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Abstract 

 

Despite high prevalence of neuropsychiatric disorders, their etiology and molecular 

mechanisms remain poorly understood. The zebrafish (Danio rerio) is increasingly utilized as 

a powerful animal model in neuropharmacology research and in-vivo drug screening. 

Collectively, this makes zebrafish a useful tool for drug discovery and the identification of 

disordered molecular pathways. Here, we discuss zebrafish models of selected human 

neuropsychiatric disorders and drug-induced phenotypes. Covering a broad range of brain 

disorders (from anxiety and psychoses to neurodegeneration), we also summarize recent 

developments in zebrafish genetics and small molecule screening, which markedly enhance 

the disease modeling and the discovery of novel drug targets.  

 

Keywords: Zebrafish; Behavioral models; Toxicology models; Genetic Models; Preclinical 

study; Model organism 
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Abbreviations:  

 

AChE = acetylcholinesterase;  

ACTH = adrenocorticotropic hormone;  

ALS = amyotrophic lateral sclerosis;  

AD = Alzheimer’s disease;  

ApoE4 = apolipoprotein E ε4;  

APP = Amyloid beta A4 precursor protein;  

BMAA = beta-mythylamino-alanin;  

CRH = corticotrophin-releasing hormone;  

COX-2 = cyclooxygenase-2;  

CPP = conditioned place preference;  

dpf = days post fertilization;  

GABA = gamma aminobutyric acid; 

GR = glucocorticoid receptors;  

HPA = hypothalamus-pituitary-adrenal;  

HPI = hypothalamus-pituitary-interrenal;  

HSR = heat shock stress response;  

microCT = micro-computer tomography;  

KA = kainic acid;  

MB = methylene blue; 

MO = morpholino-modified antisense oligonucleotide;  

NAC = N-acetylcysteine;  

NFT = neurofibrillary tangles;  

NMDA = N-methyl-D-aspartate;  

NMJ = neuromuscular junction;  

OCT = optical coherence tomography;  

PPI = pre-pulse inhibition;  

PSEN1 = PRESENLIN1;  

PSEN2 = PRESENLININ2;  

PTSD = post-traumatic stress disorder;  

PTZ = pentyleneterazole; 

RNAi = RNA interference; 

SEA = Similarity Ensemble Approach;  

SNRI = selective norepinephrine reuptake inhibitors;  

SSRI = selective serotonin reuptake inhibitor;  

UCMS = unpredictable chronic mild stressors;  

Vmat2 = vesicular monoamine transporter 2; 

WGD = whole-genome duplication 
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1. Introduction: Zebrafish as an emerging animal model 

Widespread and debilitating, neuropsychiatric disorders have poorly understood 

mechanisms and often lack efficient therapies (Garakani, Mathew & Charney, 2006; Griebel 

& Holmes, 2013b). Identifying clinically relevant biomarkers, the underlying neurobiological 

mechanisms, as well as genetic and environmental factors of psychopathology, are critical 

steps in discovering efficacious treatments (Caspi & Moffitt, 2006; Nestler, 2013). While 

rodent models of human brain disorders have long been employed in this effort, they are 

often impeded by high-cost and experimental inefficiency (Cryan & Holmes, 2005).  

The zebrafish (Danio rerio) has recently garnered attention as a powerful animal 

model for a wide range of human brain disorders (Kalueff, Echevarria & Stewart, 2014b; 

Kalueff, Stewart & Gerlai, 2014; Stewart et al., 2015b). Zebrafish is a small, low-cost and 

genetically tractable aquatic vertebrate species with a high degree of morphological, 

physiological and genetic homology to humans (Kalueff, Echevarria & Stewart, 2014a; 

Kalueff, Stewart & Gerlai, 2014). The zebrafish genome, fully sequenced, shows orthologues 

corresponding to ~82% of disease-related genes in humans (Howe et al., 2013). Gene 

expression databases (e.g., http://zfin.org/) and atlases of zebrafish brain are also available to 

explore the genomics and neuroanatomy of brain areas associated with neuropsychiatric 

disorders (Mueller & Wullimann, 2015; Ullmann, Cowin, Kurniawan & Collin, 2010; 

Wulliman, Rupp & Reichert, 2012).  

Modeling human conditions in zebrafish empowers the discovery of potential 

therapeutic targets and their underlying molecular interactions (Table 1). For example, 

analyzing the efficacy of various compounds to ameliorate the amyotrophic lateral sclerosis 

(ALS)-like phenotype, a recent study found therapeutic potential of methylene blue (MB) in a 

mutant mTDP-43 zebrafish (Vaccaro et al., 2012). Likewise, the mTDP-43 mutant zebrafish 

presents with short, abnormally branched motor axons, increased oxidative stress and 
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aberrant escape response (Vaccaro et al., 2012). Administration of MB, a neuroprotective 

agent, corrects swimming and axonal phenotypes while reducing the endoplasmic reticulum 

(ER) stress that occurs as a result of an accumulation of unfolded mutant proteins (Vaccaro et 

al., 2013; Vaccaro et al., 2012). The identification of ER stress as a potential target for ALS 

drug treatment prompted further testing the efficacy of several related agents in a G93A 

mtSOD1 transgenic mouse model, which led to the identification and repositioning of 

guanabenz, an approved drug for hypertension, as a potential new treatment for ALS 

(Vaccaro et al., 2013). Clearly, the zebrafish mutant model played a critical role in the 

identification of new ALS treatment options.  

Another example of bringing laboratory findings to the bedside includes two 

modulators of hematopoietic stem cells (HSC) recently discovered in zebrafish (Zon, 2014) 

and then becoming therapies in patients (North et al., 2007). Original screening of nearly 

2500 small molecules in zebrafish identified 35 ‘leads’ that up-regulate vital HSC genes, 

runx1 and c-myb, ten of which modulate the prostaglandin pathway, implicating it in HSC 

regulation. One of these potent candidates, 16,16-dimethyl prostaglandin E2 (dmPGE2), was 

next tested in a mouse model, increasing the number of HSC grafted (North et al., 2007; Zon, 

2014). Subsequent preclinical testing using primate blood model yielded successful results, 

allowing the drug to move to the approved Phase I clinical trial (Goessling et al., 2011). 

These studies have recently yielded positive results in leukemia patients and demonstrated the 

safety of the treatment, allowing it to move to Phase II testing (Cutler et al., 2013). Thus, the 

translatability of original zebrafish results was critical for the application of this drug in mice, 

and in humans (see other examples of translational approaches in Table 1).  

Both larval and adult zebrafish are useful pre-clinical in-vivo models highly amenable 

to experimental, pharmacological and genetic manipulations (Barros, Alderton, Reynolds, 

Roach & Berghmans, 2008; Brennan, 2011; Bruni et al., 2016). Due to their transparency and 
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small size, larval zebrafish are particularly useful for optical manipulation and imaging of 

neural activity, as well as for large-scale high-throughput screens of molecular drug targets 

and candidate genes (Brennan, 2011; Stewart, Gerlai & Kalueff, 2015; Wyart & Del Bene, 

2011). Together with recent developments in genome editing techniques (e.g., CRISPR/Cas) 

and automated 3D behavioral phenotyping, this makes zebrafish an ideal model to study 

genotype-phenotype and genotype-drug-phenotype relationships (Cachat et al., 2011b; 

Hwang et al., 2013; Kokel et al., 2010; Stewart et al., 2015a). Furthermore, zebrafish develop 

externally to the maternal organism, reach sexual maturity fast (in ~90 days), and live for ~4-

5 years in the laboratory, allowing for direct and easy analyses of pathogenetic trajectories 

(Fonseka, Wen, Foster & Kennedy, 2016; Kalueff, Stewart & Gerlai, 2014). Complementing 

larval models, adult zebrafish exhibit complex behaviors (Kalueff et al., 2013a) relevant to 

cognition (Blaser & Vira, 2014; Gerlai, 2016), reward (Collier, Khan, Caramillo, Mohn & 

Echevarria, 2014; von Trotha, Vernier & Bally-Cuif, 2014), social behavior (Gerlai, 2014; 

Qin, Wong, Seguin & Gerlai, 2014) and affect (Gerlai, 2013; Jesuthasan, 2012; Wang et al., 

2016a). Numerous experimental paradigms have been converted for aquatic models to 

investigate major behavioral phenotypes which are well-conserved in zebrafish and mammals 

(Renier et al., 2007; Stewart, Braubach, Spitsbergen, Gerlai & Kalueff, 2014a).  

Rats and mice are currently the most commonly employed animals to study normal 

and abnormal brain functioning, with nearly 1/3 of all published neuroscience papers in 2015 

utilizing rodent models, and <11% using other animal models, including zebrafish (Keifer & 

Summers, 2016). However, the rate of zebrafish publications is growing faster than any other 

model organisms, and experimental tools and resources for this organism are becoming 

increasingly available (Kalueff, Echevarria & Stewart, 2014b; Wyatt, Bartoszek & Yaksi, 

2015). A new animal model that still requires validation across multiple domains, the 

zebrafish has a growing utility in high-throughput phenotyping, gene and drug screening, thus 
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becoming increasingly useful in neuropsychopharmacology and drug discovery research. 

Here, we highlight recent successes and challenges in this rapidly expanding field.  

2. Zebrafish CNS 

The overall architecture, neuroanatomical features and cellular morphology of the 

zebrafish CNS are generally similar to those of mammals (Kalueff, Stewart & Gerlai, 2014). 

For example, the medial teleost pallium contains homologous structures to the mammalian 

amygdala (Martín, Gómez, Salas, Puerto & Rodríguez, 2011; Mueller, Dong, Berberoglu & 

Guo, 2011; Portavella, Torres & Salas, 2004; von Trotha, Vernier & Bally-Cuif, 2014) – the 

brain structure key for affective processing and emotionality in humans. The amygdala is 

pathologically hyperactivated in clinical anxiety (Rauch et al., 2000; Shin, Rauch & Pitman, 

2006), social anxiety disorder (Furmark et al., 2004; Stein, Goldin, Sareen, Zorrilla & Brown, 

2002), and drug abuse (Buffalari & See, 2010; Mead, Vasilaki, Spyraki, Duka & Stephens, 

1999). The zebrafish medial pallium shows increased Fos protein expression, a measure of 

neuronal activation, following both acute administration of D-amphetamine and during drug-

seeking behavior in a conditioned place preference (CPP) assay (von Trotha, Vernier & 

Bally-Cuif, 2014), collectively supporting the role of zebrafish medial pallium as a 

homologous structure to the mammalian amygdala with evolutionarily conserved functions in 

modulating key behaviors.  

Visualizing CNS activity through imaging methods is an important step to discern 

how the brain contributes to normal and abnormal behavior. The small size, and optical 

transparency of larval zebrafish allows for high resolution in-vivo imaging and manipulation 

of neural activity in behaviorally active animals (Orger & Portugues, 2016). For example, 

imaging neuronal activity of larval zebrafish behavior has been achieved by expressing a 

genetically encoded calcium indicator and recording whole-brain activity using light-sheet 

microscopy (Ahrens, Orger, Robson, Li & Keller, 2013). Optogenetic neuromodulation of the 



 

 
 

This article is protected by copyright. All rights reserved. 

transparent and genetically accessible larval zebrafish is particularly useful to investigate the 

neural circuitry underlying behaviors relevant to brain disorders (Knafo & Wyart, 2015). 

Neuronal excitation and inhibition of targeted neuronal populations has been successfully 

triggered in behaving larval zebrafish by expressing optogenetic actuators, including 

channelrhodopsin-2 and halorhodopsin (Arrenberg, Del Bene & Baier, 2009; Douglass, 

Kraves, Deisseroth, Schier & Engert, 2008). To date, optogenetic studies in zebrafish have 

largely focused on several simpler behaviors, such as escape (Douglass, Kraves, Deisseroth, 

Schier & Engert, 2008) and locomotion (Arrenberg, Del Bene & Baier, 2009; Ljunggren, 

Haupt, Ausborn, Ampatzis & El Manira, 2014), as well as sensory processing (Kubo, 

Hablitzel, Dal Maschio, Driever, Baier & Arrenberg, 2014). However, optogenetic 

neuromodulation in zebrafish help future research to create robust models of complex human 

neuropsychiatric disorders (Stewart et al., 2015b; Tye & Deisseroth, 2012). Furthermore, 

imaging neural activity in adult zebrafish is more challenging due to their larger and opaque 

brains. Recently applied in adult zebrafish, contrast-enhanced X-ray micro-computer 

tomography (microCT) with iodine as a contrasting agent provided 3D visualization of 

zebrafish brain anatomy in intact animals (Babaei, Hong, Yeung, Cheng & Lam, 2016). 

Optical coherence tomography (OCT) has also recently been used in-vivo in adult zebrafish 

to non-invasively generate real-time cross-sectional images at high resolution that and then 

reconstructed in 3D (Rao, Alex, Verma, Thampi & Gupta, 2009; Zhang & Yuan, 2015).  

Neurochemistry is generally conserved across vertebrate species, as they share major 

neurotransmitters, receptors and transporters (Alsop & Vijayan, 2008; Panula et al., 2010; 

Panula et al., 2006). Thus, zebrafish are sensitive to major classes of pharmacological agents, 

such as psychostimulants (Ninkovic & Bally-Cuif, 2006), opiates (Lau, Bretaud, Huang, Lin 

& Guo, 2006), ethanol (Tran, Chatterjee & Gerlai, 2015), hallucinogens (Stewart, Cachat, 

Gaikwad, Robinson, Gebhardt & Kalueff, 2013), anxiolytics (Bencan, Sledge & Levin, 
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2009), antidepressants (Stewart et al., 2014) and antiopsychotics (Bruni et al., 2016). The 

spatial and temporal distribution of major neurotransmitter systems in zebrafish is also 

similar to that of mammals, and has been well described in zebrafish for glutamate, gamma 

aminobutyric acid (GABA), acetylcholine, dopamine, serotonin, norepinephrine and 

histamine (Stewart et al., 2015b). For instance, the major pathways and receptor subtypes of 

the dopamine system are all present in zebrafish, with the exception of the D5 receptor 

(Maximino & Herculano, 2010; Panula et al., 2010; Panula et al., 2006). The amino acid 

sequence recently compared between zebrafish and humans for D1-D4 receptors shows 100% 

amino acid homology in the binding site for D1 and D3, and 85-95% for D2 and D4 receptors 

(Ek et al., 2016). Consequently, pharmacological agents that act on the dopamine system 

produce similar phenotypes, as dopamine antagonists or depletors impair locomotion 

(Giacomini, Rose, Kobayashi & Guo, 2006; Kyzar et al., 2014) and agonists predictably 

increase zebrafish locomotion (Irons, Kelly, Hunter, Macphail & Padilla, 2013), paralleling 

similar effects in rodents (Akhisaroglu, Kurtuncu, Manev & Uz, 2005; Mobini, Chiang, Ho, 

Bradshaw & Szabadi, 2000). The dopamine agonist apomorphine produces a U-shaped dose-

response relationship for distance traveled in larval zebrafish, with low-doses increasing time 

in center (anxiolytic effect) and high-doses increasing thigmotaxis (anxiogenic effect) (Ek et 

al., 2016). Strikingly paralleling similar drug action in rats (Ek et al., 2016), these findings 

further support the translational value of neuropharmacological studies in zebrafish.  

Mounting evidence implicates alterations of the neuroendocrine system in various 

brain disorders, including depression (Herbert, 2013; Holsboer, 2001), anxiety (Hek et al., 

2013; Korte, 2001), addiction (Keedwell, Poon, Papadopoulos, Marshall & Checkley, 2001; 

Lovallo, 2006) and Alzheimer’s disease (AD) (Belanoff, Gross, Yager & Schatzberg, 2001; 

Wahbeh, Kishiyama, Zajdel & Oken, 2008). Activation of the neuroendocrine hypothalamus-

pituitary-interrenal (HPI) axis of zebrafish releases cortisol that acts on glucocorticoid 
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receptors, similar to the hypothalamus-pituitary-adrenal (HPA) axis in humans (Alsop & 

Vijayan, 2009; Griffiths, Schoonheim, Ziv, Voelker, Baier & Gahtan, 2012b; Pavlidis, 

Theodoridi & Tsalafouta, 2015). The zebrafish neuroendocrine system can be easily 

modulated by experimental, pharmacological and genetic manipulations, and fish cortisol can 

be sampled using various invasive and non-invasive methods (Canavello et al., 2011; Félix, 

Faustino, Cabral & Oliveira, 2013; Pavlidis, Sundvik, Chen & Panula, 2011). For example, 

genetic mutation of the glucocorticoid receptors (GR) gene in adult gr
s357 

mutant zebrafish 

disrupts negative feedback and cortisol signaling by abolishing the transcriptional activity of 

GR upon cortisol binding (Ziv et al., 2013). This elevates blood cortisol levels and evokes 

aberrant phenotypes, such as freezing, reduced exploration, impaired habituation and 

potentiated startle, most of which can be rescued in gr
s357 

mutants by a selective serotonin 

reuptake inhibitor (SSRI) fluoxetine. This also emphasizes the high degree of evolutionarily 

conservation between the neuroendocrine system and its modulation between zebrafish and 

humans (Griffiths, Schoonheim, Ziv, Voelker, Baier & Gahtan, 2012b; Ziv et al., 2013). 

3. Zebrafish models of major CNS disorders 

A clear advantage of non-human animals (like zebrafish) for modeling brain disorders 

is, as already mentioned, their amenability to experimental, genetic and pharmacological 

manipulations. Furthermore, the behavioral phenotypes, genetic factors and pharmacological 

sensitivity of zebrafish often show a high degree of similarity to those reported in rodent 

models of brain disorders and in human clinical populations (see further).  

3.1. Depression and anxiety 

Stress is a common risk factor for developing affective disorders, including Major 

Depressive Disorder (Lucassen, Oomen, Schouten, Encinas & Fitzsimons, 2016; Strüber, 

Strüber & Roth, 2014) and anxiety (Bystritsky, 2006). In mammals, stress response is mainly 

mediated by the interplay of the hypothalamus, the pituitary and the adrenal glands, 
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collectively forming the HPA axis (Smith & Vale, 2006). Prolonged stress and 

hyperactivation of the HPA axis have the potential to lower GR expression, ultimately 

reducing the ability to adapt and cope with stress-events (Howell, Kutiyanawalla & Pillai, 

2011) and thereby triggering depression (Zhou, Zhu, Wu, Luo, Chang & Zhu, 2011).  

Depression has been extensively modeled in rodents (Deussing, 2006; Krishnan & 

Nestler, 2011) utilizing early-life (Fumagalli, Molteni, Racagni & Riva, 2007) and adulthood 

stresses (Seligman, Rosellini & Kozak, 1975) as well as pharmacological interventions (Barr 

& Markou, 2005), selective breeding or genetic engineering (Deussing, 2006). Several 

hallmark depression symptoms (e.g., low self-esteem, and depressed mood) are difficult to 

evaluate in animals, as they do not clearly display a sense of self (Deussing, 2006). In 

contrast, evaluation of other phenotypes, including anhedonia, comorbid anxiety or sleep- and 

neuroendocrine disturbances, can be easily modeled in animals (Porsolt, 2000; Seligman & 

Beagley, 1975). In zebrafish, depressive-like states can be evoked by a battery of 

unpredictable chronic mild stressors (UCMS) applied for an extended period of time 

(Fulcher, Tran, Shams, Chatterjee & Gerlai, 2016; Marcon et al., 2016; Piato et al., 2011). 

Adult fish exposed to 7-14-day UCMS exhibit reduced locomotion, altered shoaling behavior 

and body coloration (Gerlai, Lahav, Guo & Rosenthal, 2000). Applied to zebrafish raised in 

social isolation for 5 months, UCMS increases anxiety-like behaviors in the novel tank test, 

and reduces body weight and whole-brain dopamine and serotonin metabolite 5-HIAA levels, 

compared to zebrafish raised in groups (Fulcher, Tran, Shams, Chatterjee & Gerlai, 2016). 

The effects of UCMS on exploratory and group/shoaling behaviors are reversed by fluoxetine 

(an SSRI) and bromazepam, a benzodiazepine anxiolytic (Marcon et al., 2016). In addition, 

several key pro-inflammatory molecules, such as tumor necrosis factor (TNF-α), interleukin-

6 (IL-6), and cyclooxygenase-2 (COX-2), are differentially regulated in the zebrafish 

following 7 days of UCMS (Marcon et al., 2016). COX-2 transcription is greater in 
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individuals with recurrent depressive disorder, and is hypothesized to negatively affect 

cognitive functioning, emotionality and synaptic homeostasis (Galecki, Talarowska, 

Bobińska & Szemraj, 2014). Treatment with psychotropic drugs (fluoxetine, bromazepam 

and nortriptyline) reduces the expression of IL-6 and TNF-α (Marcon et al., 2016), 

highlighting the sensitivity of this model to established, clinically active antidepressants. 

Other pharmacological interventions, such as the administration of reserpine, produce 

depressive-like responses in zebrafish, including social withdrawal, motor retardation and 

elevated cortisol, that parallel clinical symptoms of depression (Nguyen, Stewart & Kalueff, 

2014). Finally, several genetic models empower studying depression in the zebrafish. For 

instance, larval zebrafish with mutant glucocorticoid receptors (gr/s357) display heightened 

physiological responses (e.g., higher whole body cortisol levels) and dysfunctional HPI axis 

(Griffiths, Schoonheim, Ziv, Voelker, Baier & Gahtan, 2012a), similar to the effect observed 

in humans.  

Anxiety disorders are debilitating psychiatric diseases with a lifetime prevalence of 

~30%, higher than any other mental disorder (Kessler, 2007; Kessler, Chiu, Demler, 

Merikangas & Walters, 2005). There are several types of anxiety disorders, including panic 

disorder, post-traumatic stress disorder (PTSD), generalized anxiety disorder and specific 

phobias (American Psychiatric Association, 2013). The hallmark symptom of anxiety 

disorders is an overwhelming and exaggerated sense of worry in response to perceived threats 

(American Psychiatric Association, 2013), dramatically lowering patients’ quality of life and 

work productivity (ADAA, 2016). The first line of treatment for anxiety disorders is typically 

a regimen of SSRIs or cognitive behavioral therapy (Bystritsky, 2006). Patients who do not 

respond to these treatments are then given selective norepinephrine reuptake inhibitors 

(SNRIs) or tricyclic antidepressants (Bystritsky, 2006). However, SNRIs or tricyclics 

increase the risk for tolerance and dependence (Otto, Pollack, Sachs, Reiter, Meltzer-Brody & 
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Rosenbaum, 1993), thereby limiting their use. Furthermore, although many treatments for 

anxiety disorders exist, approximately 30% of patients show no improvement (Brown, 

Schulberg, Madonia, Shear & Houck, 1996). This necessitates the identification and 

development of treatments that are devoid of the limitations in efficacy and tolerance 

(Griebel & Holmes, 2013a).  

One of the problems with developing new treatments has been the identification of 

biochemical targets, genetic variants or mechanism of action for the onset of the disorder 

(Bystritsky, 2006; Griebel & Holmes, 2013a; Insel et al., 2011), beckoning the need for 

animal models. The zebrafish model is particularly amenable to high-throughput anxiolytic 

drug screens (Lundegaard et al., 2015). The larval zebrafish hatches from its chorion within 3 

days post fertilization (dpf), and are able to inflate their swim bladder by 5 dpf and produce a 

broad range of behaviors (Richendrfer, Pelkowski, Colwill & Creton, 2012), see Fig. 1. For 

instance, staying near the periphery of the arena (thigmotaxis) reflects anxiety-like behavior, 

and is heightened following exposure to anxiogenic stimuli or drugs (Stewart, Gaikwad, 

Kyzar, Green, Roth & Kalueff, 2012). In adult fish, measures of anxiety include a latency to 

explore the top, or higher tendency to remain in the bottom (Stewart, Gaikwad, Kyzar, Green, 

Roth & Kalueff, 2012) in the novel tank test (Fig 2). In the light-dark test, allowed to freely 

explore brightly light and dark arenas, zebrafish spend more time in the dark (scototaxis) - an 

anxiety-like response which can be bidirectionally influenced by anxiolytic or anxiogenic 

treatments (Kalueff et al., 2013b). Genetic models of anxiety in zebrafish are also available, 

including the knockdown of vesicular monoamine transporter 2 (Vmat2) which produces an 

anxiety-like profile with social withdrawal and reduced exploration (Wang et al., 2016b).  

In the effort to identify new treatments for anxiety and related disorders, there has 

also been a call to repurpose available drugs for novel applications (Lundegaard et al., 2015). 

This method of drug discovery has the advantage of reducing uncertainty regarding 
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pharmacokinetic issues or safety of the drug (Ashburn & Thor, 2004; Insel et al., 2011), 

thereby allowing for a more rapid drug screen and testing. For instance, N-acetylcysteine 

(NAC), a common mucolytic agent and antidote for paracetamol overdose, has shown 

promise in the treatment of several neuropsychiatric disorders (Berk, Malhi, Gray & Dean, 

2013). NAC plays a role in maintaining oxidative balance germane to anxiety, and has been 

shown to modulate central glutamatergic pathways (Dean, Giorlando & Berk, 2011). While a 

growing body of evidence supports the role of glutamate in the anxiety response, there is a 

clear deficit of approved glutamatergic anxiolytics (Cortese & Phan, 2005). NAC 

administration to adult zebrafish prevents stress-induced anxiety (Mocelin et al., 2015), 

which is in line with previous reports of its clinical efficacy in depressed patients (Berk, 

Malhi, Gray & Dean, 2013). In another example of drug repositioning, potential anxiolytic 

targets were identified using traditional cancer treatments, as cAMP mediated anxiety in the 

zebrafish via crosstalk of the RAS-MAPK pathway (Lundegaard et al., 2015). The 

heightened anxiety-like response is attenuated by exposure to MEK inhibitors, anti-cancer 

treatment (Lundegaard et al., 2015), suggesting the MEK crosstalk as potential alternative 

target for treatments of anxiety as well.  

3.2. Epilepsy  

Epilepsy, which affects approximately 50 million people worldwide (WHO, 2016), is 

characterized by recurrent convulsions/seizures, behavioral impairments, pathological neural 

activity and endocrine dysfunction (Andrea Galimberti et al., 2005; Engel, 2013; Green et al., 

2012; Zhang & Liu, 2008). Epilepsy can be modeled in larval and adult zebrafish (primarily 

by administration of convulsant drugs and genetic modifications) and evaluated by various 

behavioral and physiological endpoints (Cunliffe, 2015; Desmond et al., 2012; Wong et al., 

2010). Characteristic behaviors for epilepsy-like states in adult zebrafish are hyperactivity, 

erratic swimming, loss of body posture, spasm-like corkscrew swimming (Desmond et al., 
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2012) and electrical discharges in the CNS (Baraban, Taylor, Castro & Baier, 2005; Zdebik, 

Mahmood, Stanescu, Kleta, Bockenhauer & Russell, 2013). Experimental seizures in 

zebrafish can be induced by acute caffeine (250 mg/L), pentylenetetrazole (PTZ, 2.5 g/L) and 

picrotoxin (100 mg/L), causing hyperactivity, circular/corkscrew swimming, spasms and 

elevated whole-body cortisol levels (Wong et al., 2010). These symptoms are suppressed by 

antiepileptic drugs in both larval and adult zebrafish (Green et al., 2012), enabling the 

discovery of more efficacious treatments for epilepsy (Alfaro, Ripoll‐ Gómez & Burgos, 

2011). For instance, PTZ administration not only evokes characteristic seizures, but is also 

accompanied by the rapid transcription of c-fos and npas4 (Cunliffe et al., 2015), paralleling 

responses observed in seizure onset in mammals (Cunliffe et al., 2015; Loebrich & Nedivi, 

2009). Finally, various genetic techniques enable the greater exploration of function for 

specific candidate genes (Cunliffe, 2015; Mahmood, Fu, Cooke, Wilson, Cooper & Russell, 

2013; Teng et al., 2010) or anti-epileptic treatments using high-throughput and rapid 

screening in zebrafish (Baraban, Dinday & Hortopan, 2013; Baxendale et al., 2012; Cunliffe, 

2015).  

3.3. Psychosis 

 Psychosis manifests as disturbances in cognition, affect, motor activity and social 

behavior (American Psychiatric Association, 2013), and is often accompanied by aberrant 

glutamatergic signaling (Merritt, McGuire & Egerton, 2013; Schobel et al., 2013). Glutamate 

N-methyl-D-aspartate (NMDA) receptor antagonists phencyclidine and ketamine produce 

psychotic symptoms in healthy volunteers, and worsen the positive, negative and cognitive 

symptoms of patients with schizophrenia (Merritt, McGuire & Egerton, 2013). MK-801 is a 

potent NMDA antagonist used to model schizophrenia in rodents, zebrafish and other animal 

models (Moghaddam & Jackson, 2003; Swain, Sigstad & Scalzo, 2004). Likewise, pre-pulse 

inhibition (PPI) is the attenuation of startle response when a weak non-startling response is 
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presented before the startling stimulus (Swerdlow, Geyer & Braff, 2001). Schizophrenia 

patients show impaired PPI (Braff, Geyer & Swerdlow, 2001) which can be rescued by 

antipsychotic therapy (Geyer, Krebs-Thomson, Braff & Swerdlow, 2001; Kumari, Soni & 

Sharma, 1999). PPI is reliably reproduced in larval zebrafish, including genetic mutants with 

reduced PPI currently available (Burgess & Granato, 2007). Overall, the similarity in neural 

pathways and startle response in the zebrafish demonstrate their utility as an unbiased 

platform for the discovery of regulatory genes and drugs for antipsychotic treatment.  

3.4. Alzheimer’s Disease 

AD is a progressive neurodegenerative disease resulting in cognitive deficits, 

delusions, hallucinations and mood and behavior changes (Voisin & Vellas, 2009). One of 

the hallmark AD symptoms is the development of neurofibrillary tangles (NFT) and amyloid 

beta plaques (Newman, Verdile, Martins & Lardelli, 2011). There are two broad classes of 

AD: sporadic AD (developing at age >65), and familial AD, developing much earlier 

(Rossor, Iversen, Reynolds, Mountjoy & Roth, 1984). Sporadic AD accounts for more than 

95% of all AD cases (Newman, Verdile, Martins & Lardelli, 2011), and is linked to the 

apolipoprotein E ε4 allele (ApoE4) (Selkoe, 2001). The zebrafish orthologue of this gene is 

apoE (Babin, Thisse, Durliat, Andre, Akimenko & Thisse, 1997). Early-onset familial AD 

(fAD) is hereditary and has been linked to mutations in the PRESENILIN1 (PSEN1), 

PRESENLININ2 (PSEN2) and AMYLOID BETA A4 PRECURSOR PROTEIN (APP) genes, 

orthologous to the zebrafish psen1, psen2, appa and appb genes (Newman, Verdile, Martins 

& Lardelli, 2011). The injection of transcription-blocking morpholinos for psen1 disrupts 

notch signaling and results in aberrant somite formation (Campbell et al., 2006; Nornes, 

Casper, Esther, Ey & Lardelli, 2003; Nornes, Newman, Wells, Verdile, Martins & Lardelli, 

2009). Psen2 blocking produces notch-signaling defects (Campbell et al., 2006) and alters the 

production of spinal cord interneurons in zebrafish (Nornes, Newman, Wells, Verdile, 
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Martins & Lardelli, 2009), paralleling phenotypes observed in psen1
-/- 

and psen2
-/-

 mice 

(Shen, Bronson, Chen, Xia, Selkoe & Tonegawa, 1997).  

Zebrafish are also valuable for studying the etiology of AD, especially the role of 

hypoxia as a putative risk factor (Newman, Verdile, Martins & Lardelli, 2011). Under low 

oxygen conditions, mitochondria may release free radicals that increase oxidative stress (Bell 

et al., 2007; Moussavi Nik, Croft, Mori & Lardelli, 2014). Hypoxic conditions are easily 

reproduced in the zebrafish by reducing water oxygen levels or via chemical mimicry of 

hypoxia by sodium azide (Moussavi Nik, Newman & Lardelli, 2011)). Similar to humans, 

hypoxic conditions in the larval and adult zebrafish upregulate several AD-related genes, 

including sen1, psen2, appa, appb and bace1 (Moussavi Nik, Newman & Lardelli, 2011).  

 Pharmacological intervention may also help model the cognitive deficits associated 

with AD. For example, the cholinergic system (mediating learning and memory) is affected 

by AD (Fibiger, 1991), as AD patients show reduced nicotinic (nAChR) and muscarinic 

(mAChR) binding sites, as well as reduced acetylcholinesterase (AChE) activity (Lombardo 

& Maskos, 2015; Perry, Tomlinson, Blessed, Bergmann, Gibson & Perry, 1978). The 

muscarinic antagonist scopolamine impairs zebrafish memory without causing locomotor 

deficits or anxiety-like behavior (Cognato et al., 2012; Gupta, 2014; Richetti et al., 2011). 

Pretreatment with quercetin and rutin, two flavonoids, protects against scopolamine-induced 

memory impairment (Richetti et al., 2011). Flavonoids act as AChE inhibitors and can 

enhance learning/memory and synaptic plasticity (Ahmed & Gilani, 2009; Havsteen, 2002; 

Spencer, 2008). Scopolamine-induced memory impairment in zebrafish is also ameliorated 

by pretreatment with physostigmine, an AChE inhibitor (Kim, Lee, Kim, Jung & Lee, 2010). 

The ability of scopolamine to produce amnestic effects while preserving normal locomotor 

activity provides evidence contributing to the involvement of the cholinergic system in fish 
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learning and memory, and lends credence to the use of the zebrafish as a tool for drug 

discovery and medicines that can treat neurodegenerative diseases, including AD.  

3.4. Amyotrophic lateral sclerosis  

Amyotrophic lateral sclerosis (ALS) is a debilitating progressive neurodegenerative 

disorder affecting motor neurons in the brain and spinal cord (Rowland & Shneider, 2001). 

Zebrafish are a particularly attractive model for studying the function and dysfunction of 

spinal cord circuitry due to visual transparency at early stages of life, and because there is a 

high degree of functional and anatomical similarity between the zebrafish spinal cord and 

humans (Fetcho & O'Malley, 1995; Friedrich, Jacobson & Zhu, 2010; McGown et al., 2013). 

Similar to AD, there are two broad types of ALS: familial and sporadic ALS (Kiernan et al., 

2011). Roughly 10% of ALS cases are inherited. The etiology of ALS is poorly understood, 

with a high degree of variability in genetic mutations that contribute to ALS. Nevertheless, 

SOD1 is the most well-understood gene to be associated with ALS (Rosen et al., 1993), and 

mutations in the SOD1 gene account for 20% of familial ALS cases (Valdmanis & Rouleau, 

2008).  

Larval zebrafish over-expressing mutant Sod1 have abnormal neuromuscular 

junctions (NMJ) which worsen as the fish matures (Ramesh et al., 2010). Larval mutant fish 

present progressive decrease in NMJ volume (Ramesh et al., 2010), poorer performance in 

the forced swim test (Plaut, 2000; Ramesh et al., 2010) and reduced responsivity to repeated 

stimulation (Ramesh et al., 2010). Together, this indicates a defect in the neural input to the 

muscle, rather than defects in the intrinsic properties of the muscle (Ramesh et al., 2010). 

Early identification of pathogenic processes is also possible in the zebrafish through the heat-

shock stress response (HSR). The HSR mechanism refolds damaged proteins in stressed cells, 

and is a useful tool for monitoring cellular perturbations (McGown et al., 2013). In sod1 

mutant zebrafish harboring the HSR reporter gene (hsp70-DsRed), fluorescence facilitates 
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disease mapping and spread throughout the brain (McGown et al., 2013). This method has 

also been used to identify neuroprotective compounds and biological targets with the 

potential to ameliorate early disease processes that are not yet fully understood (McGown et 

al., 2013).  

In addition to the utility of the zebrafish in monitoring the progress of ALS 

symptoms, genetic mutants and pharmacological models also help identify the molecular 

mechanisms of this disease. For instance, the loss of function of the zebrafish orthologue 

C9orf72 leads to axonal degeneration of motor neurons, and is accompanied by decreased 

swim speed and motility of larval zebrafish (Ciura et al., 2013). The motor deficits caused by 

knockdown of C9orf72 implicate it in ALS and related neurodegenerative disorders (Ciura et 

al., 2013). Gene editing techniques, such as TALEN- or CRISPR, may also be used to insert 

point mutations in the zebrafish genome (Armstrong, Liao, You, Lissouba, Chen & Drapeau, 

2016), resulting in mutant zebrafish lines recapitulating ALS. This novel methodology shows 

promise in the development of mutant models for other neuropsychiatric diseases as well 

(Armstrong, Liao, You, Lissouba, Chen & Drapeau, 2016). Pharmacological intervention 

with neurotoxins like beta-mythylamino-alanin (BMAA) can also be relevant to modeling 

ALS. Pericardiac injection of BMAA during embryonic development alters protein 

homeostasis and glutamate signaling, whereas fish exposed to a sublethal dose of BMAA 

display reduced heart rate and abnormal spinal axis formation, but can be rescued 

pharmacologically (e.g., by inhibiting the endocannabinoid enzyme fatty acid amide 

hydrolase) (Froyset, Khan & Fladmark, 2016; Purdie, Samsudin, Eddy & Codd, 2009).  

4. Zebrafish sensitivity to CNS drug classes 

The well-documented similarity of zebrafish and mammalian neurotransmitter 

systems (Panula et al., 2010; Panula et al., 2006) contributes to the fact that zebrafish models 

display similar pharmacology and sensitivity to various CNS drugs. Using selected classes of 
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neuroactive drugs as examples, we will further illustrate this aspect of zebrafish models, and 

its relevance to the search for novel therapeutic approaches. 

4.1. Antiepileptic drugs 

PTZ is one of the most widely used convulsant agents in rodents and zebrafish, and 

produces robust seizure phenotypes suppressed to varying degrees by a wide range of known 

anti-epileptic drugs (Cunliffe, 2016). PTZ induction of seizures is also an effective way of 

medium-throughput testing for the discovery of new anti-epileptic treatments (Baxendale et 

al., 2012; Cunliffe, 2016). As small molecule screens may be conducted in zebrafish as early 

as 2 dpf, the efficacy of potential treatments is evaluated not only through behavioral testing, 

but through the monitoring of neural responses (e.g., c-fos) (Baxendale et al., 2012). 

Exposure to PTZ increases C-fos expression which is attenuated by classic anti-convulsant 

agents, as well as anti-inflammatory agents, natural and synthetic steroids, antioxidants, 

vasodilatory agents, pesticides and herbicides (Baxendale et al., 2012). However, while these 

drugs attenuate PTZ-induced seizures, the mechanism of their action remains unclear. In 

addition to PTZ, other drugs evoke seizure-like states in zebrafish (Winter, Redfern, 

Hayfield, Owen, Valentin & Hutchinson, 2008). Kainic acid (KA) is a common convulsant 

agent in rodents, and is able to produce similar effects in zebrafish (Alfaro, Ripoll‐ Gómez & 

Burgos, 2011). Glutamate receptor antagonists diminish KA-induced seizures, underscoring 

the utility of the zebrafish model to study glutamatergic excitatory neurotransmission. Also 

pertinent to the study of anti-epileptic treatment is the combination of genetic manipulation 

with pharmacological interventions (Cunliffe, 2015). For instance, clemizole (a histaminergic 

antagonist) is efficient in treating genetically evoked seizures on scn1lab zebrafish (Grone & 

Baraban, 2015), a model of Dravet syndrome (Baraban, Dinday & Hortopan, 2013) caused by 

SCN1A mutations with spontaneous seizures insensitive to major anti-epileptic drugs.  
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4.2. Antipsychotics 

First generation (typical) antipsychotics are high-affinity antagonists of dopamine D2 

receptors, and are the most effective treatment of psychoses (Lieberman et al., 2005). 

However, they produce severe side effects, including tremors, paranoia and anxiety 

(Miyamoto, Duncan, Marx & Lieberman, 2005). The second-generation ‘atypical’ 

antipsychotics demonstrate a lower affinity for D2 receptors and fewer side effects, relative to 

typical antipsychotics (Kane, Honigfeld, Singer & Meltzer, 1988). However, there remains a 

great need for the identification of novel treatments for psychoses, and zebrafish models can 

be highly useful in this endeavor. For example, administration of MK-801 induces hyper-

locomotion (similar to psychomotor agitation, a characteristic symptom of schizophrenia 

(Seibt et al., 2010)), as well as social and cognitive deficits (Seibt, Piato, da Luz Oliveira, 

Capiotti, Vianna & Bonan, 2011). MK-801-induced locomotor effects are reversed by typical 

(haloperidol) and atypical (olanzapine and sulpiride) antipsychotics (Seibt et al., 2010). 

However, fish exposed to MK-801 perform poorly in an inhibitory avoidance task, and their 

social and cognitive deficits are restored by atypical, but not typical, antipsychotics (Seibt, 

Piato, da Luz Oliveira, Capiotti, Vianna & Bonan, 2011). Importantly, atypical antipsychotics 

have affinities for dopaminergic as well as serotonergic, glutamatergic and other 

neurosignaling pathways. For example, resperidone acts via D2 and serotonin 5-HT2 

receptors, and shows promise as an anxiolytic substance (Idalencio et al., 2015). Stressed fish 

exposed to resperidone spend more time in top of the novel tank test, have fewer transitions 

to the dark in the light-dark test (Magno, Fontes, Gonçalves & Gouveia, 2015) and show 

lower cortisol levels (Idalencio et al., 2015). The purinergeic system has been recently 

implicated in schizophrenia (Lara & Souza, 2000), especially since adenosine, the final 

product in the ectonucleotidase cascade, modulates dopamine and glutamate (Lara & Souza, 

2000). In zebrafish, haloperidol reduces ATP hydrolysis and adenosine deamination, thereby 
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reducing synaptic adenosine levels (Seibt, da Luz Oliveira, Bogo, Senger & Bonan, 2015). 

The sensitivity of zebrafish ATP hydrolysis to haloperidol suggests an extracellular 

mechanism of action, potentially relevant to pharmacological targets (Seibt, da Luz Oliveira, 

Bogo, Senger & Bonan, 2015).  

4.3. Drugs of abuse  

Substance abuse and addiction are easily modeled in larval and adult zebrafish 

(Stewart et al., 2011). For example, addiction, tolerance and withdrawal can be studied using 

aquatic conditioned place preference (CPP) paradigms (Collier & Echevarria, 2013; Collier, 

Khan, Caramillo, Mohn & Echevarria, 2014; Mathur & Guo, 2010). A typical CPP setup 

consists of two distinct environments, which differ in their colors, visual patterns or 

environmental cues (Darland & Dowling, 2001). The protocol consists of three steps: initial 

determination of environment preference, conditioning session, and testing of final place 

preference. From the conditioning session, three outcomes are possible: preference for the 

non-preferred side, aversion of the preferred side, or no change. In zebrafish, CPP protocols 

generally take ~3 days (Collier, Khan, Caramillo, Mohn & Echevarria, 2014), but may also 

run for several weeks (Kily et al., 2008). This protocol is widely used in zebrafish, rodents 

and other model organisms to investigate the behavioral effects of psychoactive compounds 

and associative learning (Lucke-Wold, 2011) but, despite the ability to elucidate reward-

seeking behavior, does not measure the drug’s abuse potential (see further). 

4.3.1. Alcohol and nicotine 

 Ethanol produces a characteristic dose-dependent effect in zebrafish. At low doses 

(<0.5%) ethanol increases locomotion, swim speed, and shoaling behaviors (Gerlai, Lahav, 

Guo & Rosenthal, 2000). A 20-min exposure to 1.00% ethanol is anxiolytic in zebrafish, 

whereas longer exposure to the same dose (or higher doses) impairs their locomotion and 

induces sedation (Gerlai, Lahav, Guo & Rosenthal, 2000; Pannia, Tran, Rampersad & Gerlai, 
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2014; Rosemberg et al., 2012; Tran & Gerlai, 2013). The rewarding effect of ethanol in 

zebrafish is seen after a single exposure to 0.25-1% (Collier, Khan, Caramillo, Mohn & 

Echevarria, 2014) or 1.5% (Mathur, Berberoglu & Guo, 2011), reliably changing fish CPP. A 

prolonged CPP paradigm (e.g., daily conditioning for 4 weeks) produces robust behavioral 

responses which persist following abstinence, indicating the establishment of dependence-

related behavior (Kily et al., 2008). Some reports evaluating the chronic ethanol CPP 

treatment note the development of tolerance, as indicated by lower drug-induced 

hyperactivity, and decreased anxiolytic effects (Gerlai, Lee & Blaser, 2006). Drug abstinence 

following chronic (1 week) exposure produces robust withdrawal symptoms in adult 

zebrafish, including anxiety-like behavior and elevated cortisol (Cachat et al., 2011a). 

Zebrafish also produce a wide range of dose-dependent responses to nicotine (Kily et 

al., 2008; Levin, Bencan & Cerutti, 2007). At low to moderate doses (e.g., 3 – 300 µM), 

nicotine evokes anxiolytic responses in the novel tank test (Levin, Bencan & Cerutti, 2007) 

and robust CPP that persist following a period of abstinence (Kily et al., 2008). The 

behavioral effects of nicotine are also susceptible to genetic variation, allowing the 

researchers to identify genetic candidates for human nicotine addiction (Petzold et al., 2009). 

Furthermore, microarray analyses of whole brain samples from nicotine-treated fish reveal an 

upregulation of several genes implicated in the development of drug dependence, including 

genes for calcineurin B and hypocretin receptor, which have both been previously linked to 

synaptic plasticity and neurotransmission in drug dependence (Kily et al., 2008).  

4.3.2. Cocaine and amphetamines 

Administration of cocaine (5, 10, and 15mg/L) to adult zebrafish produces robust 

arousal states, as indicated by an extension of the fins, slow circling and remaining low in the 

water column (Darland & Dowling, 2001). Surrounded by conspecifics, cocaine-treated 

zebrafish engage in aggressive behavior through dominance displays and chasing (Darland & 
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Dowling, 2001). Abstinence from the drug results in withdrawal symptoms within 72 h, 

wherein animals experience anxiety-like behavior and basal hyperlocomotion (López-Patiño, 

Yu, Cabral & Zhdanova, 2008). Withdrawal symptoms are counteracted by the 

administration of non-sedative dose of diazepam (5 µM) or cocaine (1.5 µM) (López-Patiño, 

Yu, Cabral & Zhdanova, 2008). Cocaine also produces dose-dependent CPP responses, with 

10 mg/L causing the most robust response (Darland & Dowling, 2001). Cross-breeding wild-

type females with males mutagenized through repeated exposure to N-ethyl-nitrosourea 

(ENA) yielded an F1 generation, outcrossing of which results in F2 generation tested for 

cocaine sensitivity in the CPP task. Low responding F2 siblings were crossbred to yield F3 

generation which display low sensitivity to cocaine in the CPP task, demonstrating a genetic 

basis for the altered behavior profile (Darland & Dowling, 2001).  

Methamphetamine is a potent psychostimulant with high addiction potential, and its 

abuse is comorbid with psychiatric disorders, including anxiety and depression (Akindipe, 

Wilson & Stein, 2014). Currently, there are no effective medications for the treatments of 

methamphetamine abuse. The zebrafish demonstrates sensitivity to methamphetamine and is 

a useful model to study effective medications, and methamphetamine-related comorbidities 

(Mi et al., 2016). For instance, the acute administration of methamphetamine induces 

avoidant behavior and increases swim speed in the open field and mirror stimulation task (Mi 

et al., 2016), attenuated by I-Scoulerine, an agent acting on dopaminergic and serotonergic 

systems (Mi et al., 2016). The cholinergic system may also play a role in modulating the 

rewarding effects of various psychoactive drugs, and genetic impairment of AChE does 

reduce amphetamine-induced CPP in adult zebrafish (Ninkovic et al., 2006). Finally, the 

pharmacological inhibition of AChE reduces addictive potential of cocaine and morphine in 

mice (Hikida, Kitabatake, Pastan & Nakanishi, 2003), suggesting that targeting the 

acetylcholine system may lead to reducing the addictive properties of drugs.  
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4.3.3. Hallucinogens 

Hallucinogenic agents can be classified under three broad categories: (1) classic 

serotonergic psychedelics, (2) dissociatives, which primarily act as NMDA antagonists, and 

(3) deliriants, which act as anticholinergic agents (Kyzar & Kalueff, 2016). Classic 

serotonergic psychedelics (e.g., lysergic acid diethylamide (LSD), mescaline and psilocybin) 

alter zebrafish locomotion, shoaling and anxiety-like behaviors and whole body cortisol 

levels (Kyzar & Kalueff, 2016). Ketamine, a dissociative psychedelics, produces a dose-

dependent anxiolytic effect in the zebrafish, and decreases whole body cortisol levels (De 

Campos, Bruni & De Martinis, 2015). The deliriant psychedelic atropine affects cholinergic 

neural activity in the zebrafish (Park, Lee, Kim & Lee, 2008). Although hallucinogens remain 

understudied in zebrafish, the available data demonstrate their sensitivity to various known 

drugs, and may allow for the discovery of therapeutic targets, especially given the growing 

recent interest in hallucinogenic agents (Kyzar & Kalueff, 2016).  

4.3.4. Sedatives 

Sedatives are generally prescribed for the treatment of anxiety disorders, and produce 

anxiety reduction, disinhibition and sedation, mainly modulating the histaminergic, GABA-

ergic and adrenergic systems (Koob, 1992). Zebrafish share similarity to the mammalian 

GABA-A and B receptor subunits, and histamine H1 receptor (Renier et al., 2007), and are 

highly sensitive to a wide range of sedatives. For example, high doses of chlordiazepoxide 

significantly reduce swim speed (Bencan, Sledge & Levin, 2009), whereas diazepam has a 

biphasic effect on anxiety, with low-to-moderate doses reducing bottom dwelling, and higher 

doses causing sedation (Bencan, Sledge & Levin, 2009). Chronic 2-week exposure to 

diazepam following by abstinence produces withdrawal-like symptoms in zebrafish, 

including anxiety in the light dark preference task (Cachat et al., 2011a). While this 

highlights the utility of zebrafish as a model for sedative-related withdrawal, there is a clear 
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lack of studies that evaluate the rewarding or aversive effects of sedatives in zebrafish (which 

can easily utilize the CPP protocol to generate invaluable information on behavioral effects of 

these drugs).  

5. Perspectives on small molecule and genetic screening in zebrafish 

5.1.Understanding genetic and anatomical differences from mammalian models 

A member of the teleost group, the zebrafish has arisen from a common ancestor 

~340 million years ago (Amores, Catchen, Ferrara, Fontenot & Postlethwait, 2011). The 

ancestor had undergone an additional round of whole-genome duplication (WGD), an event 

that is responsible for the diversification of gene function and phenotype in zebrafish (Meyer 

& Schartl, 1999). Of the homologous genes, 71.4% of human genes have at least one 

zebrafish orthologue and, 47% of human genes have a one-to-one zebrafish orthologue 

(Amores, Catchen, Ferrara, Fontenot & Postlethwait, 2011). Of the genes for which zebrafish 

have more than one orthologue, only few have been studied and functionally characterized. 

Thus, the current lack of understanding of many zebrafish orthologues of human genes is a 

potential problem with this model. For instance, humans possess three Period (Per) genes: 

Per1, Per2, and Per3 (Wang, 2008) encoding regulatory elements in the circadian clock, 

which are also responsible for growth, rest, and hormone production (Danilova, Krupnik, 

Sugden & Zhdanova, 2004; Pando & Sassone-Corsi, 2002; Vatine, Vallone, Gothilf & 

Foulkes, 2011). Zebrafish have two per1 genes (per1a and per1b), but only one per2 and one 

per3 (Wang, 2008). The per1a and per1b genes show distinct temporal and spatial 

expression, and their roles in the circadian clock is poorly understood (Wang, 2008).  

Transgenic models may help to elucidate the functions of the zebrafish per1 genes, and 

provide insight to their role in maintaining circadian rhythms. The serotonin transporter (sert) 

genes have also been duplicated during WGD in zebrafish, which possess two sert genes: 

serta and sertb (Wang, Takai, Yoshioka & Shirabe, 2006). These genes have high homology 
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to vertebrate serotonin transporter genes, suggesting a conservation of function (Wang, Takai, 

Yoshioka & Shirabe, 2006). Thus, despite an additional WGD, it does not render the 

zebrafish model unusable. Rather, the study and functional identification of genes may help 

better understand molecular interactions, which will further clarify the efficacy of drugs and 

their therapeutic targets.  

Furthermore, despite significant neuroanatomical similarity discussed above, some 

differences between zebrafish and mammals must be critically considered. For example, 

while several regions in the mammalian brain do not have clear structural homologous 

counterparts in zebrafish, including the substantia nigra and hippocampus (Mueller, Dong, 

Berberoglu & Guo, 2011; Panula et al., 2010), they share functional homology with selected 

groups of zebrafish neurons. Thus, a small population of dopaminergic cells in the posterior 

tuberculum is a strong candidate for the zebrafish homologue of the substantia nigra (Kaslin 

& Panula, 2001), as shown by neurotoxin lesion studies  (Sallinen et al., 2009). Likewise, the 

lateral part of the zebrafish pallium contains homologous structures to the mammalian 

hippocampus (von Trotha, Vernier & Bally-Cuif, 2014), thereby fostering further cognitive 

studies in zebrafish models. One stark difference from  humans is the fact that zebrafish lack 

a cortex, its homologue, or even molecular markers that may be used to identify a cortex 

region (Mueller, Dong, Berberoglu & Guo, 2011; Northcutt, 2008). This aspect may limit 

translation of findings between zebrafish and humans, especially on aberrant executive 

functioning commonly observed in psychiatric diseases (Parker, Brock, Walton & Brennan, 

2013). However, given potential limitations of the model, it is necessary to evaluate its face 

and construct validity. Face validity determines whether the model resembles the disease in 

question, while construct validity determines whether the model measures what it has set out 

to measure. Because the rodent models often fulfill these validity criteria, many zebrafish 

behavioral tasks have been modified from rodent paradigms (Levin, Bencan & Cerutti, 2007). 
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For instance, for modeling anxiety disorders, the zebrafish has become an adept model in the 

identification of stress-inducing stimuli and psychoactive agents in various novelty-based 

paradigms (Abreu, Giacomini, Kalueff & Barcellos, 2016; Bencan, Sledge & Levin, 2009; 

Levin, Bencan & Cerutti, 2007). Deficits in cognitive and behavioral flexibility, commonly 

reported in patients with psychiatric diagnoses, may also be modeled in zebrafish. Behavioral 

flexibility - the ability to adapt responses to changing environmental conditions - is often 

studied in rodents using a reversal of contingencies in choice-discrimination tasks 

(Ragozzino, Detrick & Kesner, 1999; Saus et al., 2010). These tasks rely on the ability of the 

animal to demonstrate a reversal of learning. Zebrafish have demonstrated the ability to adapt 

to changing environmental contingencies, and their capacity for reversal learning shows 

similar patterns to that observed in rodents (Colwill, Raymond, Ferreira & Escudero, 2005). 

Thus, although zebrafish may lack a proper cortex, they retain the ability to perform 

executive functions, such as maintaining attention and behavioral flexibility (Parker, Brock, 

Walton & Brennan, 2013). However, we still know relatively little about the neural circuits 

and how different neurotransmitter systems may functionally interact in zebrafish (Parker, 

Brock, Walton & Brennan, 2013). Identifying the function of neural circuits in this fish, and 

their reciprocity with other systems, become critical to understanding the molecular basis of 

behavior, and in identifying therapeutic targets for diseases. 

5.2. Perspectives on automated and high-throughput screening 

Zebrafish models are highly amenable to behavioral, genomic and proteomic testing 

(Jones & Norton, 2015; Purushothaman et al., 2015), as they combine a relative neural 

simplicity with behavioral complexity sufficient for studying multiple behavioral processes 

from sleep (Purushothaman et al., 2015; Rihel et al., 2010; Zhdanova, 2006) to anxiety 

(Richendrfer, Pelkowski, Colwill & Creton, 2012; Stewart, Gaikwad, Kyzar, Green, Roth & 

Kalueff, 2012). Custom-made and commercial video-tracking software can record a wide 
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range of zebrafish behavioral measures, including velocity, distance traveled, place 

preference (e.g., top vs. bottom, light vs. dark, center vs. periphery), and specific patterns 

(e.g., erratic swimming, stereotypic circling) (Conklin, Lee, Schlabach & Woods, 2015; 

Pérez-Escudero, Vicente-Page, Hinz, Arganda & de Polavieja, 2014). The automation of 

zebrafish video-tracking enables several behavioral outcomes to be recorded simultaneously, 

removing the need to repeat the experiment and/or watch and re-watch videos manually each 

time a new outcome is measured (Conklin, Lee, Schlabach & Woods, 2015; Pérez-Escudero, 

Vicente-Page, Hinz, Arganda & de Polavieja). It is also possible to record zebrafish social 

groups, for example, assessing fish shoaling behaviors, presently capable of tracking multiple 

(e.g., 8-16) animals per arena (Noldus, 2016b) to extract rich behavioral data from average 

inter-fish distance to shoal polarization and cohesion (Stewart, Braubach, Spitsbergen, Gerlai 

& Kalueff, 2014b). Larval zebrafish allow for recording of even more (e.g., 96) animals, 

tracking their swim patterns simultaneously (Noldus, 2016a). An added advantage of 

technological advancements in this rapidly growing field of zebrafish phenomics is the 

automatization of drug administration, and the computerization of stimulus exposure - e.g., in 

drug addiction or fear conditioning paradigms (Saverino & Gerlai, 2008), which collectively 

improves the standardization of testing procedures, efficient data collection, as well as 

increased throughput and data reproducibility (Love, Pichler, Dodd, Copp & Greenwood, 

2004; Stewart, Gerlai & Kalueff, 2015).  

Zebrafish are further amenable to high-throughput in-vivo screening as their multiple 

behavioral parameters can be monitored in 3D (Stewart et al., 2015a). For example, the X, Y, 

and Z swim trajectories can be traced by two cameras, generating two 2D-trajectory files 

integrated to produce a 3D trace of the swim pattern which can help identify unique drug-

induced phenotypic profiles (Stewart et al., 2015a). Advances in behavioral recognitions 

allow for a more detailed in vivo analysis of behavioral phenotype (Stewart, Gerlai & 
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Kalueff, 2015). For instance, software that can discriminate between the tail, mid-body and 

nose of the zebrafish are well capable of quantifying locomotion, and interpreting complex 

behaviors such as chasing or nipping, chasing (Kalueff et al., 2013b; Stewart, Gerlai & 

Kalueff, 2015). These methods are especially useful in polypharmacology studies using 

pharmacological agents that act on multiple targets (McCarroll, Gendelev, Keiser & Kokel, 

2016). As many psychiatric disorders are linked to deficits in several neurotransmitter 

systems and have multigenic etiologies (Kendler, Aggen & Neale, 2013; Schizophrenia 

Working Group of the Psychiatric Genomics Consortium, 2014), this possibility in zebrafish 

screens becomes particularly important. Computational techniques, such as hierarchical 

clustering or Similarity Ensemble Approach (SEA), also help identify target hits and 

prediction of target interactions with psychoactive compounds. The combination of 

behavioral phenotyping and computation techniques are useful in the development and 

discovery of new medical targets, including in-vivo behavioral phenotyping of single target 

compounds in 2-D or 3-D tracking, producing their unique swim traces (thigmotaxis, 

scototaxis, average swim speed, etc.), identifying the compounds which produce the desired 

behavioral phenotype (hit compounds), and their subsequent in-depth analyses with 

algorithms that predict their biological target(s) to generate hypotheses of target combinations 

(McCarroll, Gendelev, Keiser & Kokel, 2016). Once identified, multiple hit compounds can 

then be tested in combination in-vivo (McCarroll, Gendelev, Keiser & Kokel, 2016), probing 

their ability to work in concert to achieve a desired therapeutic outcome.  

5.3.Perspectves on genetic zebrafish models 

As already noted, genetic manipulations are critical on animal studies to identify 

candidate genes associated in the etiology of a disease. Short-term genetic manipulation is 

achieved through injection of morpholino-modified antisense oligonucleotides (MOs) 

(Nasevicius & Ekker, 2000), or small interfering RNA (siRNA) (de Rienzo, Gutzman & Sive, 
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2012) to engage in loss-of-function studies (Kalueff, Stewart & Gerlai, 2014). MOs target 

specific translational inhibitors and effectively reduce gene expression (Nasevicius & Ekker, 

2000). RNA interference (RNAi) is a process in which RNA molecules inhibit the translation 

of targeted mRNA molecules (de Rienzo, Gutzman & Sive, 2012). These methods 

demonstrate efficacy in targeting specific genes and in producing altered phenotypes, 

although the efficacy of MOs has been questioned recently (Kok et al., 2015; McCammon & 

Sive, 2015).  

The development of mutant zebrafish provides a more stable behavioral phenotype, 

because rather than produce a knockdown of a given gene, it completely eliminates the target 

gene product (Amsterdam & Hopkins, 2006; Stewart et al., 2014). Mutants are created 

through retroviral insertional mutagenesis, wherein a DNA basepairs are integrated into the 

organism’s preexisting DNA (Amsterdam & Hopkins, 2006), or through chemical 

mutagenesis. Chemical mutagenesis involves exposing the male zebrafish to the methylating 

agent ethylnitrosourea weeks before mating in order to allow the mutation to fix in the 

spermatogonia just before they mature to sperm (Amsterdam & Hopkins, 2006; Wienholds, 

van Eeden, Kosters, Mude, Plasterk & Cuppin, 2003). Mutant and morphant zebrafish are 

used in a wide range of studies, and provide a deeper understanding on the roles and 

importance of specific receptors and biological targets (Griffiths, Schoonheim, Ziv, Voelker, 

Baier & Gahtan, 2012a; Haesemeyer & Schier, 2015). For instance, in developing a mutant 

model of autism, a highly active set of genes was discovered with a large genetic target, 

providing a deeper look in to the functional changes associated with gene deletion and 

duplication (Blaker-Lee, Gupta, McCammon, De Rienzo & Sive, 2012). Furthermore, the 

size of the genetic target, which had previously been unknown, was elucidated allowing for 

targeted assays in higher vertebrates and mammals (Blaker-Lee, Gupta, McCammon, De 

Rienzo & Sive, 2012). Similarly, loss of function mutations for the synaptic machinery genes 



 

 
 

This article is protected by copyright. All rights reserved. 

stxbp1a and stxbp1b produce robust phenotypes (Grone et al., 2016). In humans, these genes 

are linked to various neurodevelopmental disorders and epilepsy (Carvill et al., 2014; Saitsu 

et al., 2008). Homozygous stxbp1a knockdown results in immobility, reduced heart rate, 

reduced metabolism, and early death (Grone et al., 2016). Heterozygous stxbp1a knockdown 

produces markedly fewer deleterious effects; aside from a slight reduction in behavioral 

response to a startle stimulus, larval zebrafish produce normal behavior (Grone et al., 2016). 

Homozygous stxbp1b mutations yield zebrafish that present with epileptic seizures, along 

with normal mobility, metabolism and heart rate (Grone et al., 2016). The wide range of 

behavioral and physiological effects of the loss of function mutations for stxbp1a and 

stxbp1b, coupled with the functional similarity to the mammalian genes (Saitsu et al., 2008), 

highlight the potential for the zebrafish model to be used in the mechanistic and epigenetic 

study of neurodevelopmental and neuropsychiatric diseases.  

6. Conclusion  

Neuropsychiatric conditions afflict human population globally, and have  tremendous 

personal and societal costs (Garakani, Mathew & Charney, 2006; Griebel & Holmes, 2013a). 

Animal models have long been used in neuropsychiatric studies to better understand human 

disease states, and play a key role in the identification of biological and molecular targets, 

aiming at developing safer and more effective treatments (Keifer & Summers, 2016; 

Krishnan & Nestler, 2011). Zebrafish are a promising new animal model which continues to 

provide important insights into the etiology of CNS diseases (Kalueff, Echevarria & Stewart, 

2014b; Kalueff, Stewart & Gerlai, 2014). The homology of key brain regions between 

zebrafish and mammals underscores the utility of zebrafish models in neurobehavioral and 

neuropsychiatric studies. Furthermore, the conservation of neural pathways between 

zebrafish and mammals allows for the bi-directional translation of findings (Renier et al., 

2007; Stewart, Braubach, Spitsbergen, Gerlai & Kalueff, 2014b). Current genetic tools, 
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tracking techniques and statistical algorithms foster gaining a deeper understanding of 

molecular pathways, developing new compounds or repurposing established drugs (Stewart 

et al., 2015a). Together with high sensitivity of zebrafish to known anxiolytic, antipsychotic 

and other CNS drugs, this provides researchers with a well-rounded model organism capable 

of identifying molecular targets for drug treatment and empirical testing of these hypotheses 

(Hwang et al., 2013; Kokel et al., 2010; Stewart et al., 2015a).  

 

Conflict of interest: 

The authors declare that there are no conflicts of interest. 

 

Acknowledgements:  

The study was coordinated through the International Zebrafish Neuroscience Research 

Consortium (ZNRC), and this collaboration was funded by St. Petersburg State University, 

Ural Federal University and Guangdong Ocean University. AVK is the Chair of ZNRC, and 

his research is supported by the Russian Foundation for Basic Research (RFBR) grant 16-04-

00851.  

  



 

 
 

This article is protected by copyright. All rights reserved. 

Figure 1. The use of automated video-tracking to simultaneously assess multiple 

phenotypes in larval zebrafish. Panel (a) shows a 96-well holding plate to administer 

several compounds to larval zebrafish. Fish behaviors are recorded by an overhead camera, 

and images are processed through tracking software. Swim traces garnered from the tracking 

software allow the researcher to assess the effects of the compounds administered. Panel (b) 

shows an example of a swim trace in which the larval zebrafish remains towards the walls 

(wall-hugging behavior). Panel (c) shows an example of the opposite swim pattern in which 

the larval zebrafish actively explores its environment, including the center of the tank.  
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Figure 2. The use of computational techniques to identify novel therapeutic targets in 

adult zebrafish. Testing psychoactive compounds across various strains and transgenic lines 

of zebrafish in a wide range of behavioral and cognitive tasks can be used to generate a data 

library. Computational tools, such as hierarchical modeling and similarity ensemble approach 

(SEA), can help identify target hits, enabling the predictions about the effects of various drug 

combinations. The generated hypotheses may then be tested in vivo using larval or adult 

animals.   
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Table 1: Selected examples of translational successes using the zebrafish model for drug 

discovery  

Human disease Zebrafish 

model 

Outcome References 

Pontocerebellar 

hyperplasia 

Tsen54 

antisense 

morpholino 

Linking a loss-of-function mutation in the 

tsen54 gene to brain hypoplasia 

(Kasher et al., 2011) 

 R44X-loss-of-

functoin 

mutant 

Linking homozygous mutation of CLP1 (a 

member of the tRNA splicing endonuclease 

complex, TSEN) to abnormal spinal 

neurons, curved body, small head and eyes, 

and an early death in fish, helped identify 

this mutation as a risk factor for human 

condition 

(Schaffer et al., 

2014) 

Spinal cord 

injury  

Heat shock 

transgenic 

lines
 

Zebrafish show high capacity for axonal 

regeneration following spinal cord injury, 

especially through the activation of Fgf 

signaling. Increasing Fgf signaling in 

mammalian spinal injury sites may 

encourage glial cell differentiation, and lead 

to favorable conditions for axonal 

regeneration 

(Goldshmit, Sztal, 

Jusuf, Hall, Nguyen-

Chi & Currie, 2012) 

Schizophrenia  Tg(huC:eGFP)  The Rgs4 gene is associated with the onset 

and development of schizophrenia. Using 

the transgenic zebrafish line, rgs4 was found 

to  be essential for axon formation, 

providing the first in vivo evidence 

supporting the role of rgs4 in schizophrenia 

(Cheng et al., 2013) 
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