
Zerber+R: Top-k Retrieval from a Confidential Index
Sergej Zerr Daniel Olmedilla Wolfgang Nejdl Wolf Siberski

L3S Research Center & Leibniz University of Hanover
Appelstr. 9a, Hanover 30167, Germany

{zerr, olmedilla, nejdl, siberski}@L3S.de

ABSTRACT
Privacy-preserving document exchange among collaboration
groups in an enterprise as well as across enterprises requires
techniques for sharing and search of access-controlled information
through largely untrusted servers. In these settings search systems
need to provide confidentiality guarantees for shared information
while offering IR properties comparable to the ordinary search
engines. Top-k is a standard IR technique which enables fast
query execution on very large indexes and makes systems highly
scalable. However, indexing access-controlled information for
top-k retrieval is a challenging task due to the sensitivity of the
term statistics used for ranking.
In this paper we present Zerber+R – a ranking model which
allows for privacy-preserving top-k retrieval from an outsourced
inverted index. We propose a relevance score transformation
function which makes relevance scores of different terms
indistinguishable, such that even if stored on an untrusted server
they do not reveal information about the indexed data.
Experiments on two real-world data sets show that Zerber+R
makes economical usage of bandwidth and offers retrieval
properties comparable with an ordinary inverted index.

1. INTRODUCTION
The number of access-controlled documents shared over
enterprise intranets is growing rapidly. Collaboration groups
within or across enterprises require facilities for effective and
efficient retrieval of the top-k documents most relevant to a given
query while shielding those documents from others’ eyes. In the
enterprise settings users can participate in a number of
collaboration groups and need to obtain the most relevant top-k
results from the whole document collection accessible to them.
Top-k is a standard IR technique which enables fast query
execution on very large indexes and makes systems highly
scalable. It prevents information overload by returning only
highly ranked documents most relevant to the user query and
allows reducing bandwidth in case group members use mobile
devices to access the enterprise’s search facilities.
Whereas top-k retrieval of publicly available documents is well-
studied, indexing access-controlled information for top-k
processing remains a challenging task. Even within a single

enterprise (even more so with respect to collaborations within
virtual enterprises), competitive working groups are not likely to
agree on a single trusted server hosting the index or fully trusted
system administrators. Therefore an index created over a set of
confidential documents requires specific protection.
Inverted indexes are the standard choice for keyword (full-text)
top-k document search. An inverted index is a sequence of
posting lists, each of which contains the posting elements
(elements for short). Every posting element represents a document
which contains a particular term and includes the relevance score
used for ranking (e.g., the term frequency). Posting elements
within the list are sorted with respect to their scores which allows
for efficient determination of the top-k results by pruning lower
scored posting elements. Figure 1 shows an inverted index with
two posting lists.

Unfortunately, an inverted index, which is a highly efficient data
structure for top-k retrieval, does not preserve confidentiality of
the indexed documents. The content of a document can be easily
uncovered by a straightforward posting lists scan. Relevance
scores within the posting elements disclose the number of the
indexed documents highly relevant to a specific term. Even if the
exact content of the elements is obscured, the number of highly
ranked documents can give an industrial spy important insights,
e.g., identification of compounds used in the development of a
new chemical process [6].
In general there is a tradeoff between retrieval effectiveness of the
index and confidentiality it can provide. On the one hand in order
to effectively answer a query, an index server requires possibly
complete ranking information enclosed in its posting elements. On
the other hand this information gives undesirable insights into the
content of the indexed documents.
In this paper we present Zerber+R, a novel ranking model
which allows for top-k retrieval from a confidential outsourced
inverted index without information leakage. This paper makes the
following contributions: (i) we introduce the problem of the
confidential top-k retrieval from an outsourced inverted index; (ii)
we propose Zerber+R, a ranking model which minimizes
information leakage by top-k retrieval from a confidential
outsourced inverted index by supporting sorted indexes which do
not exhibit additional information to a potential adversary (iii) we
propose a novel relevance score transformation function, RSTF

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the ACM. To copy otherwise, or to republish, to post on
servers or to redistribute to lists, requires a fee and/or special
permissions from the publisher, ACM.
EDBT’09, March 24–26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 …$5.00.

imClone 1.txt#2

and 2.doc#5

Term Posting List

…

1.txt#3

Figure 1: Inverted Index

for short, – a heuristic which hides term specific distribution of
relevance score values, making scores of different terms
indistinguishable. This heuristic enables inclusion of
(transformed) relevance scores in the posting elements on an
untrusted server to allow the server answering top-k queries; (iv)
we demonstrate retrieval effectiveness and efficiency of the index
on two real-world data sets.

2. SCENARIO
PCC (Production Control Company) creates adoptive solutions
for production process controlling in manufactures. These
solutions include special soft and hardware which is adapted
according to the needs of every specific customer. A lot of
electronic documents such as project and scientific
documentation, stuff management, e-mail correspondence,
presentations, collaborative documents and others have to be
shared among the partners in the specific projects of PCC.
John is a leader of several projects within PCC. Each project
corresponds to a customer manufacture. In order to always obtain
up-to-date documents for his projects and share appropriate
information with team members of a specific project, John
requires a privacy-preserving centralized sharing and search
facility. Because of the very sensitive nature of shared data, the
advisory board of PCC decides to use Zerber as the indexing
system. Zerber supports selectively sharing of access-controlled
documents and delivers precise search results and at the same time
preserves the r-confidentiality of the shared data.
As John has access to a huge number of documents, he is not
interested in obtaining all the documents containing query terms,
but rather a few documents most relevant to the query. An
ordinary search engine can pre-select such documents using
relevance score values attached to each posting element.
However, these scores are calculated based on sensitive statistical
information such as e.g. term frequency. A term frequency
distribution is sufficient to characterize the subject matter of a
lengthy document, and the likely content of a short email, giving
adversary insights in the content of the indexed documents. To
avoid this problem Zerber stores encrypted relevance values in the
posting elements and returns references to all the documents
matching a query, such that only an authorized user can decrypt
and rank posting elements on the client side.
Due to the nature of his job John has to travel a lot and uses
Zerber search interface with help of a PDA and GPRS internet
connection. As this kind of connection is very slow the data
volume transmitted over it needs to be minimized. To reduce data
transfer the server needs some means to identify the best
documents that match John’s query and return only the best top-k
search results.
In the following, we show how to construct a server-side index
which supports top-k retrieval while preserving the given
confidentiality guarantees.

3. BACKGROUND
In the literature different ways of protecting outsourced
information were proposed. While several approaches considered
protecting outsourced data by encryption [9], [12], encryption of
posting elements in an inverted index does not hide document
frequency (the number of documents containing specific term),
which can be used by an adversary to reverse-engineer the terms

[6]. Probabilistic-based index protection techniques suppress
statistical data introducing a controlled amount of uncertainty by
including false positive elements in the index [2]. This technique
represents a tradeoff between search efficiency and confidentiality
preservation. While it ensures a certain degree of confidentiality,
result quality suffers due to the intentional index incorrectness.
Zerber [22] protects an inverted index by combining the benefits
of both, probabilistic and encryption techniques. It allows
obtaining precise search results from an outsourced encrypted
index while providing confidentiality guarantees for the indexed
documents. Zerber introduces the concept of r-confidentiality as a
measure of the information degree that can leak from an index (cf.
Section 2.1).
In order to avoid information leakage if an index server is
compromised and to provide tunable resistance to statistical
attacks Zerber supplements encryption of posting elements with a
novel probabilistic term merging scheme. This scheme selectively
combines posting lists representing different terms into one
posting list (as shown in Figure 2) until a certain probabilistic
threshold is met. Posting lists are merged such that the probability
of a particular term being related to a concrete posting element
does not exceed a certain value r. The system allows for tunable
index confidentiality/efficiency and does not affect the IR
effectiveness of the inverted index.

Unfortunately, none of the existing index protection approaches
supports server-side top-k retrieval, which is essential for retrieval
efficiency and economical usage of network resources, as the user
is typically not interested in all available search results, but only
in the most relevant ones. μ-Serv [2] does not support centralized
ranking at all; Zerber randomly distributes posting elements
containing encrypted ranking information within the merged
posting list, which only allows performing top-k on the client side
after the querying client downloads the whole posting list.

3.1 r-Confidentiality
The concept of r-confidentiality was introduced in [22].
r-confidentiality is a measure of the degree of information that can
leak from an index about access-restricted documents, given an
adversary’s background knowledge of the document corpus or
general language statistics. r-confidentiality bounds the ability of
an adversary to make probabilistic claims about the contents of a
document collection. Assume a scenario where an adversary Alice
tries to reconstruct collection content from an r-confidential
index. From her background knowledge B and the parts of the
index structure I that she can access, Alice will know a-priori that
a term t is contained in document d with a probability ()dtP ∈ . For
example, for a set of emails, B should include () 1"" =∈ dSubjectP ,
for all d and I. The probability estimate P(X|B) about fact X that
Alice can make based on B can not be controlled, but her ability
to refine that estimate when she computes P(X|I,B) can be limited.
In the following, only facts X of the form “term t is in document
d” and “term t is not in document d” will be considered.

List1 2.doc#and#5 1.txt#imClone#2 1.txt#and#3

Posting List ID Merged Posting List

Figure 2: Merged Unencrypted Posting Lists

Definition 1: An indexing scheme is r-confidential iff

.
)|(
),|(r

BXP
IBXP

≤ (1)

Here, r is the factor of maximal probability amplification for term
t in d given I. The indexing scheme offers maximal protection
when P(X|B) = P(X|I,B), i.e. I does not provide any additional
knowledge about X.
Zerber [22] is an r-confidential global inverted index for sensitive
documents. Zerber relies on a centralized set of largely untrusted
index servers that hold encrypted posting list elements. To
provide tunable resistance to statistical attacks, Zerber employs a
novel term merging scheme. In this scheme posting lists are
selectively merged together (as shown in Figure 2), such that the
probability of a particular term being related to a concrete posting
element does not exceed r times the probability of the term in the
document corpus. The probability pt of occurrence of a term t in
the document corpus D is represented by its normalized document
frequency. The posting elements are placed randomly inside the
merged posting list and therefore their positions do not reveal any
additional information to the adversary.
Definition 2: a merged posting list is r-confidential iff the term
probability amplification inside of the merged posting list does
not exceed r. That is, a merging scheme is r-confidential iff

rp
St

t
i

i
1≥∑

∈
 (2)

where pt is the probability of occurrence of the term t in the
document corpus D, S is the set of terms in a merged posting list
and r is the confidentiality parameter. Note that in order to
preserve the r-confidentiality property the posting elements
representing different terms are randomly distributed within the
merged posting list, to resist statistical attacks.
Zerber stores ranking information as well as term and document
identifiers within each posting element in an encrypted form. As
ranking information is not accessible to the server, Zerber does
not support server-side ranking. As posting lists are not sorted, the
complete lists need to be retrieved by the querying client to obtain
the top-k results.

3.2 Relevance Score Calculation
In order to allow for efficient top-k retrieval and to support index
updates in a collaborative environment, relevance score needs to
be included in each posting element in a way the index server can
access. In this section we provide a definition for scoring
function, and discuss its factors relevant to confidential ranking.
Powerful top-k server-side ranking techniques were introduced in
the literature [18]. The Vector Space Model is the most widely
used model in IR for determining document relevance within a
collection. In this model, a document d is represented as a vector,
where each term is assigned a specific weight indicating the
importance of the term in representing the semantics of the
document. Two factors are of importance in the weight
assignment: the normalized term frequency, which is the number
of term occurrences in the document divided by the document
length, and the inverse document frequency (IDF) which
represents the query term selectivity. At the query time the
relevance score (rscore hereafter) of a document d for a query Q is

computed using one of the standard techniques. As an example
the computation using TFxIDF technique is performed as follows:

()

()∑














 ∑

⋅=∑ 









⋅=

∈

∈

∈ Qq d

i
Dt

d
q

Qq
q

q
qn

tn

d
TF

IDF
d

TF
dQrscore ilog

||||
),((3)

where: TFq is the number of occurrences of the query term q in
d, |d| is the document length measured in terms and nd(t) is the
number of documents containing term t.
The term frequency based weighting factor is responsible for the
correct ordering of documents with respect to a single query term.
Normalization applied to the term frequency in Equation 3
prevents longer documents from being highly ranked just because
of their length. IDF is responsible for making relevance scores of
different terms comparable in case of multi-term queries.
Unfortunately, IDF calculation requires knowledge of collection
statistics, such as total number of documents as well as the
number of documents containing particular query term. As the
global index contains posting elements with different access
rights, revealing such global IDF in the relevance score leaks
critical statistical data about inaccessible documents [6].
Thefore, in Zerber+R we focus on confidential top-k query
processing for single-term queries. In this case IDF factor is
constant and relevance score calculation can be calculated as:

||
),(

d
TF

dqrscore q= (4)

Results of a single-term query can be accurately ranked based
only on the information contained in a single document using
Equation 4. Processing of multi-term queries can then be
performed by executing a number of single-term queries. By this
procedure, the retrieval accuracy of a multi-term query slightly
decreases representing a tradeoff between confidentiality of the
collection statistics and retrieval accuracy of the index [21].
Inclusion of collection-wide statistics such as IDF is a topic for
future work.

3.3 Outsourcing Relevance Scores
A naïve approach to provide confidential ranking in an outsourced
index would be to arrange posting elements in the posting list on
the client side before outsourcing them. For instance, an inserting
client could ensure that the most relevant top-k posting elements
are contained in the head of the posting list. However, this
approach is not suitable for the collaboration groups’ scenario, as
the index contains posting elements with different access rights
and therefore cannot be rearranged by a single user. Moreover, the
whole process would need to be repeated whenever the document
collection changes, rendering it impractical in case of frequent
index updates.
To allow for top-k retrieval in an ordinary inverted index,
relevance scores of posting elements are made available to the
server. However, the scores increase the amount of information
available to the server and thus decrease confidentiality provided
by the outsourced inverted index, like it will be shown in the
section 3.4.
Scoring information is typically term specific and can allow
adversary to reverse-engineer the terms.

In case of probabilistic-based index protection (e.g. [2]) an index
contains a controlled amount of false positive elements. Adding
relevance scores to the posting elements in this case would require
generation of the realistic relevance scores for the false positive
elements to prevent statistical attacks.
Sorting posting elements by their relevance score in a Zerber’s
merged posting list (Figure 3) may amplify the probability of a
particular posting element to be related to a specific term,
violating the r-confidentiality guarantees provided by the index. In
the worst case it may allow an adversary to overcome the merging
i.e. to find out which of the merged terms corresponds to a
particular posting element. Consider a merged posting list
containing terms “and” and “imClone”. By sorting posting
elements according to their term frequency, “extended version”
would more probably appear in the tail of the list, as its term
frequency is lower for all (or nearly all) documents.

3.4 TF Distribution
Confidential document ranking is a challenging task. On the one
hand, encrypting relevance scores to protect them on an untrusted
index server does not allow the server to perform any ranking. On
the other hand, if accessible to the index server, the term
frequency information required for the computation of relevance
scores is term specific, and therefore can reveal the actual term in
an index even if the term itself is encrypted, hence breaking
confidentiality guarantees provided by the index.
Term frequency distribution among the documents in a collection
follows a power law distribution (as shown by a log-log plot).
Figure 4 shows the term frequency distributions for the frequent
term (in German language) “nicht” and the less frequent term
“management” in the test collection described in Section 5.1.1.

Figure 4: Log-Log Plot of TF Distributions

Terms can be differentiated by slope and value range of their TF
distribution. State-of-the–art IR techniques mostly use term
frequency normalized by document length [18] in order to avoid
that large documents are ranked higher simply because they
contain more terms.

Figure 5: Log-Log Plot of Normalized TF Distributions

Normalized TF represents the frequency fraction of a term in a
document, which depends on the document topic, assigning
higher ranks to the specific terms. Normalized TF distributions, as
extracted from our study on our test collections (Figure 5
illustrates an example for the aforementioned terms), are not
power law but still term specific. An attacker knowing these
typical term distribution patterns could derive the indexed terms
from the TF distribution found in the inverted index.
Since most state-of-the–art IR techniques use normalized TF for
ranking [18] our aim is to store the relevance scores accessible to
the untrusted server while hiding the term specificity of the
normalized TF distribution, therefore making posting elements
representing different terms indistinguishable in a merged posting
list. At the same time we need to preserve the relevance order of
posting elements in a merged list to allow for top-k retrieval.

4. PROBLEM STATEMENT
We target the problem of providing confidential top-k retrieval
from an outsourced inverted index. In the ideal case the server can
order posting elements regarding to their relevance without
violating the confidentiality of the index.
In an r-confidential index the probability of a particular element in
the posting list of being related to a specific term is r-bounded. A
scoring function will order the terms according to their relevance
and may increase the probability of a specific term being within
particular positions or intervals of the posting list, given the
adversary has knowledge of specific TF distribution as well as the
public scoring function.
The ideal indexing scheme restricts an adversary’s ability to
increase her available knowledge, even if she takes over an index
server and can examine the ranking information of posting
elements and the stream of incoming queries and updates.
Assuming posting elements contain relevance scores and they are
accessible by the index server, then the elements can be ordered
(sorted) by the server in order to retrieve top-k results for a given
query. In the following, we refer to a merged index whose posting
elements contain relevance score values as an ordered index. An
ordered posting list is a merged posting list in an ordered index.
The ordered index offers maximal protection in case relevance
score values does not reveal any additional knowledge about the
index content.The ideal ordered index will be unattainable in
practice, but we can identify the factors which have impact on the
confidentiality of an ordered index and quantify the degree of
their impact.

4.1 Threat Model
To execute a keyword query, the user first authenticates herself to
an index server and supplies the query terms to the server as well
as k - the desired number of the top-k documents. The index
server determines user’s access rights, identifies posting list
containing query terms and returns the highest ranked elements
from the requested list.
In order to enable the server to identify the top-k elements
relevance scores of each posting element must be visible to the
index server. This additional knowledge can compromise
confidentiality of the index. Specifically, we want to bound the
ability of an adversary to perform the following attacks:

1) Identify terms represented by the posting elements by
analyzing relevance score values stored in the index.

Posting List ID Posting Elements

List1 2.doc#and#5 1.txt#and#3 1.txt#imClone#2

Figure 3: Merged Posting Lists sorted by Term Frequency

An adversary Alice could use relevance score distribution
statistics to extract specific features like score ranges, or score
distribution patterns for each particular term. Alice could compare
extracted features with the relevance score distribution in the
posting lists to find correlations. If the terms are encrypted Alice
could use these statistics to break the encryption. In a merged
index, in case a simple term frequency based scoring function is
used, she could claim that “frequent terms are more probably
located in the head of the merged posting list” and even undo the
posting list merging.

2) Determine query terms of other users by observing
queries and query results.

In case of a merged ordered posting list, the number of requests
required for obtaining top-k elements for a rare or a frequent term
may differ. Alice can also know the k-value which is requested by
the client application. As document frequency is term specific,
Alice could guess the term by observing the number of follow-up
requests required to fill the top-k results.
To guard against these attacks Zerber+R proposes novel
techniques making relevance scores and number of follow-up
requests for different terms indistinguishable for the server while
preserving retrieval accuracy of server-side top-k processing.

4.2 Confidentiality preservation by relevance
score transformation
Server side top-k processing requires the server to access
relevance scores of each posting element. However, as explained
before, the distribution of posting elements within a merged
posting list according to their plain relevance scores can reveal the
corresponding term of the posting element (as shown on Figure
3). Since the scoring function presented in Equation 4 is
monotonic, it is possible to make transformations to such function
without affecting the ranking process as long as the ordering
within posting elements representing each particular term is
preserved. This section introduces the requirements for building a
relevance score transformation function (RSTF hereafter), which
makes relevance score distributions of different terms
indistinguishable. Specifically, it uniformly distributes posting
elements representing different terms within the merged posting
list while the order of posting elements related to each single term
remains unaffected. This transformation function assigns a
transformed relevance score (TRS for short) to each posting
element, therefore replacing the original relevance score. To
preserve confidentiality of the index a posting element related to
any term t in an ordered posting list should have equal probability
to obtain a given TRS score.
 RSTF has to fulfil the following properties:

• RSTF maps the relevance scores of different terms to a
range R, which will be the same for all RSTFs.

• RSTF uniformly distributes the TRS values over R.

• RSTF preserves the order of the relevance score values.
In the next section we propose a heuristic for the construction a
RSTF for arbitrary term independent of its score distribution.

5. Zerber+R Design
Processing in Zerber+R can be split in two phases: an offline
pre-computing phase performed once at the time of index

initialization and an online insertion and query phase. In the pre-
computing phase, Zerber+R initializes and publishes the RSTF
for each term in the training document set, such that in the online
insertion phase this function can be used by an inserting client. To
index a document, its owner extracts the document’s terms, builds
their elements, encrypts them, calculates TRS values, and sends
encrypted posting elements to the server along with the IDs of the
merged posting list that the new element belongs to, the
document’s group and the TRS value. The index server
authenticates the user, checks his group membership and accepts
the update if appropriate. Finally, the server inserts posting
elements into the specified merged posting list. Upon query the
server has access to the TRS values and can identify the top-k
most relevant query answers.

5.1 RSTF Construction
We define the target RSTF range to map the relevance score input
values (calculated using Equation 4) as R=[a1, a2].
In order to explain our approach, we first consider the case where
the input values are already uniformly distributed over some range
[b1, b2]. In this case RSTF is a straight line with slope (b1-b2)/(a1-
a2) and offset -b1, and is a projection of [b1,b2] on R.
For example Figure 6 shows, how f(x) = 2.5*x-1.25 maps a range
[0.5, 0.9] to [0, 1]. The slope of the projection function is
responsible for the scale of the input range in the output range.
Given an input range, the greater the slope of the projection
function, the wider is the output range. Unfortunately, the
relevance score distribution in the document set is not uniform
and a linear projection does not change the distribution of the
input relevance score values. To uniformly distribute the input
values over the output range, the slope of the RSTF at each
particular point has to reflect the probability density of the
relevance score values at this point, i.e. it should create a wider
output range in the more crowded areas. Thus the probability
density function of the relevance score values is a derivative of the
RSTF and respectively the RSTF is an integral over the
probability density function of the relevance score values.

Figure 6: Relevance Score Transformation: Linear Projection

The values of the integral over a probability density function are
always contained within the common range [0, 1]. Moreover, an
integral is monotonically increasing, which preserves the ordering
of the input values. Thus an RSTF created in this way would
possess the first and third required properties discussed above.
In the following we model the probability density of the relevance
score distributions and compute a RSTF that approximates the
relevance score distribution to a uniform distribution.

5.1.1 Modelling Relevance Score Distribution
To model the relevance score distribution, Zerber+R requires as
input a training set of documents. This set must be a
representative sample of the corpus, such that the distribution of
the relevance scores will hold for the whole corpus as well. From
the training set Zerber+R extracts the relevance scores for each
term-document pair. Terms found later, which were not contained
in the training set are assumed to be rare and can therefore be
assigned a random TRS. We base our model on the central limit
theorem [17] stating that the sampling distribution of the sample
mean is approximately normal, even if the distribution of the
population from which the sample is taken is not normal.
We consider each relevance score value from the training set to be
a sample mean of the relevance score. The continuous probability
density function of the normal distribution is the Gaussian
function. We model the probability distribution of the relevance
score values around each sample mean as a Gaussian curve. We
take the sum of the Gaussian curves over all samples as an
approximation of the relevance score distribution for a given term
over the whole document corpus. Thereby we make use of the fact
that a probability density function can be arbitrarily closely
approximated by a weighted sum of Gaussian curves [1].
A Gaussian function can be defined by two parameters, location
and scale: the mean ("average", μ) and variance (standard
deviation squared) σ 2, respectively. The probability density of a
term t over the whole document corpus given N training points is
calculated as:

∑
















=
=

−
−N

i

x i

e
N

xf
0

2
)(

,
2

2

2
11)(σ

µ

σµ
πσ

r

(5)

where μi – is the ith value from the training set and σ – is the
scale of the Gaussian function.
A more frequent term results in several training values. In this
case the sum of the Gaussian bells, one for each input value, will
reflect the probability distribution over the input interval. The
probability of unseen values being in particular region is reflected
through the density of training points in that region.

Figure 7: Probability Distribution from 5 Training Values

Figure 7 shows the sum of the probability density functions over
five input values. The X-axis shows the relevance score of a
training value. The Y-axis shows the probability density. Solid
lines represent probability density of each training value. The
dashed line represents the probability density accumulated using
several training values.

5.1.2 Calculating the RSTF
RSTF(x) is an integral of the probability distribution of the input
training values within the range []x,−∞ .

Given N training points RSTF(x) can be calculated as:

∑ ∫=
= ∞−

−
−N

i

x
u

duexRSTF
i

0
2

)(

,
2

2

2
1)(σ

µ

σµ
πσ

r

(6)

where x is a relevance score to be transformed, μi is the ith value
from the training set, N is a number of the values in the training
set and σ is the scale of the Gaussian function.
Therefore, RSTF(x) represents a projection of the relevance score
distribution that approximates the relevance score distribution into
a uniform distribution over the range [0, 1]. An integral of the
Gaussian function within the range []x,−∞ can be estimated with
the standard error function:

)(
2

)(

1

1
2

1 2

2

µσ
σ
µ

πσ +−∞−

−
−

+
≈∫ x

x
u

e
due

(7)

Thus the RSTF can be calculated as:

∑












+
≈

= +−

N

i x ieN
xRSTF

0)(,
)1(

11)(
µσσµ

r

(8)

Figure 8: An Example RSTF for a Term

Using training set from our data sets (see Section 7.1), Figure 8
illustrates an example RSTF function for the German term
“Vergütung” (reimbursement). The X-axis shows the input
relevance score, the Y-axis illustrates its output TRS value
computed using Equation 8.

5.1.3 σ Selection
In order to ensure the uniformness of the TRS distribution on the
whole corpus it is needed to ensure the correct prediction of the
relevance score distribution during the RSTF computation.
Correctness of the prediction depends on the representativeness of
the training set as well as on the correct σ selection.

The σ parameter represents the scale of the Gaussian function
reflecting the generality of the RSTF. σ is responsible for the
learning/memorizing effect. Smaller σ means a broader Gaussian
bell – and thus a more general prediction. Higher σ value means a
narrower bell, meaning a less general function which represents
the particular training point (also known as overfitting).

To select an optimal σ value we use the cross-validation technique
to measure the uniformness of the TRS distribution in a control
set. As a basic measurement for uniformness we compute the
variance in the distribution of the TRS values of a particular term
in the control set with respect to a uniform distribution, that is,
how far the TRS distribution is from a uniform distribution.

Figure 9 presents the TRS variance in the control set dependent
on the σ value. The X-axis shows the σ value, the Y-axis shows
the variance within TRS values in the control set. At first, the
TRS values are distributed more uniformly with an increasing σ.
However, after reaching the minimum (an optimal σ), the
overfitting effect appears and the uniformness is destroyed. An
optimal σ for a particular term is the infimum of the variance
function. As Figure 9 depicts, a good selection of σ provides a
variance of smaller than 0.00002 (standard deviation of 0.0044,
that is, 0.44% of the range [0, 1]).
The process of cross-validation is time consuming. Finding a
method for directly determining an optimal σ value is an
interesting direction for future research.

5.2 Query Answering using Zerber+R
To execute a keyword query, the user first authenticates herself to
an index server and tells the server which posting list she wants to
query as well as the k-value. The index server determines user’s
access rights and returns a number of highly ranked elements from
the requested list. The client decrypts posting elements and filters
out elements for terms not queried. If the client did not obtain the
desired number of elements belonging to the queried term it sends
a follow-up request to the server. Dependent on the response size,
the number of follow-up requests for rare and frequent terms can
differ, leaking information to the adversary. In the following we
discuss heuristics reducing the number of follow-up requests.
Suppose that all the posting lists are merged into M lists L1,…,LM.
The total workload cost Q for a set of queries for retrieving the
top-k elements can be calculated as:

∑



























∑×≅

∈ ∈ML Lj
ji

i i

qLNQ)(,

(9)

where qj is the query frequency of term j, and N(Lj) is the number
of elements to be retrieved from the merged posting list Li.

Posting elements in each merged list are sorted based on their
TRS. Following the uniform distribution, the first position pos1 of
the term t in the list can be approximated as:

()
()

()tn

tn

p
tpos

d

Lt
id

t
i

∑

=≤ ∈1
1 (10)

where pt is the probability of term t and nd(t) is the document
frequency of the term t in a merged list L. In order to obtain the
top-k elements of the term t the total number N of elements to be
retrieved from the list L is:

()

() 













 ∑

==⋅= ∈

tn

tn
k

p
ktposkLN

d

Lt
id

t
i)()(1 (11)

where nd(t) is the document frequency of the term t in a merged
list L. In order to retrieve the top-k elements from the merged list
without knowing which particular term is queried, the number of
retrieved elements should be sufficiently large to include the top-k
elements for all merged terms in the posting list L.
However, this is impractical in case a posting list contains very
rare terms. For instance, for a list with terms for which nd(t)=1
(term t is contained only in one document), the whole posting list
will be returned in response to the query. Thus we need a heuristic
to determine the query response size that reduces the total
workload cost. This heuristic should minimize the used bandwidth
while including the top-k answers in the first response to most of
the received queries.

From query load logs described in Section 7.1.3 we know that the
most frequent queries constitute nearly the whole query workload
(Figure 10). Thus to reduce the total workload cost, the query
answering heuristic should provide high efficiency for the most
frequent queries. Due to confidentiality concerns we can not use
query frequency directly. However, document frequencies and
query frequencies are correlated, though some frequent terms are
rarely queried (e.g., “although”) [15]. To provide efficient query
answering for the most frequent queries while reducing the
bandwidth, Zerber+R puts a bound b on the initial response
size, such that only sufficiently frequent terms with probability
pt*b>=1 are necessarily returned within the first query response.
We discuss the choice of the initial response size in Section 7.4.

In case a rare term t with probability pt*b<1 is requested the user
sending the query might need to issue several follow-up requests
to obtain the top-k results. This can give an adversary the
possibility to infer a rare term has been requested, therefore
allowing her to distinguish between two merged terms in case one
is frequent and the other rare. In order to prevent this situation,
Zerber+R makes use of the BFM index (using the Breadth First
Merging of posting lists) described in [22], which ensures that the
terms merged in a posting list have similar frequency
distributions. Therefore even if retrieving top-k results from a
merged list containing rare terms could require a number of
follow-up requests, this number will be similar for all terms
contained in the list, avoiding that an adversary is able to infer any
additional information. An adversary could also try to estimate the
position of a queried term in the posting list based on the querying
behaviour of the user. Zerber+R reduces the information
leakage in this case by progressively increasing response size for
follow-up requests. Assuming that the user can process at least the

Figure 9: TRS Variance Depending on the Selected σ

amount of data she already obtained Zerber+R doubles response
size for each follow-up request until the user is satisfied with the
result or obtains the whole list.

6. EVALUATION
Confidentiality guarantees provided by Zerber+R depend on the
ability of the RSTF to uniformly distribute the relevance score
values among the given range. We proposed an experimental
measure to quantify the uniformness of the distribution.
This section evaluates Zerber+R in terms of security guarantees,
resource usage and efficiency in query answering.

6.1 Experimental Setup
For our experiments, we used two data sets: the first collection is
extracted from the Stud IP Learning Management System [20],
and the second consists of Open Directory Project crawl data [16].
For each of our document collections we created an index
containing 32K merged posting lists. We use a web search engine
query log as the workload. All experiments were performed on a
2-processor 2.0 GHz Intel CPU T2500 with 2 GB RAM.

6.1.1 Stud IP Data
The Stud IP Learning Management System [20] allows sharing of
access-controlled materials within groups of students and teachers
and is used by several universities in Germany. The Stud IP
installation we use for our experiments has over 3,300 courses
and 6,000 registered students. A mid-semester snapshot used for
our experiments contained 8,500 documents with 570,000 terms.

6.1.2 Web Data
We used a collection from the Open Directory Project [16] (a
human edited directory of the Web) crawled in 2005, with
237,000 documents and 987,700 distinct terms. The crawler's
strategy was to find pages on a variety of topics [13], such that
100 topics were randomly selected; we used the set of documents
on one topic as the set of documents of one group. To obtain a
representative sample for the RSTF initialization we randomly
selected 30% of the documents from each data set as a training
set. We randomly chose about one third from the initial sample for
the control set and used the rest as training data and minimized
variance among the TRS values using cross-validation technique.

6.1.3 Web Search Engine Query Log
Our query log has 7 million queries containing 2.4 terms on
average and 135,000 distinct query terms. Zerber+R considers a
multi-term query as a sequence of single-term queries.
Therefore for our experiments we considered each query term
separately. Figure 10 shows the correlation of the query frequency
and the corresponding cumulative query workload for retrieving
top-10 results (computed using Equation 9).
The log-scale X-axis shows the query terms in decreasing order of
frequency (from most to least popular). The most frequent queries
constitute nearly the whole query workload. Thus to reduce the
total workload cost, the system should provide high efficiency for
the most frequent queries.

6.2 Security Guarantees
If an adversary Alice compromises an index server, she can
attempt to amplify her knowledge in many ways. For example
Alice can now examine the unencrypted TRS values attached to

the posting elements in an index but Zerber+R should ensure
that she can not learn anything in order to preserve our concept of
r-confidentiality. To achieve maximal security effectiveness the
RSTF needs to distribute the relevance scores of each term from
the real dataset equally well as it is achieved in the training set
values. Otherwise, term specific distribution patterns would be
introduced allowing Alice binding posting elements within
specific posting list areas to their corresponding terms with higher
probability. In case the document training set is a representative
sample of the corpus and σ value is selected properly, all terms
will have equal probability to obtain a given TRS value, such that
using TRS does not introduce any additional attack possibilities.
Alice can also observe user queries and query responses. As
discussed in Section 6.3 it is impractical to include top-k results
into the initial query response for all possible terms1. Thus for rare
terms which top-k elements are not contained in the initial
response Alice could observe an increased number of follow-up
requests and conclude that a rare term has been requested.
However, as a Zerber BFM index contains terms of similar
probability inside of a posting list, the number of requests
observed by Alice will not differ for the terms contained in one
merged list, such that r-confidentiality of the index will not be
affected. Alice could also try to estimate a position of such a rare
(unknown) term based on the number of returned posting
elements. Thereby growing response size for follow-up requests
will reduce the total number of such requests and introduce an
increasing degree of uncertainty in Alice’s claims regarding the
position of the (unknown) rare queried term.

6.3 Storage Overhead
To allow for top-k processing an ordinary inverted index typically
contains relevance score information attached to each posting
element..Zerber+R attaches a transformed relevance score TRS
to each posting element, which is sufficient for effective posting
element ranking on the server side. Thus it does not introduce any
storage overhead compared with an ordinary inverted index.

6.4 Selection of the Initial Response Size
As discussed in Section 6.3 Zerber+R increases its response
size progressively depending on the number of follow-up requests
to a query. The initial response size should be selected in a way to
minimize the number of follow-up requests and the bandwidth
overhead for the majority of the queries in the workload.
We denote the number of posting elements in the first response as
initial response size b and the accumulated number of posting
elements in a sequence containing n follow-up requests as a total
response size TRes. Given the number of follow-up requests, the
total response size can be calculated as:

∑⋅=
=

n

i

ibsT
0
2Re (12)

Figure 11 presents an average bandwidth overhead AvBO over the
set of queries Q in the query workload calculated as the ratio
between the total response size TRes of Zerber+R required in

1 In this paper we focus on a fixed result set size in the initial

response to a query. However, we leave for further work
optimizations where this size could vary depending on the
frequency of the terms of each merged posting list.

Figure 11: Average Bandwidth Overhead

order to obtain the top-k elements and k elements returned by an
ordinary inverted index in response to a top-k query:

()

||

Re

Q

k
qsT

AvBO Qq
∑ 







=
∈ (13)

The X-axis of Figure 11 shows the number of posting elements in
the initial query response. The Y-axis shows an average
bandwidth overhead in both test collections calculated using
Equation 13 for k=1, 10 and 50.
Figure 11 shows that the minimal bandwidth overhead for a top-k
query in Zerber+R can be achieved with b=k, i.e. by returning
around k elements. Further enlargement of the initial response
size leads to an increased bandwidth overhead.
Figure 12 shows an average number of requests required in order
to obtain the top-k elements dependent on the number of elements
in the initial response for k=1, 10 and 50 in both test collections.
The X-axis shows the number of elements in the initial response.
The Y-axis shows an average number of requests required to
obtain the top-k elements for the queries in the workload.
Figure 12 also illustrates that with an initial response size of
approximately 10 elements most of the query terms return the top-
10 results within 2 requests (returning 30 posting elements in
total). In order to further reduce the number of requests, the initial
response size needs to be significantly increased. However this is
not desirable because of the significant increase in the bandwidth
overhead. Thus for our further experiments we selected k as the
preferable initial response size for a top-k query.

6.5 Query Performance
We calculated the efficiency in query answering QRatioeff
introduced by different sizes of the initial response as the ratio
between k and the total Zerber+R response size:

Figure 13 plots the efficiency in query answering QRatioeff for the
top-k request with k=10 and the initial response size b=10, 20 and
50 elements in the both test collections. In this figure, the Y-axis
shows QRatioeff and the X-axis represents the query terms in the
workload (in %), ordered by QRatioeff.
The best query efficiency distribution for the top-10 request in the
both test collections is attained using the initial response size
b=10. In this case around 60% of the longest running queries in
the workload have an efficiency value QRatioeff=1and the next
20% longest-running queries have QRatioeff=0.2 on average. The
shortest running 20% of the queries have average QRatioeff=0.1.
Increasing the initial response size to 20 elements leads to the
significant reduction of QRatioeff for all longest running queries.
In this case around 70% of the longest running queries in the
workload have an efficiency value QRatioeff=0.5 and the shortest
running 30% of the queries have average QRatioeff=0.1.
The simulation results described above have shown that initial
response size of b=10 offers very reasonable query performance
for a top-10 query. Our experiments show that using Zerber+R
the query workload cost ratio can be kept comparable to a
conventional inverted index for 60% of the queries, while
preserving the r-confidentiality of the index.

sT
kQRatioeff Re= (14)

Figure 12: Average Number of Requests

6.6 Network Bandwidth
An initial response of Zerber+R contains b elements and the
total response size including follow-up requests required to obtain
top-k elements is calculated using Equation 12. For our
calculations, we assume the following intranet setup: users
connect over a mobile device with a 56 Kb/s modem, while
servers use 100 Mb/s LAN connections. We use initial response
size b, k=10. The document snippets arrive in XML format.
We use a real-world query workload and the Open Directory
Project (ODP) data described in Section 7.1.2. For our
experiments we assume that the user has access to all documents
in the ODP data collection. In this workload, about 85 posting
elements are returned from the ODP index per query term on
average. Assuming that each posting element is encoded using 64
bits, this is approximately 5.3 Kb (0.7 KB) per query term
response. The queries in the workload contain 2.4 terms on
average, which allows a server for the execution of about 750
queries per second. On average, each snippet contains about 250
B including XML formatting, which yields 2.5 KB for the top-10
snippets. Thus average total response size for the top-10 results is
3.5 KB. In comparison, Google’s response for the top-10 results is
about 15 KB, including the snippets as well as information used
for presentation purposes (HTML, CSS, etc.). Altavista returns 37
KB and Yahoo returns 59 KB of top-10 results. As Zerber+R
posting elements are encrypted, query response is represented by a
random bit string and standard HTML compression is ineffective.
The compressed responses of Google, Altavista and Yahoo are
comparable to Zerber+R responses. Further optimization can be
achieved by adding search result checksums and caching them on
the client (defined in HTTP 1.0).

7. RELATED WORK
In the literature different ways of protecting outsourced shared
information were proposed. Encryption is a standard technique for
storing data confidentially [9],[12]. Ways to search encrypted text
or tables stored on remote untrusted servers we proposed in [5],
[7], [10], [19]. [4], [14] provide a framework for policy-based
protection of XML data. Other techniques include suppressing
and/or generalizing data into less specific forms, so that they no
longer uniquely represent individuals [8], [11]; k-anonymity is
one popular form of generalization (e.g., [3]).
Unfortunately, encryption of posting elements does not hide
critical statistical data which can be used by an adversary to
reverse-engineer the terms [6]. Probabilistic index protection
techniques suppress statistical data by introducing a controlled
amount of uncertainty. For instance, the μ-Serv system developed
by IBM inserts false positive posting elements in the index [2].
The lack of precision in search results represents a tradeoff
between search efficiency and confidentiality preservation.
Zerber [22] combines the benefits of both probabilistic and
encryption techniques. It allows obtaining precise search results
from an outsourced encrypted inverted index while providing
confidentiality guarantees for the indexed documents. Zerber
provides tunable resistance to statistical attacks by supplementing
encryption with a novel probabilistic term merging scheme.
Unfortunately, solutions discussed above either do not allow for
top-k retrieval from an outsourced inverted index, or do not
consider ranking information as sensitive. Zerber+R fills this
gap by offering a ranking model which allows attaching relevance
score information to the encrypted posting elements without
introducing any information leakage from an outsourced index.
There has been a considerable amount of work on top-k retrieval
of plain text documents [18]. Thereby an index server makes use
of the relevance score information attached to each posting
element to return the top-k documents most relevant to a user
query. These relevance scores are calculated based on the term
frequency information as well as on the collection statistics.
However, term frequency is term specific and thus, if stored in
plain text, can allow an adversary to discover the terms it belongs
to. To prevent statistical attacks Zerber+R makes relevance
scores related to different terms indistinguishable, while
preserving ordering of posting elements for the top-k processing.
The idea of uniformly distributing posting elements using an order
preserving cryptographic function was first discussed in [21].
However, uniform distribution of posting elements alone does not
hide the document frequency and thus allows an adversary to
recover encrypted terms. Moreover, the order preserving mapping
function proposed in [21] currently does not support efficient
index inserts and updates such that, at least in some cases, the
posting list has to be completely rebuilt. On the contrary,
Zerber+R is based on an r-confidential inverted index which
protects document frequency information. Moreover, the RSTF
of Zerber+R does not introduce any overhead for inserts and
updates compared with an ordinary inverted index. This function
is created only once at the index initialization time and allows for
unlimited index update and insert operations.

Figure 13: Efficiency in Query Answering

8. CONCLUSION & FUTURE WORK
Privacy-preserving document sharing among collaboration groups
in an enterprise requires techniques allowing for centralized
exchange of access-controlled information through largely
untrusted servers. Such system needs to provide confidentiality
guarantees for shared information while offering IR properties
comparable to the ordinary search engines. In this paper we
presented Zerber+R, a ranking model which allows top-k
retrieval from a confidential outsourced inverted index.
Zerber+R creates a relevance score transformation function
which makes relevance scores of different terms indistinguishable,
in a way that even if they are known to an adversary they do not
reveal any information about the indexed data. This enables the
server to provide the top-k results most relevant to a user query.
Our experiments on two real-world data sets show that
Zerber+R makes economical usage of bandwidth and offers
information retrieval properties comparable with an ordinary
inverted index while preserving the confidentiality of the indexed
data.
Zerber+R allows for r-confidential server-side top-k retrieval as
well as insert in presence of adversary. RSTF proposed in this
work is monotonic, such that it does not affect accuracy of the
single-term top-k query. However, as score calculation does not
include IDF factor, accuracy of multi-term queries can be slightly
affected. This effect was considered in the literature [21].
In this paper multi-term queries are viewed as a sequence of
single-term queries. Confidential ranking of the multi-term
queries is an interesting direction for future research.
Another interesting direction is the investigation of how the
quality of the learned training data influences the security of the
system.

9. ACKNOWLEDGMENTS
We are grateful to our colleagues C. Kohlschütter, P. A.

Chirita and R. Lempel (IBM) for providing us the experimental
data. The work on this paper has been partially sponsored by the
TENCompetence Integrated Project (contract 027087) and the
Interdisciplinary Research on security and safety; Leibniz
University Hannover.

10. REFERENCES
[1] Alspach, D. and Sorenson, H. Nonlinear Bayesian Estimation

Using Gaussian Sum Approximations. IEEE Transactions on
Automatic Control, Vol. 17, No.4, p. 439 – 448, Aug., 1972.

[2] Bawa, M., Bayardo, Jr. R. J. and Agrawal, R. Privacy-
preserving indexing of documents on the network. In
Proceedings of the VLDB, 2003.

[3] Bayardo, R. and Agrawal, R. Data privacy through optimal
k-anonymization. In Proceedings of ICDE, 2005.

[4] Bertino, E., Castano, S. and Ferrari, E. Securing XML
documents with Author-X. In IEEE Internet Computing,
May/June 2001.

[5] Boneh, D., Crescenzo, G. D., Ostrovsky, R., and Persiano,
G., Public-key encryption with keyword search. In
Proceedings of Eurocrypt 2004.

[6] Büttcher, S. and Clarke, C. L.A. A Security Model for Full-
Text File System Search in Multi-User Environments. In
Proceedings of the FAST, 2005.

[7] Chang, Y.-C. and Mitzenmacher, M. Privacy preserving
keyword searches on remote encrypted data. Cryptology
ePrint Archive, Report 2004/051, Feb 2004.

[8] Fung, B. C. M., Wang, K. and Yu, P. S. Top-down
specialization for information and privacy preservation. In
Proceedings of ICDE 2005.

[9] Goh, E., Shacham, H., Modadugu, N. and Boneh, D. Sirius:
Securing remote untrusted storage. In NDSS, 2003.

[10] Hacigumus, H., Iyer, B. R., Li, C. and Mehrotra, S.
Executing SQL over encrypted data in the database-service-
provider model. In Proceedings of the SIGMOD, 2002.

[11] Iyengar, V. Transforming data to satisfy privacy constraints.
In Proceedings of the SIGKDD, 2002.

[12] Kallahalla, M., Riedel, E., Swaminathan, R., Wang, Q. and
Fu, K. Plutus: scalable secure file sharing on untrusted
storage. In Proceedings of the FAST, 2003.

[13] Kohlschütter, C., Chirita, P.-A. and Nejdl W. Using Link
Analysis to Identify Aspects in Faceted Web Search.
SIGIR'2006 Faceted Search Workshop, 2006, Seattle, WA.

[14] Miklau, G. and Suciu, D. Controlling Access to Published
Data Using Cryptography. In Proc. of the VLDB 2003.

[15] Mitra, S., Hsu, W. W. and Winslett, M. Trustworthy
keyword search for regulatory-compliant records retention,
In Proceedings of VLDB, 2006, Seoul, Korea, 1001-1012.

[16] Open Directory Project: http://www.dmoz.org/
[17] Rice, J. Mathematical Statistics and Data Analysis II Edition

1995. ISBN 0-534-20934-3
[18] Singhal, A. Modern Information Retrieval: A Brief

Overview. In IEEE, Data Eng. Bull. 24(4), 2001
[19] Song, D. X., Wagner, D., Perrig, A. Practical Techniques for

Searches on Encrypted Data. In Proceedings of IEEE
Security and Privacy Symposium, May 2000, 44-55.

[20] Stud IP LMS. Available at: http://www.studip.de/.
[21] Swaminathan, A., Mao, Y., Su, G.-M., Gou, H., Varna, A.

L., He, S., Wu,M., Oard, D. W. Confidentiality-preserving
rank-ordered search. In Proc. of StorageSS '07 Workshop.

[22] Zerr, S., Demidova, E., Olmedilla, D., Nejdl, W., Winslett
M., Mitra, S. Zerber: r-Confidential Indexing for Distributed
Documents. In Proceedings of the EDBT 2008.

