
S.N.	  Khonina	  et	  al.:	  Zernike	  phase	  spatial	  filter	  for	  measuring	  the	  aberrations	  of	  the	  optical	  structures	  of	  the	  eye	  

J	  of	  Biomedical	  Photonics	  &	  Eng	  1(2)	   	   30	  June	  2015	  ©	  SSAU	  146	  

Zernike	  phase	  spatial	  filter	  for	  measuring	  the	  aberrations	  	  

of	  the	  optical	  structures	  of	  the	  eye	  

Svetlana	  N.	  Khonina
1*
,	  Victor	  V.	  Kotlyar

2
,	  Dmitriy	  V.	  Kirsh

2
	  

1
	  Image	  Processing	  Systems	  Institute	  of	  the	  Russian	  Academy	  of	  Sciences,	  151	  Molodogvardejskaya	  st.,	  Samara	  

443001,	  Russian	  Federation	  
2
	  Samara	  State	  Aerospace	  University,	  34	  Moskovskoe	  shosse,	  Samara	  443086,	  Russian	  Federation	  

*
	  e-‐mail:	  khonina@smr.ru	  

Abstract.	  To	  measure	  directly	  the	  wavefront	  aberration	  coefficients,	  we	  propose	  to	  use	  

the	   multi-‐order	   diffractive	   element	   fitted	   with	   the	   set	   of	   Zernike	   polynomials.	  

Polynomials	   of	   lowest	   degree	   describe	   defocusing	   (ametropy)	   and	   astigmatism.	  

Coefficients	  of	  highest	  degree	  correspond	  to	  the	  spherical	  aberration	  of	  oblique	  rays	  that	  

occurs	  as	  a	  consequence	  of	  misalignment	  of	  the	  crystalline	  lens	  and	  foveola,	  as	  well	  as	  

deflection	   at	   the	   periphery	   of	   the	   crystalline	   lens.	  Multi-‐order	   elements	   allow	   several	  

tens	   of	   expansion	   coefficients	   to	   be	   measured	   simultaneously,	   which	   will	   enable	   to	  

investigate	   insufficiently	   known	   high-‐order	   aberrations	   for	   the	   differentiated	  

diagnostics	  of	  eye	  diseases.	  ©	  2015	  Samara	  State	  Aerospace	  University	  (SSAU).	  

Keywords:	  wavefront	  aberrations,	  eye	  optical	  system,	  Zernike	  polynomials,	  multi-‐order	  

diffractive	  elements,	  expansion	  coefficients.	  

Paper	   #2468	   received	   2015.05.29;	   revised	   manuscript	   received	   2015.06.23;	   accepted	   for	   publication	  

2015.06.25;	  published	  online	  2015.06.30.	  

References 

1. M. S. Smirnov, “Measurement of the wave aberration of the human eye,” Biofizika 6, 776–795 (1961). 

2. H. C. Howland, and B. Howland, “A subjective method for the measurement of monochromatic aberrations of 

the eye,” J. Opt. Soc. Am. 67(11), 1508–1518 (1977). 

3. F. Berny, and S. Slansky, “Wavefront determination resulting from Foucault test as applied to the human eye 

and visual instruments,” Optical Instruments and Techniques, 375–386 (1969). 

4. P. Artal, J. Santamaría, and J. Bescós, “Retrieval of the wave aberration of human eyes from actual point-

spread function data,” J. Opt. Soc. Am. 5(8), 1201–1206 (1988). 

5. D. A. Atchison, “Invited review recent advances in measurement of monochromatic aberrations of human 

eyes,” Clin Exp Optom 88(1), 5–27 (2005). 

6. A. S. Goncharov et al., “Modal tomography of aberrations of the human eye,” Laser Physics, 16(12), 1689–

1695 (2006). 

7. M. Lombardo, and G. Lombardo, “New methods and techniques for sensing the wave aberrations in human 

eyes,” Clin Exp Optom 92(3), 176–186 (2009). 

8. P. Artal, “Optics of the eye and its impact in vision: a tutorial,” Advances in Optics and Photonics 6(3), 340–

367 (2014). 

9. G. Artzner, “Microlens arrays for Shack-Hartmann wavefront sensors,” Opt. Eng. 31(6), 1311-1322 (1992). 

10. J. Liang et al., “Objective measurement of the WA´s aberration of the human eye with the use of a Hartmann-

Shack sensor,” J. Opt. Soc. Am. 11, 1949–1957 (1994). 

11. American National Standards Institute, Inc. American National Standards for Ophthalmics – Methods for 

Reporting Optical Aberrations of Eyes. ANSI Z80.28 (2004).  

12. International Organization for Standardization (ISO). Ophthalmic Optics and Instruments – Reporting 

Aberrations of the Human Eye. Geneva, Switzerland (2008). 

13. R. A. Applegate et al., “Visual acuity as a function of Zernike mode and level of root mean square error,” 

Optom Vis Sci 80(2), 97–105 (2003). 



S.N.	  Khonina	  et	  al.:	  Zernike	  phase	  spatial	  filter	  for	  measuring	  the	  aberrations	  of	  the	  optical	  structures	  of	  the	  eye	  

J	  of	  Biomedical	  Photonics	  &	  Eng	  1(2)	   	   30	  June	  2015	  ©	  SSAU	  147	  

14. D. L. Golovashkin et al., Computer Design of Diffractive Optics, V. A. Soifer (Ed.), Cambridge Inter. Scien. 

Pub. Ltd.& Woodhead Pub. Ltd., Cambridge (2012). 

15. S. N. Khonina et al., “Experimental selection of spatial Gauss-Laguerre modes,” Optical Memory and Neural 

Networks 9(1), 69–74 (2000). 

16. V. V. Koltyar, and S. N. Khonina, “Multi-order diffractive optical elements to process data,” Chapter 2 in 

Perspectives in Engineering Optics, K. Singh, V. K. Rastogi (Eds.), Anita Publications, Delhi, 47–56 (2003). 

17. S. N. Khonina et al., “Generation and selection of laser beams represented by a superposition of two angular 

harmonics,” Journal of Modern optics, 51(5), 761–773 (2004). 

18. V. V. Kotlyar et al., “Coherent field phase retrieval using a phase Zernike filter,” Computer Optics 17, 43–48 

(1997). 

19. S. N. Khonina et al., “Phase reconstruction using a Zernike decomposition filter,” Computer Optics 18, 52–56 

(1998). 

20. S. N. Khonina, V. V. Kotlyar, and Ya Wang, “Diffractive optical element matched with Zernike basis,” Pattern 

Recognition and Image Analysis 11(2), 442–445 (2001). 

21. M. Born, and E. Wolf, Principlies of Optics, Pergamon Press, Oxford (1968). 

 

 

 

1 Introduction 

Wave aberrations of the eye can be measured using 

various subjective and objective methods. The 

subjective methods are based on the collection of the 

patient’s visual responses, while the objective methods 

do not require the cooperation with the patient and are 

based on the image recording after the double-pass 

through the ocular lens. Among the methods developed 

over the years, the following methods can be singled 

out: the Vernier method – alignment [1], 

aberroscopy [2], the Foucault knife-edge method [3] and 

the method for phase retrieval from the retina image [4]. 

Existing clinical aberrometers provide sufficiently 

accurate measurements of deflection of the eye’s 

wavefront [5-8]. In this case high-order aberrations are 

measured to assess the personal deflections of the 

wavefront, including those related to the professional 

activity or age-related changes, in order to optimise the 

optical (with contact or intraocular lenses) or surgical 

correction of the human eye. 

Currently, the most widely used method for the 

measurement of the eye aberration is the Hartmann-

Shack wavefront sensor [9, 10]. The sensor consists of a 

microlens array optically conjugated to the pupil and a 

camera located in the focal plane of the microlens array. 

If a plane wavefront reaches the microlenses then the 

perfectly regular grid of light spots is formed on the 

camera. However, if the wavefront is distorted by 

aberrations, the light spots are located irregularly. The 

displacement of each spot from the reference position is 

proportional to the wavefront derivative in each 

microlens area. Thus, the wavefront is reconstructed 

from the displacements of the light spots recorded by 

the Hartmann-Shack sensor, and then the aberrations are 

calculated. 

A common representation of the wavefront is a set 

of Zernike polynomials, which correspond to different 

wavefront aberrations [11, 12]. Coefficients for the 

expansion of the wavefront in orthogonal Zernike 

polynomials make it possible to determine the root 

mean square error of the deflection from an ideal 

wavefront. The coefficients with high absolute value 

automatically indicate to the aberrations that distort the 

wavefront in the highest degree and consequently allow 

to significantly speed up and simplify the analysis of 

patient’s vision [13]. 

In this paper, we propose to use diffractive optics 

methods for the direct optical measurement of 

amplitudes of coefficients for the expansion of the 

individual visual system wavefront in Zernike 

polynomials [14]. 

The diffractive optical elements (DOE) forming 

simultaneously several laser beam modes in different 

diffraction orders (so-called multi-order or multi-

channel elements) are successfully used as a spatial 

filters for the analysis of a set of laser beam transverse 

modes [14-17]. 

Similar multi-order DOE fitted with the set of 

Zernike polynomials can be used in the wavefront 

analysis and reconstruction [18-20].  

In this paper, wavefront aberrations are analysed 

using a phase spatial filter, with orthogonal circular 

Zernike polynomials used as a basis of the light field 

expansion. Note that in this case, not the phase field but 

the complex amplitude is expanded into the Zernike 

basis, with the intensity generated in the spatial plane of 

Fourier-spectrum and proportional to the field 

expansion coefficients. The coefficient modules 

measured are then used for computing the argument of 

the light field complex amplitude. We are also 

concerned with iterative algorithms for computing the 

Zernike filter phase and the phase of light field complex 

amplitude. 

2 Theoretical bases 

There is a complete set of orthogonal functions with 

angular harmonics in a circle of radius r0. These are the 

circular Zernike polynomials [21]: 

Ψ
nm
r,ϕ( ) = AnRn

m
r( )exp imϕ( ) ,   (1)  

where  
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and (r,ϕ) are polar coordinates. 

The expansion of the light field with complex 

amplitude E(r,ϕ) into a series in terms of the functions 

in Eq. (1) is given by 

E r,ϕ( ) = C
nm
Ψ
nm
r,ϕ( )

m=−n

n

∑
n=0

∞

∑ ,   (2)  

R
n

m
r( )Rp

m
r( )rdr =

r
0

2

2 n +1( )
δ
np

0

r
0

∫ ,  

C
nm

= E r,ϕ( )Ψnm

*
r,ϕ( )rdrdϕ

0

2π

∫
0

r
0

∫ .   (3)  

In the plane of a spatial Fourier-spectrum that may 

be generated by a spherical lens of focal length f ,  the 

light field complex amplitude F(ρ,θ) takes the form  

F ρ ,θ( ) =
k

2π f
×

× E r,φ( )exp −i
k

f
rρ cos φ −θ( )

⎡

⎣
⎢

⎤

⎦
⎥

0

2π

∫
0

r
0

∫ rdrdφ,

   (4)  

where k=2π/λ is the wavenumber of light, λ is the 

wavelength, and (ρ,θ) are the polar coordinates. Based 

on Eq. (2), the light field expansion, Eq. (4), in terms of 

the Zernike polynomials of Eq. (1) is given by 

F ρ,θ( ) =

=
k

f
−i( )

m

C
nm
A
nm
eimθ R

n

m r( )Jm
k

f
rρ

⎛
⎝⎜

⎞
⎠⎟
rdr

o

2π

∫
m=−n

n

∑
n=0

∞

∑ .
   (5)  

In deriving Eq. (5), we made use of the integral 

representation of the Bessel functions of the first kind 

and m-th order: 

J
m
x( ) =

i
m

2π
exp −ix cost + imt( )

0

2π

∫ dt.   

The integral in Eq. (5) may be taken explicitly [21]: 

W
nm

ρ( ) = R
n

m r( )Jm kf
−1rρ( )rdr

o

r
0

∫ =

= −1( )
n−m( )/2

r
0

2
J
n+1
kf −1r

0
ρ( )

kf −1r
0
ρ( )

.

   (6)  

From Eq. (6), one can see that at n>0 the complex 

amplitude at central points ρ=0 is equal to zero: 

W
nm

ρ = 0( ) =
0,n > 0,

r
0

2

2
,n = 0.

⎧

⎨
⎪

⎩
⎪

  

Hence, at n > 0 the intensity distribution in 

diffraction orders of the Fourier-plane will be circular in 

structure. 

An optical configuration of the spectral Zernike 

analyser to illustrate the use of a phase Zernike filter in 

analysis of the wavefront of amplitude E(r,ϕ) is shown 

in Fig. 1. Similar to the Hartman-Shack wavefront 

sensor [9, 10], the Zernike filter is mounted directly in 

the plane of the wavefront to be studied, with a 

spherical lens L of focal length f placed immediately 

behind it. A photoreceiver array matched to the 

computer PC is placed in the rear focal plane of the lens 

L. 

In our formulation of the problem, lens aberrations 

are not included. We believe they will be substantially 

less than the analysed aberrations of an eye. 

	  

Fig. 1 Optical configuration of the Zernike analyser: ZF 

is the Zernike filter, L is a spherical lens, PA is a 

photoreceiver array, and PC is a computer. 

3 Design of the phase-only multi-order 

Zernike filter 

In order for the transmission function of the ZF to be 

phase-only: 

τ r,ϕ( ) = exp iS r,ϕ( )⎡⎣ ⎤⎦    (7)  
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it should be sought for in the form 

τ r,ϕ( ) =

=

Ψ
nm

* r,ϕ( )×

×exp ikf −1rρ
nm
cos ϕ −θ

nm( )+ ν
nm

⎡⎣ ⎤⎦ ,m=−n

n

∑
n=0

N

∑
   (8)  

where (ρnm,ϕnm) are the vectors of the carrier spatial 

frequencies in polar coordinates and νnm are  the free 

parameters of the task to be fitted in such a manner as to 

make Eq. (8) an exact equality. Once the light intensity 

proportional to the squared modulus of the expansion 

coefficients in Eq. (2), 

I
nm

= C
nm

2

   (9)  

has been measured at discrete points of the Fourier-

plane (see Fig. 1), one must perform additional 

computation  in order to find the light field phase from 

Eq. (2): 

Q r,ϕ( ) = arg E r,ϕ( ) .   (10)  

To do this, one may use an algorithm similar to the 

algorithm of Eqs. (3) and (4) and find the phase estimate 

of light field in the (k+1)-th iteration in the form 

Q
k+1
r,ϕ( ) =

= arg I
nm
Ψ
nm
r,ϕ( )exp iνnm

( k )⎡⎣ ⎤⎦
m=−n

n

∑
n=0

N

∑
⎧
⎨
⎩

⎫
⎬
⎭
,
   (11)  

where ν
nm

k( )
 are the free parameters in the k-th iteration 

derived from the equation 

ν
nm

k( )
= arg exp iQ

k
r,ϕ( )⎡⎣ ⎤⎦Ψnm

* r,ϕ( )
0

2π

∫
0

r
0

∫ rdrdϕ
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
,   (12)  

where Q
k
r,ϕ( )  is the sought-for phase estimate in the 

k-th iteration. 

Since the wavefront aberrations met with in optical 

systems are described by even functions relative to the 

azimuth angle ϕ [21], the wave field E(r,ϕ) may be 

written as 

E r,ϕ( ) = exp i B
nm
R
n

m
r( )cos mϕ( )

m=−n

n

∑
n=0

N

∑
⎧
⎨
⎩

⎫
⎬
⎭
.   (13)  

In this connection, instead of the general expansion 

in Eq. (9) one should use the expansion in terms of the 

even functions 

E r,ϕ( ) = C
nm
Ψnm r,ϕ( )

m=−n

n

∑
n=0

∞

∑ ,  

Ψnm r,ϕ( ) = ε
m

n +1

π r
0

2
R
n

m
r( )cos mϕ( ) ,  

where ε
m
=

2, m ≠ 0,

1, m = 0.

⎧
⎨
⎪

⎩⎪
 

For small aberrations, the relation between the 

expansion coefficients Bnm and Cnm is linear 

1+ iB
00
=
C
00

πr
0

2

, iB
nm

= ε
m

C
nm

πr
0

2

  .  

For arbitrary aberrations, the relation between Bnm  

and Cnm is non-linear and on measuring the modules 

C
00

2

 one has to use the algorithm of Eqs. (11) and (12) 

in order to derive the phase Q(r,ϕ) of Eq. (10). Then, 

using Eq. (13) one derives the wave aberration 

coefficients, Bmn. 

Note that since R
0

0
r( ) =1 , the Zernike polynomial 

basis contains the unit as an expansion term, which 

means that when illuminated by a plane wave of 

amplitude E(r,ϕ)=const, the Zernike filter yields only 

one non-zero coefficient of the expansion in Eq. (10): 

C
00

2

≠ 0 .  

From Eq. (6) it also follows that the diffraction orders 

corresponding to the basis functions with different 

numbers m, but with the same numbers n, will have 

similar diffraction patterns (circular structures  at n > 0 ) 

in the Fourier-plane: 

W
nm

ρ( ) = r
0

2

J
n+1
kf −1r

0
ρ( )

kf −1r
0
ρ( )

  .  

The simulation parameters were as follows: 256 

pixels on the radius r and 256 pixels on the angle ϕ, 

r0  = 1 mm, k = 10
4 

mm
-1

, f = 100 mm. We designed a 

25-channel filter [18] that generates diffraction orders 

for the basis functions with the numbers (n,m): m ≤ 8 

and n ≤ 8, propagated at some angles to the optical axis. 

Figure 2 depicts: (a) the half-tone Zernike filter 

phase (black colour corresponds to the phase value of 0 

and white to 2π), (b) 25 diffraction orders generated in 

the lens frequency plane (negative), and (c) the 

correspondence between the numbers (n,m) and 

diffraction orders. 
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(a)	  

	  
(b)	  

	  
(c) 

Fig. 2 (a) The half-tone phase of the Zernike filter, (b) 

the intensity distribution in the lens focal plane, and (c) 

the correspondence between the numbers (n,m) and 

diffraction orders. 

The filter is assumed to be illuminated by a plane 

wave. In this case, the analyser “splits” the incident 

beam onto 25 beams of approximately the same energy. 

80% of the total illuminating beam energy is accounted 

for by these diffraction orders. From Fig. 2(b) the 

intensity is seen to be zero at all central points of the 

Fourier plane except for the zero order, (0,0), so 

meaning that the illuminating wavefront is aberration-

free. 

Figure 3 depicts the result of operation of the same 

25-channel Zernike filter illuminated by the beam 

composed of three basis Zernike functions with the 

same weights and numbers, (n,m): (2,0)+(5,3)+(7,7). 

Shown in Fig. 3 are: (a) the illuminating beam intensity 

and (b) the diffraction pattern in the Fourier plane. 

When compared with the distribution of mode 

numbers between the orders (Fig. 2(c)), Fig. 3(b) 

suggests that the intensity is non-zero (black spots in 

Fig. 3(b)) at the central points of the diffraction orders 

with the numbers (2,0), (5,3), and (7,7). Table 1 gives 

the corresponding averaged values in the vicinity of the 

central points for all orders (the vicinity size is 3x3 

pixels). 

	  
(а) 

	  
(b) 

Fig. 3 Operation of the Zernike filter (see Fig. 2(a)): (a) 

the illuminating beam intensity and (b) the diffraction 

pattern in the Fourier plane. 

Table 1 Averaged intensity values in the vicinity of 

central points for the Fourier-plane orders. The Zernike 

filter (Fig. 2(a)) is illuminated by a beam composed of 

three modes: (2,0)+(5,3)+(7,7). 

(7,1) 

     0,011 

 (6,6) 

      0,028 

 (6,4) 

      0,005 

 (6,2) 

      0,006 

 (6,0) 

      0,035 

 (7,3) 

      0,103 

 (3,1) 

       0,013 

(2,2) 

      0,018 

 (2,0) 

       0,977 

 (5,5) 

       0,008 

 (7,5) 

      0,004 

 (3,3) 

       0,007  

 (0,0) 

       0,059 

 (1,1) 

       0,003 

 (5,3) 

       1,000 

 (7,7) 

       0,683 

 (4,0) 

        0,056 

 (4,2) 

       0,000 

 (4,4) 

        0,001 

 (5,1) 

       0,001 

(8,0) 

        0,004 

 (8,2) 

        0,014 

 (8,4) 

       0,018 

 (8,6) 

        0,006 

 (8,8) 

       0,026 

 

(7,1)

(7,3)

(7,5)

(7,7)

(8,0)

(6,6)

(3,1)

(3,3)

(4,0)

(8,2)

(6,4)

(2,2)

(0,0)

(4,2)

(8,4)

(6,2)

(2,0)

(1,1)

(4,4)

(8,6)

(6,0)

(5,5)

(5,3)

(5,1)

(8,8)
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One can see from Table 1 that the coefficients with 

the same weights in the input beam of the Zernike 

analyser possess different weights at the output: 

C
20

2

= 0,977 , C
53

2

=1,000 , C
77

2

= 0,683.   

In addition, the intensity in the other orders is not 

zero. This is due to the fact that in an effort to obtain a 

purely phase filter in Eqs. (7) and (8), the amplitude is 

replaced by a constant value. Thus, the squared modules 

of coefficients at the Zernike analyser output are seen to 

have been measured with a relative error of 20%. There 

are two ways for reducing the error: a more exact 

computation of the Zernike filter phase combining 

different algorithms [14] and more accurate localisation 

of the diffraction order centres in which the coefficient 

modules are measured. In this section, an averaging 

value on area of 3x3 pixels was used. Such approach is 

less demanding for localisation but leads to a greater 

error. In the following section, we use another algorithm 

for centres’ localisation. 

4 Wavefront reconstruction using a multi-

order Zernike filter 

If in image recognition it suffices to compute the 

modules of the coefficients expanded in some 

orthogonal basis, this procedure is insufficient when 

reconstructing the light field complex amplitude. The 

unique reconstruction of the light field also requires the 

knowledge of the phase of the expansion coefficients. 

We can reconstruct the coefficient phases if to the 

filter in Eq. (8) some linear combination of 

neighbouring basis functions is added [19]: 

s
nm
r,ϕ( ) = Ψ

nm

∗ r,ϕ( )+Ψn' m'

∗ r,ϕ( ){ }×

× exp ikf −1rρ'
nm
cos ϕ −θ'

nm( )+ ν'
nm

⎡⎣ ⎤⎦ ,

p
nm
r,ϕ( ) = Ψ

nm

∗ r,ϕ( )+ iΨn' m'

∗ r,ϕ( ){ }×

× exp ikf −1rρ''
nm
cos ϕ −θ''

nm( )+ ν''
nm

⎡⎣ ⎤⎦ .

  

In this case, the light intensity in the additional 

channels corresponding to the Fourier-spectrum points 

with spatial frequencies (ρ'nm , θ'nm) and (ρ''nm , θ''nm) are  

as follows: 

S
nm

= C
nm

2

+ C
n' m'

2

+ 2 C
nm
C
n' m'
cos φ

n' m'
− φ

nm( ) ,

P
nm

= C
nm

2

+ C
n' m'

2

+ 2 C
nm
C
n' m'
sin φ

n' m'
− φ

nm( ) ,
  

thus allowing the derivation of the phases φnm, for 

example, assuming φ00=0. 

The recursive relationship for the sought-for phases 

may be written in the form 

φ
n' m'

− φ
nm

= tan
−1 Pnm − Inm − In' m'
S
nm
− I

nm
− I

n' m'

⎛

⎝⎜
⎞

⎠⎟
.  

Thus, the optical method under consideration makes 

it possible to find the complex coefficients of the light 

field expansion in terms of an orthogonal basis and to 

reconstruct this field. 

We designed a 25-channel Zernike filter that can 

generate modes in different diffraction orders with the 

numbers (n,m): n ≤ 4 and m ≤ 4 (nine modes altogether) 

and their linear combination (8+8 altogether). 

	  
(a) 

	  
(b) 

	  
(c) 

Fig. 4 (a) The half-tone amplitude and (b) phase of the 

Zernike filter, and (c) the distribution of modes 

numbered (n,m) and their linear combinations between 

the orders.  
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Figure 4 depicts (a) the half-tone amplitude and (b) 

the phase of the Zernike filter, and (c) the distribution of 

modes with the numbers (n,m) and their linear 

combinations between the orders. 

(а) 	  	  	  

 (b) 	  	  	  

(c) 	  	  	  

(d) 	  

Fig. 5 (a) The intensity of the beam under analysis, (b) 

the diffraction pattern in the Fourier-plane produced by 

a purely-phase Zernike filter (shown in Fig. 4(a), (b)), 

(c) the light field reconstructed by an amplitude-phase 

filter, and (d) the light field reconstructed by the purely-

phase filter.  

Figure 5 depicts how such a 25-channel Zernike 

filter operates when illuminated by a beam composed of 

three modes with the coefficients Cnm: C11=exp(i0), 

C33=exp(iπ/2) and C42=exp(iπ). Shown in Fig. 5 are (a) 

the intensity of the beam under analysis, (b) the 

diffraction pattern in the Fourier plane for a phase-only 

filter, (c) the light field reconstructed by an amplitude-

phase filter, and (d) the light field reconstructed by the 

phase-only filter. 

Intensities of expansion coefficients are shown in 

Table 2. To measure coefficients’ values, we search the 

maximum value in the defined vicinity of diffractive 

orders’ localisations. Such approach gives a smaller 

error of coefficients measurement than the averaging 

used in the previous section. In particular, for phase-

only filter the error has decreased from 20 % to 9 %. 

Thus, it is shown that correct definition of positions of 

diffractive orders is very important for correct solution 

of the problem. 

The example suggests that in a wavefront analysing, 

when it will suffice to measure the modules of 

expansion coefficients, a phase-only filter may be used 

to advantage. When diffractive orders are localised 

sufficiently correct the error in measuring the modules 

of the expansion coefficients is less than 9%. At the 

same time, reconstructing the full information about the 

light field also requires the knowledge of the phase of 

the expansion coefficients. In this case, an amplitude-

phase filter should be used. 

5 Conclusions 

Multi-ordered diffractive element fitted with the set of 

Zernike polynomials was proposed to use for the direct 

measurement of the wavefront aberration coefficients of 

eye optical system. 

Investigations suggest that in a wavefront analysing, 

when it will suffice to measure the modules of 

expansion coefficients, a phase-only filter may be used 

to advantage (the error in measuring the modules of the 

expansion coefficients is less than 9% when diffractive 

orders are localised sufficiently correct). At the same 

time, reconstructing the full information about the light 

field also requires the knowledge of the phase of the 

expansion coefficients. In this case, an amplitude-phase 

filter should be used. 

Thus, it is shown numerically that multi-order phase 

diffractive elements allow to confidently and 

simultaneously detect several tens of expansion 

coefficients. We conducted simulation experiments with 

different coefficients corresponding to aberrations of 

both low and high orders. Therefore, we do not expect 

significant variations in the measurement error due to 

the presence of large number of modes in the wave 

front. This will enable to investigate insufficiently 

known high-order aberrations for the differentiated 

diagnostics of eye diseases. 
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Table 2 Results of reconstructing the complex coefficients by an amplitude-phase and phase-only filters. 

Coefficients C
11

2

 C
33

2

 C
42

2

 Error φ
33
− φ

11
 φ

42
− φ

33
 

     Initial  1 1 1  1,57 1,57 

Reconstructed by 

the amplitude-

phase 

     filter  

0,272 0,274 0,279 3,1% 1,46 1,54 

Reconstructed by 

    the phase-only 

filter  

12,12 14,83 14,59 8,6% 0,95 1,53 

	  
  

 

 


