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We consider optical systems with variable numerical aperture (NA) on the level of
the Zernike coefficients of the correspondingly scalable pupil function. We thus
present formulas for the Zernike coefficients and their first two derivatives as a
function of the scaling factor "� 1, and we apply this to the Strehl ratio and its
derivatives of NA-reduced optical systems. The formulas for the Zernike
coefficients of NA-reduced optical systems are also useful for the forward
calculation of point-spread functions and aberration retrieval within the
Extended Nijboer–Zernike (ENZ) formalism for optical systems with reduced
NA or systems that have a central obstruction. Thus, we retrieve a Gaussian,
comatic pupil function on an annular set from the intensity point-spread function
in the focal region under high-NA conditions.

Keywords: NA reduction; Zernike coefficients; Strehl ratio; central obstruction;
aberration retrieval; ENZ theory

1. Introduction and overview

In highly corrected optical systems that operate in or close to the diffraction-limited

regime, the residual aberrations are small and the optical design is such that the

distribution of aberration over the aperture of the imaging pencils minimizes image

degradation. Various criteria to assess image quality are used. The maximum intensity of

the point-spread function, the image of a point source in the object plane, is a good

measure for image quality. Normalized to unity for the perfect imaging system, its value S

for an aberrated system yields useful information on the imaging performance that can be

expected. This quantity was defined by Strehl in 1894 and is commonly called the Strehl

ratio [1]. Another quality measure for imaging systems is the root mean square value Wrms

of the wavefront aberration in the exit pupil of a system. For modest aberration values,
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smaller than the wavelength � of the light, a direct relationship can be established between

the Strehl ratio S and Wrms [2] according to

S ¼ 1� k2W2
rms, ð1Þ

with k¼ 2�/�. A well-corrected optical system should not produce a Strehl value below
0.80 and the corresponding upper limit for the root mean square wavefront aberration

equals Wrms� 0.071�. The well-corrected optical systems described above are meant to

operate at a well-defined and fixed aperture and any change in it compromises the

balancing of aberrations that was obtained in the design process. The change in aperture

towards higher values generally is excluded because of mechanical constraints. A lower

aperture is possible but can lead to rather unexpected effects in, for instance, the root mean

square residual aberration or the Strehl ratio of the produced point-spread function of the

system. As an example of systems with a variable aperture we quote lithographic

projection systems. At some occasions they are used below their maximum aperture value

to optimize the imaging on the wafer of a particular mask structure with less demanding

features. Another possible change in effective aperture is brought about by a central

obstruction. This type of obstruction is found when extra beams of light have to be

transported through the imaging system with the aid of auxiliary mirrors or, simply,

because the system is meant to be catadioptric by design. Examples of these systems are

also found in optical lithography and, of course, in astronomical observation. Another

class of optical systems with varying aperture uses a so-called iris diaphragm. In most

cases, the iris diaphragm is found in imaging systems that are operating far away from the

diffraction limit, like in those for classical photography. However, with the advent of

short-focus, image-sensor based photographic lenses, these systems operate close to the

diffraction limit. On the other hand, in these modern devices the action of the mechanical

iris diaphragm has mostly been replaced by an electronic shutter. One optical imaging

system in which the (circular) iris remains fully active is the eye of humans and humanoids.

In ophthalmology, the eye doctor carries out measurements on the optical eye with varying

iris diameter or at full aperture using an iris-freezing drug. When studying visual

perception or when obtaining images of the retina via the eye lens, the aberrations as a

function of iris diameter need to be well known and, if necessary, they are scaled from the

full diameter to the actual active diameter. Important changes in aberration correction and

Strehl intensity can be expected in this case.
Both the point-spread function and, for high-quality systems, the Strehl ratio can be

expressed in terms of the Zernike coefficients of the pupil function. The description of

optical systems in terms of Zernike expansions of pupil functions is, in fact, a very

powerful and widely used method to which a whole chapter (Chapter 9) has been devoted

in [3]. It is therefore of considerable interest to quantify how the Zernike coefficients of the

pupil function vary when the aperture is reduced to a fraction "51 of the maximum

aperture value. Changing the aperture has a major and non-trivial impact on the Zernike

coefficients, and in recent years several papers [4–9] have been devoted to this difficult

problem. The contribution of the present paper is that it offers a complete mathematical

treatment of this problem, with applications to the Strehl ratio and computation of the

point-spread function of optical systems as well as to optical system characterization for

obstructed systems from through-focus intensity data.

1128 A.J.E.M. Janssen et al.
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To be more specific, we consider a pupil function

Pð�,#Þ ¼ Að�,#Þ exp½iFð�,#Þ�, 0 � � � 1, 0 � # � 2�, ð2Þ

on a unit disk with amplitude A� 0 and real phase F, where we assume that the
normalizations are such that the maximum aperture value gives rise to a pupil radius of

unity. The pupil function P can be thought of as being represented in the form of a Zernike

series according to (polar coordinates)

Pð�,#Þ ¼
X
n,m

�mn Z
m
n ð�,#Þ, 0 � � � 1, 0 � # � 2�: ð3Þ

Here Zm
n ð�,#Þ denotes the Zernike function

Zm
n ð�,#Þ ¼ Rm

n ð�Þ
cosm#, 0 � � � 1, 0 � # � 2�,

sinm#, 0 � � � 1, 0 � # � 2�,

�
ð4aÞ

ð4bÞ

with integer n, m� 0 such that n�m is even and� 0, and Rm
n is the Zernike polynomial of

the azimuthal order m and of degree n, see [3], Appendix VII. For simplicity, we shall only

consider the cosine option in (4), the treatment for the sine option in (4) being largely the

same.
The through-focus complex-amplitude point-spread function U pertaining to the

optical system is expressed in terms of the pupil function P as the diffraction integral

Uðr, ’, f Þ ¼
1

�

ð1
0

ð2�
0

expðif�2ÞPð�,#Þ exp½2�ir� cosð#� ’Þ�� d�d#, ð5Þ

where we have used polar coordinates r, ’ in the image planes and f denotes the focal
variable. Also, the Strehl ratio of the optical system is defined as

S ¼
ð1=�Þ

Ð 1
0

Ð 2�
0 Pð�; #Þ�d� d#

��� ���2
ð1=�Þ

Ð 1
0

Ð 2�
0 jPð�,#Þj�d�d#

��� ���2 : ð6Þ

Using the Zernike expansion (3) of P, the point-spread function U admits the
representation

Uðr,’, f Þ ¼ 2
X
n,m

im�mn V
m
n ðr, f Þ cosm’, ð7Þ

in which the Vm
n are specific functions that have become available in tractable form

recently (Section 4 has details for this). Similarly, under a small-aberration assumption, the

Strehl ratio S can be approximated in terms of the Zernike expansion coefficients � of the

aberration phase F according to

Fð�,#Þ ¼
X
n,m

�mn Z
m
n ð�,#Þ, 0 � � � 1, 0 � # � 2�, ð8Þ

Journal of Modern Optics 1129
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as

S" � Sð�Þ :¼ 1�
X
n,m

ð�mn Þ
2

"mðnþ 1Þ
ð9Þ

(real �’s; "0¼ 1, "1¼ "2¼ � � � ¼ 1, Neumann’s symbol). In the summation in Equation (9)
the term with (n,m)¼ (0, 0) is omitted.

Now reducing the numerical aperture (NA) to a fraction "� 1 of its maximum value,

means that we set P(�,#)¼ 0 outside the disk 0� �� ", 0�#� 2�, and leave P as it is

inside the disk. In order to obtain convenient forms for U and S as in (7) and (9), it is,

in principle, possible to expand the new P¼P" as a Zernike series on the full disk 0� �� 1,

0�#� 2�. However, the resulting series has poorly decaying coefficients, due to the

discontinuity at �¼ " (Appendix 3 is explicit about this). Also, it is not clear what the new

phase F¼F" and its Zernike expansion are going to be, the amplitude being 0 outside the

disk 0� �� ". We therefore choose for a different approach in which we observe that the

new U¼U" is obtained as

U"ðr, ’, f Þ ¼
1

�

ð"
0

ð2�
0

expðif�2ÞPð�,#Þ exp½2�ir� cosð#� ’Þ�� d�d#

¼
"2

�

ð1
0

ð2�
0

expðif"2�2ÞPð"�,#Þ exp½2�ir"� cosð#� ’Þ�� d�d# ð10Þ

in which the last expression in (10) has been obtained from the middle one by changing the
variable �, 0� �� ", into "�, 0� �� 1. By the same variable transformation, we have that

the new Strehl ratio S¼S" is given by

S ¼

ð1=�Þ

ð1
0

ð2�
0

Pð"�; #Þ�d� d#

����
����
2

ð1=�Þ

ð1
0

ð2�
0

jPð"�,#Þj�d�d#

����
����
2
: ð11Þ

Equations (10) and (11) show that we are in the same position as in (7) and (9), when
we would have available the Zernike expansion of the scaled pupil P("�, #), 0� �� 1,

0�#� 2�, and of the scaled phase F(", �, #), 0� �� 1, 0�#� 2�. Limiting ourselves

here to P (the developments for F being the same), we thus seek to find the Zernike

expansion

Pð"�,#Þ ¼
X
n,m

�mn ð"ÞZ
m
n ð�,#Þ, 0 � � � 1, 0 � # � 2�, ð12Þ

in which the coefficients �mn ð"Þ should be related to the �mn in the Zernike expansion of the
unscaled P(�, #), see (3).

The problem of expressing Zernike coefficients of scaled pupil functions into Zernike

coefficients of unscaled pupil functions has been considered recently, see [4–9]. The

developments in [4–7] eventually led to an explicit series expansion for the matrix elements

1130 A.J.E.M. Janssen et al.
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Mm
nn0 ð"Þ required to compute �mn ð"Þ from �mn0 according to

1

2ðnþ 1Þ
�mn ð"Þ ¼

X
n0

Mm
nn0 ð"Þ�

m
n0 , n ¼ m,mþ 2, . . . , ð13Þ

see [7], Equation (19) (Dai’s formula) and Appendix 1 where we give a new proof for it. We
note here that the computation scheme decouples per azimuthal order m due to azimuthal
orthogonality of the Zm

n ð�,#Þ. The factor 1/2(nþ 1) in front of �mn ð"Þ in (13) is due to the
normalization

Ð 1
0ðR

m
n ð�ÞÞ

2� d� ¼ 1=2ðnþ 1Þ of the Zernike polynomials. The matrix
elements Mm

nn0 ð"Þ take by orthogonality of the Rm
n the form

Mm
nn0 ð"Þ ¼

ð1
0

Rm
n0 ð"�ÞR

m
n ð�Þ� d�, n, n0 ¼ m,mþ 2, . . . : ð14Þ

Indeed, since by (3)

Pð"�,#Þ ¼
X
n0,m

�mn0R
m
n0 ð"�Þ cosm#, 0 � � � 1, 0 � # � 2�, ð15Þ

we need to find the Zernikem expansion of Rm
n0 ð"�Þ:

Rm
n0 ð"�Þ ¼

X
n

2ðnþ 1ÞMm
nn0R

m
n ð�Þ, 0 � � � 1: ð16Þ

A more general matrix approach for scaling, rotating and displacing pupils was considered
in [8]; this yields, however, not the explicit type of results for Mm

nn0 that we are interested
in here.

In [9] it is shown that

Mm
nn0 ð"Þ ¼

Rn
n0 ð"Þ � Rnþ2

n0 ð"Þ

2ðnþ 1Þ
, n, n0 ¼ m,mþ 2, . . . , ð17Þ

where it is understood that Rk
l � 0 when k, l are integers� 0 such that l� k is even and50.

A number of consequences of Equation (17) was noted in [9]. Among these is the formula

�mn ð"Þ ¼
X
n0

ðRn
n0 ð"Þ � Rnþ2

n0 ð"ÞÞ�
m
n0 , n ¼ m,mþ 2, . . . , ð18Þ

where the summation is over n0 ¼ n, nþ 2, . . . . Furthermore, in [9] an expression for the
derivative of �mn ð"Þ and for S(�(")), see Equations (8) and (9), at "¼ 1 is given, showing
large sensitivity of aberration coefficients and Strehl ratios for values of " near the
maximum 1.

In this paper we expand on the investigations in [9] which was only a brief letter aimed
at the lithographic community. Thus, we present formulas for the first two derivatives of
�mn ð"Þ and S(�(")) at general "2 [0, 1], and we consider these results in the context of the
semigroup structure governing scaling operations. We also present examples of pupil
functions for which (d/d") [S(�("))] and (d/d")2 [S(�("))] at "¼ 1 can have all four
combinations of signs. These examples are somewhat counterintuitive, the common
opinion being that Strehl ratios of scaled pupils should decrease when NA is increased.
We furthermore show how the in recent years developed Extended Nijboer–Zernike (ENZ)
formalism, see the ENZ website [10] or [11–16], for the computation of through-focus

Journal of Modern Optics 1131
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optical point-spread functions and the retrieval of optical aberrations from through-focus

intensities, has to be modified so as to apply to scaled optical systems and to systems with

a central obstruction. As an example, we show a retrieval result for a Gaussian, comatic

pupil function on an annular set under high-NA conditions. The proofs of our results are

collected in the three appendices.

2. Mathematical results

In this section we present our results in a mathematical form; the application of these

results are to be found in the subsequent sections. All proofs are contained in Appendix 1.

2.1 Basic results

We start by repeating the basic result (17), extended as

Mm
nn0 ð"Þ ¼

Rn
n0 ð"Þ � Rnþ2

n0 ð"Þ

2ðnþ 1Þ
¼

Rnþ1
n0þ1ð"Þ � Rnþ1

n0�1ð"Þ

2"ðn0 þ 1Þ
, n, n0 ¼ m,mþ 2, . . . , ð19Þ

that we discuss and prove in full in Appendix 1. Since we have by convention that Rk
l ¼ 0

when l� k50, we see that

Mm
nn0 ð"Þ ¼ 0, n outside fm;mþ 2, . . . , n0g: ð20Þ

Furthermore, Mm
nn0 ð"Þ does not depend on m; however, note that in Equation (17) both

indices n, n0 are restricted to m,mþ 2, . . . . Evidently, we also have from the two identities

in Equation (19) that

�mn ð"Þ ¼
X
n0

nþ 1

ðn0 þ 1Þ"
ðRnþ1

n0þ1ð"Þ � Rnþ1
n0�1ð"ÞÞ�

m
n0 , n ¼ m;mþ 2, . . . : ð21Þ

As a consequence of the second identity in Equation (19) we show in Appendix 1 that
for n, n0 ¼m, mþ 2, . . .

Mm
nnð"Þ ¼

"n

2ðnþ 1Þ
, ð22aÞ

Mm
nn0 ð"Þ ¼

�1

2k
ð1� "2Þ"nPð1;nþ1Þk�1 ð2"

2 � 1Þ, k ¼
1

2
ðn0 � nÞ ¼ 1; 2, . . . , ð22bÞ

where P
ð�;�Þ
l denotes the Jacobi polynomial with parameters �, � and of degree l, see [17],

Chapter 22. These formulas can be used to show that Mm
nn0 ð"Þ has appropriate behavior as

"# 0 or "" 1. Indeed,

Mm
nn0 ð" ¼ 0Þ ¼ 0 all allowed m; n; n0, ðm; nÞ 6¼ ð0; 0Þ: ð23Þ

1132 A.J.E.M. Janssen et al.
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Therefore, �mn ð0Þ 6¼ 0 for m¼ n¼ 0 only: for "¼ 0 the scaled pupil function reduces to a
constant. Furthermore, since P

ð1;nþ1Þ
k�1 ð1Þ ¼ k, see [17], item 22.4.1 in Table 22.4 on p. 777,

we have that

Mm
nnð"Þ ¼

1

2ðnþ 1Þ
�

n

2ðnþ 1Þ
ð1� "Þ þ � � � , ð24aÞ

Mm
nn0 ð"Þ ¼ �ð1� "Þ þ � � � ,

n0 � n

2
¼ 1; 2, . . . ð24bÞ

when "" 1. The case "¼ 1 corresponds to the full (unscaled) pupil, and thus the formulas
(22a) and (22b) for "¼ 1 correctly show the orthogonality and normalization properties of
the Rm

n ð�Þ, 0� �� 1.
As a consequence of the first identity in (19), the orthogonality and the

normalization properties of the Rm
n ð�Þ, 0� �� 1, and the definition of Mm

nn0 ð"Þ in (14),
we have that

Rm
n0 ð"�Þ ¼

X
n

ðRn
n0 ð"Þ � Rnþ2

n0 ð"ÞÞR
m
n ð�Þ, n0 ¼ m;mþ 2, . . . , ð25Þ

where the summation is over n¼m, mþ 2, . . . , n0. There is a variety of other identities of
type (25) that can be obtained by interchanging " and � and/or by reorganizing the series
expression at the right-hand side, and/or by using the second identity in Equation (19).
We may also observe that all equations presented up to now are valid for all complex
values of ", � (not necessarily restricted to [0, 1]).

2.2 Results on derivatives

2.2.1 Expressions for derivatives of �mn

There holds for m¼ 0, 1, . . . and n¼m,mþ 2, . . .

d

d"
ð�mn ð"ÞÞ ¼

1

"

X
n0

ðnRn
n0 ð"Þ þ ðnþ 2ÞRnþ2

n0 ð"ÞÞ�
m
n0 , ð26Þ

where the summation is over n0 ¼ n, nþ 2, . . .. The particular case "¼ 1,

ð�mn Þ
0
ð1Þ ¼ n�mn þ 2ðnþ 1Þ½�mnþ2 þ �

m
nþ4 þ � � ��

¼ n�mn þ 2ðnþ 1Þ
X1
k¼1

�mnþ2k ð27Þ

was already presented in [9]. Furthermore, we have

d

d"

� �2

ð�mn ð"ÞÞ ¼
X
n0

nðn� 1Þ

"2ð1� "2Þ
þ
3n� n0ðn0 þ 2Þ

1� "2

� �
Rn

n0 ð"Þ

�

þ �
ðnþ 2Þðnþ 3Þ

"2ð1� "2Þ
þ
3ðnþ 2Þ þ n0ðn0 þ 2Þ

1� "2

� �
Rnþ2

n0 ð"Þ

�
�mn0 , ð28Þ

Journal of Modern Optics 1133
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which shows that compact results for higher derivatives than the first one should not be
expected to exist. The explicit result for the case "¼ 1,

ð�mn Þ
00
ð1Þ ¼ nðn� 1Þ�mn þ 4ðnþ 1Þ

X1
k¼1

kðnþ kþ 1Þ �
3

2

� �
�mnþ2k ð29Þ

is, however, still reasonably tidy.

2.2.2 Expressions for derivatives of S(�("))

We consider pure-phase aberrations P¼ exp(iF) in which the real phase function F has the
Zernike expansion

Fð�; #Þ ¼
X
n;m

�mn Z
m
n ð�; #Þ, 0 � � � 1, 0 � # � 2�, ð30Þ

with real, reasonably small expansion coefficients �. We shall generalize the notion of the
Strehl ratio by defining it as

~S ¼ max
V
jUj2, ð31Þ

where U is the point-spread function given in Equation (5), and V denotes a subset of the
focal volume such as

(i) the single point best focus, on axis,
(ii) the x axis at best focus,
(iii) the optical axis ( f axis),
(iv) the whole (x, f ) plane.

Note that jPj ¼ 1 so that the normalization as in Equation (6) disappears in Equation (31).
Furthermore, since we have restricted consideration to the cosine option in (3), we have in
(ii) and (iv) only the x axis, rather than the whole image plane (x, y).

In this more general situation, the Strehl ratio has the approximation

Sð�Þ ¼ 1�
1

�

ð1
0

ð2�
0

X�
n;m

�mn Z
m
n ð�; #Þ

�����
�����
2

� d�d#

¼ 1�
X�
n;m

ð�mn Þ
2

"mðnþ 1Þ
, ð32Þ

where the � on top of the summation signs means to indicate that in the summation a set
of the form

fðn;mÞjm ¼ 0; 1, . . . ; n ¼ m;mþ 2, . . . , nðmÞ � 2g, ð33Þ

with integer n(m)�m having the same parity as m, has been deleted. In the above four
cases the appropriate choice for the set in (33) is

(i) n(0)¼ 2; n(m)¼m, m¼ 1, 2, . . . ,
(ii) n(0)¼ 2, n(1)¼ 3; n(m)¼m, m¼ 2, 3, . . . ,
(iii) n(0)¼ 4; n(m)¼m, m¼ 1, 2, . . . ,
(iv) n(0)¼ 4, n(1)¼ 3; n(m)¼m, m¼ 2, 3, . . . .

1134 A.J.E.M. Janssen et al.
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We then have the following results. We let

~Fð�; #; "Þ ¼
X�
n;m

�mn ð"ÞZ
m
n ð�; #Þ ð34Þ

be the �-reduced aberration phase of the scaled pupil. Then

d

d"
Sð�ð"ÞÞ ¼

2

�"

ð1
0

ð2�
0

j ~Fð�; #; "Þj2�d� d#�
1

�"

ð2�
0

j ~Fð1; #; "Þj2 d# ð35Þ

and

d

d"

� �2

Sð�ð"ÞÞ ¼
�6

"2
1

�

ð1
0

ð2�
0

j ~Fð�; #; "Þj2� d�d#�
1

2�

ð2�
0

j ~Fð1; #; "Þj2 d#
� �

�
1

�"

ð2�
0

@

@"
j ~Fð�; #; "Þj2 d#: ð36Þ

These formulas can be written succinctly as

Sð�ð"ÞÞ ¼ 1� j ~Fð"Þj2disk, ð37Þ

d

d"
ðSð�ð"ÞÞÞ ¼

2

"
j ~Fð"Þj2disk � j ~Fð"Þj

2
rim

� 	
, ð38Þ

d

d"

� �2

ðSð�ð"ÞÞÞ ¼
�6

"2
j ~Fð"Þj2disk � j ~Fð"Þj

2
rim

� 	
�
2

"

@

@"
j ~Fð"Þj2rim, ð39Þ

where the two types of averaging refer to the whole disk 0� �� 1 and the rim �¼ 1,
respectively. The formulas (38) and (39) give a clue as to how to choose F such that the

first and second derivative of S(�(")) at "¼ 1 exhibit a desired sign combination (also see

Section 3).
The first two derivatives of S(�(")) can also be expressed solely in terms of �(").

There holds

d

d"
ðSð�ð"ÞÞÞ ¼

2

"

X�
n;m

ð�mn ð"ÞÞ
2

"mðnþ 1Þ
�
2

"

X
m

1

"m

X�
n

�mn ð"Þ

 !2

, ð40Þ

and

d

d"

� �2

ðSð�ð"ÞÞÞ ¼
�6

"2

X�
n;m

ð�mn ð"ÞÞ
2

"mðnþ 1Þ
�
X
m

1

"m

X�
n

�mn ð"Þ

 !2
2
4

3
5

�
4

"

X
m

1

"m

X�
n

�mn ð"Þ

 ! X�
n

ð�mn Þ
0
ð"Þ

 !
, ð41Þ

where the � on top of the
P

n means to indicate summation over n¼ n(m), n(m)þ 2, . . . .
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The case that "¼ 1 deserves special attention since often the NA is reduced only a small
fraction below its maximum value. We have �mn ð" ¼ 1Þ ¼ �mn and ~Fð" ¼ 1Þ ¼ ~F is the
�-reduced aberration phase of the unscaled pupil. Then we get, for instance,

d

d"
ðSð�ð"ÞÞÞ

���
"¼1
¼ 2 j ~Fj2disk � j ~Fj

2
rim

� 	

¼ 2
X�
n;m

ð�mn Þ
2

"mðnþ 1Þ
� 2

X
m

1

"m

X�
n

�mn

 !2
, ð42Þ

and

d

d"

� �2
Sð�ð"ÞÞ

���
"¼1
¼ �6

X�
n;m

ð�mn Þ
2

"mðnþ 1Þ
�
X
m

1

"m

X�
n

�mn

 !22
4

3
5

� 4
X
m

1

"m

X�
n

�mn

 ! X�
n

�mn nþ
1

2
ðn2 � n2ðmÞÞ

� � !
: ð43Þ

2.2.3 Semigroup structure of the scaling operation

We set for 0� "� 1 and m¼ 0, 1, . . .

�m ¼ ð�mn Þn¼m;mþ2,..., �mð"Þ ¼ ð�mn ð"ÞÞn¼m;mþ2,..., ð44Þ

and

Nmð"Þ ¼ ðNm
nn0 ð"ÞÞn;n0¼m;mþ2,... ¼ ðR

n
n0 ð"Þ � Rnþ2

n0 ð"ÞÞn;n0¼m;mþ2,...: ð45Þ

Thus, Nm
nn0 ð"Þ denotes the matrix element of Nm(") with row index n and column index n0.

From Equation (18) we have for m¼ 0, 1, . . .

�mð"Þ ¼ Nmð"Þ�m: ð46Þ

We shall below omit superscripts m by which we mean to say that we are considering the
whole aggregate of coefficients and matrices in (44)–(45) with m¼ 0, 1, . . ..

The property that scaling the pupil function by factors "1 and subsequently "2 is the
same as scaling by the factor "1"2¼ "2"1 is reflected in terms of �’s and N’s as

�ð"2"1Þ ¼ Nð"2Þ�ð"1Þ ¼ Nð"2ÞNð"1Þ�

¼ �ð"1"2Þ ¼ Nð"1Þ�ð"2Þ ¼ Nð"1ÞNð"2Þ�

¼ Nð"2"1Þ� ¼ Nð"1"2Þ�: ð47Þ

Hence, the (N("))0� "� 1 have a commutative semigroup structure (for a group structure we
would also need the existence of inverses). Note that

Nð" ¼ 1Þ ¼ Iðidentity matrixÞ: ð48Þ

The semigroup property

Nð"2"1Þ ¼ Nð"2ÞNð"1Þ ¼ Nð"1ÞNð"2Þ ð49Þ

1136 A.J.E.M. Janssen et al.
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can also be verified directly from Equation (25). Indeed, using (25) for Rn00

n ð"�Þ and
Rn00þ2

n ð"�Þ, we get for any m¼ 0, 1, . . . ,m¼ n00, n00 � 2, . . . from Equation (45) that

Nm
n00nð"�Þ ¼ Rn00

n ð"�Þ � Rn00þ2
n ð"�Þ

¼
X
n0

ðRn0

n ð"Þ � Rn0þ2
n ð"ÞÞðRn00

n0 ð�Þ � Rn00þ2
n0 ð�ÞÞ

¼
X
n0

Nm
n0nð"ÞN

m
n00n0 ð�Þ ¼ ðN

mð�ÞNmð"ÞÞn00n: ð50Þ

The infinitesimal generator B of the semigroup (N("))0�"�1 is defined as

B ¼
d

d"
Nð"Þ

���
"¼1
: ð51Þ

By Equation (46) we have for m¼ 0, 1, . . .

ð�mÞ0ð1Þ ¼ ðNmÞ
0
ð1Þ�m ¼ B�m: ð52Þ

Hence, from Equation (27) we see that the row of Bm with index n¼m, mþ 2, . . . is
given by

0 0 � � � 0|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
n�m

2

n 2ðnþ 1Þ 2ðnþ 1Þ . . . : ð53Þ

The infinitesimal generator is useful for compact representation of results of computa-
tions. This is based on the formula

Nð"Þ ¼ expðB ln "Þ ¼
X1
k¼0

ðln "Þk

k!
Bk: ð54Þ

For instance, we have for l¼ 0, 1, . . .

d

d"

� �l
�ð"Þ ¼

d

d"

� �l
expðB ln "Þ

 !
�: ð55Þ

For l¼ 1 this yields

�0ð"Þ ¼
1

"
BNð"Þ�, ð56Þ

and this gives (26) when using (53) and (45). Similarly,

d

d"
½Sð�ð"ÞÞ� ¼ ðrSÞð�ð"ÞÞ � �0ð"Þ ¼

1

"
ðrSÞð�ð"ÞÞ � B�ð"Þ: ð57Þ

This shows how the general results (38) and (40) follow from the "¼ 1 result in (42).
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3. Quality assessment of NA-reduced systems by Strehl ratios

We consider in this section pure-phase aberrations so that the pupil function P is given as

exp (iF) with F having the Zernike expansion (8) with real and sufficiently small �’s.
We can then replace the Strehl ratio in (6) by the quantity S(�) in (9) where the summation

over (n,m) omits the term (n,m)¼ (0, 0). Thus, in the general setting of Subsection 2.2.2

we have the case

(i) n(0)¼ 2; n(m)¼m, m¼ 1, 2, . . . .

Figure 1 shows an example where we scale an aberrated pupil with �13 ¼ 0:1 and �15 ¼ 0:1
while all other �mn ¼ 0. We have in this case by Equation (18)

�13ð"Þ ¼ �
1
3R

3
3ð"Þ þ �

1
5ðR

3
5ð"Þ � R5

5ð"ÞÞ ¼ "
3�13 þ ð4"

5 � 4"3Þ�15, ð58Þ

�15ð"Þ ¼ �
1
5R

5
5ð"Þ ¼ "

5�15: ð59Þ

Furthermore, in agreement with Equations (26) and (28)

ð�13Þ
0
ð"Þ ¼ 3"2�13 þ ð20"

4 � 12"2Þ�15, ð�
1
5Þ
0
ð"Þ ¼ 5"4�15, ð60Þ

and

ð�13Þ
00
ð"Þ ¼ 6"�13 þ ð80"

3 � 24"Þ�15, ð�
1
5Þ
00
ð"Þ ¼ 20"3�15: ð61Þ

In the case "¼ 1 we then find �13ð1Þ ¼ �
1
3, �

1
5ð1Þ ¼ �

1
5, and, in agreement with (27) and (29)

ð�13Þ
0
ð1Þ ¼ 3�13 þ 8�15, ð�

1
5Þ
0
ð1Þ ¼ 5�15, ð62Þ

and

ð�13Þ
00
ð1Þ ¼ 6�13 þ 56�15, ð�

1
5Þ
00
ð1Þ ¼ 20�15: ð63Þ

0 0.2 0.4 0.6 0.8 1
−0.08

−0.06

−0.04

−0.02
0

0.02

0.04
0.06

0.08

0.1
0.12(a) (b)

ε

α 
31 

(ε
)

α 
51 

(ε
)

 

 
Eq.(58)
Eq.(62)

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

ε

Eq.(59)
Eq.(62)

Figure 1. Scaling an aberrated pupil with �13 ¼ �
1
5 ¼ 0:1 to relative size " � 1. In (a) we show �13ð"Þ

as a function of ", see (58), where the tangent line at " ¼ 1 has slope given in accordance with (62).
In (b) we do the same for �15ð"Þ.
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We note from these formulas that the relative sensitivity ð�mn Þ
�1 d�mn =d" increases sharply

when " approaches 1. In the case of Figure 1 we have

1

�13
ð�13Þ

0
ð1Þ ¼ 11,

1

�15
ð�15Þ

0
ð1Þ ¼ 5: ð64Þ

We next consider the Strehl ratio for two pupils containing a variety of aberrations
(low-to-medium-high order spherical, coma, astigmatism and trefoil). In the first example,

see Figure 2, the Strehl ratio as a function of the scaling parameter " behaves as one

expects: it decreases with increasing NA, and it does so faster at higher NA. A somewhat

more complicated behavior of the Strehl ratio as a function of NA occurs in the second

example, see Figure 3. For this second example, we have displayed in Figure 4 the plots of

eight functions �mn ð"Þ with scaling parameter " between 0 and 1.
The example in Figure 3 already shows that the behavior of the Strehl ratio as a

function of NA can be more complicated than one is inclined to expect. The next example

illustrates how complicated things can get, even in the simple case that only two spherical

aberration terms are present. In Figure 5 we have plotted

Sð�ð"ÞÞ ¼ 1�
X

ðn;mÞ6¼ð0;0Þ

ð�mn ð"ÞÞ
2

"mðnþ 1Þ
ð65Þ

for the case of the radially symmetric aberration phase

Fð�; #Þ ¼ Fð�Þ ¼ �04R
0
4ð�Þ þ �

0
6R

0
6ð�Þ ð66Þ

0 0.2 0.4 0.6 0.8 1
0.99

0.991

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

S
 (

ε)

Eq.(18, 32)
Eq.(42)

ε

Figure 2. Strehl ratio S(�(")) as a function of " for a pupil containing the following cocktail of
non-zero aberrations: �02 ¼ 0:1, �04 ¼ 0:03, �06 ¼ 0:01 (spherical); �11 ¼ 0:1, �13 ¼ 0:03, �15 ¼ 0:01
(coma); �22 ¼ 0:1, �24 ¼ 0:03, �26 ¼ 0:01 (astigmatism); �33 ¼ 0:1, �35 ¼ 0:03 (trefoil). The drawn line
shows S(�(")), see (18), (32) with �’s instead of �’s, and the tangent line at " ¼ 1 has slope given in
accordance with (42).
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with �04 ¼ ��
0
6 ¼ 0:04�. We see that S(�(")) exhibits the expected behaviour only to

"¼ 0.6, after which S(�(")) increases.
Let us examine what happens at "¼ 1 in the case that S(�(")) and F are as in (65)–(66)

with general �04 and �06. We get from formulas (42)–(43) in this case

d

d"
ðSð�ð"ÞÞÞ

���
"¼1
¼ 2

1

7
ð�06Þ

2
þ
1

5
ð�04Þ

2

� �
� 2ð�06 þ �

0
4Þ

2, ð67Þ

and

d

d"

� �2

ðSð�ð"ÞÞÞ
���
"¼1
¼ �6

1

7
ð�06Þ

2
þ
1

5
ð�04Þ

2
� ð�06 þ �

0
4Þ

2

� �
� 4ð�06 þ �

0
4Þð22�

0
6 þ 10�04Þ:

ð68Þ

We set t ¼ �06=�
0
4, and we consider the quadratics

Q1ðtÞ ¼ ð�
0
4Þ

2 d

d"
ðSð�ð"ÞÞÞ

���
"¼1
¼ 2

1

7
t2 þ

1

5

� �
� 2ðtþ 1Þ2, ð69Þ

Q2ðtÞ ¼ ð�
0
4Þ

2 d

d"

� �2
ðSð�ð"ÞÞÞ

���
"¼1

¼ �6
1

7
t2 þ

1

5
� ðtþ 1Þ2

� �
� 4ðtþ 1Þð22tþ 10Þ: ð70Þ

0 0.2 0.4 0.6 0.8 1
0.99

0.991

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

ε

S
 (

ε)

Eq.(18, 32)
Eq.(42)

Figure 3. Same caption as in Figure 2, with a different cocktail of aberrations: �02 ¼ 0:1,

�04 ¼ �0:075, �
0
6 ¼ 0:05 (spherical); �11 ¼ 0:1, �13 ¼ 0:05, �15 ¼ �0:025 (coma); �22 ¼ 0:05, �24 ¼ 0:1,

�26 ¼ �0:05 (astigmatism); �33 ¼ 0:05, �35 ¼ 0:05 (trefoil).

1140 A.J.E.M. Janssen et al.



D
ow

nl
oa

de
d 

B
y:

 [v
an

 H
av

er
, S

.] 
A

t: 
14

:0
9 

19
 M

ay
 2

00
8 

There holds

Q1ðtÞ ¼ �
12

7
t2 þ

7

3
tþ

14

15

� �
¼ �

12

7
ðt� t1;þÞðt� t1;�Þ, ð71Þ

Q2ðtÞ ¼ �
580

7
t2 þ

7

5
tþ

308

725

� �
¼ �

580

7
ðt� t2;þÞðt� t2;�Þ, ð72Þ
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α 
20 

(ε
)

α 
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(ε
)

α 
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(ε
)

α 
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(ε
)

α 
40 

(ε
)

α 
51 

(ε
)

α 
42 

(ε
)

α 
53 

(ε
)
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−0.12

−0.1
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−0.06

−0.04

−0.02

0

ε

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

ε
0 0.2 0.4 0.6 0.8 1

−0.025

−0.02

−0.015

−0.01

−0.005

0

ε

0 0.2 0.4 0.6 0.8 1
−0.1

−0.05

0

0.05

0.1

ε
0 0.2 0.4 0.6 0.8 1

0
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0.06
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0.1
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ε

0 0.2 0.4 0.6 0.8 1
−0.04

−0.02
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0.04

0.06

ε
0 0.2 0.4 0.6 0.8 1

0

0.01
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0.03

0.04

0.05

ε

Figure 4. Scaling the aberrated pupil of Figure 3 to relative size " � 1. The drawn lines in the
separate figures show �mn ð"Þ, as indicated along the vertical axis, according to (18) with �’s instead
of �’s. The tangent lines at " ¼ 1 have slope given in accordance with (27) with �’s instead of �’s.
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where

t1;þ ¼ �
7

6
þ

77

180

� �1=2
¼ �0:512619438, t1;� ¼ �

7

6
�

77

180

� �1=2
¼ �1:820713896, ð73Þ

t2;þ ¼ �
7

10
þ

189

2900

� �1=2
¼ �0:444711117, t2;� ¼ �

7

10
�

189

2900

� �1=2
¼ �0:955288883:

ð74Þ

Since t1,�5t2,�5t1,þ5t2,þ it is seen that all sign combinations for the first and second
derivative of S(�(")) at "¼ 1 occur. Also see Figure 6.

4. ENZ-theory for NA-reduced optical systems and for systems with a central obstruction

In the so-called Extended Nijboer–Zernike (ENZ) theory of diffraction, a general pupil

function P, defined on the full disk 0� �� 1, is expanded as a Zernike series as in (3), and

0 0.2 0.4 0.6 0.8 1

0.99

0.991

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

ε

S
 (

ε)

Eq.(65)
Eq.(67)

Figure 5. Strehl ratio S(�(")) as a function of " for a pupil with two non-zero aberration
coefficients, �04 ¼ ��

0
6 ¼ 0:04�. The drawn line shows S(�(")) as given by (65) while the tangent line

at " ¼ 1 has slope given in accordance with (67).

S′ > 0 
S′ < 0 

S′′ > 0

S′′ < 0 S′′ < 0
−2 t2,+−1t2,−

t1,+t1,−
S′< 0

0

 

 
t

Figure 6. Sign of S0, S00 ¼ (d/d")[S(�("))], (d/d")2[S(�("))] at " ¼ 1 for the case that the
aberrations are given in (66) and t ¼ �04=�

0
6. The special points t1,	 and t2,	 are given in (73)–(74).
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the complex-amplitude point-spread function is obtained as

Uðr; ’; f Þ ¼
1

�

ð1
0

ð2�
0

expði f �2ÞPð�; #Þ exp½2�i�r cosð#� ’Þ��d� d#

¼ 2
X
n;m

im�mn V
m
n ðr; f Þ cosm’: ð75Þ

In (75) we have normalized polar coordinates r, ’ in the image planes, and f is the
normalized focal variable (under low-to-medium-high NA conditions it is permitted

to represent the defocus factor by exp (i f �2)). The Vm
n in (75) are given in integral

form as

Vm
n ðr; f Þ ¼

ð1
0

expði f�2ÞRm
n ð�ÞJmð2�r�Þ� d�, ð76Þ

where Jm is the Bessel function of the first kind and of order m. The Vm
n can be computed in

the form of a well-convergent power-Bessel series for all values of r and values of j f j up to

20, or, alternatively, in the form of a somewhat more complicated Bessel–Bessel series

that converges virtually without loss-of-digits for all values of r and f, see [11,15]. For basic

ENZ theory, we refer to [11,12]; for retrieval of aberrations from intensity

point-spread functions in the focal region under low-to-medium-high NA conditions

within the ENZ framework, we refer to [14,16]; for point-spread function computation

under high-NA conditions (including vector diffraction theory and polarization),

we refer to [13]; for aberration and birefringence retrieval under high-NA conditions,

we refer to [18,19].

4.1 ENZ point-spread function calculation for scaled pupils

We shall first consider the scaling issue in the basic ENZ setting as presented above.

So assume that we have a smooth pupil function P(�, #), 0� �� 1, 0�#� 2�. Setting the

NA value to a fraction "� 1 of its maximum amounts to hard thresholding of P(�, #) to
the value 0 for "� �� 1. A direct use of the ENZ formalism, in which the thresholded

pupil function is developed as a Zernike series on the full pupil 0� �� 1, is cumbersome

since an unacceptable number of terms in such a series is required for a reasonable

accuracy. In Appendix 3 we show that for the case that P(�,#)¼ 1, 0� �� 1, 0�#� 2�,
the thresholded pupil has Zernike coefficients �02n that decay as slow as n�1/2. Instead, we

proceed as in (10), where the point-spread function of the NA-reduced optical system is

written in the form

U"ðr; ’; f Þ ¼
"2

�

ð1
0

ð2�
0

expði f "2�2ÞPð"�; #Þ exp½2�ir"� cosð#� ’Þ��d� d#: ð77Þ

From the Zernike expansion

Pð"�; #Þ ¼
X
n;m

�mn ð"ÞZ
m
n ð�; #Þ ð78Þ

Journal of Modern Optics 1143
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of the scaled pupil function, with �mn ð"Þ given by Equation (18), we then get

U"ðr; ’; f Þ ¼ 2"2
X
n;m

im�mn ð"ÞV
m
n ð"r; "

2f Þ cosm’: ð79Þ

An alternative approach, leading to the same computation scheme for U", is to insert
the Zernike expansion (3) of P into the first double-integral expression in Equation (10).

Using Zm
n ð�; #Þ ¼ Rm

n ð�Þ cosm#, this leads to

U"ðr; ’; f Þ ¼ 2
X
n;m

im�mn V
m
n ðr; f; "Þ cosm’, ð80Þ

where

Vm
n ðr; f; "Þ ¼

ð"
0

expði f �2ÞRm
n ð�ÞJmð2�r�Þ� d�: ð81Þ

With the substitution �¼ "�1, 0� �1� 1, in the latter integral and using Equation (25) to
write Rm

n ð"�1Þ as a linear combination of the Rm
n ð�1Þ, we get from Equation (76)

Vm
n ðr; f; "Þ ¼ "

2
X
n0

ðRn0

n ð"Þ � Rn0þ2
n ð"ÞÞVm

n0 ðr"; f"
2Þ: ð82Þ

The advantage of (80) and (82) over (79) is that (80) is directly in terms of the Zernike
coefficients of the unscaled pupil function and that the scaling operation is completely

represented by the modification of Vm
n functions as in (82).

In a similar fashion we can compute point-spread functions pertaining to a pupil

function P that vanishes for 0� �5" and that admits in "� �� 1 a Zernike expansion

Pð�; #Þ ¼
X
n;m

�mn Z
m
n ð�; #Þ, " � � � 1, 0 � # � 2�: ð83Þ

In Appendix 2 we shall address the problem of how to obtain a feasible Zernike
approximation as in (83) for a well-behaved P in an annulus "� �� 1. Now the point-

spread function U corresponding to this P is given by

Uðr; ’; f Þ ¼ 2
X
n;m

im�mn W
m
n ðr; f; "Þ cosm’, ð84Þ

where

Wm
n ðr; f; "Þ ¼

ð1
"

expði f�2ÞRm
n ð�ÞJmð2�r�Þ� d�

¼ Vm
n ðr; f Þ � Vm

n ðr; f; "Þ ð85Þ

with Vm
n ðr; f Þ and Vm

n ðr; f; "Þ given in (76) and (82), respectively.
A related result concerns the computation of point-spread functions for certain multi-

ring systems. Assume we have a pupil function P(�,#), 0� �� 1, 0�#� 2�, with a

Zernike expansion as in (3), and numbers

0 ¼ "0 < "1 < � � � < "J ¼ 1 ; a1; a2, . . . , aJ 2 C, ð86Þ

1144 A.J.E.M. Janssen et al.
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and consider as pupil function

~Pð�; #Þ ¼ ajPð�; #Þ, "j�1 � � < "j, 0 � # � 2�, ð87Þ

with j running from 1 to J. Compare [20] where the case P¼ 1 is considered. Then the
point-spread function Ũ corresponding to P̃ is given by

~Uðr; ’; f Þ ¼ 2
X
n;m

im�mn
~Vm
n ðr; f Þ cosm’ ð88Þ

in which

~Vm
n ðr; f Þ ¼

XJ
j¼1

aj

ð"j
"j�1

expði f �2ÞRm
n ð�ÞJmð2�r�Þ�d�

¼
XJ
j¼1

aj½V
m
n ðr; f; "jÞ � Vm

n ðr; f; "j�1Þ� ð89Þ

with Vm
n ðr; f; "Þ given in (82).

4.2 ENZ aberration retrieval for optical systems with a central obstruction

Assume that we have an optical system with an unknown pupil function P(�, #), 0� �� 1,

0�#� 2�. In [14,16] it has been shown how one can estimate P from the through-focus

intensity point-spread function I¼ jUj2 of the optical system. The key step is to choose the

unknown Zernike coefficients �mn of P such that the match between the recorded intensity I

and the theoretical intensity

jUðr; ’; f Þj2 ¼ 2
X
n;m

im�mn V
m
n ðr; f Þ cosm’

�����
�����
2

ð90Þ

is maximal. This procedure, and sophisticated variants of it, is remarkably accurate in
estimating pupil functions with aberrations as large as twice the diffraction limit.

In the case that the pupil function is known to be obstructed in the region 0� �� ",
aberration retrieval can be still practiced with the above sketched approach by

appropriately modifying the Vm
n functions involved in it. We thus propose P of the form

Pð�; #Þ ¼
X
n;m

�mn Z
m
n ð�; #Þ, " � � � 1, 0 � # � 2�, ð91Þ

in which the �mn are unknowns that are to be found by matching the recorded intensity and
the theoretical intensity. This theoretical intensity is given in this case, see (84), as

Iðr; ’; f Þ ¼ jUðr; ’; f Þj2 ¼ 2
X
n;m

im�mn W
m
n ðr; f; "Þ cosm’

�����
�����
2

, ð92Þ
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with Wm
n given in (85). In Subsection 4.3 we shall illustrate this procedure with an example

(Gaussian, comatic pupil function obstructed in the disk 0 � � � 1=2 ¼ "), with the extra

complication that the optical system has a high NA.

4.3 Extension to high-NA systems

In [13] the extension to high-NA optical systems of the ENZ approach to the calculation of

optical point-spread functions has been given, and in [18,19] the retrieval procedure has

been extended to high-NA systems. These extensions, though involved, are still based on

the availability of computational schemes for certain basic integrals. We consider now for

integer n, m, with n� jmj � 0 and even, and for integer j the integral

Vm
n;jðr; f; s0Þ ¼

ð1
0

�jjjð1þ ð1� s20�
2Þ

1=2
Þ
�jjjþ1

ð1� s20�
2Þ

1=4


 exp
if

u0
ð1� ð1� s20�

2Þ
1=2
Þ

� �
Rjmjn ð�ÞJmþjð2�r�Þ� d� ð93Þ

in which

s0 is the NA value 2 ½0; 1�, u0 ¼ 1� ð1� s20Þ
1=2: ð94Þ

In the case that the pupil function is thresholded to 0 in a set "� �51, the integration
ranges of the integrals in (93) have to be changed from [0, 1] to [0, "], yielding the high-NA

versions of the Vm
n ðr; f; "Þ in (82). As in (81) the substitution �¼ "�, 0� �1� 1, combined

with the result of Equation (25) works wonders, and we get

Vm
n, jðr, f, s0; "Þ ¼

X
n0

"jjjþ2ðRn0

n ð"Þ � Rn0þ2
n ð"ÞÞVm

n0, j r", f
u0ð"Þ

u0
, s0"

� �
, ð95Þ

in which u0(")¼ 1�[1� (s0")
2]1/2. Hence, the calculation of point-spread functions and

aberration retrieval for high-NA systems with thresholded pupil functions can still be

done on the level of the Zernike coefficients of the pupil function. Also, in the case

of a pupil function obstructed in the disk 0� �5" as in (83), we can do

ENZ computation and retrieval under high-NA conditions by replacing the Wm
n in

(85) by

Wm
n;jðr; f; s0; "Þ ¼ Vm

n;jðr; f; s0Þ � Vm
n;jðr; f; s0; "Þ: ð96Þ

As an example, we consider retrieval of the Gaussian, comatic pupil function
(with s0¼ 0.95)

Pð�; #Þ ¼ exp½���2 þ i�R1
3ð�Þ cos#�, 0 � � � 1, 0 � # � 2�, ð97Þ

which is obstructed in the disk 0 � � < " ¼ 1=2 and we take �¼ �¼ 0.1. For this we apply
the procedures as given in [18,19] in which the Vm

n;j of (93) are to be replaced throughout by

the Wm
n;j of (96). Since this example can at the present stage only be considered in a

simulation environment, we should generate the ‘recorded’ intensity in the focal region

1146 A.J.E.M. Janssen et al.
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in simulation. This we do as follows. In [16], (A19) on p. 1726, the Zernike expansion of P
on the full disk 0� �� 1,

Pð�; #Þ ¼
X1
m¼0

X1
p¼0

�mmþ2pZ
m
mþ2pð�; #Þ, 0 � � � 1, 0 � # � 2�, ð98Þ

has been given explicitly with �’s in the form of a triple series with good convergence
properties when � and � in (97) are of order unity. The representation (98) holds naturally
also on the annular set "� �� 1, 0�#� 2�, and thus the point-spread function
computation scheme of [18,19], using this representation of P and with Wm

n;j instead of
Vm

n;j as described above, can be applied. In theory, when infinite series in (98) are used, the
coefficients retrieved with this procedure are not identical to the �’s used in (98) (see
Appendix 2 for more details). However, in the experiment we input and retrieve only �’s
with 0�m, n� 10, and thereby avoid this non-uniqueness problem. For this finite set of
aberration coefficients, we use the iterative version (predictor–corrector approach) of the
ENZ-retrieval method as described in [18], Section 4.1 and [21], Appendix A.
In Figure 7(a) we show modulus and phase of Panalytic�Pbeta where Panalytic is the P of
(97) and Pbeta is the P of (98) in which the summations have been restricted to the terms

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

x 10−6 |Panalytic−Pbeta|

−1 −0.5 0 0.5 1
−2

−1

0

1

2
x 10−6 Angle (Panalytic)− Angle (Pbeta) Angle (Pbeta)− Angle (Pretrieved)

−1 −0.5 0 0.5 1
0

2

4

6

8
x 10−13  |Pbeta−Pretrieved|

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
x 10−13

(a) (b)

Figure 7. Modulus and phase of (a) Panalytic�Pbeta and (b) Pbeta�Pretrieved of two perpendicular
cross-sections on the annular set " ¼ 1

2 � � � 1. Here Panalytic is given in (97) with �¼ �¼ 0.1 and
Pbeta is given by (98) in which the summations are restricted to m, p with 0 � m, mþ 2p� 10. Finally,
Pretrieved is obtained as the linear combination of Zernike terms Zm

mþ2p, with m, p such that
0�m,mþ 2p� 10, where the coefficients � are obtained by applying 60 iterations of the high-NA
(s0¼ 0.95), predictor–corrector version of the ENZ-retrieval method with jUbetaj

2 as ‘recorded’
intensity in the focal region.
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m, p with 0�m, mþ 2p� 10. In Figure 7(b) we show modulus and phase of
Pbeta�Pretrieved. Here Pbeta is the same as in Figure 7(a), and Pretrieved is the pupil
function resulting from taking the same linear combination of Zernike terms that
constitute Pbeta but now with �’s that are obtained by applying 60 iterations of the
predictor–corrector procedure using jUbetaj

2 as ‘recorded’ intensity in the focal region.
Note that the error levels in Figure 7(a) are well below those in Figure 7(b), whence a
Figure 7(c), showing modulus and phase of Panalytic�Pretrieved, would practically coincide
with Figure 7(a) and is therefore omitted.

5. Conclusion

In this paper we discussed applications of a recently derived mathematical result for
obtaining the modified Zernike aberration coefficients of a scaled pupil function that
comprises both the transmission variation and wavefront aberration of the optical system.
The formulae that lead to the Zernike coefficients of the scaled pupil function have been
further developed to yield also the derivatives of the separate Zernike coefficients with
respect to the scaling ratio. Using our general scaling results we were able to evaluate the
behavior of a typical quality factor of an optical system like the Strehl ratio under radial
scaling. Surprisingly enough, the first and second derivatives of the Strehl ratio with
respect to the radial scaling parameter do not always exhibit the behavior that follows
from a simple intuitive picture, for instance a decrease in Strehl ratio with increasing
aperture. Both negative and positive values are possible for the first and second
derivatives. This means that the initial Zernike coefficients of the full pupil could be
tailored in such a way that desired derivative values are realized under radial scaling.

The mathematical method for obtaining the Zernike coefficients of a radially scaled
pupil can be implemented in the semi-analytic expression that was previously developed by
us to evaluate the diffraction integral when using the Zernike coefficients of the pupil
function. With the modified Zernike coefficients of the scaled pupil function, we easily
obtain its intensity point-spread function in the focal region. We have also shown that it is
possible to accommodate other modified pupil functions, for instance a centrally
obstructed pupil function that is common for catadioptric imaging systems. Using the
analytic tools available for the forward diffraction calculation from exit pupil to focal
region, we have also addressed the inverse problem, namely, the reconstruction of the
amplitude and phase of the pupil function of the optical system. We have demonstrated
that the pupil function can be reconstructed in a wide range of amplitude and phase defects
by using the information from several defocused intensity distributions; this method
remains applicable for radially scaled pupil functions and pupil functions with a central
obstruction. It is sufficient to adapt the forwardly calculated amplitude distributions in the
focal region, that are associated with a typical Zernike aberration term, to the modified
pupil shape. It was also shown in this paper that not only the scalar diffraction formalism
can be handled, but also the complete vector diffraction case which is needed at high
values of the numerical aperture of the imaging system. With the mathematical tools that
have been made available in this paper, we have extended the range of application of our
previous methods (analytic forward calculation and inverse aberration retrieval) to more

1148 A.J.E.M. Janssen et al.
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general pupil shapes. These more general shapes like radially down-scaled pupils and
apertures with a central obstruction are frequently encountered in astronomical imaging,
ophthalmologic metrology and in instrumentation for eye surgery.
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[2] Maréchal, A. Rev. Opt. (Théor. Instrum.) 1947, 26, 257–277; J. Opt. Soc. Am. 1947, 37, 982–982.
[3] Born, M.; Wolf, E. Principles of Optics, 7th ed.; Cambridge University Press: Cambridge, UK,

2002.
[4] Goldberg, K.A.; Geary, K. J. Opt. Soc. Am. A 2001, 18, 2146–2152.
[5] Schwiegerling, J. J. Opt. Soc. Am. A 2002, 19, 1937–1945.
[6] Campbell, C.E. J. Opt. Soc. Am. A 2003, 20, 209–217.
[7] Dai, G.-M. J. Opt. Soc. Am. A 2006, 23, 539–543.
[8] Bará, S.; Arines, J.; Ares, J.; Prado, P. J. Opt. Soc. Am. A 2006, 23, 2061–2066.
[9] Janssen, A.J.E.M.; Dirksen, P. J. Microlithogr. Microfabr. Microsyst. 2006, 5, 030501, 1–3.
[10] The Extended Nijboer-Zernike (ENZ) analysis website. http:\\www.nijboerzernike.nl (accessed

March, 2007).
[11] Janssen, A.J.E.M. J. Opt. Soc. Am. A 2002, 19, 849–857.
[12] Braat, J.J.M.; Dirksen, P.; Janssen, A.J.E.M. J. Opt. Soc. Am. A 2002, 19, 858–870.
[13] Braat, J.J.M.; Dirksen, P.; Janssen, A.J.E.M.; van de Nes, A.S. J. Opt. Soc. Am. A 2003,

20, 2281–2292.
[14] Dirksen, P.; Braat, J.J.M.; Janssen, A.J.E.M.; Juffermans, C. J. Microlithogr. Microfabr.

Microsyst. 2003, 2, 61–68.
[15] Janssen, A.J.E.M.; Braat, J.J.M.; Dirksen, P. J. Mod. Opt. 2004, 51, 687–703.
[16] van der Avoort, C.; Braat, J.J.M.; Dirksen, P.; Janssen, A.J.E.M. J. Mod. Opt. 2005,

52, 1695–1728.
[17] Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions, 9th ed.; Dover: New

York, 1970.
[18] Braat, J.J.M.; Dirksen, P.; Janssen, A.J.E.M.; van Haver, S.; van de Nes, A.S. J. Opt. Soc.

Am. A 2005, 22, 2635–2650.
[19] van Haver, S.; Braat, J.J.M.; Dirksen, P.; Janssen, A.J.E.M. J. Eur. Opt. Soc.-RP 2006, 1, 06004,

1–8.
[20] Boivin, A. J. Opt. Soc. Am. 1952, 42, 60–64.
[21] Noll, R.J. J. Opt. Soc. Am. 1976, 66, 207–211.
[22] Nijboer, B.R.A. The Diffraction Theory of Aberrations. Ph.D. Thesis, University of Groningen,

Groningen, The Netherlands, 1942. http:\\www.nijboerzernike.nl (accessed March, 2007).
[23] Wang, J.Y.; Silva, D.E. Appl. Opt. 1980, 19, 1510–1518.
[24] Tatian, B. J. Opt. Soc. Am. 1974, 64, 1083–1091.
[25] Tricomi, F.G. Vorlesungen über Orthogonalreihen; Springer: Berlin, 1955.

Appendix 1

A1. Proof of the mathematical properties in Section 2

A1.1 Proof of and comments on the basic results

We start by showing the result in Equation (19). To that end we recall the representation (14),

Mm
nn0 ð"Þ ¼

ð1
0

Rm
n0 ð"�ÞR

m
n ð�Þ� d�, n; n0 ¼ m;mþ 2, . . . , ð99Þ
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and use the result

Rk
l ð�Þ ¼ ð�1Þ

ðl�kÞ=2

ð1
0

Jlþ1ðrÞJkð�rÞ dr, 0 � � < 1, ð100Þ

that we shall discuss in more detail below. For now it is relevant to note that (100) holds for integer
k, l� 0 with same parity, with the right-hand side of (100) vanishing when l5k. Using (100) in (99)

with k¼m, l¼ n0 and "� instead of �, we get by interchanging integrals

Mm
nn0 ð"Þ ¼ ð�1Þ

ðn0�mÞ=2

ð1
0

Rm
n ð�Þ

ð1
0

Jn0þ1ðrÞJmð"�rÞ dr

� �
� d�

¼ ð�1Þðn
0�mÞ=2

ð1
0

Jn0þ1ðrÞ

ð1
0

Rm
n ð�ÞJmð�"rÞ� d�

� �
dr: ð101Þ

We next use the basic result ð1
0

Rm
n ð�ÞJmð�vÞ� d� ¼ ð�1Þðn�mÞ=2

Jnþ1ðvÞ

v
ð102Þ

from the classical Nijboer–Zernike theory, see [3], formula (39) on p. 910. There results

Mm
nn0 ð"Þ ¼ ð�1Þ

ðn0þn�2mÞ=2

ð1
0

Jn0þ1ðrÞJnþ1ð"rÞ

"r
dr: ð103Þ

We then apply the result

J�ðzÞ

z
¼

1

2�
ðJ��1ðzÞ þ J�þ1ðzÞÞ, ð104Þ

see [17], 9.1.27 on p. 361, to rewrite Jnþ1("r)/"r and Jn0þ1(r)/r for either instance of Equation (19).
Thus, Mm

nn0 ð"Þ is written in two ways as a sum containing two terms of the type that occurs at the

right-hand side of (100) (with " instead of �). This then yields both statements in Equation (19).
We make some comments on the result (100). It is often attributed to Noll, see [21], formula (9)

on p. 207, but it can already be found in Nijboer’s thesis [22], formula (2.22) on p. 26, where it is

discussed in connection with the proof of the basic result (102), see [22], (2.20) on p. 25. The right-

hand side of (100) vanishes when l� k50, which is consistent with the convention that Rk
l ð�Þ � 0 in

that case. The result (100) is in fact a special case of the Weber–Schafheitlin formula, see [17], 11.4.33

on p. 487, for the integral ð1
0

J�ðatÞJ�ðbtÞ

t�
dt, 0 � b < a, ð105Þ

that is expressed in terms of the hypergeometric function 2F1. In the case of formula (100) we have

� ¼ lþ 1, � ¼ k, a ¼ 1, b ¼ ", � ¼ 0, ð106Þ

and the 2F1 reduces to a terminating series (polynomial in "2). This series can then be expressed, by
[17], 15.4.6 on p. 561, in terms of Jacobi polynomials (�¼ 0, �¼ k, degree ¼ 1=2ðl� kÞ and thus

vanishing when l� k50, argument 2"2� 1), and then one obtains the result (100) by the relation

Rk
l ð�Þ ¼ �

kP
ð0;kÞ
ðl�kÞ=2ð2�

2 � 1Þ: ð107Þ

As a consequence of Equation (19) we have that

�Rm
n ð�Þ � �R

mþ2
n ð�Þ ¼

mþ 1

nþ 1
ðRmþ1

n�1 ð�Þ � Rmþ1
nþ1 ð�ÞÞ, ð108aÞ
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which is reminiscent of Noll’s result, see [21], formula (13) on p. 208,

ðRmþ1
nþ1 Þ

0
ð�Þ � ðRmþ1

n�1 Þ
0
ð�Þ ¼ ðnþ 1ÞðRm

n ð�Þ þ Rmþ2
n ð�ÞÞ ð108bÞ

that we shall use in the sequel.

We furthermore see that m has disappeared altogether from the two right-hand side members of

Equation (19). As a consequence we have for all integer n, n0, m� 0 of same parity and such that

n0 � n�m that

Mm
nn0 ð"Þ ¼

ð1
0

�nRn
n0 ð"�Þ� d�: ð109Þ

We shall next show Dai’s formula

Mm
nn0 ð"Þ ¼

0, n0 � n < 0;

1

2
"n
Xi

j¼0

ð�1Þi�jðnþ i� jÞ!"2j

ðnþ jþ 1Þ!ði� jÞ!j!
, i ¼

n0 � n

2
� 0,

8><
>:

ð110aÞ

ð110bÞ

when the integers n, n0, m� 0, of same parity and n�m, n0 �m. This result was given in [7],

formula (19), but the proof given in [7] is somewhat cumbersome. Of course, (110) follows

directly from either instance of Equation (19) and the explicit expression

Rm
n ð�Þ ¼

Xðn�mÞ=2
s¼0

ðn� sÞ!ð�1Þs�n�2s

ðn�mÞ=2� sð Þ! ðnþmÞ=2� sð Þ!
ð111Þ

for the Zernike polynomials. An alternative proof of Equation (110) is based upon the representation

(99) of Mm
nn0 ð"Þ, the explicit formula (111) used with Rm

n0 ð"�Þ instead of Rm
n ð�Þ, the resultð1

0

��Rm
n ð�Þ� d� ¼ ð�1Þðn�mÞ=2

ðm� �Þðm� �þ 2Þ � � � ðn� �� 2Þ

ðmþ �þ 2Þðmþ �þ 4Þ � � � ðnþ �þ 2Þ
ð112Þ

and some administration involving factorials. The result (112) was presented and proved in [13],

Appendix A; it also occurs implicitly in Nijboer’s thesis [22], p. 25, where it is used to prove the basic

result (102).
We next show the results (22a) and (22b). The result in (22a) follows immediately from the first

identity in Equation (19) and the fact that Rn
nð"Þ ¼ "

n, Rnþ2
n ð"Þ ¼ 0. To show the result (22b), we start

from (107) and we consider the second identity in Equation (19). Now using the contiguity property,

see [17], 22.7.15 on p. 782,

P
ð0;�Þ
l ðxÞ � P

ð0;�Þ
lþ1 ðxÞ ¼

1

2
ð1� xÞð2lþ �þ 1ÞP

ð1;�Þ
l ðxÞ, ð113Þ

we obtain (22b).

The other properties noted in Subsection 2.1 are immediate consequences of the orthogonality

relation

ð1
0

Rm
n ð�ÞR

m
n0 ð�Þ�d� ¼

	nn0

2ðnþ 1Þ
, ð114Þ

where 	nn0 is Kronecker’s delta.

Journal of Modern Optics 1151



D
ow

nl
oa

de
d 

B
y:

 [v
an

 H
av

er
, S

.] 
A

t: 
14

:0
9 

19
 M

ay
 2

00
8 

A1.2 Proof of the results on derivatives

A1.2.1 Derivatives of Zernike coefficients

We shall first show the result (26) on ð�mn Þ
0. To that end we start with Equation (21) so that

�mn ð"Þ ¼
X
n0

nþ 1

n0 þ 1

1

"
ðRnþ1

n0þ1ð"Þ � Rnþ1
n0�1ð"ÞÞ�

m
n0 : ð115Þ

Now

1

"
ðRnþ1

n0þ1ð"Þ � Rnþ1
n0�1ð"ÞÞ

� �0
¼
�1

"2
ðRnþ1

n0þ1ð"Þ � Rnþ1
n0�1ð"ÞÞ þ

1

"
ððRnþ1

n0þ1Þ
0
ð"Þ � ðRnþ1

n0�1Þ
0
ð"ÞÞ

¼
�1

"

n0 þ 1

nþ 1
ðRn

n0 ð"Þ � Rnþ2
n0 ð"ÞÞ þ

1

"
ððRnþ1

n0þ1Þ
0
ð"Þ � ðRnþ1

n0�1Þ
0
ð"ÞÞ, ð116Þ

where the second identity in Equation (19) has been used. We next use Noll’s result in (108b), and

we get

1

"
ðRnþ1

n0þ1ð"Þ � Rnþ1
n0�1ð"ÞÞ

� �0
¼
�1

"

n0 þ 1

nþ 1
ðRn

n0 ð"Þ � Rnþ2
n0 ð"ÞÞ þ

1

"
ðn0 þ 1ÞðRn

n0 ð"Þ þ Rnþ2
n0 ð"ÞÞ

¼
1

"

n0 þ 1

nþ 1
ðnRn

n0 ð"Þ þ ðnþ 2ÞRnþ2
n0 ð"ÞÞ: ð117Þ

Inserting the latter result into (115) we get Equation (26).

Equation (27) is an immediate consequence from Equation (26) and the fact that Rnþ2
n ð1Þ ¼ 0,

Rn
n0 ð1Þ ¼ Rnþ2

n0 ð1Þ ¼ 1, n0 ¼ nþ 2, nþ 4, . . . .
We next show Equation (28). To that end we start with Equation (18),

�mn ð"Þ ¼
X
n0

ðRn
n0 ð"Þ � Rnþ2

n0 ð"ÞÞ�
m
n0 , ð118Þ

and we use [22], formula (2.11) on p. 21,

�ð1� �2ÞðRm
n Þ
00
ð�Þ þ ð1� 3�2ÞðRm

n Þ
0
ð�Þ þ nðnþ 2Þ �

m2

�

� �
Rm

n ð�Þ ¼ 0: ð119Þ

Thus, we get

"ð1� "2Þ½ðRn
n0 Þ
00
ð"Þ � ðRnþ2

n0 Þ
00
ð"Þ� ¼ ð3"2 � 1Þ½ðRn

n0 Þ
0
ð"Þ � ðRnþ2

n0 Þ
0
ð"Þ�

þ
n2

"
� n0ðn0 þ 2Þ"

� �
Rn

n0 ð"Þ �
ðnþ 2Þ2

"
� n0ðn0 þ 2ÞRnþ2

n0 ð"Þ

� �
: ð120Þ

Now by (108a) and (120)

ðRn
n0 Þ
0
ð"Þ � ðRnþ2

n0 Þ
0
ð"Þ ¼

nþ 1

n0 þ 1

1

"
ðRnþ1

n0�1ð"Þ � Rnþ1
n0þ1ð"ÞÞ

� �0

¼
1

"
ðnRn

n0 ð"Þ þ ðnþ 2ÞRnþ2
n0 ð"ÞÞ: ð121Þ
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This then yields

"ð1� "2Þ½ðRn
n0 Þ
00
ð"Þ � ðRnþ2

n0 Þ
00
ð"Þ� ¼

1

"
ðnðn� 1ÞRn

n0 ð"Þ � ðnþ 2Þðnþ 3ÞRnþ2
n0 ð"ÞÞ

þ "ðð3n� n0ðn0 þ 2ÞÞRn
n0 ð"Þ þ ð3ðnþ 2Þ

þ n0ðn0 þ 2ÞÞRnþ2
n0 ð"ÞÞ; ð122Þ

and from this Equation (28) follows.

We finally verify Equation (29). To that end we use Equation (26) which we differentiate once

more and obtain

ð�mn Þ
00
ð"Þ ¼

n

"
�mn R

n
n0 ð"Þ þ

1

"

X
n0

ðnRn
n0 ð"Þ þ ðnþ 2ÞRnþ2

n0 ð"ÞÞ�
m
n0

 !0
; ð123Þ

where the summation is over n0 ¼ nþ 2, nþ 4, . . .. Carrying through the differentiation in (123) while
using, see (119),

Rm
n ð1Þ ¼ 1, ðRm

n Þ
0
ð1Þ ¼

1

2
ðnðnþ 2Þ �m2Þ, ð124Þ

we get

ð�mn Þ
00
ð1Þ ¼ nðn� 1Þ�mn þ

X
n0

½�ð2nþ 2Þ þ
1

2
ðn0ðn0 þ 2Þ � n2Þ

þ
1

2
ðnþ 2Þðn0ðn0 þ 2Þ � ðnþ 2Þ2Þ��mn0

¼ nðn� 1Þ�mn þ
X
n0

ðnþ 1Þ½n0ðn0 þ 2Þ � nðnþ 2Þ � 6��mn0 ; ð125Þ

where the summations are over n0 ¼ nþ 2, nþ 4, . . .. Now writing n0 ¼ nþ 2k, k¼ 1, 2, . . . in the last
member of (125) we get Equation (29).

A1.2.2 Derivatives of Strehl ratios

We consider the approximating S(�) as given in Equation (32),

Sð�Þ ¼ 1�
1

�

ð1
0

ð2�
0

X�
n;m

�mn Z
m
n ð�; #Þ

�����
�����
2

� d� d#

¼ 1�
X�
n;m

ð�mn Þ
2

"mðnþ 1Þ
; ð126Þ

where the � on top of the summation signs refers to deletion of the terms in a set

fðn;mÞjm ¼ 0; 1, . . . ; n ¼ m;mþ 2, . . . ; nðmÞ � 2g, ð127Þ

with integers n(m)�m of same parity as m. We shall also write ��n;m to indicate summation over the
set in (127). Thus, ~P

n;m ¼ �n;m ���n;m, etc. With these conventions we have

Fð"�; #Þ ¼
X
n;m

�mn ð"ÞZ
m
n ð�; #Þ

¼
X�
n;m

�mn ð"ÞZ
m
n ð�; #Þ þ

X
n;m

�
�mn ð"ÞZ

m
n ð�; #Þ: ð128Þ
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The first term in the last member of (128) is what we have abbreviated in Equation (130)

as ~Fð�; #; "Þ.
We shall now prove Equation (35). We have from (126) and (128)

Sð�ð"ÞÞ ¼ 1�
1

�

ð1
0

ð2�
0

Fð"�; #Þ �
X
n;m

�
�mn ð"ÞZ

m
n ð�; #Þ

�����
�����
2

� d� d#

¼ 1�
1

�"2

ð"
0

ð2�
0

Fð�; #Þ �
X
n;m

�
�mn ð"ÞZ

m
n ð�"

�1; #Þ

�����
�����
2

� d� d#: ð129Þ

Then we get upon differentiating

d

d"
ðSð�ð"ÞÞÞ ¼

2

�"3

ð"
0

ð2�
0

Fð�; #Þ �
X
n;m

�
�mn ð"ÞZ

m
n ð�"

�1; #Þ

�����
�����
2

� d� d#

�
1

�"2
d

d"

ð"
0

ð2�
0

Fð�; #Þ �
X
n;m

�
�mn ð"ÞZ

m
n ð�"

�1; #Þ

�����
�����
2

� d� d#

" #
: ð130Þ

The first term in the second member of (130) equals, see (129),

2

�"

ð1
0

ð2�
0

Fð"�; #Þ �
X
n;m

�
�mn ð"ÞZ

m
n ð�; #Þ

�����
�����
2

� d� d# ¼
2

"
ð1� Sð�ð"ÞÞÞ, ð131Þ

and so, see Equations (34) and (128), there only remains to be considered the second term in the
second member of (130). For this second term we use the result

d

dy

ðy
0

fðx; yÞ dx

� �
¼ fðy; yÞ þ

ðy
0

@f

@y
ðx; yÞdx, ð132Þ

and we get

d

d"

ð"
0

ð2�
0

Fð�; #Þ �
X
n;m

�
�mn ð"ÞZ

m
n ð�"

�1; #Þ

�����
�����
2

� d� d#

" #

¼ "

ð2�
0

Fð"; #Þ �
X
n;m

�
�mn ð"ÞZ

m
n ð1; #Þ

�����
�����
2

d#� 2

ð"
0

ð2�
0

Fð�; #Þ �
X
n;m

�
�mn ð"ÞZ

m
n ð�"

�1; #Þ

 !



X
n;m

� d

d"
½�mn ð"ÞZ

m
n ð�"

�1; #Þ�� d� d#: ð133Þ

From (128) and Equation (34) it is seen that the first term in the second member of (133) yields the
second term in the second member of (35) when inserted into (130). Thus, it is enough to show that

the second term in the second member of (133) vanishes altogether. To that end we compute first

d

d"
½�mn ð"ÞZ

m
n ð�"

�1; #Þ� ¼ ð�mn Þ
0
ð"ÞZm

n ð�"
�1; #Þ � "�2�mn ð"Þ�

@

@�
Zm

n

� �
ð�"�1; #Þ, ð134Þ

insert this into the term under consideration, change variables in which � is replaced by "� and use
(128) to get

�2

ð1
0

ð2�
0

X�
n;m

�mn ð"ÞZ
m
n ð�; #Þ

X
n;m

�
"2ð�mn Þ

0
ð"ÞZm

n ð�; #Þ � "�
m
n ð"Þ�

@

@�
Zm

n

� �
ð�; #Þ

� �
� d� d# ð135Þ
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for this term in (133). We now note that for each (n, m) in the set (127)

"2ð�mn Þ
0
ð"ÞZm

n ð�; #Þ � "�
m
n ð"Þ�

@

@�
Zm

n

� �
ð�; #Þ ð136Þ

is a linear combination of Zernike functions Zm
n0 ð�,#Þ with n0 ¼m, mþ 2, . . . , n(m)� 2. Indeed, since

Zm
n ð�; #Þ ¼ Rm

n ð�Þ cosm#, we can write (136) as a polynomial in � with terms �m, �mþ2, . . . , �n times

cosm#. Now n� n(m)� 2, and the Rm
n0 ð�Þ, n0 ¼m, mþ 2, . . . , n(m)� 2, span the space of linear

combinations of �m, �mþ2, . . . , �n(m)�2, from which the claim follows. Therefore, all terms occurring

in the
P

* in (135) are orthogonal to all terms in the ~P, and thus (135) vanishes. This yields the result

(35) that can also be written in the form

d

d"
ðSð�ð"ÞÞÞ ¼

2

"
ð1� Sð�ð"ÞÞÞ �

1

�"

ð2�
0

j ~Fð1; #; "Þj2 d#: ð137Þ

The result (36) is an immediate consequence of (137) and (34), (128) and (131).

We shall now establish the results (40) and (41). The proof of (40) simply consists of using (126)

with �mn ð"Þ instead of �mn in (137) together with the fact that

Zm
n ð1; #Þ ¼ cosm#, m ¼ 0; 1, . . . , n ¼ m;mþ 2, . . . ð138Þ

and Parseval’s theorem. As to the result (41), we find in a similar fashion from Equation (36) that

d

d"

� �2
ðSð�ð"ÞÞÞ ¼ �

6

"2

X�
n;m

ð�mn ð"ÞÞ
2

"mðnþ 1Þ
�
X
m

1

"m

X�
n

�mn ð"Þ

 !2
2
4

3
5

�
2

�"

ð2�
0

X�
n;m

�mn ð"Þ cosm#

 ! X�
n;m

ð�mn Þ
0
ð"Þ cosm#

 !
d#; ð139Þ

and the last expression of the second member in (139) can easily be seen to be the same as the last
expression of the second member in Equation (41) by Parseval’s theorem.

The special cases "¼ 1 in Equations (42) and (43) follow from �mn ð1Þ ¼ �
m
n and from, see

Equation (27),

ð�mn Þ
0
ð1Þ ¼ n�mn þ 2ðnþ 1Þ½�mnþ2 þ �

m
nþ4 þ � � ��, ð140Þ

and some administration required to rewriteX
n

ð�mn Þ
0
ð1Þ as

X
n

�mn ½nþ
1

2
ðn2 � n2ðmÞÞ�: ð141Þ

Appendix 2

A2. Zernike expansion of pupil functions on an annulus

Assume that we have a smooth pupil function P(�,#) defined on an annulus "� �� 1,

0�#� 2�. Such a P can be represented on the annulus as an infinite Zernike series in many

ways. Indeed, we can interpolate P into the disk 0� �5", 0�#� 2�, in one way or another,

and expand the completed P as a Zernike series using that the Zm
n form a complete orthogonal

system for functions defined on the unit disk. Thus, the linear independence of the infinite set

of Zm
n ’s restricted to the annulus is an issue. However, any finite set of these Zm

n ’s is linearly

independent on "� �� 1, 0�#� 2�. Hence, for any finite index set I of (n,m), there are unique

Journal of Modern Optics 1155
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coefficients �mn , (n,m)2 I, such that

ð1
"

ð2�
0

Pð�; #Þ �
X
ðn;mÞ2I

�mn Z
m
n ð�; #Þ

������
������
2

� d� d# ð142Þ

is minimal.

We shall describe the actual computation of the optimal �mn in (142) for the case that the index

set I is of the form

I ¼ fðn;mÞjm ¼ 0; 1, . . . ,M; n ¼ m;mþ 2, . . . ,NðmÞg, ð143Þ

where the N(m) are integers�m having the same parity as m. Let m¼ 0, 1, . . . , and set

Pmð�Þ ¼
1

2�

ð2�
0

Pð�; #Þ cosm# d#, " � � � 1, ð144Þ

the mth azimuthal average of P. Thus, we have

Pð�; #Þ ¼
X1
m¼0

"mP
mð�Þ cosm#, " � � � 1, 0 � # � 2�: ð145Þ

Recall that Zm
n ð�; #Þ ¼ Rm

n ð�Þ cos m#. Hence, for fixed m¼ 0, 1, . . . ,M, the optimal �mn , n¼m,
mþ 2, . . . ,N(m), minimize ð1

"

"mP
mð�Þ �

X
n

�mn R
m
n ð�Þ

�����
�����
2

� d�, ð146Þ

where the summation is over n¼m, mþ 2, . . . ,N(m). The minimum is assumed by

½�mm; �
m
mþ2, . . . , �mNðmÞ�

T
¼ "mðM

m
ð"ÞÞ�1pmð"Þ, ð147Þ

where pmð"Þ ¼ ½pmmð"Þ; p
m
mþ2ð"Þ, . . . , pmNðmÞ�

T and

pmn0 ð"Þ ¼

ð1
"

Pmð�ÞRm
n0 ð�Þ� d�, n0 ¼ m;mþ 2, . . . ,NðmÞ, ð148Þ

and

M
m
ð"Þ ¼

ð1
"

Rm
n ð�ÞR

m
n0 ð�Þ� d�

� �
n;n0¼m;mþ2,...,NðmÞ

: ð149Þ

It is a consequence of our results on scaled Zernike expansions that the matrix elementsMm
nn0 ð"Þ

can be found explicitly. We have by (114) that

M
m
nn0 ð"Þ ¼

	nn0

2ðnþ 1Þ
�

ð"
0

Rm
n ð�ÞR

m
n0 ð�Þ�d �

¼
	nn0

2ðnþ 1Þ
� "2

ð1
0

Rm
n ð"�ÞR

m
n0 ð"�Þ� d�

¼
	nn0

2ðnþ 1Þ
� "2

X
n00

ðRn00

n ð"Þ � Rn00þ2
n ð"ÞÞðRn00

n0 ð"Þ � Rn00þ2
n0 ð"ÞÞ

2ðn00 þ 1Þ
: ð150Þ

For the last identity in (150) we have used Equation (25), which gives the Zernikem expansions of
Rm

n ð"�Þ and Rm
n0 ð"�Þ, and (114) once more. Note that the summation in the series in the last member of

(150) is over n00 ¼m,mþ 2, . . . , min (n, n0). Observe also that m has disappeared. This latter fact has

1156 A.J.E.M. Janssen et al.
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advantages in the case that all N(m)¼M are equal, so that all Mm
ð"Þ are bordered or extended

versions of one another, allowing recursive computation of ðMm
ð"ÞÞ�1, m¼M, M� 2, . . . and

m¼M�1, M�3, . . . . The matricesMmð"Þ also occur when performing Gram–Schmidt orthogona-

lization of the Zernike polynomials Rm
n ð�Þ, n¼m, mþ 2, . . . on [", 1] with weight � d�, see [23], that

lead to the orthogonal annulus polynomials of Tatian, see [24].
We have to address the issue of well-conditionedness of the matrices Mmð"Þ that have to be

inverted per Equation (147). To that end we consider the normalized system

N
m
n ð�Þ :¼

Rm
n ð�Þ

kRm
n k"

, n ¼ m;mþ 2, . . . ,NðmÞ, ð151Þ

where kRm
n k" ¼ ð

Ð 1
" jR

m
n ð�Þj

2� d�Þ1=2. A preliminary experiment, with " ¼ 1
2, m¼ 0 and N(0)¼ 24, has

shown that for any a0, a2, . . . , a24 we have

X
n

anN
0
nð�Þ

�����
�����
"

� c
X
n

janj
2

 !1=2
, ð152Þ

where c is of the order 0.01. Since the maximum value of the lower index n in Zernike expansions
rarely exceeds 10, it appears that the inversion of the Mm

ð"Þ in the relevant cases present no

problems.

Appendix 3

A3. Zernike expansion of hard-thresholded pupil

We consider the Zernike expansion of the pupil function P � 1, hard thresholded on the annulus

"� �51 to 0, so that

P"ð�; #Þ ¼
1; 0��<" , 0�#�2�,

0; "���1 , 0�#�2�

�
:

ð153aÞ

ð153bÞ

There holds

P"ð�; #Þ ¼
X1
n¼0

�02n;"R
0
2nð�Þ, 0 � � � 1, 0 � # � 2�, ð154Þ

where �00;" ¼ "
2, and, for n¼ 1, 2, . . . ,

�02n;" ¼ 2ð2nþ 1Þ

ð"
0

R0
2nð�Þ� d� ¼

1

2
ðR0

2nþ2ð"Þ � R0
2n�2ð"ÞÞ: ð155Þ

Here [25], item (10.10) on p. 190 has been used. Now, with "¼ cos x and x2 (0,�/2), and Pp the

Legendre polynomials, we have

R0
2pð"Þ ¼ Ppð2"

2 � 1Þ ¼ Ppðcos 2xÞ

¼
2

�p sin 2x

� �1=2
cos ð2pþ 1Þx�

1

4
�

� �
þOðp�3=2Þ, p!1; ð156Þ

where we have used [25], item (10.22) on p. 194. Then it follows from (155) and (156) that

�02n;" ¼ �2
sin 2x

2�n

� �1=2
sin ð2nþ 1Þx�

1

4
�

� �
þOðn�3=2Þ, n!1: ð157Þ
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