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Abstract

Non-linear vibrations of axially moving beam with time-dependent tension are investigated in this paper. The beam material is modelled as
three-parameter Zener element. The Galerkin method and the fourth order Runge–Kutta method are used to solve the governing non-linear partial-
differential equation. The effects of the transport speed, the tension perturbation amplitude and the internal damping on the dynamic behaviour of
the system are numerically investigated. The Poincare maps and bifurcation diagrams are constructed to classify the vibrations. For small values
of the transport speed and the amplitude of periodic perturbation the system is asymptotically stable with its response tending to zero. With the
increase of parameters one can observe the coexistence of attractors. Regular and chaotic motion occur when the internal damping increases.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Band saw blades, magnetic types, paper webs, fibber textiles, transmission cables are some technological examples of axially
moving continua. Generally, the axially moving continuum in the form of thin, flat rectangular shape material with small flexural
stiffness is called a web. Webs are moving at high speed, for example, in paper production the paper webs are transported with
longitudinal speeds of up to 3000 m/min. Above the critical speed one can expect various dynamical instabilities mainly of divergent
and flutter type. On the other hand, one important problem in these systems is the occurrence of large transverse vibrations due
to tension variations termed as parametric vibrations. Dynamic response and the stability associated with parametric vibrations
are of primary concern in the dynamic investigations of these systems. To ensure that the operating system is under stable working
conditions, a full analysis of its dynamics has to be performed. Complete knowledge of the dynamical behaviour allows the prediction
and control of instabilities.

Historically, one-dimensional string theory and beam theory were used in modelling the axially moving continua. For a review of
the literature in this field up to the nineties of the previous century see papers by Wickert and Mote [1,2].

In recent years, much attention has been paid to non-linear dynamical behaviour, especially bifurcations and chaos in axially
moving beam-like systems. Pelicano and Zirilli [3] analysed boundary layers and non-linear vibrations of an axially moving elastic
beam with weak non-linearities and vanishing flexural stiffness. Ravindra and Zhu [4] investigated pitchfork-type bifurcation and
chaos of axially accelerating beam in the supercritical region of transport speed. Chakraborty et al. [5] calculated non-linear complex
modes of the axially moving beam by means of a combination method of a temporal harmonic balance and a spatial perturbation
technique. Pelicano et al. [6,7] investigated bifurcations and parametric resonances of a moving beam. It is worth to note that they
have verified their results by experimental measurements. Öz et al. [8] analysed vibrations of an axially accelerating beam by using
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Nomenclature

A cross-section area of the beam
b width of the beam
c axial transport speed
cf wave velocity
E Young modulus of the beam material
g1, . . . , g7 dimensionless coefficients
h thickness of the beam
J inertia moment of the beam cross section
l length of the beam
M bending moment
N perturbed axial stress
P tension force

s dimensionless axial transport speed
t time
w transverse displacement of the beam
x, y Cartesian co-ordinates
z dimensionless transverse displacement of the beam
� dimensionless amplitude of axial force
� strain component in x direction
� internal damping coefficient
� dimensionless displacement of the beam centre
� mass density of the beam
� stress component in x direction
� frequency of periodic perturbation

the direct method of multiple scale. In [9] Pelicano and Vestroni numerically studied bifurcations and chaos in moving beam with
transverse load.

The other important problem one can meet in considering the axially moving web is how to model the web material. In the above
research on non-linear problems the axially moving materials were assumed to be elastic. The damping effects were neglected or
modelled as a simple viscous damping [2]. However, paper webs, new plastics and composite materials webs, which are used in
industry, need more realistic rheological models. Fung et al. [10] seems to be the first discussing the transverse non-linear free
vibrations of an axially moving viscoelastic string subjected to constant initial stress. Zhang and Zu [11,12] investigated non-linear
free and forced vibrations of parametrically excited moving viscoelastic belts. Dynamic stability of an axially moving beam-type
system with uniform initial tension have been investigated by using two different rheologic models: two-parameters Kelvin–Voigt
and four-parameters Burgers models in our paper [14]. The regular and chaotic vibrations of an axially moving viscoelastic beam
subjected to tension variation were studied numerically in [15]. Recently, Yang and Chen [16] investigated bifurcations and chaos
of an accelerating viscoelastic beam with geometric non-linearity. In this paper the viscoelastic beam material was constituted by
one-dimensional Kelvin–Voigt rheologic model. Two-dimensional rheological element in modelling of axially moving viscoelastic
web has been proposed by one of co-authors in 2006 [17].

The equations of motion of the axially moving viscoelastic beam with time-dependent tension have been derived in this paper.
The three-parameter Zener rheological element has been used to model the beam material. From the partial-differential equation that
governs the transverse vibrations of the system the fourth-order Galerkin truncated system is determined. The effects of the transport
speed, the tension perturbation amplitude and the internal damping on the dynamic behaviour of the system were numerically
investigated. The Poincare maps and bifurcation diagrams were constructed to classify the vibrations.

The paper is organized as follows. In Section 2 basing on the beam theory, we derive the equations of motion of the axially moving
beam with three-parameter Zener rheological model of internal damping. In Section 2 we give full mathematical model of the axially
moving beam as well. In Section 3 we discuss the results of our numerical investigations. The conclusions are presented in Section 4.

2. Equations of motion

A viscoelastic axially moving beam of the length l is considered. The beam moves at axial velocity c. The geometry of the system
and the co-ordinates are shown in Fig. 1.

The problem of transverse oscillations of the axially moving continua in a state of uniform initial stress was investigated [13].
The results of the earlier studies give the following equation of motion in the y direction:

�A(−w,t t − 2cw,xt − c2w,xx) + M,xx + (Nw,x),x = 0. (1)

The non-linear strain component in x direction is related to the displacement w by

�(x, t) =
1
2w2

,x(x, t). (2)

The tension P is characterized as a periodic perturbation on the steady-state tension

P = P0 + P1 cos(�t), (3)

where P0 is the initial axial force and P1 the amplitude of axial force.
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Fig. 1. Axially moving beam.
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Fig. 2. Zener rheologic model.

The one-dimensional constitutive equation of a differential-type material obeys the relation

	� = 
�, (4)

where 	 and 
 are differential operators defined as

	 =

n
∑

j=0

aj

dj

dtj
, 
 =

m
∑

j=0

bj

dj

dtj
. (5)

The model of internal damping introduced by Zener is shown in Fig. 2. For this three-parameter viscoelastic model of material
the differential constitutive equation is

a1�t + a0� = b1�t + b0�, (6)

where

a1 = �, a0 = E2, b1 = (E1 + E2)�, b0 = E1E2. (7)

The bending moment M is given

M = −(E1 + E2)Jw,xx − J�w,xxt . (8)

where E1, E2 is the Young modules of the Zener model (Fig. 2).
Taking into account Eq. (8) the governing Eq. (1) has the following form:

w,t t + 2cw,xt + c2w,xx +
J (E1 + E2)

�A
w,xxxx +

J�

�A
w,xxxxt −

1

�A
(Nw,x),x = 0. (9)

To obtain mathematical description of the viscoelastic beam model one should multiply Eq. (9) with operator 	. Using Eqs. (2)
and (3) and taking into account the dimensionless parameters

z =
w

h
, � =

x

l
, s =

c

cf

= c

√

A�

P0
, � = t

cf

l
=

t

l

√

P0

A�
,  = �l

√

A�

P0
, cf =

√

P0

A�
, (10)

one receives

z,���+3sz,���+(3s2
−1−� cos(�))z,��� + (s2

− 1 − � cos(�))sz,��� + g1z,�� + 2g1sz,�� + g1(s
2
− 1 − � cos(�))z,��

+ g2z,���� + g3z,����� + g4z,����� + g5z,������ + g5sz,������ −
3

2
g6z

2
,�z,�� − g7s(2z2

,��z,� + z2
,�z,���)

− g7(2z,�z,��z,�� + z2
,�z,���) = 0, (11)
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where

g1 =
E2l

�cf

, g2 =
(E1 + E2)JE2

�A�lc3
f

, g3 =
(E1 + E2)J

�Al2c2
f

+
E2J

�Al2c2
f

, � =
P1

P0
,

g4 =
(E1 + E2)J

�Al2c2
f

, g5 =
J�

�Al3cf

, g6 =
E1E2h

2

��lc3
f

, g7 =
(E1 + E2)h

2

�l2c2
f

. (12)

The boundary conditions

z(0, �) = z(1, �) = 0, z,��(0, �) = z,��(1, �) = 0. (13)

The problems represented by Eq. (11) together with boundary conditions (13) have been solved using the Galerkin method. The
following finite series representation of the dimensionless transverse displacement has been assumed

z(�, �) =

n
∑

i=1

sin(i��)qi(�), (14)

where qi(�) is the generalized displacement.
The four-term finite series representation of the dimensionless transverse displacement of the beam has been taken in numerical

investigations. The even order truncations are receivable because the gyroscopic coupling in the mathematical model is taken into
consideration. Substituting Eq. (14) into Eq. (11) and using the orthogonality condition one determines the set of ordinary differential
equations. For n= 4 the equations are shown in the Appendix (Eq. A.1). To analyse the dynamic behaviour of the considered system
the set of ordinary differential equations has been integrated.

3. Numerical results

Poincare maps and bifurcation diagrams are modern techniques used to analyse non-linear systems. These maps are the convenient
tools to identify the dynamic behaviour especially chaos. In bifurcations diagrams dynamical behaviour may be viewed globally
over a range of parameters values and compared simultaneously with various types of motions.

In this paper the Poincare maps and bifurcation diagrams have been determined for the non-dimensional displacement of the
centre of the moving beam in the following form:

v( 1
2 , iT ) = q1(iT ) − q3(iT ), (15)

where T = 2�/, i = 1, 2, 3, . . . .

Numerical investigations have been carried out for the beam model of the steel web. Parameters data: length l = 1 m, width
b = 0.2 m, thickness h = 0.0015 m, mass density � = 7800 kg/m3, Young’s modulus along x: Ex = 0.2 × 1012 N/m2, initial stress
N0 = 2500 N/m. It is worth to note that in the previous investigations with two-parameter Kelvin–Voigt and four-parameter Burgers
rheological models of material the same numerical data of the steel web have been taken into account [14,15].

The fourth-order Runge–Kutta method was used to integrate ordinary differential equations and analyse the dynamic behaviour
of the system. The bifurcation diagrams are presented by varying the dimensionless parameters: transport speed s, amplitude of
the tension periodic perturbation �, and the internal damping coefficient g5, while the dimensionless frequency of the periodic
perturbation  and the non-dimensional stiffness of the beam g4 are kept constant at  = 1 and g4 = 0.025, respectively. At each
set of parameters the first 2000 points of the Poincare map have been discarded in order to exclude the transient vibration and the
displacement of the next 100 points have been plotted on the bifurcation diagrams.

3.1. Linearized system

The stability and instability regions of the linearized system (A.1) in the form of the stability boundaries map in the inter-
nal damping–transport speed area are shown in Fig. 3. The boundaries have been calculated for three amplitude values of the
tension periodic perturbation (� = 0, 0.25, 0.5). The analysis of the linearized system predicts exponentially growing oscilla-
tions in supercritical region of transport speed. The critical value of the transport speed increases with the increase of damping
coefficient g5.

3.2. Non-linear system

At first, the parametrically unexcited non-linear system was investigated (� = 0). To show the dynamic behaviour of the beam the
bifurcation diagram of the dimensionless displacement � given by Eq. (15), the Poincare maps, the phase portrait and time history
for g5 = 1.778 × 10−4 are presented in Figs. 4, 5 and 6, respectively. The dimensionless transport speed s has been used as the
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Fig. 3. Stability boundaries of the linearized system (A.1).
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Fig. 4. Bifurcation diagram: g5 = 1.778 × 10−4, 0 = 3.5, � = 0.

bifurcation parameter. To obtain the Poincare maps in this parametrically unexcited case the dimensionless fundamental natural
frequency 0 = 3.5 has been taken into consideration. In Fig. 4 one can observe supercritical Hopf-type bifurcation at the transport
speed s = scr = 0.71. It is worth to note that in the previous case of the Burger rheological model of the beam material, the transport
speed s = 0.7 has been identified as the critical transport speed for the considered damping coefficient value [14].

Though the analysis of the linearized system predicts exponentially growing oscillations for s > scr, non-linear damped oscillations
which tend to the stable limit cycle motion occur (region 1 in Fig. 4). The Poincare map in Fig. 5a and the phase portrait and time
history in Fig. 6 show the dynamic behaviour of the non-linear system in this region of transport speed for the initial conditions
close to zero.

If the transport speed is increased further at sb = 1.13 the second bifurcation occurs. At the transport speeds above the bifurcation
point (region 2 in Fig. 4), the parametrically unexcited non-linear system exhibits global motion between two centre points. The
Poincare map in Fig. 4 and the phase portrait in Fig. 7 show the dynamic behaviour of the non-linear system in this region of transport
speed It is worth to note that in the previous case of the Kelvin–Voigt rheological model of the beam material, the transport speed
s = 1.12 has been identified as the critical transport velocity when the pitchfork-type bifurcation occurs [15]. In the considered case
of Zener rheological model above this transport speed one can observe the coexistence of attractors.

Next, the non-linear parametrically excited system was investigated. The bifurcations diagram of the dimensionless displacement
� versus the dimensionless transport speed s for the specific amplitude value of the tension periodic perturbation � = 0.25 and the
internal damping coefficient g5 = 1.778 × 10−4 is shown in Fig. 8. In this case, the system is asymptotically stable with its response
tending to zero for s < 0.71. At the transport speed s = 0.71 the zero critical point loses its stability and quasi-periodic motion
occurs. Fig. 9 shows the Poincare map of the system behaviour in this region of transport speed. If the transport speed is increased
further (s = 0.85) the second Hopf bifurcation occurs and chaotic motion appears (Fig. 10). As a result of the Hopf bifurcation we
can observe that regular tori (Fig. 9) becomes a strange attractor of fractal structure. At s = 1.05 the inverse Hopf bifurcation can be
observed and the period-2 motion occurs in the region s = 1.05 ÷ 1.12. Then two points represent two periodic orbits in bifurcation
diagram. At s = 1.12 the explosive bifurcation occurs and the large quasi-periodic motion appears.
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Fig. 5. The Poincare maps: g5 = 1.778 × 10−4, � = 0, 0 = 3.5; (a) s = 1.0; (b) s = 1.25.

The bifurcations diagram of the displacement � versus the transport speed s for larger value of parametric excitation � = 0.5 is
shown in Fig. 11. In this case at s = 0.72 the equilibrium loses its stability and quasi-periodic motion occurs. Fig. 12 shows the
phase portrait and time history of the non-linear system motion in this region of transport speed for the initial conditions close to
zero. At the supercritical transport speeds periodic motion regions are interrupted by short chaotic motion until at s = 1.15 explosive
bifurcation occurs and the chaotic motion appears (Fig. 11).

The bifurcation plot of the dimensionless displacement � given by Eq. (15) against the non-dimensional internal damping coefficient
g5 for � = 0.25 and various axial speeds s = 0.75, 0.875 and 1.0 are shown in Figs. 13, 14 and 15, respectively. At s = 0.75 for
small values of internal damping (g5 < 1.1 × 10−3) the quasi-periodic motion occurs (previous Fig. 9 shows the Poincare map of
the system behaviour in this region). With the increase of internal damping at g5 = 1.1 × 10−3 the inverse Hopf-type bifurcation
occurs and finally the system is asymptotically stable with its response tending to zero (Fig. 13).

With the increase of the dimensionless transport speed at s = 0.875 the quasi-periodic region is interrupted by periodic motion
(Fig. 14). At s = 1.0 for small values of internal damping (g5 < 1.1 × 10−3) the period-2 motion appears and next for larger values
of the dimensionless internal damping coefficient, the quasi-periodic and chaotic motion occur. The Poincare map in Fig. 16 shows
the strange attractor created in the bifurcation which takes places at the internal damping g5 = 3.804 × 10−3. Then the small
quasi-periodic attractor presented in Fig. 9 transforms in larger attractor shown in Fig. 17.

Next the dimensionless amplitude of the tension periodic perturbation � has been used as the bifurcation parameter. For small
values of these bifurcation parameter and small values of transport speed the system is stable with its response tending to zero. The
bifurcation diagram in Fig. 18 shows the Poincare maps of the dimensionless displacement v against the perturbation amplitude �

for greater transport speed value s = 0.75 and g5 = 1.778 × 10−4. For lower � values (� < 0.62) the quasi-periodic motion occurs.



124 K. Marynowski, T. Kapitaniak / International Journal of Non-Linear Mechanics 42 (2007) 118 –131

-0.5 0 0.5
-1

-0.5

0

0.5

1

0 200 400 600 800 1000
-1

-0.5

0

0.5

1

�
�

�

�

Fig. 6. The phase portrait (a) and time history (b) of the solution of (A.1): s = 1, g5 = 1.778 × 10−4, � = 0.
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Fig. 7. The phase portrait of the solution of (A.1): s = 1.15, g5 = 10−3, � = 0, 0 = 3.5.

Previous Fig. 9 shows the Poincare map of the system behaviour in this region of the tension amplitude value. With the increase of
the tension at � = 0.62 the quasi-periodic attractor bifurcates into the period-6 attractor, at � = 0.78 into the period-4 attractor and
finally at � = 0.8 into the period-2 attractor (Fig. 18). For greater axial velocity s = 1.0 the bifurcation diagram in Fig. 19 and the
Poincare maps in Figs. 20 and 21 show the quasi-periodic and chaotic motions of the axially moving viscoelastic beam.
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Fig. 8. Bifurcation diagram of the non-linear system (A.1) for g5 = 1.778 × 10−4, � = 0.25.
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Fig. 9. The Poincare map: g5 = 1.778 × 10−4, � = 0.25, s = 0.75.
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Fig. 10. The Poincare map: g5 = 1.778 × 10−4, � = 0.25, s = 0.93.
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Fig. 11. Bifurcation diagram of the non-linear system (A.1) for g5 = 1.778 × 10−4, � = 0.5.
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Fig. 12. The phase portrait (a) and the time history (b) of the solution of the non-linear system (A.1): s = 0.76, � = 0.5, g5 = 1.778 × 10−4.

4. Conclusions

The dynamic investigations of the axially moving viscoelastic beam with time-dependent tension are carried out in this paper.
The beam model material as the Zener reological element is considered. The general form of the differential equation of transverse
oscillations of the considered system is derived together with the differential constitutive low for the rheological model. The Galerkin
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Fig. 13. Bifurcation diagram of the non-linear system (A.1) for s = 0.75, � = 0.25.
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Fig. 14. Bifurcation diagram of the non-linear system (A.1) for s = 0.875, � = 0.25.
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Fig. 15. Bifurcation diagram of the non-linear system (A.1) for s = 1.0, � = 0.25.
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Fig. 16. The Poincare map: s = 1.0, � = 0.25, g5 = 3.804 × 10−3.
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Fig. 17. The Poincare map: s = 1.0, � = 0.25, g5 = 7.111 × 10−3.
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Fig. 18. Bifurcation diagram of the non-linear system (A.1) for s = 0.75, g5 = 1.778 × 10−4.
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Fig. 19. Bifurcation diagram of the non-linear system (A.1) for s = 1, g5 = 1.778 × 10−4.
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Fig. 20. The Poincare map: s = 1.0, � = 0.1, g5 = 1.778 × 10−4.

method is applied to simplify the governing non-linear partial-differential equation into fourth-order truncated system defined by
the set of ordinary differential equations.

The fourth-order Runge–Kutta method was used to integrate ordinary differential equations and analyse the dynamic behaviour of
the system. The Poincare maps have been constructed to classify the vibrations. The bifurcations diagrams are obtained by varying
the transport speed, the amplitude of the tension periodic perturbation and the internal damping coefficient, while the frequency of
the periodic perturbation and the stiffness of the beam are kept constant.

The numerical investigations have been carried out for the beam model of the steal web. The same numerical data of the web
have been taken into consideration like in the previous investigations with two-parameter Kelvin–Voigt and four-parameter Burgers
rheological models of material. The critical transport speed of the non-linear, parametrically excited viscoelastic beam with the Zener
model of material is equal to the one with the Burgers model of material and significantly smaller than the one with the Kelvin–Voigt
model.

In the case when the transport speed was taken as the bifurcation parameter the system is asymptotically stable with its response
tending to zero for s < 0.71. At the transport speed s =0.71 the zero critical point loses its stability and quasi-periodic motion occurs.
For greater axial velocity the quasi-periodic, periodic and chaotic motions occurs. The axial transport speed, when the explosive
bifurcation of investigated system occurs, is equal to the critical transport velocity of the previous model with the Kelvin–Voigt
rheological model of the beam material, when the pitchfork-type bifurcation occurs.
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Fig. 21. The Poincare map: s = 1.0, � = 0.56, g5 = 1.778 × 10−4.

When the internal damping coefficient is taken as the bifurcation parameter for small values of internal damping the quasi-periodic
motion occurs. With the increase of the transport speed in this region of the internal damping, the quasi-periodic region is interrupted
by periodic motion. When the transport speed increases at first the small quasi-periodic attractor transforms into larger quasi-periodic
attractor and finally into the chaotic attractor.

When the amplitude of periodic perturbation has been taken as the bifurcation parameter one can observe the dynamic behaviour
typical for non-linear systems which are determined in multi-dimensional phase space. For small values of these bifurcation parameter
and small values of the transport speed the system is stable with its response tending to zero. With the increase of the bifurcation
parameters the chaotic motion and regular motion alternately appear. It means that the appearance of the hiperchaotic attractor is
possible in these ranges of bifurcation parameters.

Appendix A

The set of ordinary differential equations of the viscoelastic beam model with the Zener model of material (n = 4):

...
q1 = − (g1 + g5�

4)q̈1 + 8sq̈2 + ((3s2
− 1 − � cos(�))�2

− g3�
4)q̇1 + ((16/3)g1 + (128/3)g5�

4)sq̇2

+ (g1(s
2
− 1 − � cos(�))�2

− g2�
4)q1 + (−(32/3)�2s(s2

− 1 − � cos(�)) + (128/3)g5�
4s)q2

+ (−(256/15)�2s(s2
− 1 − � cos(�)) + (4096/15)g4�

4s)q4 + ((32/15)g1s + (4096/15)g5�
4s)q̇4 + (16/5)sq̈4

−3g6�
4((1/8)q3

1+q1q
2
2+(9/4)q1q

2
3 + (3/8)q2

1q3 + (3/2)q2
2q3 + 2q1q2q4 + 4q1q

2
4 + 6q2q3q4) − 2g7�

4((3/8)q2
1 q̇1

+ (3/8)q2
1 q̇3 + (3/4)q1q3q̇1 + (3/2)q2

2 q̇3 + 3q2q3q̇2 + 2q1q2q̇2 + q2
2 q̇1 + (9/4)q2

3 q̇1 + (9/2)q1q3q̇3 + 2q1q4q̇2

+ 2q1q2q̇4 + 2q2q4q̇1 + 6q2q4q̇3 + 6q2q3q̇4 + 6q3q4q̇2 + 8q1q4q̇4 + 4q2
4 q̇1) + 2g7�

4((144/7) q1q2q3

+ (7936/315)q2
2q4 + (20086528/266805)q2q

2
4 + (4432/55)q2

3q4 + (96256/2145)q3
4 ).

...
q2 = − 8sq̈1 − (g1 + 16g5�

4)q̈2 + (72/5)sq̈3 − ((16/3)g1 + (8/3)g5�
4)sq̇1 + (4(3s2

− 1 − � cos(�))�2
− 16g3�

4)q̇2

+ ((48/5)g1 + (1944/5)g5�
4)sq̇3 + ((8/3)�2(s2

− 1 − � cos(�)) − (8/3)g4�
4)sq1 + (4g1�

2(s2
− 1 − � cos(�))

− 16g2�
4)q2 + ((1944/5)g4�

4
− (216/5)�2(s2

− 1 − � cos(�)))sq3 − 3g6�
4(q2

1q2 + 2q3
2 + 9q2q

2
3 + 3q1q2q3

+ q2
1q4 + 6q1q3q4 + 16q2

4q2 + 9q2
3q4) − 2g7�

4(3q1q2q̇3 + 3q1q3q̇2 + 6q2
2 q̇2 + 2q1q4q̇1 + q2

1 q̇4 + 3q2q3q̇1

+ 2q1q2q̇1 + 18q2q3q̇3 + q2
1 q̇2 + 9q2

3 q̇2 + 6q1q4q̇3 + 6q1q3q̇4 + 6q3q4q̇1 + 18q3q4q̇3 + 9q2
3 q̇4

+ 16q2
4 q̇2 + 32q2q4q̇4) + 2g7�

4s((4/15)q3
1 + (22356/385)q3

3 + (784/15)q2
2q3 + (976/105)q1q

2
2 + (508/35)q1q

2
3

+ (468/35)q2
1q3 + (3776/63)q1q2q4 + (81728/3465)q1q

2
4 + (107712/605)q2q3q4 + (1219616/4095)q3q

2
4 ).
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...
q3 = (−g1 + 81g5�

4)q̈3 − (72/5)sq̈2 + (9( 3s2
− 1 − � cos(�))�2

− 81g3�
4)q̇3 − ((48/5)g1 + (384/5)g5�

4)sq̇2

+ (9g1(s
2
− 1 − � cos(�))�2

− 81g2�
4)q3 + ((96/5)�2s(s2

− 1 − � cos(�)) − (384/5)g5�
4s)q2

+ (−(768/7)�2s(s2
− 1 − � cos(�)) + (12288/7)g4�

4s)q4 + ((96/7)g1s + (12288/7)g5�
4s)q̇4 + (144/7)sq̈4

− 3g6�
4((81/8)q3

3 + (1/8)q3
1 + (9/4)q2

1q3 + 6q1q2q4 + (3/2)q1q
2
2 + 18q2q3q4 + 36q3q

2
4 + 9q2

2q3)

−2g7�
4((9/2)q1q3q̇1+6q1q4q̇2+(3/8)q2

1 q̇1 + 3q1q2q̇2 + (9/4)q2
1 q̇3 + 6q2q4q̇1 + 6q1q2q̇4 + 18q2q3q̇2 + (3/2)q2

2 q̇1

+ 36q2
4 q̇3 + 18q2q4q̇3 + 18q2q3q̇4 + 18q3q4q̇2 + 72q3q4q̇4 + 9q2

2 q̇3 + (243/8)q2
3 q̇3) + 2g7�

4s(−(192/45)q3
2

+ (72/35)q2
1q2 + (79872/315)q3

4 + (1072/35)q2
1q4 + (5328/105)q1q2q3 + (52992/385)q2

2q4 + (2016/33)q1q3q4

+ (19224/385)q2q
2
3 + (119664/455)q2

3q4 + (18176/455)q2q
2
4 ).

...
q4 = − (16/5)sq̈1 − (g1 + 256g5�

4)q̈4 − (144/7)sq̈3 − ((32/15)g1 + (16/15)g5�
4)sq̇1 + (16(3s2

− 1 − � cos(�))�2

− 256g3�
4)q̇4 − ((96/7)g1 + (3888/7)g5�

4)sq̇3 + ((16/15)�2s(s2
− 1 − � cos(�)) − (16/15)g4�

4s)q1

+ (16g1�
2(s2

− 1 − � cos(�)) − 256g2�
4)q4 + (−(3888/7)g4�

4
+ (432/7)�2(s2

− 1 − � cos(�)))sq3

− 3g6�
4(q2

1q2 + 32q3
4 + 9q2q

2
3 + 4q2

1q4 + 6q1q2q3 + 16q2
2q4 + 9q2q

2
3 + 36q2

3q4) − 2g7�
4(6q1q2q̇3 + 6q1q3q̇2

+ 9q2
3 q̇2 + 8q1q4q̇1 + 4q2

1 q̇4 + 6q2q3q̇1 + 2q1q2q̇1 + 18q2q3q̇3 + q2
1 q̇2 + 96q2

4 q̇4 + 32q2q4q̇2 + 72q3q4q̇3

+ 16q2
2 q̇4 + 36q2

3 q̇4) + 2g7�
4s(−(104/105)q3

1 − (21384/455)q3
3 − (10656/385)q2

2q3 + (3424/315)q1q
2
2

+ (36792/495)q1q
2
3 + (88/105)q2

1q3 + (24846976/266805)q1q2q4 + (178304/2145)q1q
2
4 + (70016/273)q2q3q4

+ (36928/315)q3q
2
4 ). (A.1)
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