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Abstract: This research provided a novel enzyme-responsive antimicrobial carrier aiming at overcom-
ing the volatile loss of active antibacterial components, by employing mesoporous silica nanoparticles
(MCM-41) as the matrix of encapsulation and Zein as the molecular gate. Since Zein could be con-
sumed by bacteria, Zein-functionalized MCM-41 acted as an enzyme-responsive gate and improved
the controlled-release capacity. The results showed that the amount of capsaicin released from Zein-
functionalized MCM-41 without bacteria was quite low compared with the essential oils liberated
with bacteria. This validated that the delivery of capsaicin was hampered by Zein and the existence of
Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) promoted the release of encapsulated cargo.
The release rate of capsaicin in Zein-functionalized MCM-41 climbed with the growth velocity of bac-
teria. These functions were realized in the form of controlled diffusion of essential oils encapsulated
in MCM-41 by electrostatic interaction, and Zein was performed by both covalent bonding interaction
and electrostatic interaction. Zein-functionalized MCM-41 was 2.4 times more effective in killing E.
coli and 1.2 times more effective in inhibiting S. aureus than an equal amount of free capsaicin, and
possessed a long-lasting antibacterial activity. The responsive antimicrobial material might be used
as a promising preservative in the food industry for antimicrobial activity enhancement.
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1. Introduction

Microbial contamination is responsible for food corruption and even foodborne dis-
eases, ranging from gastroenteritis and intoxication, to shock or other syndromes [1].
The main pathogenic microorganism can be divided into two principal parts, namely
Gram-negative bacteria (Escherichia coli and Salmonella enterica) and Gram-positive bacteria
(Staphylococcus aureus and Listeria monocytogenes) [2], which are both the most common food-
borne pathogens in daily life, resulting in death due to foodborne illness [3,4]. Depending
on the statistics, unhealthy diets cause 11 million deaths, and a further 420,000 people die
from consuming unsafe food annually [5–7]. Currently, three billion people fail to eat safe
food, and unhealthy diets are linked to 6 of the top 10 risk factors for the global burden of
disease [8]. Based on the experience from the COVID-19 pandemic, WHO will continue to
work with partners with a One Health approach to keep communities safe from foodborne
disease [9,10].

With the abuse of antibiotics, antimicrobial resistance (AMR) increasingly attracts
public concern worldwide. The persistent failure to develop, manufacture, and distribute
effective new antibiotics is further fueling the impact of AMR and threatens the communal
ability to successfully treat bacterial infections [11]. WHO has announced that bacterial
infection is the decisive cause of high neonatal mortality and inborn error, accounting for
23% and 15%, respectively. Although drug therapy has supplied appropriate treatment to
improve the condition, AMR seems to be a huge challenge. In 2016, antimicrobial resistance
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was first to be estimated as a cause of neonatal death, and multidrug-resistant pathogens
accounted for about 30% of all global neonatal sepsis mortality [12]. In order to deal with
the AMR threat, a global effort should be made and opportunities emerging from the
COVID-19 pandemic must be grabbed, focusing on sustainable investments in research and
development of novel and natural antibiotics. Accordingly, novel and natural compounds
like essential oils should be selected to substitute the existing antibiotics, slowing the impact
of microbial resistance.

Essential oils (EOs) are a complex natural product extracted from plants that are
considered to have a safe food composition for food preservation [13,14]. Terpenes and
aromatic compounds are the most common and effective substances found in Eos [15,16].
Based on previous research, EOs exhibit antimicrobial, anti-inflammatory, and analgesic
effects under biological activities [17]. For instance, tea tree oil and oregano essential oil
show great bactericidal activity against Gram-negative and Gram-positive bacteria [18–20].
Since they are unstable, easily decompose, and are volatile, plant essential oils fail to
be developed or used to their full potential. Capsaicin is another typical example as an
antibacterial EO, which is the major capsaicin present in peppers and have antimicrobial,
anti-inflammatory, and antioxidant properties [21–23].

In recent years, the public has had more interest on nanotechnology due to its distinct
properties and widespread applications in food or pharmaceutical industries [24]. Meso-
porous silica nanoparticles (MSNs) have excellent carrier characteristics, including a high
specific surface area (800–1000 m2/g), adjustable aperture (2–5 nm), and flexible particle
size (usually less than 200 nm) [25–27]. Furthermore, mesoporous MCM-41 is a typical
molecular sieve mesoporous silica material with the regular and hexagonal arrangement of
SiO2 that has an enhanced specific surface area, good mechanical and thermal stability, and
a governable pore size [28], possessing all the advantages of MSNs, with a synthesis method
that is simple and efficient [29]. Studies have reported that loading EOs to mesoporous
silica nanoparticles can improve its bioavailability, and achieve controlled release in a food
area like targeted drug release [30–32].

Zein is a safe and non-toxic material with good biocompatibility and biodegradability
that also can improve the efficiency of nanomaterial encapsulation of essential oil. Zein
is the main form of protein storage in maize endosperm tissue, which can be used as
nutrients for bacterial growth. Therefore, an enzyme-controlled release system has been
proposed in this paper to better encapsulate capsaicin in mesoporous materials by using
amino functionalization and Zein functionalization on the premise of encapsulating the
essential oils of mesoporous silica [33,34]. In this controlled release system, Zein, as a gate,
slowly dissolves when bacteria appear, and then the encapsulated essential oil releases
through the enzymatic decomposition, inhibiting bacterial growth and achieving the effect
of bacteriostasis and preservation.

2. Materials and Methods
2.1. Materials

Capsaicin (97%), tetraethyl orthosilicate (TEOS, 98%), aqueous ammonia (28%), cetyltrimethy-
lammonium bromide (CTAB), aminopropyl triethoxysilane (APTES), absolute ethanol
(99.8%), Zein (Macklin, China), phosphate buffer saline (PBS, 0.1 M, pH = 7.4), and glutaralde-
hyde (25%) were all of analytical grade and provided by Sangon Biotech (Shanghai, China).

2.2. Preparing Antimicrobial Supports: Preparation of NH2-MCM-41 (NH2/M41)

NH2-MCM-41 was prepared by the following steps. Deionized water was mixed well
with ammonia solution and CTAB was added and stirring together with the solution in a
500 mL beaker for an hour. The solution was heated to 60 ◦C in an oil bath by a magnetic
agitator. Once CTAB was evenly dissolved, TEOS was added into the sample dropwise and
stirring continued. One hour later, APTES was added dropwise with continuous mixing
for 6 h. The liquid was then transferred to a stainless-steel crystallization kettle lined with
polytetrafluoroethylene and let stand for 24 h at 33 ◦C to begin crystallizing. The solution
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was washed with absolute ethanol and then centrifugations were performed for 20 min at
10,000 rpm. After the separation of the precipitate and supernatant, the supernatant was
rejected and the precipitate was kept for further abstersion. Filtration and washing steps
were replicated in triplicate at least three times in brine to remove the surfactant template
as much as possible. The white precipitation was collected and dried at 60 ◦C in a vacuum
oven. Using 200 mL of 99.8% pure ethanol as the extraction solvent, soxhlet extraction was
used to remove the templates from the dried powder over the course of 72 h. The powder
was dried in a vacuum oven at 60 ◦C to obtain NH2/M41 mesoporous silica microspheres.

2.3. Preparation of Capsaicin-NH2-MCM-41 (CAP@ NH2/M41)

The encapsulation method here referenced previous reported methods [28]. An
amount of 500 mg of particles (NH2/M41) was transferred into a round-bottomed flask un-
der N2 protection. Then, 30 mL absolute ethyl alcohol and 500 mg of capsaicin were added
and stirred for 24 h to optimize the embedding level in scaffolding pores of NH2/M41.

2.4. Preparation of Zein-Capsaicin-NH2-MCM-41 (CAP@ Zein/M41)

An amount of 500 mg of Zein was dissolved to a solution of ethyl alcohol (80%, 20 mL
in 25 mL of H2O) and mixed well. When the Zein solution was clarified and appeared
faint yellow, an equal mass of CAP@ NH2/M41 was added and the mixture was stirred
at room temperature for 24 h. The final solid was gathered through filtration and washed
more than three times with ethanol. Finally, the Zein protein-functionalized sample (CAP@
Zein/M41) was left to dry under room temperature (around 26 ◦C) (Scheme 1).
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Scheme 1. Synthetic process of CAP@ Zein/M41.

2.5. Characterization of CAP@ Zein/M41
2.5.1. Scanning Electron Microscope (SEM)

The surface morphology of NH2/M41 and CAP@ Zein/M41 was observed using
a field scanning electron microscope (Hitachi SU5000, Tokyo, Japan) at an accelerating
voltage of 5.0 kV. Samples were coated with platinum before observation.

2.5.2. Fourier Transform Infrared Spectroscopy (FTIR)

The FTIR spectra of these samples were calculated by a FTIR spectrometer (Nicolet
Instrument, Thermo Fisher, Waltham, MA, USA). In short, each sample was mingled with
moderate potassium bromide (KBr) after an accurate measurement of the amount, and
then the mixture was detected using a direct compression method [35]. The spectra were
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collected at a step of 4 cm−1 resolution within the range of 400–4000 cm−1 wavenumber
while the baseline was corrected and converted into absorbance mode.

2.5.3. Thermogravimetric Analysis (TGA)

TGA was carried out using the synchronous thermal analysis (STA449C/4/G, Netzsch,
Selb, Germany). Samples of 10 mg were placed in alumina pans, and an empty alumina
pan was used as a reference. Heating was controlled by rotating the temperature up to
800 ◦C in 80 mL/min flows of air. The heating rate was set at 10 ◦C/min.

2.5.4. Particle Size and Zeta Potential

The particle size and ζ-potential of the particles were determined using a zeta-potential
analyzer (Zetasizer Nano ZS90, Malvern Instruments, Malvern, UK). Measurements were
set at room temperature (25 ◦C), with each sizing determination performed in triplicate
and an average particle size expressed as the mean diameter [36].

2.5.5. Nitrogen Adsorption/Desorption

BET Nitrogen adsorption-desorption isotherms for samples were obtained using
BELSORP-mini II (Bel, Bengaluru, India), where the specific surface area, volume, and pore
diameter were measured [37].

2.6. Measurement of Capsaicin Release by High-Performance Liquid Chromatography (HPLC)

Both CAP@MCM-41 and CAP@ Zein/M41 were added simultaneously into 10 mL of
tryptone soybean broth (TSB), where the density of E. coli was 106 CFU/mL. In parallel,
CAP@ Zein/M41 was added into pure TSB solution without bacteria as the blank-controlled
trial. All three experimental groups were cultured in a shaker at 180 rpm at 37 ◦C. Samples
were made more than four times in the first one hour, and then were sampled at least
two-hour intervals. Afterward, capsaicin content was measured by high-performance
liquid chromatography (HPLC, Waters Technologies, Milford, MA, USA).

The capsaicin was quantified using HPLC (Waters Technologies, Milford, MA, USA),
modified by a previous study [38]. An amount of 1 mL volume of solution was absorbed
from three different experimental test tubes, respectively, and all filtered through 0.22 µm
filters for HPLC analysis. A Zorbax SB-C18 column (250 mm × 4.6 mm, 5 µm particle size,
Waters SunFire®) was used as an analytical column and was maintained at 30 ◦C in the
column oven. The mixture of methyl alcohol and ultrapure water was used as the mobile
phase and the flow rate was 1.0 mL/min. The injection volume was 10 µL and UV detection
(Waters 2489 UV/Vis Detector) was performed at 280 nm. The external standard method
was used for quantitative analysis.

2.7. Antibacterial Performance
2.7.1. Strains and Growth Conditions

All strains used in this study (Escherichia coli (E. coli) ATCC 25992 and Staphylococcus
aureus (S. aureus) ATCC 25923) were provided by Shanghai Ocean University, China. Before
experiments, from frozen stocks, strains were cultivated overnight under the appropriate
growth conditions and passaged once before use. For all of the experiments, single clones
picked from a tryptic soy agar (TSA) plate medium were inoculated in 10 mL of tryptic
soy broth (TSB) fluid medium and grown at 37 ◦C with 180 rpm for 24 h at a bacteria
concentration to 1 × 108 CFU/mL and used for the different assays [39]. MIC measurements
were obtained as a means to normalize concentration choices. OD600 measurements were
used to determine the lowest concentration at which no growth was detected. Each test
was performed in triplicate from three experiments.

2.7.2. Bactericidal Activity of Capsaicin

The MIC approach was used to assess the antibacterial activity of capsaicin, and the
method of doubling dilutions was used. In a nutshell, bacterial cultures that had grown



Coatings 2023, 13, 57 5 of 16

overnight were diluted to have a bacterial concentration of roughly 1 × 106 colony forming
unit (CFU)/mL. Diluted bacterial solution was combined with capsaicin doses ranging
from 64 to 0.125 mg/mL in a two-fold dilution series, and the mixture was then incubated
for 24 h at 37 ◦C to measure the OD600 [40]. The MIC was calculated using the lowest
capsaicin concentration that prevented bacterial growth.

2.7.3. Bactericidal Activity of CAP@ Zein/M41

Different concentration gradient samples of the product were prepared by dissolving
in 10.0 mL of TSB fluid medium and a test suspension of bacteria cells was added. Aiming
for 1 × 106 CFU/mL of bacterium cells, the suspension was adjusted [41]. Each sample’s
remaining bacteria count was calculated. Samples were serially diluted from 101 to 107, and
the last three dilutions were plated in duplicate on tryptone soya agar [42]. Colony-forming
units per milliliter (CFU/mL) were measured following the plates’ 24-hour incubation
at 37 ◦C. Moreover, the growth curves of E. coli with different concentrations of CAP@
Zein/M41 were measured using an automatic microbe growth curve automatic analyzer
(Bioscreen, Turku, Finland). All tests were performed in triplicate to ensure reproducibility.

2.7.4. Morphological Changes in E. coli and S. aureus

The preliminary treatment procedures of morphological change analysis in E. coli and
S. aureus are listed as follows [43]: both E. coli and S. aureus were incubated for 12 h and
then processed using different concentrations of CAP@ Zein/M41 at 37 ◦C with continuous
stirring for 3 h. After incubation, the suspensions were centrifuged at 4000 g/min for
10 min and washed twice with 0.1 M phosphate buffer solution (PBS, pH 7.4). Overnight
E. coli and S. aureus were fixed in 2.5% glutaraldehyde at 4 ◦C. After three washes with
PBS, all samples were dehydrated in sequentially graded ethanol (30%, 50%, 70%, 90%, and
100%). Finally, they were sputter-coated with platinum before SEM.

2.8. Statistical Analysis

The experimental data were repeated three times in parallel. The SPSS statistical
software (version 22.0, SPSS, Inc., Chicago, IL, USA) was used for data analysis and Origin
8.5 (OriginLab, Inc., Northampton, MA, USA) was used for drawing. Different letters
indicate statistical differences (p < 0.05).

3. Results and Discussion
3.1. Characterization of CAP@ Zein/M41
3.1.1. Scanning Electron Microscope (SEM)

The morphology of the MCM-41 and its derivatives were observed by SEM. Figure 1
presented the SEM images of the MCM-41 powders before and after modification, respec-
tively. According to the SEM results, MCM-41 presented a hexagonal prism shape with
homogenous pore size distribution (Figure 1a). Although Zein and capsaicin were coated
on the silica NPs’ surfaces, the modified silica NPs did not alter their morphology. Similar
results were reported by Ribes et al. [44] in which the immobilization of eugenol and thymol
on the surface of MCM-41 did not affect the integrity of the mesoporous silica particles [45].
Moreover, Suttiruengwong et al. [46] discovered that the appearance of shapeless silica and
MCM-41 particles did not change after functionalization with thymol. Without a doubt,
MCM-41 has been broadly utilized owing to its tall surface range, expansive pore volume,
high levels of chemical and warm steadiness, and flexible chemical modifiable surface. It
has been detailed that the functionalization of MCM-41 is a feasible path to release the
essential oils with an enzyme-response gate [47].

3.1.2. Fourier Transform Infrared Spectroscopy (FTIR)

As for MCM-41, the curve presented the characteristic absorption peaks, namely the
Si-O-Si group at 1049.13 cm−1, -OH at 3692.20 cm−1, and the weak peaks at 2924 and
2856 cm−1, which were attributed to asymmetric stretching of CH2 group of CTAB and
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C-H in the hexagonal prism’s structure. After surface modification with capsaicin and Zein
coating, several new absorption signals appeared in Figure 2. The most notable peaks in
capsaicin were observed at 2925.10 cm−1, due to the stretching vibration of C-H(-CH3),
and 2852.82 cm−1, belonging to the C-H(-CH2-) stretching vibration. Peaks ranging from
1291 to 1645 cm−1 were due to the stretching vibration of C=O(-CH2-CO-CH2-) and the
benzene ring [46]. The results listed several peaks at respective wavenumbers (cm−1)
including contributions from various functional groups of Zein at 2974.87, 2872.89, and
1421.51 cm−1 [47–51]. Results indicated that capsaicin and Zein had been functionalized
successfully. Embedding essential oils (EOs) into MSNs makes it possible to slow down the
release rate, where encapsulation and covalency are essentially two forms of EOs’ insertion.
Hence, this research used NH2/M41 to encapsulate capsaicin, and covalently attached Zein
to the matrix in order to enhance the controlled release effect.
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3.1.3. Thermogravimetric Analysis (TGA)

The thermal gravimetric analyzer (TGA) diagrams of the CAP@ Zein/M41 at each
stage are shown in Figure 3. It is noticeable that almost all materials presented a similar
downtrend between 35 and 180 ◦C, which probably resulted from the adsorbed water
molecules and solvent removal from the surface layer of MCM-41, which was consistent
with all other curves [52].

Furthermore, the TGA curve of MCM-41 presented only one loss point: the weight
loss occurred at the temperature range of 30–100 ◦C due to the solvent evaporation, and
that of bare CAP@MCM-41 showed a two-step one. Thus, it could be inferred that capsaicin
was pyrolyzed completely since organic substances usually thermally degrade over 180 ◦C
(Figure 3a,d) [53]. It was further marked that TGA results demonstrated the thermal
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degradation of CAP@ Zein/M41 including three steps (Figure 3c,f). The first degradation
step began at 30 ◦C due to the loss of water, with a weight loss of about less than 10%.
Afterwards, the second step was accompanied with the thermal degradation of capsaicin,
which was about 10% when higher than 180 ◦C. At temperatures above 185 ◦C, Zein
and the remaining materials turned to ash. The thermogram suggested that the original
nanoparticles could consist of around 16.9% antibacterial active ingredients, whereas the
load rate of the capsaicin that was finally modified on the surface of the mesoporous
silica particles was identified at 9.2%. This assured that the final product still kept the
antibacterial effect through a series of modifications [54].
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In addition, TGA analysis was also conducted to quantify the amount of capsaicin
encapsulated into NH2/M41. The curves exhibited the remaining weight mass of capsaicin
from Zein/M41. The results depicted a decent loading capacity and were in harmony with
the antibacterial activity. The thermal stability of capsaicin was significantly improved by
multideck functionalization, and the comparison of the final residual amount of the samples
suggested the same trend. These data would be utilized in the subsequent comparison of
antibacterial tests with different contents of capsaicin. Separately, amino-functionalization
is an important method to enhance the stability of mesoporous silica nanoparticles [55].
(3-aminopropyl) triethoxysilane (APTES) is usually used through a novel grafting method
to improve the activity, stability, and retain ability of nanoparticles [56]. Thus, ATPES
was applied to further functionalize MCM-41 with amidogen, enhancing its stability and
preparing for extra modification.

3.1.4. Zeta Potential

Zeta-potential analysis of the materials at different stages of the synthesis process were
demonstrated in Figure 4. It was not difficult to find that the ζ potential value presented a
decline after the essential oils were loaded, without exception, which was attributed to the
surface charge of capsaicin being negative [57]. In addition, the bare MCM-41 maintained
a negative ζ value, which was ascribed to the deprotonated silanol groups attached to its
surface [58]. MCM-41 changed the negative charge into the opposite after the successful
functionalization of the amino group. Moreover, the Zein heightened the ζ potential values
after being attached to the bare material. According to the changes of electric charge among
different materials, electrostatic attraction could be considered as one of the reasons for the
improvement of antibacterial ability [59].
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3.1.5. Nitrogen Adsorption/Desorption

To investigate the specific surface area, nitrogen sorption isotherm measurements
were conducted at 77 K. Nitrogen sorption isotherm curves of MCM-41 presented typical
type IV behavior (Figure 5), which was characteristic of mesoporous materials [60]. The
BET surface areas were evaluated to be as high as 636.68 m2· g−1 for MCM-41 (Table 1).
Notably, the high BET surface area of MCM-41 was good for improving the load rate [61].
The average diameter of pores of MCM-41 was 2.78 nm, which was consistent with the
theoretical pore size of malodorous distribution. Figure 5 showed the nitrogen adsorption-
desorption isotherms with hysteresis of type IV behavior, indicating the mesoporous
structure of NH2/M41 with a higher value of pore diameter. The calculated BET surface
area of NH2/M41 was 368.26 m2· g−1. These results were in good agreement with the
results of other studies [62]. A significant decrease in the BET surface area and pore
volume was observed for the amino-modified MCM-41, which indicated that NH2/M41
was successfully prepared and that its condensation degree of silanol groups differed
from bare MCM-41. The nitrogen adsorption-desorption isotherm and corresponding
pore size value were carried out to confirm the mesoporous nature of the Zein/M41.
The lowest pore diameter value of Zein/M41 demonstrated that the pores on the bare
materials had been packaged, further confirming the coexistence of Zein in the material [63].
However, the surface area of Zein/M41 continued to decrease to 290.32 m2· g−1, lower
than that of previously reported ordered NH2/M41, as showed in Table 1, indicating that
the NH2/M41 was filled by or covered with the pore space of Zein. It was clearly evident
that by modification, the surface area of NH2/M41 decreased, which could be attributed to
the addition of Zein [64].
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Table 1. Surface characteristics of CAP@ Zein/M41 matrix in different synthesis steps.

Nanoparticles Specific Surface Area (m2/g) Pore Volume (cm3/g) Pore Size (nm)

MCM-41 636.68 0.7121 4.2736
NH2/M41 368.26 0.3931 4.4693
Zein/M41 290.32 0.3898 5.3706

3.2. Sustained Release Test

In order to further explore the features of MSNs, a molecular gate was introduced on
behalf of meeting diverse requirements of the multi-responsive controlled release, which has
promising biological applications [65]. Traditionally, a self-immolating gate has been one of
the molecular gate forms, which applied to dye-loaded silica mesoporous nanoparticles.
Once the solution turned alkaline, the gate would disappear and turn into emancipated dye.
In other words, the gate remains closed, leading to low levels of dye release at acidic and
neutral pH, which could be called a pH-response. Despite the pH-response being the most
common response in previous research, enzyme-response was another prevalent method
for controlled release of EOs or other effective constituents. Researchers have described
a new gated nanodevice design that uses glucose as a trigger and cyclodextrin-modified
glucose oxidase as a capping agent to control cargo delivery. In this study, Zein is one kind
of nitrogen source during the bacterial growth process, and could be consumed by E. coli
and S. aureus, permitting capsaicin to be sent out. The enzyme generated by the bacterium
was the trigger for dissolving Zein in the surface layer of the antibacterial agent.

Essential oil release experiments were performed to detect the controlled release
capacity of CAP@ Zein/M41 by comparison [66]. Release rates of two kinds of materials in
different simulated solutions are all shown in Figure 6 [67]. It is worth noting that the release
rate of CAP@ Zein/M41 remained at a very low value for the whole period, when it was
vibrated in single TSB solution without bacteria solution added (Figure 6a). CAP@MCM-41
was designed as the control group to confirm that CAP@ Zein/M41 possessed good stability,
because CAP@MCM-41 presented burst release behavior even though it was in single TSB
solution (Figure 6c), just a little bit slower than in TSB solution with E. coli (106 CFU/mL)
(Figure 6d). CAP@ Zein/M41, under the environment of solution with E. coli (106 CFU/mL),
presented the ability of controlled release of essential oils (Figure 6b). CAP@MCM-41 began
releasing capsaicin immediately when it got to the solution, especially in the first several
hours, where the loss rate increased up to 75.09% (Figure 6b). Furthermore, the release
percent of capsaicin at CAP@MCM-41 reached 81.56% as the maximum value. In contrast
with CAP@MCM-41, CAP@ Zein/M41 exhibited superior stability in the controlled release
aspect, which was in accordance with the previous study [37]. Although in full contact
with the bacteria, CAP@ Zein/M41 remained unchanged in the initial stage, then was
abruptly released from Zein/M41. Finally, the CAP@ Zein/M41 resolved slowly at a mild
rate until meeting the peak. This validated that the delivery of encapsulated capsaicin was
hampered by the Zein grafted onto the MSNs, and the existence of E. coli and S. aureus
made for the release of the encapsulated cargo. Zein was hydrolyzed by the secretions of
bacteria, resulting in the controlled release of the entrapped capsaicin. Thus, the release
pattern also conformed to the growth curve of E. coli and S. aureus.

3.3. Antibacterial Performance

EOs are famous for their superior antimicrobial effects, and silica nanocapsules are
equipped with a high loading capacity of EOs. Hence, they are appropriate for creating
environmentally friendly bacteriostatic agents. Further, MCM-41 improved the antibacterial
efficiency of capsaicin, considering the MIC value.

The antimicrobial efficacy of free capsaicin and CAP@ Zein/M41 was assessed by the
minimal bactericidal concentration (MBC) using broth macroevolution methods [68]. The
growth reduction value demonstrated that the capsaicin had a broad spectrum of antibac-
terial inhibition. Furthermore, the MBC counted for 1–2 mg/mL against a Gram-positive
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bacterium and 2–4 mg/mL against a Gram-negative bacterium, respectively (Figure 7).
CAP@Zein/M41, the end product after encapsulating the essential oils, presented a dif-
ferent degree of antibacterial effect regarding its concentration in the initial stages. Ad-
ditionally, the MBC of both the Gram-positive bacterium and Gram-negative one was
determined to be 1.5 mg/mL. These data implied that the antibacterial activity of capsaicin
was mounted after several functionalization procedures. Such a phenomenon could be
attributed to the encapsulation of capsaicin on the surface and interior of the mesoporous
silica nanoparticles. The result agreed with former research [69]. In addition, bare supports
with the same concentration were also detected in the experiment to exclude the influence
of the particles on the microorganism’s survival. Non-functionalized materials had little
inhibitory effect on the bacterium growth on account of the spread plate count results. This
behavior agreed with previously reported results [70]. The growth curves of E. coli were
presented in Figure 8, depicting the growth conditions under MIC and half of the MIC
value. Further, it could be concluded that capsaicin not only presented a good inhibitory
effect when encapsulated in gated MCM-41, but also demonstrated the improvement of its
bactericidal effect by contrast with free EOs. Associated with the sustained release curve, it
could be inferred that the growth of bacteria was actually linked with the amount of Zein in
CAP@ Zein/M41. The results indicated that the bacteriostatic efficacy in the encapsulated
form increased up to triple, by comparing with pure EOs [71]. Another piece of research
demonstrated that combining eugenol and vanillin with silica microparticles as a novel
fungistat reduced the microbial content by more than 5−log [72].
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3.4. Antibacterial Mechanism

After being exposed to CAP@ Zein/M41, the FE-SEM observations of the bacterial cell
morphology allowed researchers to investigate the antibacterial mechanism and assess the
antibacterial effectiveness. Figure 9 displayed the outcomes of bacterial cells that revealed
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the severity and nature of cell damage. The natural strains of S. aureus and E. coli had the
characteristic globular and rod shapes, respectively. The electron micrographs (Figure 9)
told us that there was a clear change in the surface morphology of E. coli cells after dealing
with CAP@ Zein/M41. After being exposed to CAP@ Zein/M41, the bacteria cell bodies
of E. coli and S. aureus were badly damaged, such as shrinking, perforating, breaking, and
bursting. The possible action mechanism of the antibacterial activity by capsaicin against
E. coli and S. aureus is depicted in Figure 10.
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Briefly, with the enzyme-response molecular gate, we designed the “essential oil-
controlled-gating” strategy for mesoporous silica antibacterial materials. Since traditional
encapsulation presented a poor ability in avoiding the volatility of EOs, a molecular gate
made by Zein was applied in this novel antimicrobial carrier, where capsaicin played
the role of an effective constituent in bacteriostatic activity, MCM-41 acted as the basic
vector, and Zein was regarded as the enzyme-response molecular gate. As can be seen
from the above characterization, this bacteriostatic material not only further upgraded
the stability and utilization rate of bacteriostatic drugs, but also attracted more bacteria
with its unique structure and surface charge. In comparison with capsaicin-functionalized
MCM-41, CAP@ Zein/M41 possessed a higher load rate, which can be more economic and
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efficient, further lowering the degree of risk. The bacteriostatic results depicted that CAP@
Zein/M41 successfully enhanced the bacteriostatic activity of capsaicin in bacteria, which
confirmed the success of the bacteriostatic material study. It is feasible to control the EOs’
release from the Zein molecular gate, according to the sustain-release result.
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4. Conclusions

A combination of mesoporous silica nanoparticles (MCM-41) after amino-functionalization
and capsaicin was applied to construct slow-release nanoparticles (CAP@MCM-41), and
Zein was utilized as the molecular gate to show controlled release. The results of this study
demonstrated that the cooperation of Zein and CAP@MCM-41 could better enhance the
antibacterial activity of the materials and extend the service life of this novel bacteriostatic
agent through designing the molecular gate and creating the controlled release. Particularly,
the MBC of CAP@ Zein/M41 was 1–1.5 mg/mL, and the efficiency of drug release was
higher than 80%, which was calculated with the load rate. SEM showed that the surface of
CAP@ Zein/M41 was relatively smooth, and the morphology hardly changed, proving that
CAP@ Zein/M41 had good interface compatibility. Moreover, ζ potential analysis depicted
that amino-functionalization influenced the surface charge of bare MCM-41, increasing
the appeal of bacteria. The addition of Zein had little impact on the ζ potential value.
Therefore, CAP@MCM-41 laid a better foundation for preparing the controlled release
antibacterial materials in the food conservation area. Multiple responsive elements were
vital for the controlled release, including protease, redox, and pH [73]. The application of
molecular-gate materials in food antibacterial agents and food preservation has attracted
increasing attention in recent years thanks to the controlled release ability of essential oils
or other useful antibacterial components based on the use of external stimuli.
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