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Abstract

Zebrafish (Danio rerio) is an ideal in vivo model to study a

wide variety of human cancer types. In this review, we

provide a comprehensive overview of zebrafish in the cancer

drug discovery process, from (i) approaches to induce

malignant tumors, (ii) techniques to monitor cancer pro-

gression, and (iii) strategies for compound administration

to (iv) a compilation of the 355 existing case studies

showing the impact of zebrafish models on cancer drug

discovery, which cover a broad scope of scenarios. Finally,

based on the current state-of-the-art analysis, this review

presents some highlights about future directions using zeb-

rafish in cancer drug discovery and the potential of this

model as a prognostic tool in prospective clinical studies.

Cancer Res; 78(21); 6048–58. �2018 AACR.

Introduction

Cancer is a worldwide disease, being one of the main causes of

morbidity and mortality at present. According to the World

Health Organization, there will be an increase of 18.1 million

new cancer cases and 9.6 million cancer deaths (1).

Traditionally, themurinemodel has been used in research as an

in vivo model organism. However, Danio rerio, also known as the

zebrafish, owing to its small size, heavy brood, and rapid matu-

ration time, has emerged as an important new cancer model that

complements what can traditionally be achieved in mice and cell

culture systems. A wide range of assays can be carried out in this

model, from target discovery, target validation, or toxicological

studies to the generation of tumors to perform the corresponding

in vivo efficacy tests (e.g., screening molecules; refs. 2, 3).

The zebrafishmodel possesses unique advantages that establish

it as a versatile tool in research. (i) Zebrafish generates large

numbers of progeny, offering high confidence in statistical anal-

ysis (4). (ii) Human and zebrafish share a high grade of similarity:

71% of human proteins and 82% of disease-causing human

proteins have an ortholog in zebrafish (5). (iii) Husbandry

expenses are reduced compared with mammals, owing to the

inexpensive maintenance that they require (4). (iv) Zebrafish

absorbs molecules that are dissolved in water, allowing feasible

drug administration (6). (v) Some processes can be directly

observed in the living animal due to the transparency of zebrafish

embryos and the recent development of the casper zebrafish line,

which is deficient in pigments (7). (vi) Many zebrafish disease

models have been described so far due to the development of

transgenic and mutant lines (8).

Zebrafish as a Model Organism in Cancer

Research

In terms of cancer research, the zebrafishmodel has advantages

against traditional cell culture assays, as a broader range of

phenotypes can be tested (9). Zebrafish and mammals share

common molecular pathways of tumor progression (10). Like-

wise, more than 130 distinct genes in zebrafish liver tumors

present similar expression to liver human cancer profiles, corre-

lating with histologic tumor type, grade, and stage. In fact, Zheng

and colleagues proved that transgenic zebrafish models share

molecular signatures with human hepatocellular carcinoma (11).

There are several approaches to generate human cancer in

zebrafish, such as development of mutant and transgenic lines

and transplantation of tumor cells (Fig. 1A). Each methodology

has several advantages and disadvantages, which are described

in Supplementary Table S1. The selection of the zebrafish stage

in which experimentation should be carried out depends on the

aim of the study, as each developmental stage presents some

benefits (Supplementary Table S2). Embryos are most com-

monly used when the main purpose of the study is the visu-

alization of a concrete tumor process, as their bodies are

transparent and allow for microscopy observation. In addition,

cancer develops more rapidly in embryos, showing tumor

formation by 2 days after the induction. Consequently, they

could be employed in projects that demand rapidity, such as

imaging cancer processes or screening campaigns. By contrast,

adults offer a more realistic in vivo model, as all of their organs

and immune systems are developed; however, cancer estab-

lishment requires from 10–14 days to 1 month (12).

Mutant lines

The mutated cancer driver genes usually dominate cancer

proceedings and determine the future of tumorigenesis (13).

However, cancer initiation processes cannot be observed,

and some operable and time-saving approaches are necessary

to manipulate the zebrafish genome and to mimic cancer
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Figure 1.

A, Methods of cancer generation in adult and embryo zebrafish. B, Transplant assays in zebrafish.
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initiation and progression. There are different ways to induce

cancer in zebrafish, such as chemical mutagenesis, irradiation

mutagenesis, insertional mutagenesis, which can be transpo-

son-based, or viral vector mutagenesis. Until now, researchers

forced the development of several cancer types using chemicals

by adding carcinogens to the water, such as dibenzo(a,l)pyrene

(DBP), 7,2-dimethylbenz(a)anthracene (DMBA), N-methyl-N�-

nitro-N-nitrosoguanidine (MNNG), N-dimethylnitrosamine

(DEN), N-nitrosodiethylamine (NDMA), and N-ethyl-N-nitro-

sourea (ENU; Supplementary Table S3).

The genome engineering field has experienced an unprecedent-

ed rate of growth in recent years since the introduction of designer

endonucleases. Genome engineering has not gone far in the field

of zebrafish, and researchers use reverse genetics to induce cancer

in zebrafish. These methods could imply the inactivation of a

concrete gene or the conditional gene regulation through genome

editing. The most used techniques to edit the genome and its

application in zebrafish is shown in Supplementary Table S4.

Other techniques to perform reverse genetic alterations such as

morpholinos and RNAi have been less studied due to the limita-

tions that are present (14, 15).

Transgenic lines

Researchers induce transgenic zebrafish models by microin-

jecting exogenous DNA into one-cell-stage zebrafish embryos,

which originate misexpression of wild-type or constitutively

active from oncogenes under a zebrafish tissue-specific pro-

moter (16). The major drawback of this method is the difficulty

in generating stable lines, as the deleterious effects that strong

oncogenes could cause. Thus, researches have established con-

ditional transgenic approaches, which could be spatial or

temporal control. Spatial control restricts the expression of

oncogenes to a specific tissue based on the use of tissue-specific

promoters (17). Some methods that allow spatial control are

the Gal4/UAS system, site-specific recombinases such as Cre/

loxP, Flp/frt, phiC31, and Dre/rox-system (18–22). Temporal

control of oncogene expression or inactivation of tumor sup-

pressors can be achieved by heat shock, hormones, Tet-On and

Tet-Off system, and optogenetics. Several examples of cancer

models carried out in zebrafish using genetics approaches are

shown in Supplementary Table S5.

Transplantation of tumor cells in zebrafish

Another approach to generate cancer in zebrafish is the trans-

plantation of tumor cells. Diverse engraftment assays can be

carried out in zebrafish (Fig. 1B). This model of cancer induction

is an ideal tool to understand the processes of angiogenesis, tumor

cell extravasation, migration, and metastasis (23–25). This pro-

cedure has many variables to consider, such as the origin of the

donor material. Most of the studies are criticized for use of

established cell lines to carry out xenotransplantation assays. This

is not considered to be presenting the same conditions of a cancer,

as it has been proven that the tumor microenvironment changes

spatially and temporally (26). In addition, there is heterogeneity

in a tumor, as well as genetic evolution that a commercialized cell

line cannot offer (27). Another variable is the microinjection site

of the tumor cells, which can vary depending on the develop-

mental stage of the zebrafish. Yolk is the most common injection

location, as it provides a large site to house transplanted cells and

facilitate manual transplantation in comparison with other smal-

ler regions also injected in zebrafish, such as the duct of Cuvier,

caudal vain, or heart (26). Cells to be injected require in vivo

pretreatment with cell membrane stains such as CMDiL or

transfection to express GFP for visualization after transplant

because of the fluorescent signal (26). At present, it is common

to screen embryos injected with the appropriate number of

cells, as it is still challenging to obtain a reproducible volume of

cell administration (28).

One of the main drawbacks of transplantation is the immune

rejection of the inoculated tumor cells. In mouse models, a

strategy to avoid that process is the use of the NOD/SCIDmouse,

which presents multiple immunologic alterations, such as the

immunosuppression of T, B, and natural killer cells (29). In

addition, some chemicals and irradiation are able to act as

suppressors of the immune system (30). Zebrafish embryos have

not completely developed their innate and adaptive immune

system until 21 days of life (31). At that moment, immature

T and B cells reach the thymus, finalizing the process of immune

maturation (32). This lack of immune defense until 3 to 4 days

post fertilization (dpf) prevents the requirement of immunosup-

pression, and thus, an embryo model is preferable in transplan-

tation assays (33).

In contrast, adults require immune system ablation to avoid

engraftment rejection. An important fact to take into account in

zebrafish cancermodels is the stage in which the assays are carried

out. Methods applied to achieve immunosuppression in adult

zebrafish are similar to mouse model approaches. Traver and

colleagues proved that sublethal radiation (20–25 Gy) produced

immune ablation and 90% survival (34). Subsequently, hema-

topoiesis is reinitiated 12 days after irradiation, and themarrow is

fully restored by 20days after irradiation, killing engrafted cells. In

embryos 6 dpf to 1 month old, 15 Gy of gamma-irradiation can

ablate T cells (35). Another strategy for immunosuppression is

chemical treatment with dexamethasone. This treatment sup-

presses T and B cells, allowing solid tumor transplantation

(36). The 5-day-old zebrafish embryos could be immunosup-

pressed with 250 mg/mL of dexamethasone 1 to 3 days before

transplant (35). Furthermore, transplant could be carried out in

immune-compromised zebrafish, allowing long-term engraft-

ment assays and avoiding preconditioning (37). Some immu-

nocompromised transgenic zebrafish have been developed,

such as recombinant activating gene 1 (rag 1) or v-myb avian

myeloblastosis viral oncogene homolog (myb) mutants. However,

these mutants are not commonly used in transplant experi-

ments because the lines are difficult to maintain, and they have

other associated diseases (38, 39). Most recently, a recombina-

tion activating gene 2 (rag 2) mutant has been used to transplant

tumor cells (40). The major disadvantage of the immunosup-

pressant method is the inability to study the relationship

between immune cells and tumor growth (37).

The transplantation of tumor cells from a donor fish to a

genetically identical recipient, known as clonal or syngeneic fish,

avoids the immunosuppression requirement (41). In this case, as

the immune system is fully activated, the study of interaction

between immune cells and tumor is feasible, as is long-term

engraftment. However, this method has the limitation of the

complexity in the line achievement (37). Zhang and colleagues

developed a novel tumor cell transplantation strategy without

immunosuppression requirement. This method consists of trans-

planting irradiated human tumor cells into a zebrafish embryo

and retransplanting nonirradiated cells into the same zebrafish 3

months later (42).

Letrado et al.
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Allotransplantation of zebrafish tumor cells. Allogenic transplan-

tation is the transfer of cells, organs, or tissues fromone individual

into another of the same species. In allograft assays, donor

zebrafish suffering from cancer could be obtained by all the

methods previously described. Zebrafish recipients require pre-

conditioning treatment if they are not syngeneic or immunosup-

pressed individuals (Supplementary Table S6).

Xenotransplantation of tumor cells. Xenografting is the process of

implanting living tumor cells fromone species to another. Lee and

colleagues performed the first xenotransplant of human cancer

cells to zebrafish embryos to resemble melanoma (43). Tumor

cell behavior in zebrafish xenograftmodels correlateswith human

cancers (44). Most of the assays carried out are implemented in

zebrafish embryos owing to the advantages that this developmen-

tal stage offers (Supplementary Table S7).

However, Stoletov and colleagues transplanted several tumor

cell lines, such as fibrosarcoma (HT1080) and melanoma (MDA-

435, B16), into juvenile 25- to 30-day-old zebrafish treated with

dexamethasone to study metastasis by confocal imaging and

histology assays (35).

An emerging approach to translational cancer research is the

patient-derived xenograft in zebrafish embryos (zPDX). Tumor

cells from primary or metastatic human cancers collected

by surgery or biopsy procedures are transplanted into zebrafish.

This approach provides information about the effectiveness

of a treatment, as cells have the same molecular, genetic, and

clinical characteristics as the donor. PDX have been broadly

developed in mouse models. However, this model presents

some limitations that zPDX overcome such as the time required

to develop tumor and sample quantity required from each

patient (45). Models of several cancer types have been devel-

oped using this technique as gastric, breast, or neuroendocrine

cancers (46–48). Furthermore, Fior and colleagues showed the

reliability of this model by comparing responses to chemo-

therapy and biological therapies between patients and colorec-

tal zPDX (49, 50).

Orthotopic transplantation of tumor cells. Another approach to

xenograft experiments is the orthotopic transplantation of

tumor cells. This consists of cell implantation into the same

site or organ in which cancer has developed in the donor. Some

orthograft assays performed in zebrafish are shown in Supple-

mentary Table S8.

Zebrafish embryos are transparent, allowing visual observa-

tion of labeled tumor cells by imaging equipment. Consequent-

ly, embryos are the most common stage selected for this sort of

study. However, they have not developed every adult organ yet,

limiting the tissues where orthotopic transplantation could be

performed. In most of the transplantation experiments, cells are

inoculated into the yolk of zebrafish embryos, avoiding an

orthograft approach. In other cases, it is not possible due to the

absence of a concrete organ in zebrafish, such as for breast,

lung, or prostate cancer (26). Therefore, Eden and colleagues

successfully transplanted mouse tumor cells into the brain of a

30-day-old adult zebrafish previously immunosuppressed with

dexamethasone (51). The orthotopic transplantation is more

efficient and closer to human metastasis (52). The main dis-

advantage of this method is the time-consuming and complex

nature of the procedure, as well as the limitation of imaging

monitoring.

Monitoring Cancer Processes in Zebrafish

Once the cancer induction or engraftment is accomplished,

in vivomonitoring of tumor processes in zebrafish requires specific

and expensive imaging techniques and qualified personnel. Some

of the approaches used in cancer monitoring in zebrafish are

shown in Supplementary Table S9.

In terms of transplantation assays, there are some strategies to

track and label in vivo tumor cells using fluorescence microscopy

such asfluorescent protein-based reporters or labeling approaches

without the gene transfer requirement. At present, membrane

dyes as lipophilic carbocyanine dyes (DiO, DiI, DiD, and DiR)

have become routinely used to image real-time cancer process at

the single-cell level (53).

Furthermore,many imagingmethods have been recently devel-

oped to enable more accurate imaging analysis. Ghotra and

colleagues established a quantitative bioimaging platform to

study human cancer dissemination in a xenograft assay (54).

Kumar and colleagues described 3D-fluorescence imaging using

angularly multiplexed optical projection tomography with com-

pressive sensing to observe tumor progression and vasculature

development in live, nonpigmented adult zebrafish (55). In

terms of screening assays, in which researchers need to analyze

large numbers of images, Pardo-Martin and colleagues developed

a vertebrate automated screening technology (VAST) that

allows automatic manipulation and imaging collection (56).

Then, this tool was improved as the VAST BioImager system,

providing automatic handling, positioning, orientating, and

high-resolution imaging collection (57).

As has been previously introduced, zebrafish is a very versatile

model, which allows the development of many transgenic indi-

viduals, improving the study of cancer processes. White and

colleagues described a transparent adult zebrafish called casper,

which has homozygous mutations in two pigmentation loci (7).

Benjamin and Hynes were able to visualize in vivo metastasis by

using this zebrafish mutant after the ZMEL1 cell transplantation

(58). Heilmann and colleagues developed a quantitative system

to study metastasis to end up with the semiquantitative detection

and low signal-to-noise ratio analyses (59). Chen and colleagues

created a transgenic line to facilitate luciferase-based imaging in

zebrafish, allowing deep tissue visualization in freely swimming

animals (60). Furthermore, some transgenic zebrafish lines have

the vasculature marked, such as fli-GFP, mtie2-GFP, and flik-EGFP

(61–63).

Tumor cell transplantation methods together with the diverse

available imaging tools serve to visualize and clarify the insight of

tumor processes. (i) Park and colleagues described pancreatic

tumor initiation in a KRASG12V transgenic zebrafishmodel (64).

(ii) Neovascularization and behavior of metastatic adenocarci-

noma MD-435 cells were visualized in a fli2-EGFP transgenic

model (35). (iii) Ghotra and colleagues observed migration and

dissemination of prostate CMDil-labeled cells transplanted into a

flik-EGFP transgenic zebrafish (54). (iv) Invasion assays were

carried out by xenografting human tumor cells into the same

transgenic zebrafish (65). (v) Tumor and immune system inter-

actionwas optically studiedbyWang and colleagueswhenhuman

ovarian cells were transplanted into vascularized-labeled zebra-

fish (66).

Other ex vivo approaches monitor tumor processes in ways that

differ from imaging. For instance, xenotransplantation observa-

tion could be performed by dissociating injected embryos into a

Zebrafish: A Window into Cancer
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single-cell suspension and counting the average number of fluo-

rescent cells with a microscope (67). In other studies, qPCR was

performed to detect a cancer-specific gene or human housekeep-

ing gene in order to evaluate tumor progression (68, 69).

Zebrafish Cancer Model in Drug Discovery

Because of all the previously described advantages that the

zebrafish animal model presents, it has recently stood out in the

drug discovery process (i) to identify molecules that specifically

ameliorate a disease phenotype and (ii) to perform detailed

characterization studies around optimized compounds, focusing

not only on efficacy (dose-response) but also on toxicity and/or

mechanism. Furthermore, personalized treatments are feasible

thanks to the development of zPDX, looking at precision cancer

medicine.

In terms of cancer, to the best of our knowledge, there are 355

cases reported in the literature where this animal model became a

fundamental tool in the drug discovery process, from the discov-

ery of new compounds, or known drugs, with antitumoral activity

to detailed therapeutic assessment of optimizedmolecules (dose-

response, toxicity, and/or pathway studies).

Zebrafish in screening campaigns: Advantages and setup

considerations

Small-molecule screens are widely used to identify new ther-

apeutics. In this context, cell-based and biochemical drug screen-

ings have played an important role in the identification of new

activemolecules from large libraries of compounds. Nevertheless,

in recent years, whole organism screenings have emerged as a

promising alternative to test thousands of molecules. Zebrafish is

undoubtedly an interesting approach for this purpose, represent-

ing a reliable, low-cost, and rapid option to perform screenings of

large libraries and assess their immediate therapeutic relevance.

Rennekamp and Peterson reviewed the advantages in zebrafish

chemical screening, its limitations, and the impact of zebrafish on

chemical biology (70).

Murphey and Zon broadly reviewed the small-molecule

screening methods that could be performed (71). These

assays carried out in zebrafish consider in vivo small-molecule

activity and take into account metabolism, toxicity, pharma-

cokinetics, pharmacodynamics, and cell–cell interactions, pro-

viding important information in an early developmental

stage that cannot be obtained with traditional biochemical or

cell-based screenings (72). Furthermore, this methodology

allows the identification of a therapeutic compound without

knowing the exact mechanism of the disease (73). In addition,

an advantage against the traditional murine model is the

requirement of fewer amounts of experimental chemicals,

reducing the difficulty and costs associated with the collection

procedures (74).

In terms of logistics, screenings with zebrafish can be adapted

from6- to 384-well plates using a variable number of embryos per

well, but assays are commonly conducted in 96-well plates. Until

now, distribution of these embryos into plates has mainly been

performed by hand, but recently, this process has also been

automated (75). This fact, together with the possibility of obtain-

ing large numbers of synchronized embryos, opens the possibility

to screen larger compound libraries. Regarding the readout of the

screening, a wide variety of scoring phenotypes can be adapted to

these screenings, depending on the study goal. Especially inter-

esting aremorphology changes that canbe easily observed in early

stages of life thanks to the transparency of zebrafish larvae.

According to assay output, phenotypic screening could be mor-

phologic, therapeutic, pathway, or behavioral (76).

Different libraries of compounds can be used in zebrafish

screening, from small collections of characterized compounds to

larger libraries of thousands of compounds (77). The election of

the drug library applied to the screening test depends on the aim

of the study. Novel compounds libraries are applied to identify

new chemical series and/or mechanisms of action. The corre-

sponding initial hits may initiate a drug discovery project; on the

other hand, testing FDA-approved compounds may lead to drug

repositioning.

Compound administration and pharmacokinetics

The classical administration of drug is achieved by dissolving

the compounddirectly in thefishwater (8). Zebrafish embryos are

able to absorb solubilized compounds, allowing feasible admin-

istration (16). Zhang and colleagues showed that 3 dpf zebrafish

absorbed drugs through the skin and swallowing (78).

However, this method has associated challenges to overcome,

such as the variability in the molecule solubility, possible pre-

cipitation, and the permeability of the compound. If the drug is

not soluble in water, vehicles such as dimethyl sulfoxide can be

used, as zebrafish can survive in solutions of 1% (28). Direct

administration requires invasive intraperitoneal or retro-orbital

injection, which could prevent long-term drug assays (79, 80). To

overcome this drawback, Dang and colleagues developed an oral

gavage and anesthesia method in adult zebrafish for cancer

preclinical studies (81). Furthermore, artificial oil bodies with

phospholipids have been developed in order to obtain noninva-

sive drug administration (82). Kulkarni and colleagues also

reported a novel method for oral administration: inserting a

micropipette with a small tip into the mouth and pharynx of

adult zebrafish, avoiding the variabilitywhen chemicals are added

to the aquarium water (83).

In addition, zebrafish recently stood out as a tool to develop

and test new drug administration strategies such as nanoparticles

(84). Therefore, it is difficult to predict how much drug will be

absorbed. Depending on the fish developmental stage, entry sites

for small molecules are not the same, and as a consequence, the

results of the screening can also be different. In addition to using a

whole organism, other aspects such as genetic penetrance, in vivo

chemical modification, or pharmacokinetics (a critical aspect,

elaborated below) can alter the results.

Drugs that target human proteins might have different effects

in zebrafish, as they present more than one ortholog to human

proteins. However, previous pharmacokinetic studies have

demonstrated that zebrafish larvae have the ability to perform

phase I and phase II metabolism reactions (85). Drug distri-

bution, metabolism, excretion, and allocation into specific

organs are replicated in zebrafish, as they possess a full com-

plement of the major drug-metabolizing cytochrome P45O

enzymes presented in humans (86). A similarity between

zebrafish and higher vertebrates in terms of blood–brain barrier

(BBB) permeability has also been demonstrated (87). Together,

these data suggest that this animal model could be an excellent

model for studying the pharmacokinetic profile of new drugs,

but to date, few examples have been published. Kulkarni and

colleagues first described a simple method to study the phar-

macokinetics of carbamazepine in adult zebrafish, suggesting

Letrado et al.
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that this animal may be an excellent model for studying oral

pharmacokinetic and BBB permeability (83).

Later, Kantae and colleagues published the development of

an analytical method based on UPLC and mass spectrometric

detection to study paracetamol and its metabolites in zebrafish

larvae. They used larvae at 3 dpf and concluded that clearance

of paracetamol is lower than in higher vertebrates but correlates

well to values in immature individuals, probably due to the

immaturity of enzymes in zebrafish at 3 dpf (88). Finally, Zhuo

and colleagues reported the study of the pharmacokinetic

profile and distribution of tramadol and two metabolites in

zebrafish by electrospray ionization-quadrupole-time of flight/

mass spectrometry and gas chromatography/mass spectrome-

try. They compared the results using different doses and admin-

istration methods (oral and intramuscular) and validated their

method for the analysis of different tissues, such as brain, eyes,

muscle, and gills (89).

Case studies

This review compiles the case studies reported so far. To the best

of our knowledge, there are 355 in which zebrafish was employed

in any step of the cancer drug discovery process. As shown

in Fig. 2A, most of these studies used zebrafish as in vivo models

to evaluate the antitumoral efficacy of lead compounds, detailed

efficacy studies together with toxicity and/or mechanistic studies

(named "Compound activity testing"). In these terms, zebrafish

assays enable structure–activity relationship analyses of newly

designed molecules, natural bioactive extracts, and analogs of

known antitumoral compounds (90–92). Furthermore, within

the cases encompassed in this classification, other studies

employed molecules with known effects against cancer to deci-

pher the underlying mechanism of action, to validate new targets

or to identify novel pathways (90–94). On the other hand,

zebrafish screenings have become recently widespread because

they provide a feasible tool to perform high-throughput pheno-

typic screens (73). In this regard, we have identified several cases

in which this animal model was used to perform phenotypic

screenings of a large number of molecules to identify new hits

for a drug discovery project (named "Compound screening"

in Fig. 2A). In these studies, proprietary as well as commercially

available libraries, both focused and diverse, have been used

(95, 96). Finally, repurposing of approved drugs using zebrafish

to discover a potential antitumoral indication has been less

frequently described (named "Drug reprofiling" in Fig. 2A). To

the best of our knowledge, despite the cost- and time-effective

advantages of this approach, only 5 successful cases of repurpos-

ing have been reported to date. All details of these 355 studies are

described in the Supplementary Information and report for each

of the following: (i) the aim of the study (activity test, screening

campaign, or drug reprofiling), (ii) subject matter, (iii) cancer

type, (iv) assay type (xenograft, angiogenesis, etc.), and (v)

corresponding reference.

The first compound identified by zebrafish screening that

reached phase I clinical trial was reported in 2013. This molecule,

ProHema, was discovered after testing 2,500 compounds. Pro-

Hema is derived from Prostaglandin E2 and increases the engraft-

ment of umbilical cord blood stem cells in transplant assays (97,

98). At the present time, two clinical trials using this compound

against hematologic malignancies have been completed (identi-

fier: NCT00890500, NCT02354417; ref. 99). Taking into account

the potential immediate impact of drug repositioning onpatients,

we want to highlight some successful cases. In 2010, Wang and

colleagues identified Rosuvastatin, a compound approved to

treat hypercholesterolemia, atherosclerosis, and cardiovascular

diseases, as an antiangiogenesis drug. In a zebrafish chemical

screening, this drug suppressed prostate tumor growth by

inhibiting endothelial cell function (100). Furthermore, at

present a phase II clinical trial has been conducted to evaluate

the antitumoral effect of Rosuvastatin to treat rectal cancer

(identifier: NCT02569645; ref. 99). White and colleagues per-

formed an antimelanoma screening in zebrafish. In this case,

inhibitors of dihydroorotate dehydrogenase such as lefluno-

mide, used as arthritis treatment, showed inhibition of tran-

scriptional elongation of genes related with melanoma growth;

these molecules have been tested in phase I/II clinical trials for

the treatment of human melanoma in combination with

vemurafenib (identifier: NCT01611675; refs. 99, 101). On the

other hand, using two complementary screenings, Gutierrez

and colleagues identified several drugs effective against T-cell

acute lymphoblastic leukemia. Although the origin of their

antiproliferative activity is unknown, and it is thought to

involve several mechanisms of action, zebrafish screening

showed the antitumoral activity of perphenazine (PPZ), an

FDA-approved antipsychotic drug (102). To date, there is no

cancer clinical trial employing this drug (99). Testing a com-

mercial library of pharmacologically active compounds in a

transgenic zebrafish screening, Evason and colleagues identified

two antidepressants that suppressed the hepatocellular carci-

noma phenotype (amitriptyline and paroxetine) by suppres-

sing the b-catenin pathway (103). Furthermore, Fernandez del

Ama and colleagues discovered the antimelanoma effects of

rapamycin, disulfiram, and tanshinone in synergy with MEK

and PI3K/mTOR pathway inhibitors (104). Another successful

case of cancer reprofiling in a zebrafish model was the anti-

angiogenic effect showed by closantel, a veterinary anthelmin-

tic drug (105).

As shown in Fig. 2B, most of the reported studies employed

zebrafish (i) to assess the antitumoral activity of compounds by

using transgenic zebrafish, phenotype assays, or xenograft experi-

ments, as well as (ii) to resemble a specific human cancer type

(named "Specific antitumoral activity"). Furthermore,most of the

reported studies test antitumoral effects against more than one

cancer type.Many cancermodels have been described in zebrafish

(16). As shown in the figure, the cancer types most commonly

studied in zebrafish in thedrugdiscovery process are breast cancer,

leukemia, lung cancer, and melanoma, demonstrating the out-

standing versatility of this animal model. As angiogenesis is a

crucial process involved in tumor progression and spreading,

many anticancer therapies focus on targeting these molecular

pathways. Furthermore, lymphatic vessel formation is involved

in cancer metastasis and progression, becoming a new target for

anticancer therapy (106). The transparency of zebrafish embryos

and the development of transgenic zebrafish with labeled vascu-

lature enable the visualization of de novo blood and lymphatic

vessel formation, providing a feasible zebrafish phenotypic obser-

vation to identify hits that disrupt these pathways (studies named

"Anti-angiogenic activity" and "Anti-lymphatic activity"; ref. 107).

Moreover, signaling pathways involved in embryonic develop-

ment, such as TGFb, Notch, orWnt, aswell as cellularmechanisms

such as apoptosis and cell-cycle regulation, are also related to

cancer development when deregulated (108, 109). In zebrafish,

alterations of these pathways can be easily observed
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phenotypically as developmental disruptions. Other case studies

identified compounds using mutant or transgenic zebrafish to

identify antitumoral activity, but not against a specific tumor type

(named "Anti-tumoral activity").

Conclusion and Perspectives

The zebrafish in vivomodel providesmany advantages in cancer

research in comparison with the broadly used traditional in vitro

cell model and the in vivomurine model. Due to its maintenance

costs, work feasibility, and simplicity to obtain cancer pheno-

types, zebrafish has recently become ameaningful tool in science.

In terms of cancer research, zebrafish allows scientists to study

procedures such as tumor formation,migration, andmetastasis as

well as to perform an agile identification of the optimalmolecule,

or/and known drug (repositioning), to treat each different tumor

types. Some of these strengths are as follows: (i) Adult zebrafish

spawns large numbers of embryos in each clutch, providing a

high-confidence statistical analysis method (4). (ii) Currently,

several approaches to induce cancer in zebrafish have been

© 2018 American Association for Cancer Research
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Figure 2.

A, Classification of the 355 reported case studies in zebrafish, cancer drug discovery projects, according to the aim of the study. B, Left graph represents studies

reported in literature classified by the subjectmatter. Right graph shows cancer types studied in cases encompass in "Specific anti-tumoral activity."All details about

the 355 case studies are described in Supplementary Table S10.
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broadly described, from mutation and transgenesis to transplan-

tation techniques. (iii) Tumor formation is a rapid process, only

requiring from10–14 days to 1month, compared with that of the

traditional murine model that needs up to 4 months to observe

the complete process (12, 110). (iv) Zebrafish cancer has been

proven to be similar to human cancer (10). (v) In terms of

logistics, embryos can be placed in 96-well plates, allowing

high-throughput studies to test thousands of chemical com-

pounds, thereby reducing time and costs in chemical screenings

and leading to results of immediate therapeutic relevance

(111). (vi) Transparency of the embryos and the development

of new mutants without pigmentation, such as the casper

zebrafish, offer the possibility to visualize all of these cancer

processes (7). (vii) Most of the compounds can be dissolved in

water as a feasible method of administration (8). (viii)

Although there are few cases reported in the literature in which

zebrafish was successfully employed in drug discovery and

reprofiling, several compounds reached a phase II clinical trial,

showing the advantages that the zebrafish animal model pro-

vides (99, 100). (ix) Several studies show the reliability of zPDX

model for different cancer types as it is able to overcome some

drawbacks of the murine PDX such as time required to develop

a model ready for preclinical study (45–50).

However, from cancer drug discovery perspective, zebrafish still

presents some limitations that should be overcome in a near

future. As reported below, there are specific challenges that have to

be facedmore efficiently; in fact, they require further development

and refinement:

* High-resolution imaging techniques. Monitoring cancer in

zebrafish needs specific equipment and transgenic animals. In

addition, cells should be labeled (7, 112), although new

imaging systems have been developed such as a linear-CCD

"charge-coupled device"–based flow imaging system that

allows high-throughput imaging of dozens of embryos per

second (113). Furthermore, real-time zebrafish monitoring

has been achieved thanks to the improvement of immobili-

zation techniques. Most of them are based on microfluidic

plates and chips that enable cost-effective phenotype-based

screenings and feasible drug administration (114, 115).
* Immune system. Themajority of studies must be carried out in

an embryo stage, as the immune system is not completely

developed, and the assays performed in an advanced stage

should be immunosuppressed (34, 35). By the application of

the techniques described in an advanced development stage,

the results would resemble the real behavior of cancer in

humans (25). Casey and colleagues achieved the allotransplan-

tation of pediatric brain tumors into immune-competent zeb-

rafish (116). Furthermore, this in vivomodel has broadened its

application in drug discovery processes as it has been recently

employed in immunotherapeutic drug screenings (117).
* Compound administration. Direct and long-term adminis-

tration is a drawback in zebrafish assays, as methods used at

present are very invasive, and it is difficult to predict whether

the drug was absorbed by the zebrafish (26). Monstad-

Rios and colleagues developed a 3D printed system for

cost-effective drug administration in adult zebrafish enabling

small-molecular screenings in postembryonic models (118).
* Pharmacokinetics and pharmacodynamics. Although it has

been demonstrated that larvae have the ability to perform

metabolism reactions, and their drug distribution, metab-

olism, excretion, and allocation are similar to humans,

these fields are scarcely explored in zebrafish (86). A very

recent study, using a zebrafish orthotopic glioblastoma

xenograft model, was able to monitor compounds crossing

the BBB and identify a drug that efficiently passes through

the BBB (119).
* Tumor microenvironment. Some cancer processes proven to

be very relevant in tumor formation, such as the tumor

microenvironment, are seldom studied in zebrafish (120).

However, a cancer stem cell xenograft model developed by

Chen and colleagues enabled the study of interaction with

microenvironment during bonemetastasis progression (121).

On the other hand, zebrafish has become a versatile and

reliable tool in cancer research due to emerging approaches that

may have a huge impact on cancer drug discovery process in the

near future:

* Bioenergetic-based screening. Ibjazehiebo and colleagues per-

formed an in vivo bioenergetic screening in zebrafish for

epilepsy (122). As cancer energy metabolism plays a key role

in cell progression, tumor bioenergetics stands out as a new

target for cancer therapies (123). Therefore, this approach

could be currently applied in antitumoral screenings using

zebrafish.
* zPDX. This approach is probably the most relevant, from a

translational perspective, in cancer drug discovery using zeb-

rafish. Every patient and its corresponding tumor type may

respond in a different manner to drugs; then, efficient models

providing fast and reliable assessments for personalized treat-

ments might provide an outstanding added value for preci-

sion cancer medicine (49, 124).
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