
1

Vol.:(0123456789)

Scientific Reports |         (2021) 11:3219  | https://doi.org/10.1038/s41598-021-81997-9

www.nature.com/scientificreports

Zebrafish tracking using YOLOv2 
and Kalman filter
Marta de Oliveira Barreiros1*, Diego de Oliveira Dantas1,2, Luís Claudio de Oliveira Silva1,2, 
Sidarta Ribeiro3 & Allan Kardec Barros1

Fish show rapid movements in various behavioral activities or associated with the presence of food. 
However, in periods of rapid movement, the rate at which occlusion occurs among the fish is quite 
high, causing inconsistency in the detection and tracking of fish, hindering the fish’s identity and 
behavioral trajectory over a long period of time. Although some algorithms have been proposed to 
solve these problems, most of their applications were made in groups of fish that swim in shallow 
water and calm behavior, with few sudden movements. To solve these problems, a convolutional 
network of object recognition, YOLOv2, was used to delimit the region of the fish heads to optimize 
individual fish detection. In the tracking phase, the Kalman filter was used to estimate the best 
state of the fish’s head position in each frame and, subsequently, the trajectories of each fish were 
connected among the frames. The results of the algorithm show adequate performances in the 
trajectories of groups of zebrafish that exhibited rapid movements.

Social and collective in�uence is a major challenge for contemporary science, being important for advances in 
several �elds, such as in the organization and in the exchange of  information1. In groups of animals, behavior 
has been extensively studied to assess communication among members of the group and obtain a good per-
formance of tasks together. In this sense, there is a growing interest among researchers to assess the collective 
behavior of animals in order to explain their cognitive  evolution2. Given this perspective, many researches were 
based on animal behavior, as well as the creation of bioinspired algorithms for solving optimization  problems3,4 
and behavioral assessment systems 5–8, employed in several areas of knowledge. Among the computer vision 
algorithms for assessing behavior, the methods for tracking objects are the most commonly used, as they allow 
a thorough assessment of the unexpected movements of di�erent groups of animals, essential for the analysis 
of collective behavior 9–17.

Zebra�sh (Danio rerio) are widely adopted as a study model in biology 9–11,17–20, their school of �sh can rep-
resent di�erent systems of communication and behavior. In addition, to study the individual behavior of �sh in 
detail, tracking various objects is the most appropriate way. Most tracking systems are based on deep  learning19, 
particle  �lters21, adaptive  �lters9,10 and others 11–13,18,19,22. However, to be able to track the behavior of �sh for 
a long time, with minimal loss of identity throughout the frames, it is necessary to implement more complex 
systems that demand higher computational cost. Recently, a tracking system, idtracker.ai, was implemented with 
two convolutional networks simultaneously to improve the e�ciency of animal tracking: one network used to 
detect when animals touch or cross each other, making the necessary correction, and another one to identify 
each animal. �us, groups of zebra�sh of up to 100 �sh were tracked with an accuracy greater than 99.95%, in 
an environment with little  noise2.

Usually, the analysis is based on capturing frames in videos, processing the frame images for detection and 
tracking of the �sh school. However, some technical problems are recurrent when the evaluation of the school 
of �sh is done automatically, with a minimum of human interference. In this regard, many di�culties can be 
pointed out in data processing in the following steps: detection and tracking. In detection, it is common to have 
problems in the automatic identi�cation of �sh, and when the barycenter is used for detection, there may be 
limitations in detecting individuals completely; in addition, the failure to detect can exist in times of occlusion 
or when the visual structure of the �sh changes with sudden movements in the tank. On the other hand, track-
ing, which is a detection-dependent step, can present di�culties over time, where tracking can be lost due to 
complex �sh swimming, detection errors, trajectory fragmentation and, consequently, the loss of �sh  identity9,10.
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Several authors have proposed systems to solve these challenges, where they have created complex models 
of object identi�cation, color tag detection  systems14, object identi�cation  tags23, set of variables for unique 
identi�cation, time complexity algorithms in contour  identi�cation24 and, detection by separating the head 
and body of the  �sh9,12,20. However, these algorithms have a high complexity of analysis and processing, which 
requires greater amounts of frames per second when recording videos (about 60 to 100 frames per second)9, and 
sometimes they are semi-automatic25, requiring manual intervention to reconnect lost tracking.

�erefore, it is important that new algorithms minimize several of the problems mentioned above. In this 
sense, here is proposed a method using YOLOv2 convolutional  nets26,27, for delimiting the region of the �sh head 
for optimized individual �sh detection and Kalman �lter for tracking multiple �sh in adverse situations, solving 
problems such as: detection and continuous identi�cation of �sh during periods of fast swimming, analysis in 
low image resolutions, occlusions and minimum number of frames per second, thus showing precision in the 
trajectory of di�erent quantities of �sh.

Materials and methods
Ethics statement. All experimental procedures with animals were in compliance and approved by the Eth-
ics Committee on Animal Use (CEUA) of the Federal University of Maranhão (UFMA), campus of São Luís—
MA, Brazil (Protocol no. 23115.006194/2018-01). And the procedures were carried out in a way to minimize the 
animals’ su�ering.

Animals. Zebra�sh (Danio rerio), adults, of both sexes (n = 13), were obtained from a local pet store (São 
Luiz—MA, Brazil) and housed in a 22.5 L, 55 cm × 25 cm × 20 cm (length  ×  width  ×  depth). �e �sh were kept 
in a closed system with �ltered water for two weeks before �lming. �e water quality was monitored weekly, 
maintaining the temperature at 26 ± 1 °C and a pH control of approximately 7.2, with mechanical, biological and 
chemical �ltration. �e �sh were fed four times a day with commercial foods (38% protein, 4% lipids, Nutricom 
Pet). �e lighting was adjusted in a 12/12 h light/dark cycle.

Experimental apparatus. To assess the performance of the proposed tracking algorithm, several videos of 
varying lengths of di�erent groups of �sh were captured. �e �sh normally swam in the 45 cm × 25 cm × 20 cm 
(length × width × depth), another 10 cm was reserved for oxygenation, with water 10 cm deep, in a sandblasted 
glass tank on the external walls of the aquarium, avoiding the �sh mirroring e�ect in the detection process in the 
tracking algorithm. �e tank was placed horizontally above a �at light source of white LEDs (60 × 30 cm). �e 
light source was placed at the bottom of the water tank because, this way, the camera is able to capture backlit 
images and, the object’s body (�sh) being darker, without many texture resources, facilitates tracking. A full HD 
camera (C920 Logitech camera), up to 1920 × 1080 pixels, at 30 frames per second was mounted about 50 cm 
above the tank, the image plane being almost parallel to the water surface. �e experiment setup is shown in 
Fig. 1.

Proposed system. Figure 2 describes the proposed system for tracking each �sh in a group, consisting of 
three stages: delimiting of the �sh head region; detection; and tracking of the individual �sh to trace trajectories.

In the �rst step, a set of images with delimitations of the region of each �sh head in each frame is used for 
the initial training of the YOLOv2 network, then the process of marking the other regions of the �sh head is 
automated in the next frames. If the �sh head region is correctly delimited, the database can be extended and 
used as a training base for the convolutional network, otherwise the correction of the delimitation is done in the 

Figure 1.  Experiment setup. �e groups of zebra�sh swam in a sandblasted glass tank (le�), placed horizontally 
above a white LED panel. A camera was mounted above the tank. �e images were captured and processed by 
the computer (right).
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frames. In the second stage, new frames are given as an entrance to the convolutional network already trained 
in the previous stage. At this stage, the user enters the video into the system so that the �sh detection and track-
ing process is fully automated, without the need for new markings on the �sh head region, because with the 
trained network there is no need for new markings on the next entry videos. �us, the boundaries of the �sh 
head region in the new frames of the input video are de�ned by the YOLOv2 network trained in the �rst stage 
of the system, a�er which the output images are restored to the size of the input image. In this montage, parts 
of the images overlap, which results in duplications in the detection of �sh, these duplications are eliminated, 
using grid intersection. From the boundaries of the �sh head, the centroid of that region is calculated, being the 
position of the center of the �sh head. In addition to the centroid, an ellipse is calculated by Moments, de�ned 
to determine the angle of the �sh’s head, used in the next step.

Figure 2.  Flowchart of the system proposed for zebra�sh tracking. �e proposed system is divided into three 
main stages: delimitation of the �sh head, detection and tracking of the �sh. �e �rst stage delimits the region of 
the �sh head, used in training the YOLOv2 network to �nd the next regions in all frames, creating an extended 
database with all the delimitations of each �sh head in the frame. In the second stage, the user’s input images or 
test data are applied to the trained network for automatic delimitation of the �sh head region, then a correction 
is made to the regions found, if duplicated, and then the centroid is calculated to �nd the position of the �sh in 
the frame. �e head angle is also found at this stage to adjust the Kalman �lter; and in the last step, the Kalman 
Filter is used to predict the �sh’s next state, adjusting the cost function. Trajectories are linked and corrected to 
generate a complete trajectory for each �sh.
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In the third stage, a Kalman �lter is used to estimate the �sh’s next state, using the head angle for direction. 
From the estimated values, a cost function is minimized, allowing the creation of trajectories for each �sh. It 
is possible that in the estimation of the state of the �sh, there are �aws and, consequently, the trajectory is lost, 
thus, the links of the trajectories are modeled to connect the fragmented paths, achieving a correct trajectory of 
the �sh , that is, the reconnection of the lost path with the next started path, measured by the shortest distance. 
From these steps, it is possible to measure the behavioral levels of the �sh individually, such as speed, distance 
covered and agitation of the school.

YOLOv2 network. �e YOLOv2 convolutional network is the second version of  YOLO27. �is network 
is capable of detecting objects with higher performance than conventional detection methods. �e YOLOv2 
network can be executed in di�erent sizes, employing a combination of various techniques and training at vari-
ous  scales26,27. In addition, it provides good accuracy and speed of execution in relation to other convolutional 
 networks27. For the operation of the YOLOv2 algorithm, the image is divided into multiples grids that detect an 
object inside the grid, making the candidate’s bounding boxes have the same density as the axes of the detected 
objects. Each grid contains initial bounding boxes with di�erent parameters and a con�dence index from a 
convolution. �is index is the probability of the object falling into the bounded box. �en, YOLOv2 tries to 
eliminate, as much as possible, the bounding boxes that do not correspond to the class of the object, facilitating 
the learning of the  network26,28.

A�er the delineations of the �sh head regions are marked by the YOLOv2 network, a grid assembly process 
is established to form the complete image, using overlapping edges of the images. In this process, there may be 
objects located at the edges of the image and, consequently, the delimitations of the region of the �sh head can 
be duplicated. To resolve this duplication, the minimum intersection method is used, calculated by,

where A and B represent the bounding boxes for object detection. �e result is a de�ned score value that will 
pass a decision threshold, the choice, which will limit the detection of an object.

�e YOLOv2 network is composed of layers of convolution: Max Pooling, Relu, Batch Normalization and 
Anchor boxes. In the convolution layer, the backpropagation algorithm trains convolution core weights, shared 
by the entire image with the same parameters. Relu is a layer that uses an activation function to restrict the net-
work output in a non-linear way from the decision function and the general network, in addition to increasing 
the speed of the network training. Max Pooling serves to discretize the image, performing non-linear sampling 
on the interlayer image, dividing it into sets of non-overlapping regions. Batch normalization serves to increase 
improvements in convergence, without the need for other improvement methods. Finally, in anchor boxes is 
used to predict the coordinates of the bounding boxes of the �sh head region.

Centroid detection. �e �sh head region delimitation method is used to obtain information from the 
center of the �sh head; right a�er the YOLOv2 network �nds the correct regions, removing duplicates. �us, the 
central position of a given region, corresponding to the centroid of the moving �sh, found according to,

where, M00 represents the zero order moment of the �sh head region; M10 and M01 represent the moment of the 
�rst order; and R is a grayscale image of size w x h and location bounded by the YOLOv2 detection of an image 
used as an input, where w is the length and h is the pixel width of the bounding box found in the detection of 
YOLOv2.

�e coordinates of the centroid position (cxk , cyk ) of the k-th detected �sh head are shown in,

Motion direction detection. �e direction of the �sh’s movement is related to the ellipse adjusted on the 
�sh’s head. �e direction of movement is cθk , with a range of [0, 2π]. Equation (4) is used to �nd the �sh move-
ment orientation angle.
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where, pxk and pyk , respectively, represent the x and y position of the extremity of the k-th �sh head detected 
(Fig. 3).

Tracking method. To accurately estimate the movement of the �sh, the Kalman �lter was used to perform 
the tracking task. Because the movement of the �sh is considered to be a uniform linear motion from one frame 
to the other, the system can be approximated as a linear dynamic  model9,10,17. �e algorithm settings start with 
the status vector of the �sh’s location and orientation. �e coordinates of the k-th �sh head detected in the frame 
t  are indicated as (cxk ,t , cyk ,t , cθk ,t) , therefore, the state vector xt is de�ned as [cxk ,t , cyk ,t , cθk ,t , ċxk ,t , ċyk ,t , ċθk ,t ]

T . �e 
state and observation equation in the Kalman �lter can be described as:

where the F e H are the state transition and observation matrix of the target at i t, respectively, wt and vt are noise. 
�e �rst step of the Kalman �lter is to predict the state vector at instant t. �e estimate of the state vector x̂t and 
its error covariance P̂t at instant t  can be predicted by:

where Qt is the noise state covariance matrix vt , Pt−1 is the error covariance matrix in t − 1 and dt is the time 
interval between two frames.

�e second stage is the association of the predicted positions of each �sh by the Kalman �lter with the centroid 
of the �sh, in order to form the trajectory of each �sh in the pictures. �us, the association centroid of the �sh 
(cxk , cyk ) must follow the one-to-one criterion, and a tracker must be linked to a maximum of one value, which 
will be associated with a maximum of one tracker.

When the data association ends, the state vector and the error covariance matrix are updated by,

(5)
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Figure 3.  �e bounding box is represented by the yellow frame. �e centroid position ( cxk , cyk ) is represented 
by the yellow dot. �e end of the head position ( pxk , pxk ) is represented by the red dot. �e direction of 
movement of the �sh is represented by the green arrow that has an angle equal to cθk.
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where I is the identity matrix and Kt is the Kalman gain at instant t, calculated as,

where R is the covariance matrix of the observation noise vt .

Cost function. �e construction of the paths followed by the �sh are developed through Muncres’ imple-
mentation of the Hungrian  algorithm29. �is algorithm makes a direct assignment of m sources to k targets 
through an mxk matrix called a cost matrix. A matrix Pm×k , shown in Eq. (14), is created to save the cost of asso-
ciating source objects S = {s1, s2, . . . , sm} to the target objects R = {r1, r2, . . . , rk} in the frame t, where sm is a 
coordinate of the state variable of the observation variable in frame t-1,m is the number of predicted coordinates, 
rn is the coordinate variable of the observation,k is the number of detected coordinates.

�e element fsi ,rj in the matrix indicates the cost to connect the i-th predicted coordinate track s to the j-th 
detect coordinate r. �e value of P

(

si , rj
)

 is calculated according to Eq. (15)

where w1 and w2 are scalars used to weight each part of the function, sx,sy and sθ are, respectively, the coordinate 
values of the x, y axis and orientation θ of the �sh head detection, rx,ry and rθ are respectively the coordinate 
values of the x, y axis and orientation θ of the estimated coordinate.

�e path assigned for each �sh, frame by frame, is performed using the Muncres implementation of the 
hungrian algorithm, which looks for unique assignments, that is, it assigns the object of the previous frame i to 
only one target object j in the current frame.

Reconnection of the trajectory. Some trajectories may be lost over time, due to occlusion of the �sh 
and the corresponding interval between images, causing fragmentation of the trajectory. If the trajectory was 
incomplete compared to the initial trajectory, before a loss of identi�cation occurred, a second calculation of 
the trajectory was proposed based on Qian et al., and Wu et al.10,30. If no coordinate was associated in β con-
secutive frames, then the trajectory is interrupted. Position and time ( xend , yend , tend) trajectory Ŵi are stored in 
τi , where i is the trajectory number. If a new coordinate appears without any assignment, its position and time 
( xstart , ystart , tstart) trajectory Ŵj are stored in ρj , where j is the trajectory number. Assuming Ŵi an interrupted 
trajectory and Ŵj a trajectory with an unassigned coordinate, the connection of one trajectory with the other can 
be performed using the condition of Eq. (16)

�e condition in Eq. (16) indicates whether the distance between the start position of ρj and end τi is less than 
d, where d is a user-de�ned distance threshold value, if true trajectories are connected. If there is more than one 
interrupted trajectory, the condition of Eq. (16) is calculated following the order of the trajectory with the lowest 
value of tend up to the highest tend . In cases where there is more than one path without attribution, the connec-
tion is made with the coordinate ρj that presents a smaller distance between the trajectory τi , given by Eq. (17). 
Figure 4 illustrates the process of connecting an interrupted trajectory with a new trajectory.

Data ground truth. To quantitatively evaluate the proposed algorithm, the tracking performance was com-
pared with ground truth. �e basic truth data was manually labeled according to the position of the zebra�sh 
movements in each frame. Detection was done using the region of the �sh head. For each video recorded, a 
unique ID was assigned to a �sh. If the �sh was not marked or there was an occlusion, the �sh would be found 
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manually in the evaluation of each frame. A total of 15,106 frames were analyzed individually, in order to guar-
antee the consistency of the database and a good evaluation for the algorithm.

Detection evaluation metrics. �e detection performance evaluation was measured for all video 
sequences. A total of 15,106 frames were recorded manually to con�rm the performance of the algorithm in the 
correct identi�cation of the �sh, mainly in cases of occlusion. �us, precision and recovery rate methods were 
used to assess object detections. De�ned in the Eqs. (18) and (19):

where the value of true positive is the total number of correct detections in all frames; false negative is the total 
number of detections lost and false positive is the total of regions detected incorrectly. �at way, the metric 
Fmensure is the weighted calculation of precision and recall (Eq. 20).

In addition, the Similarity Index (SI) was used, which measures the number of correctly detected objects, 
penalizing undetected objects, whether due to occlusion or detection error. �at way, Nummissed is the number 
of undetected objects and NumGroundTruth is the number of objects detected from the ground truth (Eq. 21).

To evaluate the proposed method in case of occlusions, the metrics OR (occlusion ratio) and ODR (occlusion 
detection ratio) were used, presented in the Eqs. (22) and (23):

�e evaluation of detection’s performance was based on the error rate of undetected �sh (miss ratio) and 
the error rate of erroneous detection (error ratio), in which they are applied to evaluate the performance of the 
detection stage, calculated as the Eqs. (24) and (25),

(18)Precision =
TruePositive

TruePositive + FalsePositive

(19)Recall =
TruePositive

TruePositive + FalseNegative

(20)Fmeasure =
2x(RecallxPrecision)

Recall + Precision

(21)SimilarityIndex = Fmeasure −

Nummissed

2xNumGroundTruth

(22)OR =

TotalNumberOfOcclusions

TotalNumberOfTargets

(23)ODR =

SuccessfulNumberOfOcclusionsDetection

TotalNumberOfOclusions

(24)MissRatio =

TotalNumberOfUndetectedFishInAllFrames

NumberOfFish × NumberOfFrames

(25)ErrorRatio =

TotalNumberOfWronglyDetectedFishInAllFrames

NumberOfFish × NumberOfFrames

Figure 4.  Reconnection of the trajectory of the �sh. In this situation there is an interrupted trajectory Ŵ1 and 
two new trajectories Ŵ2 e Ŵ3 . For trajectory connection Ŵ1 the condition of Eq. (16) is veri�ed with respect to 
the trajectories Ŵ2 e Ŵ3 . If the result is true for both trajectories, the trajectory chosen for the connection is 
the one with the shortest distance de�ned by Eq. (17). In the �gure, the lowest value is Dist(ρ2, τ1) , then their 
trajectories can be connected.
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Tracking evaluation metrics. �e tracking performance of the proposed system was assessed using the 
Correct Tracking Rate Index (CTR), which describes the percentage of frames correctly tracked for a single �sh, 
such as Eq. 26:

And the correct identi�cation reason (CIR) that represents the probability of correct identi�cation of all �sh 
a�er an occlusion, such as Eq. (27):

Results
Video data set for analysis. To test the proposed system, we used benchmarks containing eight video 
sequences, six of which are video sequences related to our own experiment (D1–D6, see videos S1–S6), having 
a total of 8427 frames with 1920 × 1080 resolution; and two sequences of videos available from previous publica-
tions, being D7 and D8 (Romero-Ferrero et al.2; see videos S7 and S8) with a total of 6820 frames (3712 × 3712 
resolution). All data sets were recorded at 30 frames. Tracking performance was compared to ground truth data. 
�e videos had di�erent durations and number of �sh, ranging from 3 to 100 �sh, and are described on Table 1. 
�e experimental apparatus is shown in Fig. 1. �e behavior of the �sh was measured by the average speed, 
showing two conditions of movement: slow and fast (feeding period). �e proposed tracking algorithm was 
developed using a personal computer (Intel Core i7 7700HQ CPU at 2800 8 GB RAM, Geforce gtx 1050 4 GB 
o�-board graphics card) using Matlab R2019b so�ware.

YOLOv2 network architecture. �e architecture of the YOLOv2 network used in this article is shown 
in Fig. 5. In this architecture, there are 24 layers, seven layers of convolution, six layers of Relu, three layers of 
Max Pooling, six layers of Batch normalization and two layers of anchoring. �e input layer corresponds to the 
network input, with the image size of 480 × 480 × 3. YOLO’s convolutional layers decrease the sample by a factor 
of 32, obtaining the delimitations of the region of the �sh head, with the convolution �lter size being a 3 × 3 block 
and the convolution step is 1. �e Max Pooling layer has the size 2 × 2, with step 2 and �lling 0. All main blocks 
have a Relu operation layer. At the end of the block, it has two layers of anchor boxes: one for transformation 
and one for output. �e �rst anchor layer transforms the output of the raw convolutional network into a format 
necessary to produce object detections; and the second de�nes the parameters of the anchor box, implement-
ing the loss function used to train the  detector31. In this way, YOLOv2 will be able to make use of the lower and 
upper level information, increasing the precision of the detection and location of the region of the �sh head in 
the image.

YOLOv2 network training. During the training, a set of 3200 image grids, 1100 image grids of videos 
from our experiment and 500 image grids from the database of Romero-Ferrero et  al2 (approximately 1600 
original size images) were initially manually labeled with the region of the �sh head, being fed into the YOLOv2 
network.

A�er the initial training, the YOLOv2 network was used to label and create the boundaries on the �sh heads 
in new images, forming an automatic labeling process. To validate the training, a test base was established to 
know the assertiveness of the labeling of �sh from the initial base, in case of wrong or missing labels. To improve 
the result of the initial training, the training base was extended with new images labeled and marked from the 
automatic process, but with manual corrections in the event of any error. �is process reduced the time to create 
a training base. When the training was able to create all the delimitations of the region of the �sh head correctly, 
the training base used was sent to the YOLOv2 network for o�cial training.

Because the YOLOv2 networks are trained and evaluated in small resolutions (228 × 228 in the case of 
resnet50) and the frame size of the proposed system is 1920 × 1080 pixels, the image when resized could lose 

(26)CTR =

∑
(NumberOfCorrectFramesOfSingleFish)

NumberOfFish × NumberOfFrames

(27)CIR =

TimesThatAllFishGetCorrectIdentityAfterOcclusion

NumberOfOclusionsEvents

Table 1.  List of videos used for zebra�sh tracking. FPS frames per second.

Dataset Fish Frames FPS Resolution Average speed per �sh (cm/s)

D1 3 904 30 1920 × 1080 9.42

D2 6 1,269 30 1920 × 1080 7.81

D3 8 789 30 1920 × 1080 6.37

D4 10 1,366 30 1920 × 1080 6.44

D5 13 2,422 30 1920 × 1080 7.44

D6_food 13 1,519 30 1920 × 1080 10.22

D7 (idtracker.ai 2) 10 5,410 30 3712 × 3712 8.14

D8 (idtracker.ai 2) 100 1,410 30 3712 × 3712 7.49
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important features of the region of the �sh head. �e input images from the YOLOv2 network were cut by divid-
ing the image in half. �e reduction is made by creating two grids of 960 × 1080 pixels with an overlap of 30 
pixels, totaling an image of 990 × 1080 pixels (Fig. 6). �en each grid is reduced to a dimension of 480 × 480pixels 
which is used as input to the YOLOv2 network. A�er the creation of the delimitations of the region of the �sh 
head in the images meshed by the net, the process of assembling the complete image is established, using the 
image overlay algorithm, and the correction of duplication of the region of the �sh head located on the edges 
of the grids (Fig. 6c). If this result is greater than the 0.4 threshold, then the same detection will be considered 

Figure 5.  Architecture of the proposed YOLOv2 network framework. �e input image has a size of 480 × 480, 
and each layer is reduced by �lters of up to 60 × 60. All combinations of the network architecture blocks have 
a convolution layer, Batch normalization and Relu, with the exception of the last layer that presents the exit 
through convolution and the anchor boxes. Only the three initial layers have Max pooling.

Figure 6.  Example of a grid image with overlapping edges and duplication of the delimitation the region of the 
�sh head. (a) Input image for YOLOv2 network divided into grids for the process of �sh detection. (b) Assembly 
of grids with overlapping edges. (c) �e red stripes represent the overlapping of the edges of the images during 
the assembly process (equivalent to 30 pixels wide). Fish were detected in the edge of grids and the correction 
was made using the grid intersection method presented in Eq. (1).
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and, thus, a single delimitation of the region of the �sh head will be assigned to the �sh located on the edge of 
the image. �is way, the detection of the delimitation of the region of the �sh head can appear at the edge of the 
grids without loss of data, but with duplication corrected.

�e YOLOv2 training protocol was based on MATLAB tools for convolutional networks, following the param-
eters of the convolution layers. �e training process was carried out for 300 periods, using a learning rate of 0.001.

Detection evaluation. �e results of the detection evaluation are presented in Table  2. �e proposed 
method presented a superior performance of up to 0.99 of precision for all data sets in our experiment (D1–D6), 
thus showing that the proposed detection method based on YOLOv2 to create delimitations of the region of the 
�sh head and assist in the calculation of the centroid, helps in the detection with di�erent quantities of �sh in the 
groups. Evaluating the detection in the videos, in which the �sh presented slower movements (D1, D2 and D3, 
with an average speed of 9.42 cm/s, 7.81 cm/s and 6.44 cm/s, SI: 0.9963, 0.9883 and 0.9884, respectively), with 
groups of 3, 6, and 8 �sh, the precision reached 1.00 and F-measure reached 0.99.

In faster movements (D6_food), during the feeding period, some losses in the detection were observed, but 
the algorithm was able to detect �sh with good precision (0.9987), even with high occlusion frequency, a total of 
715 occlusions (Table 2), and with high average speed per �sh about 10.22 cm/s (Table 1). It was noticed that the 
occlusion is related to the fast and agglomerated swimming of the school, mainly in the feeding period (D6_food, 
OR: 0.0362, ODR: 0.6252, Miss ratio: 0.0337, Error ratio: 0.0013, F-measure: 0.9822, SI: 0.9653). Figure 7 shows 
some examples of detection and occlusions.

�is method uses the �sh head region to calculate the centroid and detect the �sh in the images. On the other 
hand, in other previously published works, the authors used the �sh’s body as a complement to the detection and 
 identi�cation9,10,17,32. �us, the proposed method was able to detect �sh in several situations considered di�cult 
for the detection to remain correct, being incapable only in times of occlusion, where the �sh’s head was totally 
occluded by another �sh. In addition, there was little loss of detection when the environment was noisy and 

Table 2.  Performance of the detection evaluation.

Dataset Occlusions Precision Recall OR ODR Miss ratio Error ratio F measure SI

D1 10 1.0000 0.9963 0.0037 0.8000 0.0037 0.0000 0.9982 0.9963

D2 49 1.0000 0.9883 0.0064 1.0000 0.0117 0.0000 0.9941 0.9883

D3 59 1.0000 0.9884 0.0093 1.0000 0.0116 0.0000 0.9942 0.9884

D4 135 0.9999 0.9786 0.0099 0.6519 0.0214 0.0001 0.9891 0.9784

D5 1065 0.9998 0.9677 0.0338 0.5925 0.0323 0.0002 0.9835 0.9673

D6_food 715 0.9987 0.9663 0.0362 0.6252 0.0337 0.0013 0.9822 0.9653

D7 (idtracker.ai2) 343 0.9998 0.9989 0.0063 0.7347 0.0011 0.0002 0.9994 0.9988

D8 (idtracker.ai2) 399 0.9999 0.9340 0.0028 0.7268 0.0660 0.0001 0.9658 0.9328

Figure 7.  Fish detection. (a) Image of the complete detection of the �sh head region for a group of 13 �sh; (b) 
Examples of �sh occlusion events, in some cases, there was a failure in detection.
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challenging. �us, it was possible to evaluate videos in di�erent conditions, so that the method does not limit 
only one tested video input; it can be used in other shooting conditions.

We tested the proposed algorithm in another dataset with videos containing groups of 10 �sh (video D7) and 
a group of 100 �sh (video D8), available for free by Romero-Ferrero et al.2, referring to the idtracker.ai system, the 
videos had high resolution (3712 × 3712 pixels) and di�erent environmental con�guration from our experiment. 
�e results of videos D7 and D8 were greater than 0.999 precision for both analyzed videos (Table 2). �e �sh 
were at an average speed of 8.14 cm/s and 7.49 cm/s, videos D7 and D8, respectively. �e number of occlusions 
was relatively low, compared to the other videos analyzed in this article, thus obtaining the D7: 343 occlusions, 
OR: 0.0063, ODR: 0.7347, F-measure: 0.9994 and SI: 0.9988, and D8: 399 occlusions , OR: 0.0027, ODR: 0.7268, 
F-measure: 0.9658 and SI: 0.9328. It is observed that the increase in the quantity of �sh (100 �sh) did not interfere 
with the detection precision of the proposed algorithm.

Tracking evaluation. Table 3 shows the tracking result, using the CTR and CIR metrics. �e tracking is 
calculated similarly to the detection of a �sh, calculating the percentage of the frames correctly tracked for each 
�sh and the correct probability of all �sh. �e CTR describes the percentage of frames correctly tracked for each 
�sh and, in this method, the exchange of identi�cations is not evaluated, but only if the tracker can follow the 
�sh head correctly. In this study, the correct tracking of the �sh in the frame was de�ned by the distance from 
the actual position of the center of the �sh head in relation to the center of the tracking at a distance of up to 15 
pixels, a greater distance or the absence of a tracking in the frame is considered to be an incorrect tracking. �e 
results show a good percentage of frames correctly tracked of a single �sh during a video, reaching up to 100% 
in the tracking when the quantity of �sh is reduced (D1, CIR: 1.00, CTR: 1.00; and D2, CIR: 1.00, CTR: 0.99). 
It was observed that the �sh loses its identi�cation for a short period of time (D3, CIR: 0.95, CTR: 0.99 and D4, 
CIR: 0.96, CTR: 0.99). It is noticed that larger quantities of �sh increase the amount of exchanges or losses of 
identi�cation. In addition, the probability of correct identi�cation of all �sh a�er an occlusion is compromised 
with larger quantities of �sh in the dataset or even with faster swimming motions (D5, CIR: 0.91, CTR: 0.98 and 
D6_food : CIR: 0.83, CTR: 0.97).

In this sense, it was already expected that in the feeding period, the tracking of �sh would be lost, as there were 
many occlusions and totally unexpected movement. �e biggest tracking losses were in videos D5 and D6_food. 
�e tracking of videos D7 and D8 performed well, obtaining a CTR value of up to 0.99 in tracking �sh (D7, CIR: 
0.9375, CTR: 0.9970 and D8, CIR: 0.9285 and CTR: 0.9983). It is observed that the algorithm was able to track 
�sh from another dataset, where the videos were recorded with a higher resolution than our images (Table 1) 
and experimental environment di�erent from that proposed here. In addition, it is notable that the spread of 
errors decreases as occlusions happen less frequently when the �sh swim in the tank.

Figure 8 shows a visual example of tracking in three video sequences (D1, D2 and D6_food).

Discussion
�e method proposed in this work combined two techniques to detect and track �sh schools: the YOLOv2 net-
work and the Kalman �lter. Previous tracking methods showed applications of �sh swimming in shallow waters 
and slow  motions9,10,17,19,32. Here, we test the proposed method in adverse situations such as the feeding period, 
which is widely used for training and conditioning �sh. It was noticed that the quantity and agitation of the 
school of �sh are important factors for the increase in occlusion, which makes detection di�cult most of the time.

However, through this method, we showed that detection and tracking were obtained around 99% in low and 
high resolution images, with variation in the quantity of �sh (up to 100 �sh). High resolution images, such as the 
images available from idtracker.ai2, proved to be favorable for successful screening. In addition, it was observed 
that the spread of errors decreases when the �sh have little occlusion.

In some methods, the �sh’s entire body segmentation is used to detect and identify the  �sh9,10,17,32, however 
we created a delimitation of the region of the �sh head to facilitate detection, this approach has been presented 
in other works, but using di�erent  techniques9,19. �e performance of the YOLOv2 network improves as training 
is increased, improving the result of the delimitation of the region of the �sh head.

�e �sh was detected by calculating the centroid, based on the identi�cation of the region of the �sh head by 
YOLOv2. �e Kalman �lter was used to adjust the centroid, estimating the �sh’s position between frames, when 
there was loss of detection. A �sh changes from one position to another quickly, and a method for estimating 

Table 3.  Performance of the evaluation tracking.

Dataset CIR CTR 

D1 1.0000 1.0000

D2 1.0000 0.9970

D3 0.9500 0.9978

D4 0.9629 0.9987

D5 0.9115 0.9887

D6_food 0.8394 0.9795

D7 (idtracker.ai 2) 0.9375 0.9969

D8 (idtracker.ai 2) 0.9285 0.9983



12

Vol:.(1234567890)

Scientific Reports |         (2021) 11:3219  | https://doi.org/10.1038/s41598-021-81997-9

www.nature.com/scientificreports/

the position in the tank may fail to identify the �sh’s current position. An adjustment of the cost function has 
considerably improved the prediction of the state of the �sh, making it possible to create trajectories. In order to 
establish the lost trajectories, the route was reconnected using the shortest distance. In this study, a much higher 
frame rate is not necessary, we used a frame rate considered low at 30 frames per second, and we were able to 
track the �sh e�ciently. Higher rates can compromise the algorithm’s run time.

Although we were able to correctly identify �sh at around 0.83 (CIR) in the feeding period, where �sh can 
have rapid movements and many variations in the direction of movement, it is still a limitation when the number 
of occlusions between �sh is high, as there may be an exchange of �sh identi�cation. In addition, long occlu-
sions, which are greater than 15 frames, may have a greater chance of exchanging �sh identi�cation, due to the 
lack of an identi�cation step.

Figure 8.  Result of tracking di�erent groups of �sh. (a) Tracking of group D1 with 3 �sh and (b) group D2 with 
6 �sh, both in a state of slow motions, (c) group D6_food with 13 �sh are in the feeding period (fast motions). 
�e �sh swim with greater agitation and agglomeration in the center of the aquarium, a space where the food 
was concentrated.
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�us, the inclusion of an identi�cation step, could improve the tracking of the �sh in the entire route in the 
tank, especially a�er long occlusions, reducing the chances of propagating errors, compromising the performance 
of the method. �e YOLOv2 network when trained with di�erent classes can detect multiple objects from the 
same or di�erent classes in the same image. When used as a unique identi�cation method for several individuals 
of the same species in the same scene, a better performance is achieved in terms of speed and accuracy in car-
rying out the task. In idtracker.ai2, a �sh identi�cation step is used, without the need for an additional method 
to associate the detection of objects between frames, generating greater accuracy in tracking, especially during 
�sh occlusions. A new approach could be attributed to our work, which includes a �sh identi�cation step to 
further improve tracking.

Conclusion
In this paper, an e�ective method for detecting and tracking schools of �sh swimming in calm and agitated 
behavior has been proposed. �is method was satisfactory for detecting and tracking agglomerated and agitated 
�sh during the feeding period. �e method was based on the YOLOv2 network which delimits the region of 
the �sh head so that the centroid can be calculated and, subsequently, the �sh can be detected. �e tracking was 
proposed by using the Kalman �lter and adjusted by a cost function; in addition, the fragmentation of the trajec-
tory has been reconnected to allow greater stability in the path of the �sh. �e method was evaluated in di�erent 
schools and adverse situations, obtaining satisfactory results in all the metrics used for evaluation. However, 
including a �sh identi�cation step can further improve tracking in periods of many occlusions, preventing the 
spread of errors.
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