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Abstract

Sex determination is the process deciding the sex of a developing embryo. This is usually

determined genetically; however it is a delicate process, which in many cases can be influenced by

environmental factors. The mechanisms controlling zebrafish sex determination and differentiation

are not known. To date no sex linked genes have been identified in zebrafish and no sex

chromosomes have been identified. However, a number of genes, as presented here, have been

linked to the process of sex determination or differentiation in zebrafish. The zebrafish FTZ-F1

genes are of central interest as they are involved in regulating interrenal development and thereby

steroid biosynthesis, as well as that they show expression patterns congruent with reproductive

tissue differentiation and function. Zebrafish can be sex reversed by exposure to estrogens,

suggesting that the estrogen levels are crucial during sex differentiation. The Cyp19 gene product

aromatase converts testosterone into 17 beta-estradiol, and when inhibited leads to male to female

sex reversal. FTZ-F1 genes are strongly linked to steroid biosynthesis and the regulatory region of

Cyp19 contains binding sites for FTZ-F1 genes, further linking FTZ-F1 to this process. The role of

FTZ-F1 and other candidates for zebrafish sex determination and differentiation is in focus of this

review.

Sex determination
Among mammals sex is usually defined by the presence or
absence of the sex specific chromosome Y. In many, but
not all, fish species there is also a chromosomal back-
ground to sex determination. Several fishes, including
most salmonids, have heterogametic males and homoga-
metic females, similar to the mammalian XY/XX-system
[1-3]. Other species, such as Poecilia, have homogametic
males and heterogametic females (ZZ/ZW), which also is
the case for birds [4]. Some species of the Poecilid platy-
fish Xiphophorus, utilize a system with three sex chromo-
somes [5]. In yet other species sex determination is
influenced by environmental factors such as the tempera-

ture surrounding the developing embryo [6-8]. Hermaph-
roditism is also a common feature of several fish species.
Several studies have shown that species with genetic sex
determination can be directed to produce genetically sex-
reversed offspring. This is accomplished either by treating
the fish with hormones, which can induce sex reversal in
synchronous hermaphroditic fish [9,10] and masculiniza-
tion/feminization in gonochoristic species, or by incubat-
ing embryos in certain temperatures or pH [11]. The
proportion of males usually increases with temperature
whereas lower temperatures favour females. In the case of
pH, species differences have been observed.
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There are few studies of sex determination in fish and the
genetic mechanisms behind sex determination in fish
remain largely unknown. Environmental factors, includ-
ing endocrine disrupters such as diethylstilbestrol, PCBs
or dioxins, can affect both teleost and mammalian repro-
ductive systems, but do not seem to alter sex ratios or
cause sex reversals in mammals. This indicates that mam-
malian sex determination is more strictly genetic, and
shows less gonad plasticity than teleosts. However, it has
been observed that a number of genes, both sex-linked
and autosomal, display dosage effects in mammals (Table
1), suggesting that allelic variants could account for differ-
ences in gene function.

While the developmental mechanisms by which the
mammalian gonads are formed have been thoroughly
studied and several genes involved have been identified,
only a few of these genes have been identified in fish. The
functions of these genes have not been fully elucidated in
fish and both conserved and divergent functions between
mammals and fish have been suggested. As zebrafish is an
important vertebrate model for developmental biology it
is vital that the basic developmental mechanisms of sex
determination are further studied in this species. In the
present review we discuss the roles of genes involved in
sex determination with a focus on the potential role of
FTZ-F1 genes in zebrafish sex determination and differen-
tiation. From the present knowledge of these genes in
zebrafish we attempt to present a model for zebrafish sex
determination and differentiation.

Formation and differentiation of gonads
There is a close anatomical relationship between the
development of the genital ridge and the excretory system
during early ontogeny of all vertebrates, including fish. A
mesodermal layer ventral to the somites differentiates

into structures involved in excretion and reproduction.
There are species differences in how closely connected
these structures are in regard to sharing ducts for secretion
[20]. The teleost gonads are similar to those in mammals.
The testis contains Sertoli and Leydig cells in addition to
germ cells, and the ovary consists of thecal cells and gran-
ulosa cells surrounding the ovum. In both teleosts and
mammals the interstitial cells (Leydig and theca), Sertoli
cells and granulosa cells are of the same origin. An impor-
tant difference is that the mammalian gonads are termi-
nally developed into either testis or ovary, while fish
gonads often retain the ability to change, making them
sequential hermaphrodites [21]. Immature teleost gonads
can be directed to develop into testes or ovaries, regardless
of chromosomal background, by hormone treatment
[22,11]. Far too few fish species have been studied with
regard to gonad development to be able to develop a gen-
eral model of how this occurs.

The zebrafish has become a useful vertebrate model sys-
tem and is probably the most studied fish in developmen-
tal biology. The zebrafish diploid genome consists of 50
chromosomes and no specific sex chromosomes have
been identified. The use of synaptonemal complex studies
rather indicates that no sex chromosomes exist in
zebrafish [23,24]. Teleosts have a partially duplicated
genome, which in zebrafish has been determined by stud-
ying HOX-clusters [25], and this further complicates the
elucidation of potential sex linked genes. In theory, there
may be smaller genomic differences that account for or
direct the development toward two separate sexes. By
studying patterns of inheritance, zebrafish have been sug-
gested to have XY-like chromosomal background [26].
However, the opposite system, with heterogametic
females in zebrafish has also been suggested [27]. The
inconsistency of results regarding sex chromosomes in

Table 1: Chromosomal location and dose effects. Several genes involved in mammalian sex determination have dose effects leading to 

sex reversal.

Chromosomal location Gene Number of copies Phenotype Reference

Y Chromosome SRY 0 Female

1 Male [12]

X Chromosome Dax-1 1 Normal

2 Female XY [13]

Autosomal Sox9 1 Female XY [14,15]

Masculinizing 2 Normal

3 Male XX [16]

Autosomal SF-1 1 Female XY [17]

Masculinizing 2 Normal

Autosomal WT1 1 Female XY [18]

Masculinizing 2 Normal

Autosomal Dmrt1 1 Female XY [19]

Masculinizing 2 Normal
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zebrafish suggests that the sex determining system is labile
and that no clear sex determining chromosome exist. The
zebrafish is sexually mature after approximately three
months, but separate sexes can be detected after 21–23
days post fertilization (dpf) [26]. Prior to sex differentia-
tion all zebrafish develop ovary-like gonads, regardless of
chromosomal background. Ovarian development is the
default pathway, which is initiated after 10 dpf and
progress until 20 dpf. At 21 dpf until approximately 30
dpf testis development is initiated in males simultane-
ously with ovarian apoptosis.

The gonad development in zebrafish begins during
embryogenesis. Using Vasa as a marker gene, germ cells
can be detected in the area ventral to the third to fifth
somite at the six-somite stage [28]. While germ cells can
be detected earlier, they are not properly positioned until
around the 6 somite stage. So far no studies have been
made regarding markers for gonadal steroidogenic precur-
sor cells, rendering it difficult to know exactly where these
cells are located in the embryo. But, it is likely that these
cells derive from an area close to where Vasa is detected at
the six-somite stage. The zebrafish Wilms Tumour-1
(WT1) is also initially detected in an area corresponding
to that of Vasa but is later expressed in the pronephric
ducts [29], making this region probable for the develop-
ment of the rest of the zebrafish gonadal cells.

Candidate genes in zebrafish sex determination
In zebrafish, little information exists regarding sex deter-
mination and the potential presence of sex chromosomes.
To date, no sex-linked genes have been identified. How-
ever, a number of genes, as presented here, have been
linked to the process of sex determination or differentia-
tion in zebrafish. Since none of the genes have been
shown to be sex-linked, it is not likely that any of the
below listed genes is the single factor responsible for spec-
ifying sex in zebrafish. Still, the expression patterns and
regulatory mechanisms of these genes leads to the conclu-
sion that they are part of a signalling network responsible
for the development of sex specific gonads. In line with
observations on mammals (Table 1) gene dosage effects
may be a factor involved in zebrafish sex determination.
Since no sex-linked genes have been found in zebrafish,
allelic variants and dosage effects of autosomal genes,
such as the Fushi Tarazu factor-1 (FTZ-F1) genes, SRY
HMG box related gene 9 (Sox9), WT-1, Anti-Mullerian
Hormone (AMH), doublesex-mab 3 related gene (Dmrt1)
and GATA4 (a zinc finger transcription factor) may be
involved in determining sex and directing gonad develop-
ment. The dosage dependent region on X (Dax-1) is
highly involved in female sex determination in mammals,
but no dax-1 gene homologue has so far been identified
in zebrafish. The Dax-1 gene has however been identified

in the Nile Tilapia [30], suggesting that other fish species
may also have Dax-1 homologues.

SOX9
Even when sex determination in teleost fish has a genetic
background, they lack an equivalent to the testis-deter-
mining factor SRY found in mammals. However, several
HMG-box containing genes, Sox-genes, have been identi-
fied in fish [31-33]. In zebrafish, two Sox9 genes, termed
Sox9a and Sox9b, have been identified. Both contain the
HMG-box and are able to bind the AACAAAG recognition
site in a similar manner as murine Sox9 [34]. The expres-
sion patterns of Sox9a and b are dissimilar in adult
zebrafish. Sox9a displays a broad expression pattern and
has been found in brain, kidney, muscle, testis and pecto-
ral fin, whereas Sox9b is only found in ovary. During
embryogenesis Sox9a and b are both expressed in cells
involved in craniofacial development and in the brain
[34]. In addition Sox9a has been shown to be essential for
chondrogenic development [35] and Sox9b has been
implicated to be involved in neural crest development
[36]. Whether Sox9a and/or b are involved in sex determi-
nation or differentiation has so far not been studied.
However, an HMG-Box cis element has been identified in
gene promoter of fushi tarazu factor 1a (ff1a) [37]. Sox9a
is also able to specifically bind this site in vitro (von Hof-
sten et al., unpublished) indicating that a regulatory con-
nection between Sox9a and ff1a is present in zebrafish.
Zebrafish embryos homozygous for jellyfish (jef) (muta-
tions in sox9a) show craniofacial defects and lack of carti-
lage similar to humans with campomelic dysplasia [35].
The jef strain is still able to reproduce, which leads to the
conclusion that Sox9a alone does not direct sex determi-
nation and differentiation in zebrafish.

AMH
AMH may not be excluded as a factor involved in the sex
determining process in zebrafish. Although fish lack
Müllerian ducts, other AMH functions may be important
for gonad development. In mammals AMH is, in addition
to Müllerian degeneration, involved in regulation of
gonadal steroidogenesis. AMH inhibits the expression of
aromatase in developing gonads [38]. It also negatively
modulates the differentiation and function of Leydig cells
[39] by down regulating several enzymes involved in the
steroidogenic pathway. Ovarian cell growth is inhibited
by AMH in vitro [40]. An AMH related gene, eel sperma-
togenesis related substances 21 (eSRS21) identified in the
Japanese eel is mainly expressed in Sertoli cells and down
regulates 11 KT induced spermatogenesis. This indicates
that eSRS21 and genes related to AMH have important
reproductive functions and are involved in sex determina-
tion and differentiation in fish [41]. In zebrafish, we
recently cloned an AMH cDNA and observed that it was
expressed exclusively in gonads [42]. AMH expression
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was, by in situ hybridization, found predominantly in Ser-
toli cells in testis and in the follicular layer in ovaries.
Interestingly, AMH is co-expressed both with the Ster-
oidogenic Factor-1 (SF-1) homologue ff1d and Sox9a
within these cells [42,43]. AMH displays complex regula-
tion in mammals, involving several factors, including the
FTZ-F1 related gene SF-1, GATA4, Sox9 and WT1 [44,45].
The transcriptional regulation of zebrafish AMH has so far
not been elucidated. However, the AMH gene promoter
sequence contains putative binding sites for the same
transcription factors that regulate mammalian AMH, indi-
cating a conserved regulatory mechanism in vertebrates.

WT1
As in mammals, the anlagen for the excretion and repro-
ductive systems both derive from intermediate mesoderm
[46-48]. WT1 was originally found to be a suppressor of
Wilms tumour, as individuals with inactivated WT1 devel-
oped the Wilms tumour condition [49]. WT1 is also a cru-
cial factor in the differentiation of renal tissue. In
zebrafish, WT1 has been shown to be expressed in the
intermediate mesoderm prior to and during renal tissue
differentiation [29]. It is also essential for the steroidog-
enic interrenal development together with ff1b [50]. WT1
is thereby an important factor in the early events during
development of gonadal primordium.

FTZ-F1 (NR5A)
The Drosophila homeobox gene fushi tarazu (ftz) was ini-
tially identified as a central factor for segmentation, as
inhibition of ftz resulted in the development of fewer seg-
ments [51,52]. The fushi tarazu factor-1 (FTZ-F1) was later
identified as the key regulator of ftz expression [53,54].
Genes homologous to the Drosophila FTZ-F1 have subse-
quently been identified in several species in different
phyla [55-63]. Several different names have been given to
these homologues, including steroidogenic factor-1 (SF-
1), adrenal-4-binding protein (Ad4BP), embryonal long
terminal repeat-binding protein (ELP), α-fetoprotein
transcription factor (FTF) and liver receptor homologue-1
(LRH-1). However, lately a nomenclature system pre-
sented by the nuclear receptor committee groups the FTZ-
F1 homologues under the name NR5A [64].

The mammalian genome contains two FTZ-F1 homo-
logues (NR5A1 and NR5A2). NR5A1 contains the SF-1
related genes, which are closely connected to steroidogen-
esis. In mammals, the NR5A1 genes are expressed in ster-
oidogenic tissues, are key regulators of steroidogenesis
and are involved in the testis determining pathway during
sex determination [65-67]. The NR5A2 genes are linked to
regulation of the estrogen-binding α-fetoprotein [60]. The
mammalian NR5A2 genes are expressed in steroidogenic

General structure of zebrafish FTZ-F1 proteinsFigure 1
General structure of zebrafish FTZ-F1 proteins. The zebrafish FTZ-F1 proteins consist of four main regions, the modu-
lator domain, DNA-binding domain (DBD), hinge region and the ligand-binding domain. The DBD contains a Zink-finger region, 
an A- and P-box for recognition of the FTZ-F1 response element, and a T-box for stabilising the DNA-binding. The proximal 
repressive- and interactive domains (PRD and PID) are used for interactions with co-repressors and co-activators. The ligand 
binding-domain containing the I-box and AF-2 region, which both are involved in ligand binding and transactivation, and a distal 
repressive domain (DRD) for co-repressor binding.
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tissues as well as liver, pancreas and intestine, but appear
to be more involved in cholesterol metabolism than ster-
oid synthesis or sex determination.

Zebrafish FTZ-F1
FTZ-F1 homologues have been identified in a number of
teleost species [55-57,68-70]. Several teleosts have multi-
ple variants of FTZ-F1 genes. The roles and functions of
these genes are not completely elucidated, but all studies
conducted so far indicate an involvement in the reproduc-
tive axis or in steroidogenesis. The ff1 proteins share the
general structure of other nuclear receptors. They contain
a DNA binding domain (DBD) with two Zn-fingers and
the FTZ-F1 box for DNA interaction and recognition, a
hinge domain that connects to the ligand-binding
domain (LBD), which contains the I-box for protein-pro-
tein interaction and the activator function-2 (AF-2)
domain for transcriptional activation (Fig. 1). Zebrafish is
the most extensively studied teleost and four FTZ-F1 genes
have been identified (ff1a, b, c and d). The arrangement of
FTZ-F1 genes into the nuclear receptor 5A subgroups is a
suitable system for genes in higher vertebrates, as no
indistinguishable genes have been described so far in

these animals. However, teleosts and particularly
zebrafish are different in more than one way compared to
higher vertebrates. Zebrafish have four different FTZ-F1
genes, whereas mammals and higher vertebrates only pos-
sess two. The zebrafish genes are not easily arranged
within the NR5A subgroups. Zebrafish ff1a and Arctic char
ff1 aligns well within the NR5A2 subgroup (Fig. 2), but
their expression patterns and suggested functions do not
fit the description of the mammalian NR5A2 genes. The
zebrafish ff1c does not align well with any of the
described subgroups, which further raises the question of
how appropriate the subdivisions really are for teleost
FTZ-F1. Ff1d and ff1b are similar and aligns together with
medaka FTZ-F1 in a subgroup within the NR5A1 clade.
This subgroup has previously been named NR5A4, but
recent data indicates that the genes in the NR5A4 sub-
group are NR5A1 homologous. Recently it was suggested
that ff1b and ff1d are of the same origin and arose from
ancestral gene duplication [71]. This was supported by the
overlapping expression patterns found in embryonic
interrenal and pituitary cells [42]. The tissue distribution
of ff1b and ff1d is identical, while it differs from ff1a and
ff1c (Fig. 3). The combined information of ff1b and ff1d
expression patterns, function and sequence similarities to
other genes in the NR5A1 group suggest that these genes
should be considered as homologues.

Tissue distribution of ff1a, ff1b, ff1c and ff1d in adult zebrafish, detected by RT-PCRFigure 3
Tissue distribution of ff1a, ff1b, ff1c and ff1d in adult 
zebrafish, detected by RT-PCR. The four ff1 genes show 
differential expression with the ff1a gene being expressed in 
most tissues with high expression in liver. The ff1b and ff1d 
genes are both expressed in gonads and brain with the ff1d 
showing higher expression in testis than in ovary. The ff1c 
gene is primarily expressed in the liver. m: male tissue, f: 
female tissue. Modified from [42].

NR5A sequence similarity analysis displayed in a radial treeFigure 2
NR5A sequence similarity analysis displayed in a 
radial tree. Clades containing subgroups NR5A1, NR5A2, 
NR5A3 and NR5A4 are indicated. Arctic char FF1a (acFF1a); 
Mouse LRH-1 (mLRH-1); Rat SF-1 (rSF-1); Mouse ELP 
(mELP); Rana rugosa FTZ-F1 (rrFTZ-F1); Zebrafish ff1b 
(zff1b); Zebrafish ff1a (zff1a); Zebrafish ff1c (zff1c); Zebrafish 
ff1d (zff1d); Rat FTF (rFTF); Medaka FTZ-F1 (mFTZ-F1); 
Rainbow trout FTZ-F1 (rtFTZ-F1); Chick SF-1 (cSF-1); Chick 
FTF (cFTF) and Drosophila melanogaster ftz-f1 (dmFTZ-F1). 
Modified from [42].
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Ff1a

The first FTZ-F1 gene described in zebrafish was ff1a [55].
The gene was named zff1, as no other zebrafish ff1 genes
were known at that time. With the identification of addi-
tional ff1 genes it was later renamed ff1a. The gene pos-
sesses two splicing variants, now designated ff1a-A and
ff1a-B. Ff1a-A was, in synergy with ER, shown to transcrip-
tionally activate a gonadotropin promoter, whereas ff1a-B
acted as an inhibitor of ff1a-A due to its lack of the AF-2
trans-activation domain. The expression of zebrafish ff1a
was later shown to be driven by two separate gene pro-
moters, giving rise to a total of four separate gene tran-
scripts, ff1a-IA, ff1a-IB, ff1a-IIA and ff1aIIB [72].

The functional difference between ff1a proteins consisting
of exon one, transcribed via promoter I, and proteins tran-
scribed from promoter II has so far not been studied.
However, they differ slightly in their tissue distribution,
where promoter I derived transcripts are lacking in brain
and heart [72]. The two ff1a promoters contain different
putative response elements [37,72]. This suggests that the
two promoters regulate ff1a in tissue specific manners and
during different developmental stages rather than render-
ing them separate functions. Also mouse and rat have two
separately regulated NR5A promoters [65,73].

Two of the putative response elements in promoter I indi-
cate an involvement in somitogenesis. MyoD and Snail
are both transcription factors shown to be involved in
somite development [74,75], indicating that promoter I
may drive the ff1a expression during somitogenesis. The
ff1a IIA gene product is involved in muscle differentiation
during somitogenesis. Microinjection of ff1a AII mRNA
into the ubo-mutant strain, which lack slow-twitch muscle
cells, results in partially restored myofibers [76]. Promoter
II contains an HMG-Box response element 24–31 bp up
stream of the transcription start. An identical response ele-
ment has been shown to bind Sox9a in vitro [34] and Sox9
is hence a putative regulator of gonadal expression of ff1a.
Expression of ff1a can be detected in the uro-genital and
pronephric duct region during early somitogenesis [77]
and by linking the ff1a dual promoter to GFP, early
gonadal expression can be detected 5 dpf after microinjec-
tion [37]. This indicates a role in early gonad develop-
ment and differentiation. The Arctic char ff1 homologue
has been linked to steroidogenesis by showing a cyclic
expression pattern during the reproductive maturation
process and 17β-estradiol mediated down-regulation of
testicular expression [56]. The phylogenetic relationship
indicates that the Arctic char ff1 belongs to the ff1a related
genes and should be named ff1a (Fig. 2). Furthermore, the
developmental expression pattern of Arctic char ff1a is
similar to zebrafish ff1a [78], indicating that teleost ff1a
homologues are involved both in steroidogenesis and
gonad development.

Ff1b

The ff1b gene was initially assigned to functions related to
pancreatic development as it was co-expressed with pan-
creas duodenum homeobox-1 (pdx-1) and proinsulin
[56]. However, more recent publications suggest that ff1b
is an important factor for steroidogenic cell development
and that ff1b is required for the differentiation of the
interrenal organ [79,80]. The expression of ff1b precedes
that of cyp11A and 3βHSD in the embryonic interrenal
cells and ff1b morpholino knock down experiments abol-
ishes the expression of these two genes [79].

The down stream transcriptional activation function of
ff1b is modulated by protein-protein interactions with
homeodomain protein Prox1 [80]. Two domains are
needed for the interaction, the I-box and the AF-2
domain, both situated in the LBD. Binding to Prox1 leads
to a repression of down stream trans-activation. There is
also a co-localization of ff1b and Prox1 expression in the
developing interrenal. Due to the conserved I-boxes and
AF-2 domains, both ff1a and ff1c are probably able to
interact with Prox1, although less efficiently than ff1b.

Ff1c

There is little information available regarding ff1c func-
tions, regulation or expression patterns. Except for a weak
interaction between Prox1 and ff1c presented in Liu et al.
[80], the sequence published on GenBank, (AF327373) is
the only published data available so far. Expression of ff1c
can be detected in numerous tissues in adult zebrafish and
its highest expression is found in liver and intestine, indi-
cating a role in cholesterol metabolism, similar to ff1a
(see Fig. 3). No specific ff1c expression domains have
been identified during embryogenesis. Both ff1c and ff1d
are similar to ff1a and b in their DNA-binding domains
where the FTZ-F1 box is situated and in the ligand binding
domains, but are less conserved in their hinge regions. All
zebrafish ff1 have highly conserved AF-2 domains and I-
Boxes in their LBD.

Ff1d

Ff1b and ff1d display an overlapping expression pattern
during embryogenesis. They share protein domains
important for co-factor interactions and have been sug-
gested to be the result of an ancestral gene duplication
[42,71]. Even though the two zebrafish NR5A1 genes are
similar in several aspects, the shared sequence identities
are 62%, which suggests that functional differences are
likely to exist. Expression of ff1d in adult zebrafish is
restricted to brain, gonads and liver [42]. There also seem
to be sexual differences, as ff1d expression is higher in tes-
tis than in ovary. In the testis ff1d is highly expressed in
interstitial Leydig cells and Sertoli cells, but cannot be
detected in germ cells. In ovary ff1d is located to the fol-
licular layer and inside the oocyte [42]. Although the func-

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF327373
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tion and regulatory mechanisms of ff1d in these cells
needs to be further studied, a possible target of ff1d is
AMH, which is co-expressed with ff1d in Sertoli cells and
in the follicular layer. During mammalian sex determina-
tion and differentiation, the ff1d homolog SF-1 regulates
the expression of AMH, leading to the development of
male sex characteristics. Therefore it is intriguing that this
may be a conserved vertebrate developmental mecha-
nism.

Dmrt1
The lack of testis-determining factor similar to SRY in fish
is not a unique phenomenon. This is also the case for
many other lower vertebrates. Genes containing a DM-
domain (Dmrt1) have however been identified in fish.
DM-domain containing genes are involved in sex determi-
nation in both vertebrates and invertebrates [81], which is
a unique conservation of function between phyla, not
seen in any other gene involved in sex determination. Dif-
ferent Dmrt1 homologues have been shown to be
involved in gonad development [82,83] and somitogene-
sis [84].

The teleost Japanese medaka has specific sex chromo-
somes (XX/XY), where the DM-domain gene DMY has
been mapped to the Y-chromosome and has been shown
to be essential for testis differentiation [85,86]. This was
determined by isolating the sex-determining region on the
male specific Y-chromosome. Except for the DMY-con-
taining region, the X and Y-chromosomes are very similar.
This indicates that the medaka Y-chromosome and DMY
are, in an evolutionary prospective, relatively new. This
theory was later confirmed and DMY was discarded as a
universal teleost sex-determining gene, as it was shown to
be a species-specific sex-determining strategy [87]. No tar-
get genes for DMY have been identified and DMY function
in testis development remains unresolved. Treating birds
with the aromatase inhibitor fadrozole lead to elevated
Dmrt1 levels indicating that Dmrt1 may be down regu-
lated by aromatase [88]. This indicates that Dmrt1 may
have an important role in testis determination in teleosts,
since alteration of aromatase levels during sex differentia-
tion can cause sex reversals. The regulation of Dmrt1
related genes in teleosts remains unknown, but testicular
expression of Dmrt1 is in mammals regulated by GATA4
[89].

GATA
GATA factors are divided into two families based on
expression patterns, structure, and function [90]. GATA-1/
2/3 is most commonly associated with haematopoietic
cell and neuronal development [91,92]. GATA-4/5/6 are
usually linked to organ development, including the uro-
genital system [93,94]. GATA factors recognize and bind
the DNA consensus motif, WGATAR, and closely related

sequences. GATA-4 plays an important role as transcrip-
tional regulator of SRY and AMH during mammalian sex
determination and differentiation [95]. Studies of
zebrafish GATA factors have so far been associated with
the development of organ systems other than the urogeni-
tal, but binding sites for GATA4 have been found in the
cyp19 gene promoter [96,97] suggesting a role in regulat-
ing aromatase expression.

Aromatase
Steroidogenesis, sex determination and differentiation are
closely related to each other. SF-1 is one of the crucial fac-
tors essential for steroid biosynthesis as well as sex deter-
mination and differentiation in mammals. The terminal
sex-hormone products in the steroid biosynthesis path-
way are androgens and estrogens, and the balance
between them leads to the development of proper sex
characteristics. Aromatase (Cyp 19) is the product of the
cyp19 gene, and is an important regulator of this balance.
Aromatase is produced in the gonads and directs the con-
version of testosterone into 17β-estradiol.

Like many other fish species, the zebrafish genome con-
tain two aromatase genes designated cyp19a and cyp19b
[98]. Cyp19a is highly expressed in the steroidogenic
Theca and granulosa cell layer surrounding the oocytes in
the ovary, whereas cyp19b is mainly expressed in brain.
Thus, while one aromatase gene appears to be involved in
gonadal development the other gene may be involved in
neuronal development. However, both genes contribute
to the regulation of estrogenic responses and may thus
influence sex differentiation. The regulation of teleost
cyp19 transcription is not completely elucidated, but the
zebrafish cyp19a promoter region contains binding sites
for Ftz-F1, which suggests a role for ff1 genes in the regu-
lation of cyp19a expression in gonadal tissue [97,99]. Ftz-
F1 dependent cyp19 transcription has also been docu-
mented in species from turtles to humans [100-102], indi-
cating that this mechanism is conserved in all vertebrates.
In many vertebrates, reptiles in particular, the level or
activity of aromatase is the deciding factor for sex during
development [103,104]. The temperature surrounding
the developing embryos influences the activity of aro-
matase leading to variations in sex ratio [105]. A similar
scenario has been documented for several fish species,
including zebrafish, suggesting that aromatase is an
important factor in sex determination and differentiation
in fish. By using an aromatase inhibitor, or by increasing
water temperature to 35°C–37°C, oocyte apoptosis can
be induced in zebrafish [106]. However, during normal
breeding conditions the temperature is not an important
factor deciding sex ratios in zebrafish. The role of aro-
matase remains important in zebrafish sex determination
as exposure to the aromatase inhibitor fadrozole results in
sex-reversion of female zebrafish [106].
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Sex determination and differentiation pathway
Studies of mammals have shown that genes involved in
sex determination have multiple functions but that the
presence of the SRY gene in animals with XY/XX chromo-
somal systems leads to male development. As discussed
earlier in this review many of the genes involved in mam-
malian sex determination show dosage dependent effects
on sex determination and differentiation. A generalised
genetic regulatory pathway can be extracted from the stud-
ies conducted on different vertebrate species (Fig. 4). Most
identified genes have a primary function in male develop-
ment. The regulatory pathway includes, and is based on,
the presence of SRY and Dax-1, which in an antagonistic
manner direct the development of male and female phe-
notypes in mammals. Lack of the SRY gene, as is the case
in teleosts, suggest that when chromosomal sex determi-
nation exist it must be regulated by alternative genes. In
medaka the Dmrt1 gene was found to be the switch. How-
ever, this role for Dmrt1 is specific for medaka and it
remains that any of the other known genes in the sex
determination cascade could potentially develop into the
genetic switch in other teleost species. Or, there may be
yet unidentified genes and pathways that participate in
teleost sex determination.

Proposed model
From the information obtained to date it is not possible
to define a hierarchy of regulation during sex determina-
tion in teleosts. Therefore, the proposed model for
zebrafish sex determination is based on the same group of
male determining genes, excluding SRY and Dax-1, found
in mammals while the interplay between the genes
remains undefined (Fig. 5). Theoretically, any one of the
described genes may become the sex determining gene, as
several of them have been shown to cause sex reversals in
mammalian model systems in a dosage dependent way
(see table 1). The male determining switch may also be
dependent on combinatory effects of allelic variants
among the genes involved. Furthermore, the regulation of
aromatase appears to be crucial for zebrafish sex determi-
nation.

The model suggests that ff1a and WT1 are important for
the differentiation of the uro-genital tissue, which subse-
quently develops into renal and gonadal tissue. WT1 is
essential for the differentiation of pronephros, and a bat-
tery of genes, including the FTZ-F1 genes, Sox9a, GATA4,
Dmrt1 and AMH, are involved in the differentiation of
gonads. During the critical time period around 25 dpf this
battery of genes may direct the development towards male
gonads in individuals with the allelic combinations pre-

A generalized model of the involvement of different genes in zebrafish sex determination and differentiationFigure 5
A generalized model of the involvement of different 
genes in zebrafish sex determination and differentia-
tion. While little is known of the hierarchy of genes involved 
in zebrafish sex determination and differentiation several 
genes have been identified. While aromatase has been shown 
to play a central role in zebrafish sex differentiation the envi-
ronmental and/or genetic mechanisms have not been fully 
elucidated. ⊥: Inhibition, ↓: stimulation.

Involvement of a hierarchy of genes in mammalian sex deter-mination and differentiationFigure 4
Involvement of a hierarchy of genes in mammalian 
sex determination and differentiation. In XY/XX sys-
tems where SRY is the key regulator of sex determination its 
absence leads to activation of Dax1 and female development. 
The presence of SRY results in a hierarchy of activation of 
genes leading to the development of testis. In this hierarchy 
SF-1 (FTZ-F1) is a key regulator of steroidogenesis and AMH, 
demonstrating its central role in sex determination and dif-
ferentiation. ⊥: Inhibition, ↓: stimulation.
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destined to become male. This would lead to a decrease or
absence of aromatase and subsequent reduced estrogen
levels and activity, resulting in the onset of ovarian apop-
tosis, the differentiation of testicular Sertoli cells and
increased testosterone levels. The model is based on the
observation that adult female zebrafish can be sex-
reversed by inhibiting aromatase [106]. This suggests that
zebrafish has a high plasticity in their mechanism of gen-
der development and that steroidogenesis plays an essen-
tial part in the sex determining process. The complex
mechanism of sex determination and differentiation is
still far from elucidated and the biochemistry behind it
must be further studied to establish protein interactions
controlling it. The FTZ-F1 genes are important, as they are
involved in the early development of uro-genital tissue
and as regulators of steroidogenic cells and their gene
expression.

Acknowledgements
The present study was financed by generous grants from the Swedish 

Research Council, the Magnus Bergwall foundation and the Kempe memo-

rial foundation.

References
1. Thorgaard GH: Heteromorphic sex chromosomes in male rainbow

trout.  Science 1977, 196:900-902.
2. Thorgaard GH: Sex chromosomes in the sockeye salmon: a Y-

autosome fusion.  Can J Genet Cytol 1978, 20:349-354.
3. Phillips RB, Ihssen PE: Identification of sex chromosomes in lake

trout (Salvelinus namaycush).  Cytogenet Cell Genet 1985,
39:14-18.

4. Volff JN, Schartl M: Variability of genetic sex determination in
poeciliid fishes.  Genetica 2001, 111:101-110.

5. Kallman KD: Evidence for the existence of transformer genes
for sex in the teleost Xiphophorus maculatus.  Genetics 1968,
60:811-828.

6. Bull JJ, Vogt RC: Temperature-dependent sex determination
in turtles.  Science 1979, 206:1186-1188.

7. Conover DO, Heins SW: Adaptive variation in environmental
and genetic sex determination in a fish.  Nature 1987,
326:496-498.

8. Pavlidis M, Koumoundouros G, Sterioti A, Somarakis S, Divanach P,
Kentouri M: Evidence of temperature-dependent sex deter-
mination in the European sea bass (Dicentrarchus labrax L.).
J Exp Zool 2000, 287:225-232.

9. Tang F, Chan ST, Lofts B: Effect of mammalian luteinizing hor-
mone on the natural sex reversal of the rice-field eel, Monop-
terus albus (Zuiew).  Gen Comp Endocrinol 1974, 24:242-248.

10. Yeung WS, Chen H, Chan ST: In vivo effects of oLH and LHRH-
analog on sex reversal and plasma sex steroid profiles in the
female Monopterus albus.  Gen Comp Endocrinol 1993, 90:23-30.

11. Baroiller JF, Guiguen Y, Fostier A: Endocrine and environmental
aspects of sex differentiation in fish.  Cell Mol Life Sci 1999,
55:910-931.

12. Berta P, Hawkins JR, Sinclair AH, Taylor A, Griffiths BL, Goodfellow
PN, Fellous M: Genetic evidence equating SRY and the testis-
determining factor.  Nature 1990, 348:448-450.

13. Swain A, Narvaez V, Burgoyne P, Camerino G, Lovell-Badge R: Dax1
antagonizes Sry action in mammalian sex determination.
Nature 1998, 391:761-767.

14. Wagner T, Wirth J, Meyer J, Zabel B, Held M, Zimmer J, Pasantes J,
Bricarelli FD, Keutel J, Hustert E, Wolf U, Tommerup N, Schempp W,
Scherer G: Autosomal sex reversal and campomelic dysplasia
are caused by mutations in and around the SRY-related gene
SOX9.  Cell 1994, 79:1111-1120.

15. Foster JW, Dominguez-Steglich MA, Guioli S, Kowk G, Weller PA,
Stevanovic M, Weissenbach J, Mansour S, Young ID, Goodfellow PN,
Brook JD, Schafer AJ: Campomelic dysplasia and autosomal sex

reversal caused by mutations in an SRY-related gene.  Nature
1994, 372:525-530.

16. Huang B, Wang S, Ning Y, Lamb AN, Bartley J: Autosomal XX sex
reversal caused by duplication of SOX9.  Am J Med Genet 1999,
87:349-353.

17. Achermann JC, Ito M, Hindmarsh PC, Jameson JL: A mutation in
the gene encoding steroidogenic factor-1 causes XY sex-
reversal and adrenal failure in humans.  Nat Genet 1999,
22:125-126.

18. Hammes A, Guo JK, Lutsch G, Leheste JR, Landrock D, Ziegler U,
Gubler MC, Schedl A: Two splice variants of the Wilms' tumor
1 gene have distinct functions during sex determination and
nephron formation.  Cell 2001, 106:319-329.

19. Raymond CS, Parker ED, Kettlewell JR, Brown LG, Page DC, Kusz K,
Jaruzelska J, Reinberg Y, Flejter WL, Bardwell VJ, Hirsch B, Zarkower
D: A region of human chromosome 9p required for testis
development contains two genes related to known sexual
regulators.  Hum Mol Genet 1999, 8:989-996.

20. Blum V: Comparative anatomy of the urogenital sysytem.  In
Vertebrate Reproduction Springer Verlag, Berlin; 1986:53-63. 

21. Francis RC: Sexual lability in teleosts: developmental factors.
Quart Rev Biol 1992, 67:1-18.

22. Kobayashi T, Kajiura-Kobayashi H, Nagahama Y: Induction of XY
sex reversal by estrogen involves altered gene expression in
a teleost, tilapia.  Cytogenet Genome Res 2003, 101:289-294.

23. Traut W, Winking H: Meiotic chromosomes and stages of sex
chromosome evolution in fish: zebrafish, platyfish and guppy.
Chromosome Res 2001, 9:659-672.

24. Wallace BM, Wallace H: Synaptonemal complex karyotype of
zebrafish.  Heredity 2003, 90:136-140.

25. Amores A, Force A, Yan YL, Joly L, Amemiya C, Fritz A, Ho RK,
Langeland J, Prince V, Wang YL, Westerfield M, Ekker M, Postlethwait
JH: Zebrafish hox clusters and vertebrate genome evolution.
Science 1998, 282:1711-1714.

26. Uchida D, Yamashita M, Kitano T, Iguchi T: Oocyte apoptosis dur-
ing the transition from ovary-like tissue to testes during sex
differentiation of juvenile zebrafish.  J Exp Biol 2002,
205:711-718.

27. Devlin RH, Nagahama Y: Sex determination and sex differenti-
ation in fish: an overview of genetic, physiological, and envi-
ronmental influences.  Aquaculture 2002, 208:191-364.

28. Yoon C, Kawakami K, Hopkins N: Zebrafish vasa homologue
RNA is localized to the cleavage planes of 2- and 4-cell-stage
embryos and is expressed in the primordial germ cells.  Devel-
opment 1997, 124:3157-3166.

29. Drummond IA, Majumdar A, Hentschel H, Elger M, Solnica-Krezel L,
Schier AF, Neuhauss SC, Stemple DL, Zwartkruis F, Rangini Z,
Driever W, Fishman MC: Early development of the zebrafish
pronephros and analysis of mutations affecting pronephric
function.  Development 1998, 125:4655-4667.

30. Wang DS, Kobayashi T, Senthilkumaran B, Sakai F, Sudhakumari CC,
Suzuki T, Yoshikuni M, Matsuda M, Morohashi K, Nagahama Y:
Molecular cloning of DAX1 and SHP cDNAs and their
expression patterns in the Nile tilapia, Oreochromis niloti-
cus.  Biochem Biophys Res Commun 2002, 297:632-640.

31. Takamatsu N, Kanda H, Ito M, Yamashita A, Yamashita S, Shiba T:
Rainbow trout SOX9: cDNA cloning, gene structure and
expression.  Gene 1997, 202:167-170.

32. Kanda H, Kojima M, Miyamoto N, Ito M, Takamatsu N, Yamashita S,
Shiba T: Rainbow trout Sox24, a novel member of the Sox
family, is a transcriptional regulator during oogenesis.  Gene
1998, 211:251-257.

33. Wang R, Cheng H, Xia L, Guo Y, Huang X, Zhou R: Molecular clon-
ing and expression of Sox17 in gonads during sex reversal in
the rice field eel, a teleost fish with a characteristic of natural
sex transformation.  Biochem Biophys Res Commun 2003,
303:452-457.

34. Chiang EF, Pai CI, Wyatt M, Yan YL, Postlethwait J, Chung B: Two
sox9 genes on duplicated zebrafish chromosomes: expres-
sion of similar transcription activators in distinct sites.  Dev
Biol 2001, 231:149-163.

35. Yan YL, Miller CT, Nissen RM, Singer A, Liu D, Kirn A, Draper B,
Willoughby J, Morcos PA, Amsterdam A, Chung BC, Westerfield M,
Haffter P, Hopkins N, Kimmel C, Postlethwait JH, Nissen R: A
zebrafish sox9 gene required for cartilage morphogenesis.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=860122
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=860122
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=570442
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=570442
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3979115
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3979115
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11841158
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11841158
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5732420
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5732420
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=505003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=505003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3561487
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3561487
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10900442
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10900442
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4473397
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4473397
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4473397
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8504919
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2247149
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2247149
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9486644
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9486644
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8001137
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8001137
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8001137
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7990924
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7990924
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10588843
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10588843
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10369247
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10369247
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10369247
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11509181
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11509181
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11509181
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10332030
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10332030
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10332030
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14684997
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14684997
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14684997
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11778689
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11778689
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12634819
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12634819
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9831563
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11914381
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11914381
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11914381
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9272956
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9272956
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9272956
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9806915
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9806915
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9806915
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12270141
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12270141
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12270141
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9427561
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9427561
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9427561
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9602142
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9602142
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12659838
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12659838
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12659838
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11180959
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11180959
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11180959
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12397114
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12397114


Reproductive Biology and Endocrinology 2005, 3:63 http://www.rbej.com/content/3/1/63

Page 10 of 11

(page number not for citation purposes)

Development 2002, 129:5065-5079. Erratum in: Development
129:5551

36. Li M, Zhao C, Wang Y, Zhao Z, Meng A: Zebrafish sox9b is an
early neural crest marker.  Dev Genes Evol 2002, 212:203-206.

37. von Hofsten J, Modig C, Larsson A, Karlsson J, Olsson PE: Determi-
nation of the expression pattern of the dual promoter of
zebrafish fushi tarazu factor-1a following microinjections
into zebrafish one cell stage embryos.  Gen Comp Endocrinol
2005, 142:222-226.

38. di Clemente N, Ghaffari S, Pepinsky RB, Pieau C, Josso N, Cate RL,
Vigier B: A quantitative and interspecific test for biological
activity of anti-mullerian hormone: the fetal ovary aro-
matase assay.  Development 1992, 114:721-727.

39. Racine C, Rey R, Forest MG, Louis F, Ferre A, Huhtaniemi I, Josso N,
di Clemente N: Receptors for anti-mullerian hormone on Ley-
dig cells are responsible for its effects on steroidogenesis and
cell differentiation.  Proc Natl Acad Sci U S A 1998, 95:594-599.

40. Ha TU, Segev DL, Barbie D, Masiakos PT, Tran TT, Dombkowski D,
Glander M, Clarke TR, Lorenzo HK, Donahoe PK, Maheswaran S:
Mullerian inhibiting substance inhibits ovarian cell growth
through an Rb-independent mechanism.  J Biol Chem 2000,
275:37101-109.

41. Miura T, Miura C, Konda Y, Yamauchi K: Spermatogenesis-pre-
venting substance in Japanese eel.  Development 2002,
129:2689-2697.

42. von Hofsten J, Larsson A, Olsson PE: Novel steroidogenic factor-
1 homolog (ff1d) is coexpressed with anti-Mullerian hor-
mone (AMH) in zebrafish.  Dev Dyn 2005, 233:595-604.

43. Rodriguez-Mari A, Yan YL, Bremiller RA, Wilson C, Canestro C,
Postlethwait JH: Characterization and expression pattern of
zebrafish Anti-Mullerian hormone (Amh) relative to sox9a,
sox9b, and cyp19a1a, during gonad development.  Gene Expr
Patterns 2005, 5:655-667.

44. de Santa Barbara P, Bonneaud N, Boizet B, Desclozeaux M, Moniot B,
Sudbeck P, Scherer G, Poulat F, Berta P: Direct interaction of
SRY-related protein SOX9 and steroidogenic factor 1 regu-
lates transcription of the human anti-Mullerian hormone
gene.  Mol Cell Biol 1998, 18:6653-6665.

45. Rey R, Lukas-Croisier C, Lasala C, Bedecarras P: AMH/MIS: what
we know already about the gene, the protein and its regula-
tion.  Mol Cell Endocrinol 2003, 211:21-31.

46. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF: Stages
of embryonic development of the zebrafish.  Dev Dyn 1995,
203:253-310.

47. Serluca FC, Fishman MC: Pre-pattern in the pronephric kidney
field of zebrafish.  Development 2001, 128:2233-2241.

48. Molyneaux K, Wylie C: Primordial germ cell migration.  Int J Dev
Biol 2004, 48:537-544.

49. Haber DA, Buckler AJ, Glaser T, Call KM, Pelletier J, Sohn RL, Doug-
lass EC, Housman DE: An internal deletion within an 11p13 zinc
finger gene contributes to the development of Wilms'
tumor.  Cell 1990, 61:1257-1269.

50. Hsu HJ, Lin G, Chung B: Parallel early development of zebrafish
interrenal glands and pronephros:differential control by
wt1and ff1b.  Development 2003, 130:2107-2116.

51. Kuroiwa A, Hafen E, Gehring WJ: Cloning and transcriptional
analysis of the segmentation gene fushi tarazu of Drosophila.
Cell 1984, 37:825-31.

52. Wakimoto BT, Turner FR, Kaufman TC: Defects in embryogene-
sis in mutants associated with the antennapedia gene com-
plex of Drosophila melanogaster.  Dev Biol 1984, 102:147-72.

53. Ueda H, Sonoda S, Brown JL, Scott MP, Wu C: A sequence-specific
DNA-binding protein that activates fushi tarazu segmenta-
tion gene expression.  Genes Dev 1990, 4:624-635.

54. Lavorgna G, Ueda H, Clos J, Wu C: FTZ-F1, a steroid hormone
receptor-like protein implicated in the activation of fushi
tarazu.  Science 1991, 252:848-851.

55. Liu D, Le Drean Y, Ekker M, Xiong F, Hew CL: Teleost FTZ-F1
homolog and its splicing variant determine the expression of
the salmon gonadotropin IIβ subunit gene.  Mol Endocrinol 1997,
11:877-890.

56. Chai C, Chan WK: Developmental expression of a novel Ftz-F1
homologue, ff1b (NR5A4), in the zebrafish Danio rerio.  Mech
Dev 2000, 91:421-426.

57. von Hofsten J, Karlsson J, Jones I, Olsson PE: Expression and reg-
ulation of fushi tarazu factor-1 and steroidogenic genes dur-

ing reproduction in Arctic char (Salvelinus alpinus).  Biol Reprod
2002, 67:1297-1304.

58. Lala DS, Rice DA, Parker KL: Steroidogenic factor I, a key regu-
lator of steroidogenic enzyme expression, is the mouse
homolog of fushi tarazu-factor I.  Mol Endocrinol 1992,
6:1249-1258.

59. Sun GC, Hirose S, Ueda H: Intermittent expression of BmFTZ-
F1, a member of the nuclear hormone receptor superfamily
during development of the silkworm Bombyx mori.  Dev Biol
1994, 162:426-437.

60. Galarneau L, Paré JF, Allard D, Hamel D, Levesque L, Tugwood JD,
Green S, Belanger L: The alpha1-fetoprotein is activated by a
nuclear receptor of the Drosophila FTZ-F1 family.  Mol Cell
Biol 1996, 16:3853-3865.

61. Wong M, Ramayya MS, Chrousos GP, Driggers PH, Parker KL: Clon-
ing and sequence analysis of the human gene encoding ster-
oidogenic factor 1.  J Mol Endocrinol 1996, 17:139-147.

62. Kudo T, Sutou S: Molecular cloning of chicken FTZ-F1-related
orphan receptors.  Gene 1997, 197:261-268.

63. Kawano K, Miura I, Morohashi K, Takase M, Nakamura M: Molecular
cloning and expression of the SF-1/Ad4BP gene in the frog,
Rana rugosa.  Gene 1998, 2:169-76.

64. Nuclear receptors committee: A unified nomenclature system
for the nuclear receptor superfamily.  Cell 1999, 97:161-163.

65. Ikeda Y, Lala DS, Luo X, Kim E, Moisan MP, Parker KL: Characteri-
zation of the mouse FTZ-F1 gene, which encodes a key reg-
ulator of steroid hydroxylase gene expression.  Mol Endocrinol
1993, 7:852-860.

66. Ikeda Y, Shen WH, Ingraham HA, Parker KL: Developmental
expression of mouse steroidogenic factor-1, an essential reg-
ulator of the steroid hydroxylases.  Mol Endocrinol 1994,
8:654-662.

67. Sadovsky Y, Crawford PA, Woodson KG, Polish JA, Clements MA,
Tourtellotte LM, Simburger K, Milbrandt J: Mice deficient in the
orphan receptor steroidgenic factor 1 lack adrenal glands
and gonads but express P450 side-chain-cleavage enzyme in
the placenta and have normal embryonic serum levels of
corticosteroids.  Proc Natl Acad Sci 1995, 92:10939-10943.

68. Ito M, Masuda A, Yumoto K, Otomo A, Takahashi Y, Takamatsu N,
Kanda H, Yamashita S, Shiba T: cDNA cloning of a new member
of the FTZ-F1 subfamily from a rainbow trout.  Biochim Biophys
Acta 1998, 1395:271-274.

69. Watanabe M, Tanaka M, Kobayashi D, Yoshiura Y, Oba Y, Nagahama
Y: Medaka (Oryzias latipes) FTZ-F1 potentially regulates the
transcription of P-450 aromatase in ovarian follicles: cDNA
cloning and functional characterization.  Mol Cell Endocrinol
1999, 149:221-228.

70. Higa M, Kanda H, Kitahashi T, Ito M, Shiba T, Ando H: Quantitative
analysis of fushi tarazu factor 1 homolog messenger ribonu-
cleic acids in the pituitary of salmon at different prespawning
stages.  Biol Reprod 2000, 63:1756-1763.

71. Kuo MW, Postlethwait J, Lee WC, Lou SW, Chan WK, Chung BC:
Gene duplication, gene loss and evolution of expression
domains in the vertebrate nuclear receptor NR5A (Ftz-F1)
family.  Biochem J 2005, 389:19-26.

72. Lin WW, Wang HH, Sum C, Liu D, Hew C, Chung B: Zebrafish ftz-
f1 gene has two promoters, is alternatively spliced, and is
expressed in digestive organs.  Biochem J 2000, 348:439-446.

73. Nomura M, Bartsch S, Nawata H, Omura T, Morohashi K: An E box
element is required for the expression of the ad4bp gene, a
mammalian homologue of ftz-f1 gene, which is essential for
adrenal and gonadal development.  J Biol Chem 1995,
270:7453-7461.

74. Weinberg ES, Allende ML, Kelly CS, Abdelhamid A, Murakami T,
Andermann P, Doerre OG, Grunwald DJ, Riggleman B: Develop-
mental regulation of zebrafish MyoD in wild-type, no tail and
spadetail embryos.  Development 1996, 122:271-280.

75. Thisse C, Thisse B, Schilling TF, Postlethwait JH: Structure of the
zebrafish snail1 gene and its expression in wild-type, spade-
tail and no tail mutant embryos.  Development 1993,
119:1203-1215.

76. Sheela SG, Lee WC, Lin WW, Chung BC: Zebrafish ftz-f1a
(nuclear receptor 5a2) functions in skeletal muscle organiza-
tion.  Dev Biol  in press. 2005 Sep 12

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12012235
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12012235
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15862566
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15862566
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15862566
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1319894
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1319894
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1319894
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9435237
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9435237
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9435237
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10958795
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10958795
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10958795
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12015296
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12015296
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15768398
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15768398
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15768398
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15939378
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15939378
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15939378
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9774680
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9774680
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9774680
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14656472
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14656472
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14656472
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8589427
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8589427
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11493543
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11493543
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15349828
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2163761
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2163761
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2163761
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12668625
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12668625
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12668625
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6430567
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6430567
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6421639
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6421639
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6421639
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2113881
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2113881
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1709303
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9178748
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10704877
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12297548
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1406703
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1406703
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1406703
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8150206
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8668203
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8668203
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8938589
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8938589
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8938589
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9332374
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9332374
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10219237
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10219237
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8413309
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8413309
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8413309
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8058073
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8058073
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8058073
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7479914
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7479914
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7479914
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9512659
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9512659
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10375033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10375033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10375033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11090446
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11090446
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11090446
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15725073
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15725073
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15725073
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10816440
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10816440
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10816440
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7706291
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7706291
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7706291
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8565839
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8565839
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8565839
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8306883
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8306883
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8306883
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16162335
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16162335
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16162335


Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 

disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:

http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

Reproductive Biology and Endocrinology 2005, 3:63 http://www.rbej.com/content/3/1/63

Page 11 of 11

(page number not for citation purposes)

77. von Hofsten J, Jones I, Karsson J, Olsson PE: Developmental
expression patterns of FTZ-F1 homologues in zebrafish
(Danio rerio).  Gen Comp Endocrinol 2001, 121:146-155.

78. von Hofsten J, Karlsson J, Olsson PE: Fushi tarazu factor-1 mRNA
and protein is expressed in steroidogenic and cholesterol
metabolising tissues during different life stages in Arctic char
(Salvelinus alpinus).  Gen Comp Endocrinol 2003, 132:96-102.

79. Chai C, Liu YW, Chan WK: Ff1b is required for the develop-
ment of steroidogenic component of the zebrafish interrenal
organ.  Dev Biol 2003, 260:226-244.

80. Liu Y-W, Gao W, Teh H-L, Tan J-H, Chan WK: Prox1 Is a Novel
Coregulator of Ff1b and Is Involved in the Embryonic Devel-
opment of the Zebra Fish Interrenal Primordium.  Mol Cell Biol
2003, 23:7243-7255.

81. Raymond CS, Shamu CE, Shen MM, Seifert KJ, Hirsch B, Hodgkin J,
Zarkower D: Evidence for evolutionary conservation of sex-
determining genes.  Nature 1998, 391:691-695.

82. Guan G, Kobayashi T, Nagahama Y: Sexually dimorphic expres-
sion of two types of DM (Doublesex/Mab-3)-domain genes in
a teleost fish, the Tilapia (Oreochromis niloticus).  Biochem Bio-
phys Res Commun 2000, 272:662-666.

83. Marchand O, Govoroun M, D'Cotta H, McMeel O, Lareyre J, Bernot
A, Laudet V, Guiguen Y: DMRT1 expression during gonadal dif-
ferentiation and spermatogenesis in the rainbow trout,
Oncorhynchus mykiss.  Biochim Biophys Acta 2000, 1493:180-187.

84. Meng A, Moore B, Tang H, Yuan B, Lin S: A drosophila doublesex-
related gene, terra, is involved in somitogenesis in verte-
brates.  Development 1999, 126:1259-1268.

85. Matsuda M, Nagahama Y, Shinomiya A, Sato T, Matsuda C, Kobayashi
T, Morrey CE, Shibata N, Asakawa S, Shimizu N, Hori H, Hamaguchi
S, Sakaizumi M: DMY is a Y-specific DM-domain gene required
for male development in the medaka fish.  Nature 2002,
417:559-563.

86. Nanda I, Kondo M, Hornung U, Asakawa S, Winkler C, Shimizu A,
Shan Z, Haaf T, Shimizu N, Shima A, Schmid M, Schartl M: A dupli-
cated copy of DMRT1 in the sex-determining region of the Y
chromosome of the medaka, Oryzias latipes.  Proc Natl Acad Sci
U S A 2002, 99:11778-11783.

87. Volff JN, Kondo M, Schartl M: Medaka dmY/dmrt1Y is not the
universal primary sex-determining gene in fish.  Trends Genet
2003, 19:196-199.

88. Smith CA, Katz M, Sinclair AH: DMRT1 is upregulated in the
gonads during female-to-male sex reversal in ZW chicken
embryos.  Biol Reprod 2003, 68:560-570.

89. Lei N, Heckert LL: Gata4 regulates testis expression of Dmrt1.
Mol Cell Biol 2004, 24:377-388.

90. Lavoie H, Debeane F, Trinh QD, Turcotte JF, Corbeil-Girard LP, Dic-
aire MJ, Saint-Denis A, Page M, Rouleau GA, Brais B: Polymor-
phism, shared functions and convergent evolution of genes
with sequences coding for polyalanine domains.  Hum Mol
Genet 2003, 12:2967-2979.

91. Ohneda K, Shimizu R, Nishimura S, Muraosa Y, Takahashi S, Engel JD,
Yamamoto M: A minigene containing four discrete cis ele-
ments recapitulates GATA-1 gene expression in vivo.  Genes
Cells 2002, 7:1243-1254.

92. Patient RK, McGhee JD: The GATA family (vertebrates and
invertebrates).  Curr Opin Genet Dev 2002, 12:416-422.

93. Morrisey EE, Ip HS, Lu MM, Parmacek MS: GATA-6: a zinc finger
transcription factor that is expressed in multiple cell lineages
derived from lateral mesoderm.  Dev Biol 1996, 177:309-322.

94. Molkentin JD, Tymitz KM, Richardson JA, Olson EN: Abnormalities
of the genitourinary tract in female mice lacking GATA5.
Mol Cell Biol 2000, 20:5256-5260.

95. Tevosian SG, Albrecht KH, Crispino JD, Fujiwara Y, Eicher EM, Orkin
SH: Gonadal differentiation, sex determination and normal
Sry expression in mice require direct interaction between
transcription partners GATA4 and FOG2.  Development 2002,
129:4627-4634.

96. Tchoudakova A, Kishida M, Wood E, Callard GV: Promoter char-
acteristics of two cyp19 genes differentially expressed in the
brain and ovary of teleost fish.  J Steroid Biochem Mol Biol 2001,
78:427-439.

97. Tong SK, Chung BC: Analysis of zebrafish cyp19 promoters.  J
Steroid Biochem Mol Biol 2003, 86:381-386.

98. Chiang EF, Yan YL, Guiguen Y, Postlethwait J, Chung BC: Two
Cyp19 (P450 aromatase) genes on duplicated zebrafish chro-

mosomes are expressed in ovary or brain.  Mol Biol Evol 2001,
18:542-550.

99. Watanabe M, Tanaka M, Kobayashi D, Yoshiura Y, Oba Y, Nagahama
Y: Medaka (Oryzias lapites) FTZ-F1 potentially regulates the
transcription of P-450 aromatase in ovarian follicles: cDNA
cloning and functional characterization.  Mol Cell Endocrinol
1999, 149:221-228.

100. Crews D, Fleming A, Willingham E, Baldwin R, Skipper JK: Role of
steroidogenic factor 1 and aromatase in temperature-
dependent sex determination in the red-eared slider turtle.
J Exp Zool 2001, 290:597-606.

101. Lynch JP, Lala DS, Peluso JJ, Luo W, Parker KL, White BA: Ster-
oidogenic factor 1, an orphan nuclear receptor, regulates the
expression of the rat aromatase gene in gonadal tissues.  Mol
Endocrinol 1993, 7:776-786.

102. Gurates B, Amsterdam A, Tamura M, Yang S, Zhou J, Fang Z, Amin S,
Sebastian S, Bulun SE: WT1 and DAX-1 regulate SF-1-mediated
human P450arom gene expression in gonadal cells.  Mol Cell
Endocrinol 2003, 208:61-75.

103. Jeyasuria P, Place AR: Embryonic brain-gonadal axis in temper-
ature-dependent sex determination of reptiles: a role for
P450 aromatase (CYP19).  J Exp Zool 1998, 281:428-449.

104. Wibbels T, Cowan J, LeBoeuf R: Temperature-dependent sex
determination in the red-eared slider turtle, Trachemys
scripta.  J Exp Zool 1998, 281:409-416.

105. Bogart MH: Sex determination: a hypothesis based on steroid
ratios.  J Theor Biol 1987, 128:349-357.

106. Uchida D, Yamashita M, Kitano T, Iguchi T: An aromatase inhibi-
tor or high water temperature induce oocyte apoptosis and
depletion of P450 aromatase activity in the gonads of genetic
female zebrafish during sex-reversal.  Comp Biochem Physiol A
Mol Integr Physiol 2004, 137:11-20.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11178880
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12765648
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12885566
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12885566
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12885566
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14517294
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14517294
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14517294
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9490411
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9490411
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10860811
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10978520
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10021344
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10021344
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10021344
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12037570
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12037570
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12193652
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12193652
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12193652
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12683972
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12683972
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12533420
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12533420
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12533420
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14673170
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14519685
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14519685
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14519685
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12485164
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12485164
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12100886
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12100886
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8660897
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8660897
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8660897
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10866681
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10866681
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12223418
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12223418
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12223418
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11738553
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11738553
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11738553
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14623534
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11264405
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11264405
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11264405
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10375033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10375033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10375033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11748608
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11748608
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8395654
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8395654
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8395654
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14580722
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14580722
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9662830
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9662830
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9662830
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9662828
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9662828
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9662828
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3444342
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3444342
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14720586
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14720586
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14720586
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Sex determination
	Formation and differentiation of gonads
	Candidate genes in zebrafish sex determination
	SOX9
	AMH
	WT1
	FTZ-F1 (NR5A)
	Zebrafish FTZ-F1
	Ff1a
	Ff1b
	Ff1c
	Ff1d

	Dmrt1
	GATA
	Aromatase
	Sex determination and differentiation pathway
	Proposed model
	Acknowledgements
	References

