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The annihilation of positronium is discussed as a means of obtaining a precise measurement of
the Compton wavelength of the electron. In particular the spectral line shape of the annihilation radia-
tion is calculated for positronium thermalized in helium gas cooled to the region of its eritical point
with an applied magnetic field sufficient to yield a three photon to two photon branching ratio of unity
for the %S component. Under such conditions the rapid thermalization of the positronium and the long
half-life of two photon decay out of the predominantly triplet state make possible the production of
rather narrow spectral distributions, An exact solution of the Zeeman effect in positronium is included.
This study suggests that a wavelength determination beyond the one part per million level is attainable

within the range of present technology.
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1. Introduction

X-ray data have been excluded from recent adjust-
ments of the atomic constants [1]! since at their then
current precision they would have carried typically
about one fifth the weight assigned to other measure-
ments. Simply improving the precision of the x-ray
data by - factor of three would lead to equal weight.
Recent improvements in the internal consistency of
the x-ray scale by Bearden et al. [2], permit a further
sharpening by x-ray determinations of the constants to
limits set by the uncertainty in the conversion factor
between the x-ray wavelength scale and the defined
length. Were these potentialities realized today, then
the x-ray data would be significant in an adjustment of
the fine structure constant and the proton moment [3]

The precision of x-ray measurements of the atomic
constants is-limited by the precision with which it is
possible to define an x-ray wavelength scale. The scale,
of course, depends on the precision with which it is
possible to establish the wavelength of an individual
x-ray line. Ordinary x-ray lines have full widths at
half maximum upwards of some 300 ppm (parts per
million). We have no theoretical model for their shape
and hence little hope of specifying the wavelength
of any of their features (peak, centroid, or median)
to better than 1 ppm. This problem has been studied
by J. S. Thomsen and F. Y. Yap [4].
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Beside the traditional x-ray determinations of the
constants there are phenomena which either occur
spontaneously or can be provoked to occur which
are considerably sharper than natural x-ray lines.
For example, there are nuclear transitions which have
quite narrow profiles [5] and there are crystal lattices
of extraordinary perfection [6] which occur as, so to
speak, spontaneous phenomena. Other phenomena
which are also quite sharp can be produced by ex-
perimental design. One of these, namely radiation
from the annihilation of positronium as narrowed by
thermalization in a magnetic field is the subject of
the present paper.

2. Positron-Electron Annihilation

If a positron and an electron initially at rest an-
nihilate with the emission of two photons, then by
conservation of energy,

2 e 2moc?,

\, (1)

since conservation of linear momentum implies that
the wavelengths of the two photons are equal. Solving
eq (1) for A yields the Compton wavelength:

h
Mot

(2)

where my is the rest mass of either the electron or
the positron.
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If, however, the positron-electron system has non-
zero momentum at the instant of annihilation, the two
photons in general will not have the same wavelength,
so that spectroscopic observation of the radiation
shows a broadened annihilation line. Examination of
this process shows that the line widths resulting from
the annihilation of free positrons with electrons in
matter are much too great (typically in excess of 1000
ppm) to allow a precision (i.e., approx. 1 ppm) measure-
ment.

If a flux of positrons is incident upon certain ma-
terials, a significant fraction of these incoming par-
ticles will combine with electrons in the substance to
form hydrogen-like atoms of positronium [7]. The peak
of the annihilation line is shifted because the right-
hand side of eq (1) is reduced by the binding energy
of the positronium atom, while the width of the line
is determined by the momentum of the positronium
atom at the time of annihilation.

Positronium exists in either singlet (para-) or triplet
(ortho-) states: the lifetime against annihilation of
ortho-positronium is two orders of magnitude greater
than that of para-positronium. The triplet lifetime is
sufficiently great to allow an ortho-positronium atom
to reach thermal equilibrium with its surroundings
before annihilating. If this thermalization process is
carried out in the presence of an external magnetic
field, then an appreciable fraction of the longlived
positronium component will decay via the two photon
channel because the field causes mixing of the singlet
and triplet states. If the temperature of the surround-
ings is sufficiently low, then the resulting annihi-
lation line will be narrow.

It is the purpose of this paper to examine in detail
the line shape of the radiation produced in this process.
In particular we shall consider the lifetime of the two
photon annihilation of positronium in the presence of a
magnetic field: combining this with appropriate ex-
pressions for the thermalization of the positronium
and for the thermal distribution function of the sur-
roundings yields an expression for the line shape.

3. Zeeman Effect of Positronium

The hyperfine separation between the singlet and,

lnp]et energy levels of positronium in its ground state
is much greater than the corresponding splitting in the
hydrogen atom for two reasons [8]. In the first place
the dipole-dipole interaction between the electron and
positron is proportional to the magnetic moment of
the positron, and therefore is increased over the inter-
action in hydrogen by the ratio of the Bohr magneton
to the nuclear magneton. Furthermore, the hyperfine
splitting is increased by an amount that is approxi-
mately equal in magnitude to the dipole-dipole term
by quantum electrodynamic effects involving virtual
annihilation of the pair.

If v represents the Hamiltonian (including the
hyperfine interaction) of the positronium, then one

can represent the stationary ground state as an eigen-
state

f’oﬂr "

where F'=0, 1 is the quantum number denoting the
spin state of the atom, and m is the quantum number
associated with z-component of the spin angular mo-
mentum. The states us,, are eigenfunctions of the spin
operators (S.+S,)* and (Se:+S,:), where the sub-
scripts e and p denote the electron and positron, re-
spectively. These states, written in terms of the spin
states of the individual particles, are

=Erupm (3)

Un= W{lf&?{ T }ﬂp( T ) (4a)
Wy
Uy = '? [ue( T )”/p( l ] + H@{ l }Hﬂ( T )I (4‘1)]
V2
1= Wouel l )it 'lr ) (4c)
W
and w00 = —=[ue P up( L) — uel L)up( 1)) (4d)
V2

where W, is the hydrogenic ground state wave function
which results if spin is neglected. The hfs separation
has been evaluated to be

AE=E, — E;,=8Xx101V.

If an external magnetic field H is applied to the
positronium atom, then the Hamiltonian becomes

D=0+ Dn (5)

where, in terms of magnetic moment operators p for
the positron and electron,

On=—(pet+pmp) - H. (6)

Since the magnetic moments of the electron and
positron are equal (approximately) in magnitude to
the Bohr magneton but opposite in direction with
respect to the spin vectors, and since their g factors
are equal, then $y can be written in terms of Pauli
spin matrices o, as

N ﬂ-rl]j'-.H
Dy —=—— O —

9 O'pz)t {?)

Some treatments [9] of the Zeeman effect in posi-
tronium have employed perturbation theory; however,
an exact solution is readily obtained by well-known
methods [10].

One can write down the Hamiltonian matrix by
employing the fact that owu(1)=u(1) and oul( |)
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=—u( | ): the operation of Dy in eq (7) on the wave
functions in eq (4a-d) yields

Dulun = Dyl >=0

Duluro > = pogH | oo >
and

-{')Hfﬂm >= ppeH |0 >. (8)
As a result, the Hamiltonian matrix including the mag-
netic interaction is

E, 0 0 0
E, 0 pogH
(D)= 0 £ 0 (9)
0 pogH 0 Ey
The secular equation for () is
(Ei— M (Ey—X) (Ey—\) — (pogH)?} =0 (10)
with roots
J\:E..E,.Et%AE\-’m (11)
where
E =2 (E +Ey
pogH
and X=REp
Thus the diagonalized matrix is
E, 0 0 0
0 E+ é}vm 0 0
(D) giac=| 0 0 E, 0
0 0 0 E—%EV'W
(12)

Note that the degeneracy between the triplet m==+1
states is not removed by $y. Furthermore, the energy
of these states is not affected by the field, since these
states have zero net magnetic moment because the
positron and electron are oppositely charged particles.
The lack of a linear Zeeman effect, and the existence
of a quadratic effect in the m = 0 state can be described
qualitatively as follows. The triplet m=0 state as
mentioned above has no magnetic moment and is
not affected in first order. The singlet state, though
it possesses a magnetic moment, is a zero spin state;

since there is no axis of quantization, the atom
“tumbles” in the field. Both states do exhibit an
energy shift because the applied field induces a
preferential alinement of the individual particle
magnetic moments as is indicated by the H? variation
(in the limit, this induced alinement becomes the
Paschen-Back effect).

The wave functions for the perturbed positronium
atom can now be determined by carrying out the matrix
multiplication

(S) (D) = (H)aiae (S) (13)
where (S) is the transformation matrix that diag-
onalizes (). and employing the fact that {(S) must be
unitary. This operation leads to the following wave
functions:

Uy lp]] Uy (2381
15T -{Jm lbm Urn ity + !Mlm
y—y Y -y -
oo J:Ilm Loo algy — buyo
(14)
where
1 1 12
a=— (l + ) (15a)
V2 1 + 22
and
(15b)

Equation (14) shows that the application of a mag-
netic field mixes the states w;o and wop. Thus yny and
oo each decay by both the two- and three-photon
channels.

If the annihilation rate of the state u; is yr and that
for the state ugo is s, then the mean annihilation rate
for the mixed state s is

Yio = a*yr + b3y,. (16)
Substitution of eq (15) into the above yields
Yr+vs 1 Yr— ¥
Yio = ( : ) i s ( - ) (17)
2 V=l 2

The branching ratio for the gy, state (i.e., the ratio
of the number of two photon decays to three photon
decays) is

by R+a)—2V1+2y,
B|n=(—)z—=( x} - xy_ {]8)

W x* Yr
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In figure 1 are plotted eqs (17) and (18) as functions
of the applied field H up to 2177 G, at which point
By equals unity.

B T
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| | |
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FiGure 1. Quenching of triplet positronium at low fielids.

4. Line Profile for Positronium in a Mono-
energetic Moderator

In this section we shall consider the case in which a
flux of positronium atoms is incident in a moderating
medium possessing a single thermal energy. We must
first relate the energy separation of the two photons
to their emission directions. Figure 2a is a represen-
tation of the annihilation of a positron atom with linear
momentum p into photons hv, and hvs which are
emitted at an angle € with respect to each other. The
photon hv, is emitted at an angle # with respect to the
direction of the incident positronium atom. From the
momentum triangle of figure 2b one can write

pPi—pi=p*—2pp; cos 6. (19)

Letting hvy be the photon of greater energy, then one
can write

hy, = %Hn + 6 (20a)

and
LEy—8,

hw =

(20b)

where E, is the total energy of the positronium atom
prior to annihilation. Thus multiplying eq (19) by ¢?

h'U|

l'ot
1
]
1
i
[
1
1

(a)

(b)

FiGure 2.

() Two-photon annihilation of positronium in motion.

(b)) Momentum triangle for the process (a).

and subsequently substituting eqs (20) into the result

leads to
(] = jj) cos 8}'

If the positronium atom is nearly in thermal equilibrium
with its surroundings at annihilation, then

5=—£{££— (21)

2 [k,

E

< |
Eq

and

28
b‘ll

=i

as a result, eq (21) can be written

6 = ‘I;—C 08 0 = S cos 0. (22)

It has been shown by Heitler [11] that the emission
of annihilation photons is spherically symmetric in
the limit p=0; thus the distribution will be very nearly
isotropic in the case at hand—that of thermalized
positronium. The intensity distribution as a function
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of 6 will thus be proportional to the solid angle sub-
tended at the annihilation site:?

lodb=Ssin 09, 6<T (23)

Then the intensity distribution for § can be written

dp
I5dd= lydf= Iﬂda d8, & < Bpax-

(24)
The quantity df/dé can be evaluated from eq (22) so
that the distribution function /5d8 in eq (24) becomes

dd

fa(fazp—c._ 8 < Bmax- (25)

Thus the annihilation of a positronium atom traveling
with momentum p is equally likely to produce photons
in the range from £y/2 up to Ey/2+ pe/2.

It is now possible to determine the annihilation line
shape from a positronium flux in a monoenergetic
moderator. The number of P’s atoms annihilating during
the time interval (¢, t +dt) is

Nidt = ']f]lrf"\"luf' “Yil(ft, (26)
Annihilations during this time interval contribute an
increase of intensity dl; which is uniform for all §
from O up to &, according to eq (25). Since the area
under the distribution curve is equal to the number of
atoms annihilating, then

Nidt = 8paxdls. (27)
We can determine the total intensity distribution by

adding up all the dls's from t=0 up to t; such that
6=8max:

t '
o 8 .'?\"r(ff
5= e
o pc

(28)

The momentum p= V2mkE is a function of the time;

this thermalization function has been found [12] to be

= !':m coth® {B+ alt) E29)

where £, is the moderator energy. 8 depends upon the
energy of the positronium atoms at =0, and a de-
pends upon the properties of the moderator. Defining

u=p+at

eq (28) can be written as
S v
15=!\j e d tanh udu. (30)
1]

“In reality # does not quite reach w/2; this is merely an indication of the approximation
of spherical symmetry, and will not affect the results significantly,

This integral can be approximated in the case for which
Yyio/lee is small. The details of this calculation appear
in the appendix. The resulting distribution function is

o i
Li=1, {1— 1—(3) 2l 5>

— 0<6<br

(31)

where 87 is the maximum energy shift for the annihi-
lation of a completely thermalized positronium atom.

In the case of two-photon annihilation of the i,
component of positronium using helium at its critical
point (T.=5.2°K, p=2.3 atm) as a moderator and
an applied magnetic field of 2177 G (so that B;y,=1),
the quantity y;o/a is quite small:

o

=8.5 X 103,

He erit
2177 G

As a result the function [ (eq (31)) falls very rapidly
for & > &7, so that this leads to a distribution function
that is nearly rectangular: viz, at §/6,=1.1=1,,
while at /8, = 1.001, =1, X 10-3,

The physical interpretation of this result is fairly
simple. Since v is the two photon annihilation rate
of the longlived component of positronium, then
it is the mean lifetime of the atom: similarly, o'
represents the characteristic time required for the
Ps atom to thermalize with its surroundings. Thus the
ratio 7y« is just the ratio of thermalization time to
mean life. When this ratio is small. then thermalization
usually is completed long before the positronium
atom decays. Since the calculations of this section
concern the somewhat artificial case of a mono-
energetic moderator, the resulting rectangular. dis-
tribution in the preceding paragraph indicates that
the vast majority of the positronium atoms decay after
they have become fully thermalized. so that the re-
sulting intensity distribution is simply the charac-
teristic rectangular distribution arising from mono-
energetic positronium.

5. Line Profile for Thermalized Positronium

Let us now consider annihilation in a moderator
at temperature T characterized hv a Maxwell dis-
tribution of velocities:

my®

Nodv=Av’e =T dp. (32)

If the thermalization time a~' is much less than the
mean life /. then most Ps atoms are in thermal
equilibrium with the moderator at the time of anni-
hilation. As a result there will be a Maxwell distribu-
tion of pesitronium atoms; atoms with velocities
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in the interval (v, v+ dv) will produce a rectangular
distribution according to eq (31), so that

&dl =N dv 133)
where & is the width of the distribution and is the
maximum energy shift for photons produced in the
decay of a Ps atom moving with velocity v. If one
makes the substitution §=1/2 mwe, eq (33) can be
integrated to yield the intensity distribution of anni-
hilation photons:

x 2 my

24 -3 g
&/me MVC

I:

__m b\
=Ke 2&'?‘(»!;‘)‘ (34)

The quantity § can be expressed in terms of the posi-
tronium kinetic energy as

8=cV2mkE.

Denoting as 8; that value of 8 corresponding to the
mean thermal energy at T, then one can write that

(35)

or=c \/Qm (ng ) — \/(?k?‘)EO. (36)
2 )
Since E, = 2myc?, then eq (34) becomes
_ i)
I=Ke (37)

The line profile resulting from the annihilation process
is a Gaussian with a half width at half intensity of

81;g=8-;- \/g In 2=0.68 8',"- (38]

6. Summary

It has been demonstrated that if a moderator is
such that the thermalization time of positronium is
much less than the mean life against annihilation,
the two photon annihilation of positronium in this
moderator at temperature T results in an annihila-
tion line that is a Gaussian, the width of which depends
upon T. These conditions are fulfilled for helium
near its critical point for positronium lifetimes of the
order of magnitude of the triplet state lifetime. Since
triplet positronium decays with the emission of
three photons, whereas a determination of the Compton
wavelength is feasible only in the case of two photon
decay, one must carry out such an experiment in
the presence of a magnetic field so that the mixing
of singlet and triplet states give rise to a long-lived
two photon process. It has been shown that for fields
of approximately 2 kG, one half of the longlived
decays will occur via the two photon channel with a

life time sufficiently great to fulfill the conditions
for the Gaussian line shape described above. It would
thus appear possible to carry out an annihilation
experiment in which the line width is sufhiciently
narrow to allow a 1 ppm determination of A,.

7. Appendix

In order to evaluate the integral of eq (30),

c Yo
R :je a tanh wdu,

for the case in which e=(y/a) <1, we make the
substitution

(A-1)

n=In cosh u. (A-2)

The expression tanh wdu can be expressed in terms

of n:

tanh aduzm—”—'!:d{ln cosh u)=dn. (A-3)

cosh u

From (A-2) we can write

e"=cosh u (A—4)
which leads to
u=cosh='e" (A-5)
and therefore (A—1) becomes
3= f e —ecoshier (. (A-6)
Employing an identity for cosh! yields
cosh~—len=In (en +Ve¥—1)
=g+In(1+V1—e21) (A7)
and therefore
e Cosh=1en — o—en(] + /] — e=27)-¢, (A-8)
Since € is small, eq (A—8) can be expanded:
Q0+ Vi—e)c=1—¢ln (1 —VI—e2)
+% n2(1+VIi—e®)—. ... (A9
But note that
n(+Vicem =" g—empe (a0
e
and that one can write
1+ VI—e)-e=1+de (A-11)
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in which
|ble< eln (I +V1—en)<e(l—e-2nyi2,

Now the integral (A—6) becomes

et

3:‘{0“"{]-1-{136)(!7}:—(1 + de) (A-12)

where

EIZJ’ be-dny / f e~ dn. N<d <1,

Rewriting (A-12) in terms of u yields eq (31) in sec-
tion 3.
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