loss of imprinting. DNA hypermethylation describes the situation when
methylation occurs at sites that are unmethylated under normal circumstances. In carcinogenesis,
hypermethylation of genes are involved in the cell cycle, DNA repair, angiogenesis, metabolism
of carcinogens, apoptosis, and cell-cell interactions [112]. DNA hypomethylation usually refers to
losses of DNA methylation in the genome, although it can also occur locally [113,114]. In relation,
global DNA hypomethylation refers to the decrease in the total 5-mC content in the genome. DNA
hypomethylation can participate in activation of proto-oncogenes [112,115]. Genomic imprinting
refers to the epigenetic modification in which certain genes are expressed in a parental-origin-specific
manner, while loss of imprinting describes the disruption of such an epigenetic modification. Loss of
imprinting can result in gaining or losing of methylation or other chromosomal marks, or losing the
pattern of parental-origin-specific gene expression [116].

DNA methylation is mediated by a family of enzymes called DNA methyltransferases (DNMTs).
DNMTs are responsible for the establishment and maintenance of methylation patterns. In mammals,
DNA methylation to form 5-mC is established by “de novo” DNA methyltransferases (DNMT3a,
DNMT3b, and DNMT3L) and subsequently maintained by DNMT1 [117–119]. DNMT1 acted as
the “maintenance” methyltransferase since it was the primary enzyme responsible for copying
methylation patterns after DNA replication [118]. In addition, the DNMT3 family was classified
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as de novo methyltransferases since the involved methylation occurred at previously unmethylated
cytosines [120].

Evidence has shown that direct IR exposure would affect DNA methylation patterns. For example,
acute exposures to IR with low linear-energy-transfer (LET) values, such as X-rays and γ-rays, led to
global DNA hypomethylation [121,122], which could occur at different genomic sequences including
repetitive elements, retrotransposons, CpG-poor promoters, introns and gene deserts [123]. Global
hypomethylation can contribute to carcinogenesis through favoring mitotic recombination which leads
to deletions, translocations and chromosomal rearrangements, thereby causing genomic instability
and fragility [99,124]. Kovalchuk et al. [125], Raiche et al. [126] and Pogribny et al. [127] showed
that global hypomethylation upon an IR exposure would cause change in mice, depending on
parameters such as sex, tissue and dose rate. This loss of methylation was also associated with
radiation-induced alterations in the de novo methyltransferases DNMT3a and DNMT3b [126,127].
Interestingly, Bernal et al. revealed an increase in the DNA methylation level by generating ROS
in the viable yellow agouti (Avy) locus using Avy mouse model in the low-dose-radiation hormetic
regime [128], where low-dose simulation is shown [129,130]. This hinted that radiation hormesis could
be related to hypermethylation upon low-dose IR exposures [128]. As regards non-targeted effects,
Rugo et al. [131] studied the effects of the irradiated cell conditioned medium (ICCM) on unirradiated
cells. Interestingly, through comet analysis, inactive DNMT1 in mice ES cell could protect neighboring
cells from indirect induction of genomic instability [131]. Furthermore, it was found that only those
irradiated cells having normal DNMT1 and DNMT3a expression could induce bystander effects in
naive bystander cells [131]. Koturbash et al. [132,133] found significant changes in the levels of DNA
methyltransferases in bystander tissues in mice in vivo upon IR exposures and therefore proposed
that epigenetic transcriptional regulation was involved in RIBE.

IR-induced global loss of DNA methylation was also found related to changes in histone
methylation patterns (see also discussion on histone modifications below), specifically with the
loss of histone H4 lysine tri-methylation [134]. Moreover, Koturbash et al. attributed the initiation
and maintenance of downregulated DNMT3a in the bystander liver tissue in a mouse’s body to
the significant upregulation of the microRNA miR-194 [135] (see also discussion on microRNA
profiles below).

3.2. Histone Modifications

There are four core histones, namely, H2A, H2B, H3, and H4, which modulate the normal
epigenome to maintain gene expression patterns and normal chromosome structure and function [136].
The N-terminal domains of these four histones (terminated by a free amine group (–NH2)) and the
C-terminal domains of H2A and H2B (terminated by a free carboxyl group (–COOH)) are poorly
structured protrusions from the nucleosome called the “histone tails.” Histone tails provide sites for
covalent modifications such as acetylation, methylation and phosphorylation. The structures and
functions of the chromatin are determined by the combinations of various histone modifications and
other chromatin-binding proteins. For example, histone tail modifications regulate the chromatin
structure and gene expression [137]. Transcriptions are controlled by interactions between histone
modifications and DNA methylation. IR-induced global loss of DNA methylation could be related to
altered histone methylation patterns, in particular the loss of histone H4 lysine tri-methylation [134].

The major histone modifications are acetylation, methylation, phosphorylation, and
ubiquitination [136]. Histone acetylation involves the transferal of an acetyl functional group (CH3CO–)
to the lysine of a histone tail, and was reviewed in refs. [137,138]. Acetylation of lysines was found to
be highly dynamic and regulated by opposing actions of two families of enzymes, namely, histone
deacetylases (HDACs) and histone acetyltransferases (HATs). HDACs remove the acetyl group from
acetyllysine (Ac-Lys) and then release an acetate molecule [139] so they are responsible for histone
deacetylation, which is commonly associated with gene silencing. HATs transfer an acetyl group from
the acetyl coenzyme A (acetyl-CoA) to the lysine residue [139] so they neutralize the positively charged
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lysines on the histone tails and weaken the interaction between histones and DNA [137]. On the other
hand, histone methylation refers to the process in which a methyl group (CH3–) is introduced to the
lysine or arginine of a histone tail, and mainly occurs on the side chains of lysines and arginines [137].
Histone methylation does not change the charge of the histone protein [137], but recruit silencing
or regulatory proteins. Histone phosphorylation refers to the process in which a phosphate group
(PO4–) is introduced to the serine or threonine of a histone tail. Most histone phosphorylation sites
lie within the N-terminal histone tails and the levels of the modification are controlled by kinases
and phosphatases [140]. Histone ubiquitination refers to the process in which an ubiquitin protein is
introduced to the histone, which is mainly on the lysine residues that are located at the C-terminus of
the H2B histone [141].

One of the most studied histone modifications, particularly those related to IR exposure, is the
phosphorylation of histone H2AX at serine139 (γ-H2AX) [142]. Formation of γ-H2AX is one of the
earliest cellular responses to DSBs induced by IR exposures [143,144], which is crucial for the repair of
DSBs and for the maintenance of genome stability [142–146]. Chromatin immunoprecipitation (ChIP)
is a powerful tool for characterizing covalent histone modifications and DNA–histone interactions
in vivo [147–149] and is thus widely used to identify the presence of modified histones [150,151].
Protocols for ChIP assays have been well established for mammalian cells [152], yeast [153] as well as
Drosophila [154].

3.3. MicroRNA Profiles

A family of non-coding RNA genes has been discovered in plants and animals, which are
single-strand RNA molecules with lengths of about 18–22 nucleotides and are called microRNAs
(or miRNAs) [155]. They act in a nuclear protein complex known as RNA-induced silencing
complex (RISC). The miRNAs regulate gene expression post-transcriptionally and are expressed
in a development and cell-type-specific manner [156]. They play a crucial role in various biological
processes including development, proliferation, differentiation to cancer and apoptosis [157–159].

Metheetrairut and Slack [160] and Chaudhry [161] reviewed the involvement of miRNA in
the response to targeted IR exposures, which included cell cycle arrest, proliferation and apoptosis.
The IR-responsive miRNA profiles could be revealed by a variety of methodologies, including the
real-time quantitative PCR [162–164], microarray [165–176] and deep sequencing techniques [177,178].
MicroRNA can also be involved in a non-targeted effect induced by IR such as RIBE. Koturbash et al.
showed that partial irradiation of a rodent significantly upregulated miR-194 in the bystander liver
tissue, which explained the initiation and maintenance of the downregulation of DNMT3a and MeCP2
(methyl CpG binding protein 2) in the same bystander tissue [135]. MeCP2 is a protein in the MBD
(methyl CpG-binding domain) family, and plays a critical role in methylation-mediated chromatin
remodeling and gene silencing [3,179–183]. Moreover, when a three-dimensional artificial tissue was
exposed to a microbeam of α particles, the proliferative state would be changed in bystander tissues,
which was affected by the deregulation of miRNA expression [184].

4. Epigenetic Effects of Ionizing Radiation in Zebrafish

4.1. Zebrafish as an In Vivo Model

Zebrafish has been regarded as a suitable model organism in many biomedical studies, including
developmental biology, cancer research and epigenetics [185,186]. Zebrafish is also widely considered
as an excellent animal model for studying the molecular mechanisms underlying human diseases as
it has vascular, hematopoietic, immune and central nervous systems, as well as organs with some
phenotypic features resembling those features in humans [82]. In relation, the zebrafish embryo
model has also become popular in studies on toxicology [187], developmental biology [185] and
carcinogenesis [188].
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4.2. Epigenetic Effects in Zebrafish

The epigenetic landscape in zebrafish embryos had been widely studied by microarray
analysis [189–191]. Zebrafish embryos first develop from messenger RNAs (mRNAs) and
proteins stored in the egg without ongoing transcription [192,193]. The epigenetic status changed
rapidly during embryogenesis [194–199], which could efficiently control gene expression [200].
These features provide unique opportunities for studying epigenetic mechanisms. During the
zygotic stage (from 0 to 0.25 h post-fertilization (hpf)), no apparent transcription was observed [200].
Within this development stage, many maternal mRNAs encoded for increasing histone modification.
Recent studies showed that zebrafish embryos started establishing epigenetic mechanisms at the
mid-blastula transition (MBT) during the 10th cell cycle (~3 hpf, 1000 cells), which was referred to
as the zygotic gene activation (ZGA) [196,197]. At the MBT stage, the majority of maternal mRNAs
were degraded with the aid of zygotic miRNAs (miR-430) [201]. At the gastrula stage, when the
germline was formed (5.3 hpf, 50% epiboly), the genes started to be expressed [200,202]. The epigenetic
status became more complex afterwards [193] as there was an increase in histone modification in
genes [191,203] and the histone marks increased and decreased dynamically [203].

4.3. DNA Methylation in Zebrafish

DNA methylation mechanisms in fish are in general conserved with those of mammals [204–207].
Most of the effector proteins in the methylation machinery were identified in zebrafish [208].
Fang et al. found that global DNA methylation began to increase in zebrafish embryos after 3.3 hpf
and reached a plateau between 6 and 96 hpf through measuring the global DNA methylation in
zebrafish embryos using the MethylFlash™ Methylated DNA Kit (Epigentek Group, Farmingdale,
NY, USA) [209]. Recently, whole zebrafish genome sequencing was conducted [6]. It was found
that most zebrafish genes had mammalian orthologs, and most epigenetic regulators were highly
conserved: there were 75% and 92% identity between zebrafish and human DNMT1 and HDAC1,
respectively [186]. Nevertheless, three human DNMTs, i.e., DNMT3a, DNMT3b and DNMT3L,
were involved in de novo DNA methylation, whereas six corresponding genes were involved in
zebrafish [210,211]. Although the homologous genes of the DNMT3 family were identified in
zebrafish, further experimentation would be required to reveal which were orthologs and which
were paralogs. Besides, DNA hydroxymethylation is another epigenetic mark that modifies the
cytosine at the fifth position by adding a hydroxymethyl group to DNA, and 5-hydroxymethylcytosine
(5hmC) has been found to play a key role in the activation of DNA demethylation pathway [212].
A number of studies also reported that decrease in 5hmC led to cancer development [213–215]. Recently,
the high-performance liquid chromatography mass spectrometry (LC/MS) method was employed
to quantify the level of 5hmC, which showed no hmC-mediated reprogramming in zebrafish before
12 hpf [216]. This result agreed with previous findings through immunostaining, which reported
non-detection of 5hmC during early zebrafish development [198,217].

Knocking-down of DNMT1 or DNMT3b by morpholino oligonucleotides in zebrafish embryos
led to differentiation defects [218–220], which clearly demonstrated the importance of zebrafish DNMT
enzymes for development. Besides, Mortusewicz et al. showed that DNMT1 was required not only
for DNA synthesis, but also for DNA repair [221]. In addition, Ha et al. used near-infrared laser
micro-irradiation to demonstrate that DNMT1 modulated the repair rate of double strand breaks
(DSBs) and was essential for suppressing abnormal activation of DNA damage response in the absence
of exogenous damages [222]. The results suggested that DNMT1 acted as a regulator of genome
integrity and as an early responder to DNA DSBs [222].

Recently, Pereira et al. showed that γ irradiation increased the global methylation in both
irradiated and bystander embryonic zebrafish fibroblast (ZF4) cells through mass spectrometry
analyses [223]. High performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS)
has been a common technique to evaluate the relative degree of global DNA methylation through
determining the genome-wide level of cytosine and 5-mC in DNA samples [224]. On the other hand,
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Geiger et al. demonstrated that temozolomide, a DNA methylating agent, enhanced the radiosensitivity
of U251 human glioma cells when transplanted into zebrafish embryos, while temozolomide treatment
did not lead to discernible effects on development of the zebrafish embryos [225]. Taken together,
previous evidence suggested that modifications in DNA methylation occurred in zebrafish when they
were exposed to IR.

Genome-wide DNA methylation levels in zebrafish can be quantified through methylated DNA
immunoprecipitation (MeDIP) and shotgun bisulphite sequencing. The protocols and analytical
methods applicable in zebrafish studies were reviewed by Wu et al. [226]. The MeDIP technique was
first described by Weber et al. [227] to reveal regional methylation. The principle was to subject the
methylated DNA to a “tiling” microarray containing oligonucleotide probes that tiled the whole
genome or all promoters, which was called MeDIP-chip [228]. On the other hand, bisulphate
sequencing [229,230] revealed DNA methylation at base-pair resolution. Bisulphite treatment of
genomic DNA coupled with DNA sequencing has been regarded as a standard approach to detect
individual methylated cytosine residues.

4.4. Histone Modifications in Zebrafish

During the first cell cycles of the zebrafish embryos, some histone marks such as H3K4
(H3: H3 family of histones; K: standard abbreviation for lysine; 4: position of amino acid residue
counting from the N-terminus), H3K9 or H3K27 were acquired for epigenetic reprogramming [203,231].
Cayuso et al. reviewed the roles of chromatin modifications in zebrafish development and
regeneration [232]. At the MBT stage, genomic confirmation was mainly acquired by histone
modifications [191,196,203,233]. From the MBT stage onwards, there were increases in H3K4me3
levels (me3: 3 methyl groups added) and H3K27me3 levels [191,196,233]. H3K4me3 mainly marked
housekeeping genes while H3K27me3 occupied developmentally regulated genes [191]. In a separate
study, loss of HDAC1 was found to increase global histone acetylation in zebrafish development [234].
In relation, Lindeman et al. reported a protocol for immunoprecipitation of modified histones from
mid-term blastula zebrafish embryos [235]. Chromatin immunoprecipitation (ChIP) is a widely used
method for identifying the presence of modified histones through quantitative PCR (ChIP-qPCR) or
hybridization of ChIP DNA to microarrays (ChIP-chip) at as early as the 256-cell stage [203]. This tool
would help studies on histone modifications by IR in zebrafish.

4.5. MicroRNA Profiles in Zebrafish

Inactivation of miRNA biogenesis was found to cause severe defects in zebrafish embryos [236].
Chen et al. recorded the miRNA profiles during the development of zebrafish [237] and examined
154 different miRNAs in zebrafish at different stages from the early zygote period (0 hpf) to several
months old. The authors used the total RNA isolated from zebrafish at different developmental stages
to clone and sequence small RNA libraries [237]. The information revealed that miRNAs were absent
in the early zygote stage, which was commensurate with the findings for the African clawed frog,
Xenopus laevis, by Watanabe and colleagues [238]. Watanabe et al. examined a total of 24 known
miRNAs of Xenopus laevis during development from the oocyte to tadpole stage, and showed that
most (17 of 24) miRNAs emerged at a specific stage and were continuously expressed until the tadpole
stage, so the authors suggested that these miRNAs were involved in differentiation [238]. In relation,
Chen et al. found that in zebrafish embryos, a zebrafish-specific miR-430 family started to express
at 4 hpf and this family’s clusters dominated the miRNA profile up to 24 hpf [237]. The miR-430 family
was related to human and mouse ES cell-specific miRNAs [239,240]. On the other hand, miR-125b,
one of the miRNAs, was shown to directly regulate p53 in zebrafish and in human cells [241].
A significant down-regulation of miR-125b expression was found in zebrafish embryos in response
to IR-induced DNA damages, which resulted in a rapid increase in p53 protein [241]. Accordingly,
Le et al. suggested that miR-125b-mediated regulation of p53 was critical for modulating apoptosis in
human cells as well as in zebrafish embryos exposed to IRs [241].
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MicroRNAs could be obtained by locked-nucleic acid (LNA)-modified DNA oligonucleotide
probes [242]. LNAs refer to a class of RNA analogs containing a 2′-O,4′-C-methylene bridge in such
a way that the ribose rings are “locked” to enhance sensitivity and specificity. LNA probes are very
specific to mature miRNAs [243–247] and Wienholds et al. used LNA probes for in situ whole-mount
hybridization detection of conserved vertebrate miRNAs in zebrafish embryos [242]. Recently, analyses
of miRNAs with higher efficiency and lower cost were also achieved by in situ hybridization (ISH)
using conventional digoxigenin-labeled riboprobes in both whole mounts and histological sections in
zebrafish embryos [248]. In addition, using riboprobes directed against the primary miRNA transcript
could distinguish among expression patterns from different miRNA genes which encoded the same
mature miRNA [248].

5. Conclusions

Accumulating evidence has shown that IR-induced damages lead to transgenerational genomic
instabilities [249–252]. Such genomic instabilities were deemed to associate with ionizing radiation
(IR)-induced epigenetic alterations. The present paper reviewed the potential of the zebrafish,
Danio rerio, as an in vivo model to assess the epigenetic effects of IR. Embryogenesis is a stage which
has rapid changes in the epigenetic status and which is markedly radiosensitive, so zebrafish embryos
are in particular ideal for studying epigenetic mechanisms and for evaluating responses to IR [30,253].

In the present review, the epigenetic effects of IR studied or potentially assessed using the zebrafish
model included DNA methylation, histone modifications and miRNA expression, which had already
been identified in zebrafish [194–199,203,209–211,237]. A summary of tools for analyzing epigenetic
changes in zebrafish is given in Table 1.

Table 1. A summary of tools for analyzing epigenetic changes in zebrafish, including those for detecting
genome-wide DNA methylation changes, histone modification changes as well as miRNA expression.

Tool Mechanisms/Characteristics References

A. For detecting genome-wide DNA methylation changes in zebrafish

High performance liquid chromatography–tandem
mass spectrometry (HPLC–MS/MS)

Quantify global levels of 5-methylcytosine (5-mC) and
5-hydroxymethylcytosine (5-hmC) in DNA sample. [223]

Very high sensitivity.

Bisulphite sequencing

Reveal DNA methylation at base-pair resolution.
[226]

Global measurement of DNA methylation.

Can be coupled with high-throughput sequencing.

Methylated DNA immunoprecipitation (MeDIP)
Enrich for methylated DNA sequences. [226]
Can be coupled with either high-resolution array
hybridization or high-throughput sequencing.

Methylated DNA Quantification Kit

Quantify 5-methylcytosine (5-mC)
content or global methylation. [209]

Easy to use.

B. For detecting histone modifications in zebrafish

Chromatin immunoprecipitation (ChIP)
Well-known established protocol in zebrafish embryos. [203,235]
Can be coupled with quantitative PCR (ChIP-qPCR) or
hybridization of ChIP DNA to microarrays (ChIP-chip).

C. For detecting microRNA in zebrafish

Locked-nucleic acid (LNA)-modified DNA
oligonucleotide probes

Target specificity and sensitivity. [242]
Good for detection of short RNA, e.g., miRNAs.

Conventional digoxigenin-labeled riboprobes
Can be used for whole mounts and
histological sections in zebrafish embryos. [248]

Higher efficiency and lower cost than LNA probes.

As regards IR-induced DNA methylation changes, γ irradiation increased the global methylation
in irradiated and bystander embryonic zebrafish fibroblast ZF4 cells [223], while the radiosensitivity
of U251 human glioma cells transplanted into zebrafish embryos was enhanced by the DNA
methylating agent temozolomide [225]. Considering other in vivo models, IR exposure induced
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global hypomethylation in mice, which depended on parameters such as sex, tissue and dose rate,
and was associated with alterations in DNMT3a and DNMT3b [125–127]. IR exposure also led to
significant changes in the levels of DNA methyltransferases in bystander tissues in mice [132,133].

As regards IR-induced miRNA expression, a significant down-regulation of miR-125b expression
was found in zebrafish embryos in response to IR-induced DNA damages, which led to a rapid increase
in p53 protein [241]. Considering other in vivo models, IR was found to induce significant changes
in the levels the microRNA miR-194 in bystander tissues in mice [135] and to deregulate miRNA
expression in three-dimensional bystander artificial tissues [184].

Interestingly, despite the availability of tools for analyzing histone modification changes in
zebrafish and in other in vivo models, no in vivo studies on IR-induced histone modification changes
have been reported to date. As explained in the Introduction, studies on IR-induced epigenetic
effects using zebrafish have just begun, and as such results have not yet been plentiful. Considering
the ubiquitous presence of IR in our environment and the accumulating evidence showing that IR
exposures induce epigenetic alterations, and given that zebrafish has become a popular vertebrate
model for studying molecular mechanisms underlying human diseases, it is expected the zebrafish
model can be extensively employed as an in vivo model to assess epigenetic effects of ionizing radiation
in the near future.
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