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We studied the low-energy states of spin-1/2 quantum dots defined in InAs/InP nanowires and
coupled to aluminium superconducting leads. By varying the superconducting gap, ∆, with a
magnetic field, B, we investigated the transition from strong coupling, ∆ ≪ TK , to weak coupling,
∆ ≫ TK , where TK is the Kondo temperature. Below the critical field, we observe a persisting
zero-bias Kondo resonance that vanishes only for low B or higher temperatures, leaving the room to
more robust sub-gap structures at bias voltages between ∆ and 2∆. For strong and approximately
symmetric tunnel couplings, a Josephson supercurrent is observed in addition to the Kondo peak.
We ascribe the coexistence of a Kondo resonance and a superconducting gap to a significant density
of intra-gap quasiparticle states, and the finite-bias sub-gap structures to tunneling through Shiba
states. Our results, supported by numerical calculations, own relevance also in relation to tunnel-
spectroscopy experiments aiming at the observation of Majorana fermions in hybrid nanostructures.

PACS numbers: 72.15.Qm, 73.21.La, 73.63.Kv, 74.45.+c

Hybrid devices which couple superconducting (S ) elec-
trical leads to low-dimensional semiconductors have re-
ceived great attention due to their fascinating underlying
physics[1]. Further interest in this field has been gener-
ated by recent theoretical predictions on the existence
of Majorana fermions at the edges of one-dimensional
semiconductor nanowires (NWs) with strong spin-orbit
interaction connected to S electrodes [2]. Zero-bias con-
ductance peaks meeting some of the expected charac-
teristic signatures of Majorana physics were recently re-
ported in hybrid devices based on InSb [3, 4] and InAs
NWs [5]. In the past years, quantum dots (QDs) coupled
to superconducting leads have been widely explored as
tunable Josephson junctions[6, 7], or as building blocks
of Cooper-pair splitters [8–10]. Hybrid superconductor-
QD devices also constitute versatile platforms for study-
ing fundamental issues, such as the physics of the An-
dreev bound states (ABS) [11–13] or the interplay be-
tween the Kondo effect and the superconducting proxim-
ity effect[14–24].
The Kondo effect usually stems from the antiferromag-

netic coupling of a localized electron spin and a Fermi sea
of conduction electrons. Below a characteristic tempera-
ture TK , the so-called Kondo temperature, a many-body
spin-singlet state is formed, leading to the partial or com-
plete screening of the local magnetic moment. This phe-
nomenon, discovered in metals containing diluted mag-
netic impurities, is now routinely found in individual QDs
with a spin-degenerate ground state, e.g. QDs hosting an
odd number of electrons. The Kondo effect manifests it-
self as a zero-bias conductance peak whose width is pro-
portional to TK . In S -QD-S devices, the quasiparticle
density of states (DOS) around the Fermi level (EF ) of
the leads vanishes due to the opening of the supercon-
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ducting gap (∆). This lack of quasiparticles precludes
Kondo screening.

The competition between the Kondo effect and su-
perconductivity is governed by the corresponding energy
scales, kBTK and ∆. While no Kondo screening occurs
for kBTK ≪ ∆ (weak coupling), a Kondo singlet is ex-
pected to form for kBTK ≫ ∆ (strong coupling) at the
expense of the breaking of Cooper pairs at the Fermi
level [18, 25]. A quantum phase transition is predicted
to take place at kBTK ≈ ∆ [15–17]. Experimental sig-
natures of this exotic crossover have been investigated
both in the Josephson supercurrent regime [21–23] and
in the dissipative sub-gap transport regime [18–20]. Yet
a full understanding of these experimental findings is still
lacking. In this Letter, we report an experimental study
on S -QD-S devices where the relative strength between
Kondo and superconducting pairing correlations is tuned
by means of a magnetic field, B, acting on ∆. The
transition from strong to weak coupling is continuously
achieved by sweeping B from above the critical field, Bc,
where ∆ = 0, to zero field, where ∆ attains its maximum
value, ∆0, exceeding kBTK .

The S -QD-S devices were fabricated from individual
InAs/InP core/shell NWs grown by thermal evaporation
(total diameter ≈ 30 nm). The InP shell (thickness ≈ 2
nm) acts as a confinement barrier resulting in an en-
hanced mobility of the one-dimensional electron gas in
the InAs core [26]. After growth, the NWs were deposited
onto a degenerately doped, p-type Si substrate (used as a
back gate), covered by a 300-nm-thick thermal oxide. De-
vice fabrication was accomplished by e-beam lithography,
Ar+ bombardment (to remove native oxides), metal evap-
oration, and lift-off. Source and drain contacts consisted
of Ti (2.5 nm)/Al (45 nm) bilayers with a lateral sepa-
ration of approximately 200 nm, and a superconducting
critical temperature of ≈ 1 K. Transport measurements
were performed in a He3-He4 dilution refrigerator with a
base temperature of 15 mK.
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FIG. 1. (a) Left panel: Color plot of dI/dV vs (B⊥, VSD)
measured at the center of diamond α. The dashed lines high-
light the emergence of finite-bias peaks related to the open-
ing of a superconducting gap. The superimposed line trace
shows the B⊥-dependence of the linear conductance. Right
panel: dI/dV (VSD) traces taken at different B⊥ values. The
inset shows a scanning electron micrograph of a typical de-
vice (scale bar: 200 nm). (b) dI/dV (VSD) traces measured
in an even diamond revealing the Dynes-like DOS of leads.
(c) Numerical calculations. The smaller solid dots denote the
position of the ∆ and 2∆ peaks, whereas the open dots high-
light the position of the Shiba bound state peaks. (d) Linear
conductance (G0) normalized to the normal-state value (GN

0 )
and plotted as a function of ∆/kBTK for diamonds α (red
dots) and β (black squares).

At low temperature, electron transport is dominated
by Coulomb blockade with the NW channel behaving as
a single QD. Charge stability measurements (i.e. differ-
ential conductance, dI/dV , as a function of source-drain
bias, Vsd, and back-gate voltage, VG) were performed to
identify Kondo resonances in Coulomb diamonds with a
spin-1/2 ground state. These measurements were taken
at 15 mK with the leads in the normal state (supercon-
ductivity was suppressed by means of a magnetic field B⊥

= 70 mT perpendicular to the substrate and exceeding
the perpendicular critical field B⊥

c ). In each Kondo dia-
mond, TK was measured from the half width at half max-
imum (HWHM) of the zero-bias dI/dV peak, while the
tunnel coupling asymmetry was extracted from the peak
height, i.e. the linear conductance G, according to the
relation: G/G0 = 4ΓLΓR/(ΓL+ΓL)

2, where G0 = 2e2/h

and ΓL(R) is the tunnel coupling to the left (right) lead.
Here we present data corresponding to three Kondo di-
amonds labeled as α, β and γ, where: TK,α ≈ 0.56 K,
(ΓL/ΓR)α ≈ 6.6 × 10−3, TK,β ≈ 1 K, (ΓL/ΓR)β ≈ 0.44,
and TK,γ ≈ 0.71 K, (ΓL/ΓR)γ ≈ 7.6× 10−3.

Figure 1a shows a dI/dV (B⊥, Vsd) measurement taken
at the center of Kondo diamond α. The zero-bias Kondo
peak is apparent above B⊥

c ≈ 23 mT (we note that at
such low fields the Zeeman splitting is much smaller than
kBTK,α, explaining the absence of a split Kondo peak).
Surprisingly, reducing the field below B⊥

c does not lead to
an abrupt suppression of the Kondo peak. Instead, the
peak becomes progressively narrower and smaller, van-
ishing completely only below B⊥ ≈ 9 mT.

We argue that the observed zero-bias peak is a manifes-
tation of Kondo screening due to intra-gap quasiparticle
states. To support this interpretation, we show in Fig.
1b a data set taken in an adjacent diamond with even
occupation (i.e. with no Kondo effect). The dI/dV (Vsd)
traces shown correspond to different in-plane fields, B∥,
ranging from zero to just above the in-plane critical field

B
∥
c ≈ 200 mT. When lowering the fields from above to be-

low B
∥
c , the sub-gap dI/dV does not drop abruptly, sup-

porting our hypothesis of a sizable quasiparticle DOS at
EF (we note that, although the measurement of Fig. 1b
refers to in-plane fields, a qualitatively similar behavior
can be expected for perpendicular fields, see Supplemen-
tal Material). The development of a ”soft” gap just below

B
∥
c is additionally marked by the absence of dI/dV peaks

characteristic of the BCS DOS singularities (a discussion
of the origin of the ”soft” gap is included in the Supple-
mental Material). Such peaks develop only at fields well

below B
∥
c , becoming most pronounced at B = 0. In this

low-field limit, the sub-gap conductance simultaneously
vanishes and first-order multiple-Andreev-reflection res-
onances emerge at eVsd ≈ ±∆.

To reproduce the observed sub-gap features and the co-
existence of a Kondo peak and a superconducting gap, we
calculated the dI/dV of a QD modeled by an Anderson
Hamiltonian including coupling to BCS-type supercon-
ducting reservoirs. We used the so-called non-crossing
approximation, a fully non-perturbative theory that in-
cludes both thermal and quantum fluctuations, comple-
mented with the Keldysh-Green’s function method to
take into account non-equilibrium effects at finite Vsd (see
Supplemental Material). In order to fit the experimen-
tal data, the DOS of the leads was modeled by a Dynes
function:

Ns(E, γ,B) = Re[
|E|+ iγ(B)

√

(|E|+ iγ(B))2 −∆(B)2
], (1)

where γ(B) is a phenomenological broadening term [27].
For small ∆(B), the γ(B) term is particularly important
leading to a finite quasiparticle DOS at EF . By contrast,
as ∆(B) increases (with decreasing B), the DOS of the
superconducting leads approaches the ideal BCS profile.

Figure 1c shows a set of calculated dI/dV (Vsd) traces
at different B. By adjusting the DOS parameters γ(B)
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and ∆(B), these calculations clearly show a zero-bias
peak persisting below the Bc, in agreement with the ex-
perimental data of Fig. 1a. Since this peak emerges
only in the case of a finite γ(B), we conclude that the
finite DOS at the Fermi level is at the origin of the ex-
perimentally observed zero-bias anomaly. The narrowing
of this Kondo anomaly with increasing ∆ can be inter-
preted as a decreasing TK due to the shrinking quasi-
particle DOS around the Fermi level (this aspect is more
quantitatively discussed in the Supplemental Material).
As TK approaches the electronic temperature, the peak
height gets smaller leading to the disappearance of the
zero-bias peak.

Figure 2 shows a second data set taken in Kondo di-
amond β. In this case, the stronger and more symmet-
ric coupling to the leads results in a higher TK , and a
larger peak conductance. Nevertheless, the field depen-
dence (Fig. 2a) shows substantially the same behavior
as in Fig. 1a, i.e. a zero-bias Kondo peak persisting be-
low B⊥

c , becoming progressively narrower with decreas-
ing B⊥, and vanishing below B⊥ ≈ 10 mT. Interestingly,
a sharp dI/dV resonance is found around Vsd = 0 super-
imposed to the (wider) zero-bias Kondo peak. This reso-
nance persists throughout the entire field range in which
the leads are superconducting. By performing current-
bias measurements (inset of Fig. 2b), we were able to
ascribe this sharp resonance to a Josephson supercurrent
as high as 0.9 nA at B = 0. This finding reveals the
possibility of a coexistence between the Josephson effect,
linked to the superconducting nature of the leads, and a
Kondo effect arising from the exchange coupling between
the localized electron and intra-gap quasiparticle states.

The peak heights of Kondo resonances α and β ap-
pear to follow approximately the same dependence on
∆/kBTK (Fig. 1d), where TK refers to the Kondo tem-
perature in the normal state. A similar scaling was re-
ported earlier by Buizert et al. [18], for a S -QD-S de-
vice fabricated from an InAs self-assembled QD using
Ti/Al contacts. In that paper, it was speculated that
when kBTK ≫ ∆, it becomes energetically favorable for
Cooper pairs to split in order to screen the local spin and
create a Kondo resonance at the Fermi level. The results
presented here point at a different interpretation based on
the presence of the already discussed intra-gap quasipar-
ticle states, which become particularly important when
B approaches Bc. According to this interpretation, the
apparent scaling in Fig. 1d is intimately related to a
quasi-particle ”poisoning” of the superconducting gap.

Well below Bc, as the Kondo anomaly disappears, the
dI/dV (Vsd) is dominated by a pair of peaks symmetri-
cally positioned with respect to Vsd = 0 (Fig. 1a). These
peaks become most pronounced at B = 0. Similar types
of sub-gap structures (SGS) have been reported in earlier
works and were given different interpretations: a Kondo
enhancement of the first order Andreev reflection pro-
cess [18, 20], or, in the case of asymmetrically coupled
S -QD-S devices, a persisting Kondo resonance, created
by the strongly coupled lead, which is probed by the BCS
DOS of the second, weakly-coupled lead [19]. Some of the

FIG. 2. (a) B⊥-dependence measured in diamond β. (b)
dI/dV line profiles taken at different B. The inset is a voltage-
current measurement carried out at B = 0, which reveals
transport of a dissipationless supercurrent in the device.

above interpretations [18, 19] invoke Kondo correlations
to explain the observed sub-gap structure, even though,
as we have pointed out, these correlations get suppressed
as ∆ reaches its largest value at B = 0.

More recently, finite-bias SGS were explained in terms
of tunneling through Yu-Shiba-Rusinov states [28, 29].
These intra-gap bound states, often referred to as Shiba
states, were originally discussed in the case of magnetic
impurities embedded in a superconductor [30–33]. They
can be seen as ABS emerging as a result of the exchange
coupling, J , between the impurity and the superconduc-
tor. As later confirmed by experiments based on scan-
ning tunneling spectroscopy [34], Shiba states emerge as
pairs of peaks in the local DOS symmetrically positioned
at energies ±EB relative to the Fermi level, where EB

depends on J and |EB | < ∆.
The zero-field dI/dV (Vsd) trace in the right panel of

Fig. 1a exhibits a pair of dI/dV peaks at eVsd ≈ ±1.4∆,
followed by negative dI/dV regions. Taking into account
the strong asymmetry in the tunnel couplings, these fea-
tures can be well explained in terms of a pair of Shiba
levels with EB = 0.4∆, created by the strongly coupled
S lead, and tunnel-probed by the weakly coupled S lead
(see Fig. 3a). The observed dI/dV peaks result from
the alignment of these Shiba levels with the BCS gap-
edge singularities. Precisely, one dI/dV peak is due to
the onset of electron tunneling from the Shiba level be-
low EF to the empty quasi-particle band of the S probe.
The other peak is due to the onset of electron tunneling
from the occupied quasi-particle band of the S probe to
the Shiba level above EF . Increasing |Vsd| beyond these
resonance conditions leads to a reduced tunneling prob-
ability and hence a negative dI/dV . The Shiba-related
features observed if Fig. 1a are very well reproduced by
the numerical results in Fig. 1c. In the case of relatively
low contact asymmetry (lower panel of Fig. 2b), both S

leads interact with the QD spin resulting in a stronger J .
We find a pair of dI/dV peaks at eVsd ≈ ±∆, which im-
plies EB ≈ 0. In addition, we observe a rather complex
set of smaller peaks most likely due to multiple Andreev
reflection processes.

In the weak-coupling limit, the energy of the Shiba
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FIG. 3. (a) Schematics of the formation of Yu-Shiba-Rusinov
bound states resulting from the interaction of the QD with the
strongly-coupled lead. (b) B∥-dependence of dI/dV measured
in diamond γ. (c) The solid line depicts the dI/dV taken at
B = 0. Two pairs of peaks are observed at |eVsd| = ∆ +
EB , EB . The dashed line shows the equivalent dI/dV taken in
an even diamond, for comparison. (d) Numerical calculation
of the dI/dV for B = 0. (e) Position of the intra-gap peaks as
a function of B. The inset shows the data before performing
the rescaling in units of ∆. The dashed line displays the field-
dependence of ∆.

states is related to ∆ through EB = ∆(1 − x)/(1 + x),
where x = 3(πνFJ/4)

2 and νF is the Fermi velocity [29].
Since J is presumably independent of B, the energy of
the Shiba states should evolve proportionally to ∆(B) as
B is varied. We have verified this dependence with a mea-
surement performed in diamond γ, where, as in diamond
α, tunnel couplings are strongly asymmetric. Differently
from diamond α, however, the low-energy transport is
characterized by two pairs of intra-gap dI/dV peaks, as
shown by the zero-field curve in Fig. 3c. As in Fig.
1a, the most prominent peaks (at eVsd ∼ ±1.4∆) cor-
respond to the alignment of the Shiba levels with the
BCS coherence peaks of the weakly coupled contact, and
they are consistently followed by negative dI/dV dips.
The weaker peaks at eVsd ≈ ±0.53∆ (in fact only one of
them is clearly visible) can be interpreted as ’replicas’ of
the Shiba peaks. Such ’replicas’ are expected when the

Shiba levels line up with the Fermi level of the weakly
coupled S lead (for eVsd = ±EB), provided a non neg-
ligible density of quasiparticles is present throughout its
superconducting gap. This is apparent from the calcu-
lated dI/dV (Vsd) trace in Fig. 3d, which agrees fairly
well with the experimental one.

The Shiba peaks and their replicas shift towards Vsd =
0 as B∥ is increased. Their positions are plotted in the
inset of Fig. 3e as solid and open dots, respectively. For
comparison, the ∆(B∥) dependence measured in a non-
Kondo diamond is also plotted. Up to B∥ ∼ 120 mT,
the Shiba peaks and their replicas evolve proportionally
to ∆(B∥) in agreement with the theoretical prediction.
Above B∥ ∼ 120 mT, this behavior begins to be affected
by the increasing Zeeman splitting (≈ 0.3 meV/T) of the
QD spin doublet. The main Shiba peaks get strongly
suppressed and they seem to eventually merge into the
normal-state, Zeeman-split Kondo peaks through a non-
trivial transition region (roughly between 120 and 180
mT). This large Zeeman splitting prevents the observa-

tion of a zero-bias Kondo peak when approaching B
∥
c .

In conclusion, we have studied the transport properties
of a spin-1/2 QD coupled to S contacts. The ability to
continuously tune ∆ with an external magnetic field en-
abled us to investigate the transition from a normal-state
Kondo to a superconducting-state Shiba ground state.
We showed that the presence of a finite quasiparticle
DOS within ∆ can promote the formation of a zero-bias
Kondo peak coexisting with superconductivity. The ori-
gin of this quasiparticle DOS remains to be clarified, also
through a better understanding of the superconducting
proximity effect in semiconductor NW structures (e.g.,
the role of disorder-induced pair breaking [35]). Finally,
we should like to emphasize that our results bear clear im-
plications in the interpretation of sub-gap transport fea-
tures in hybrid superconductor-semiconductor systems,
especially in the presence of relatively high B that can
cause a significant suppression of ∆. This is precisely the
regime where Majorana fermions are expected to arise as
zero-energy quasiparticle states. We argue that intra-gap
quasiparticle states, manifesting through a sizable back-
ground conductance (as seen in Refs. 3–5), could result
in the screening of a local spin (or orbital) degeneracy
leading to zero-bias anomalies that are not related to
Majorana physics.

This work was supported by the EU Marie Curie pro-
gram and by the Agence Nationale de la Recherche. R.
A. acknowledges support from the Spanish Ministry of
Science and Innovation through grant FIS2009-08744.
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Model

The dot is described by an Anderson Hamiltonian

HD =
∑

σ=↑,↓

εσd
†
σdσ + Un↑n↓ , (1)

where εσ is the single-particle energy level of the localized state with spin σ, d†σ (dσ) the fermion creation (annihilation)
operator of the state, nσ = d†σdσ the occupation, and U the on-site Coulomb interaction, which defines the charging
energy. We focus on a regime where the charging energy is much bigger than other energy scales. In this regime the
Hamiltonian in Eq. (1) suffices to describe all relevant physics.
Kondo physics arises as a result of the interplay between the strong correlation in the dot and the coupling of the

localized electrons with the electrons in conduction bands. In our case, these are described as two leads (α = L and
R) which can be either normal or superconducting. In this later case, they are represented by a BCS hamiltonian of
the form:

Hα =
∑

kα

∑

σ

εkα,σ a
†
kασakασ +

∑

kα

∆(a†kα↑a
†
−kα↓ + h.c.) (2)

with ∆ being the superconducting pairing gap. Tunneling is described by the Hamiltonian

HT =
∑

kασ

(

Vkασa
†
kασdσ + h.c.

)

. (3)

The total Hamiltonian is then given by H = HL+HR+HT +HD . For simplicity, we ignore the k- and σ-dependence
of the tunneling amplitudes. Therefore, we consider a simplified model with Vkασ = Vα/

√
2 which defines the widths

ΓN
α = πρ0|Vα|2, where ρ0 is the (normal) density of states in the reservoirs. In the presence of superconductivity, the

coupling to the reservoirs is modified due to the BCS density of states as

Γα(E) = ΓN
α Ns(E,B) = ΓN

α Re
|E|

√

|E|2 −∆(B)
2
. (4)

This, of course, corresponds to a clean BCS case. As discussed in the main text, it is clear from the experimental data
in even diamonds that the clean BCS case is not a good description of the experiments. Instead, a Dynes expression
of the form

Ns(E, γ,B) = Re[
|E|+ iγ(B)

√

(|E|+ iγ(B))2 −∆(B)2
], (5)

has to be used, where γ(B) is a phenomenological broadening which takes into account a finite density of states inside
the BCS gap.

Non-crossing approximation method

Now we write the physical fermionic operator as a combination of a pseudofermion and a boson operator as follows:
dσ = b†fσ where f,σ is the pseudofermion which annihilates one ”occupied state” with spin σ, and b† is a boson
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operator which creates an ”empty state”. We are interested in a limit where the Coulomb interaction is very large
such that we can safely take the limit of U → ∞. This fact enforces the constraint

∑

σ f
†
σfσ+b†b = 1, that prevents the

accommodation of two electrons at the same time in QD level. This constraint is treated with a Lagrange multiplier.

HSB =
∑

kL,σ

εkL,σ a
†
kLσakLσ +

∑

kL

∆(a†kL↑a
†
−kL↓ + h.c.) +

∑

σ

εσf
†
σfσ +

V L√
N

∑

kL,σ

(

c†kL,σb
†fσ + h.c.

)

+ (L → R)

+ λ

(

∑

σ

f†
σfσ + b†b− 1

)

. (6)

Notice that we have rescaled the tunneling amplitudes Vα → V α

√
N according to the spirit of a 1/N -expansion (N

is the total degeneracy of the localized orbital).
Our next task is to solve this Hamiltonian, which is rather complicated due to the presence of the three operators in

the tunneling part and the constrain. Moreover, we need to take into account superconductivity and non-equilibrium
effects. In order to do this we employ the so-called Non-Crossing approximation (NCA) [1–4] generalized to the
superconducting case [5, 6]. Without entering into much detail of the theory, we just mention that the boson fields
in Eq. (6) are treated as fluctuating operators such that both thermal and charge fluctuations are included in a self-
consistent manner. In particular, one has to derive self-consistent equations-of-motion for the time-ordered double-time
Green’s function (sub-indexes are omitted here):

iG(t, t′) ≡ ⟨Tcf(t)f
†(t′)⟩ ,

iB(t, t′) ≡ ⟨Tcb(t)b
†(t′)⟩, (7)

or in terms of their analytic pieces:

iG(t, t′) = G>(t, t′)θ(t− t′)−G<(t, t′)θ(t′ − t) ,

iB(t, t′) = B>(t, t′)θ(t− t′) +B<(t, t′)θ(t′ − t); (8)

A rigorous and well established way to derive these equations-of-motion was first introduced by Kadanoff and Baym
[7], and has been related to other non-equilibrium methods (like the Keldysh method) by Langreth, see Ref. [8] for
a review. In the paper, we just show numerical results of the coupled set of integral NCA equations for our problem
and refer the interested reader to Refs. [1–4] for details. In particular, the density of states is given by

ρ(ω) = − 1

π

∑

σ

Im[Ar
σ(ω)], (9)

where Ar
σ(ε) is the Fourier transform of the retarded Green’s function Ar

σ(t) = Gr
σ(t)B

<(−t) − G<
σ (t)B

a(−t). Note
that this decoupling neglects vertex corrections and, as a result, the NCA fails in describing the low-energy Fermi-
liquid regime. Nevertheless, the NCA has proven to give reliable results even at temperatures well below the Kondo
temperature (of the order of T = 10−2TK) [9]. Following Meir and Wingreen in Ref. [10], the current is given by:

Iα∈{L,R} = −2e

h

∑

σ

∫

dϵΓα(ϵ)[2ImAr
σ(ϵ)fα(ϵ) +A<

σ (ϵ)]. (10)

with A<
σ (ϵ) the Fourier transform of A<

σ (t) = iG<
σ (t)[B

r(−t)−Ba(−t)] and fα(ϵ) =
1

1+e
(ϵ−µα)

kT

the Fermi-Dirac function

at each reservoir held at a chemical potential µα such that the applied bias voltage is defined as eV = µR − µL.
In practice, we self-consistently solve the NCA integral equations until good numerical convergence is reached. All

dI/dV calculations presented in the main text are done for finite temperatures T = 0.25TK and increasing values of
∆, roughly from ∆ = 0 (bottom curve of Fig. 1c in the main text) to ∆ = 20TK (top curve of Fig. 1c in the main
text).

”Soft” gaps in out-of-plane and in-plane magnetic fields

Here we present measurements in which the magnetic field dependence of the superconducting gap ∆ was probed
both in out-of-plane and in-plane configurations. For this purpose, we have performed measurements using S-QD-N
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FIG. 1: Magnetic field dependence of the superconducting gap measured in an out-of-plane (left panel) or in an in-plane (right
panel) configuration.

devices, which are identical to the devices discussed in the main text, except for the fact that one of the S aluminium
leads is replaced by a normal metal gold contact. The data shown in Fig. 1 was taken in an even valley, i.e.
in the absence of Kondo correlations. As discussed in the main text, the transition from the normal state to the
superconducting state is characterized by the opening of a ”soft” gap, which is populated by intra-gap quasiparticle
states. As B decreases, the intra-gap DOS decreases, until a well-defined gap is obtained for low fields. The out-of-
plane and in-plane field dependences are qualitatively identical, except for the different critical fields.

On the origin of the ”soft” gaps

In the context of a more rigorous microscopic analysis in terms of Abrikosov-Gorkov (AG) theory [11], the density
of states in the presence of a depairing mechanism can be written as [12]

Ns =
u√

u2 − 1
, (11)

where u is the complex solution of the equation:

u∆(γ) = E + iγ
u√

u2 − 1
, (12)

where γ = ~

τdp
is the pair-breaking rate and ∆(γ) is a self-consistent order parameter. Obviously, in the limit γ → 0

one recovers the ideal BCS case with u = E/∆(0). The precise microscopic expression of τdp depends on the nature of
the pair-breaking mechanism. In the case of thin superconducting films in a parallel magnetic field, the pair breaking
reads [13, 14]:

τ−1
dp =

vF l

18
(
πdB||

Φ0
)2, (13)

with vF , l, d and Φ0 = hc
2e , the Fermi velocity, the elastic mean free path, the film thickness and the flux quantum,

respectively. In the perpendicular case, the corresponding expression reads

τ−1
dp =

vF l

3

πB⊥

Φ0
. (14)

Relevant for our analysis is the fact that for γ > ∆(γ) there is a finite density of states inside the gap. Also interesting
for our study is the limit ∆(γ) → 0 where u∆(γ) → E + iγ. In this limit, near the gap closing, Eq. (1) becomes

Ns =
E + iγ

√

(E + iγ)2 −∆2
, (15)

and one can make contact with the phenomenological Dynes form used in our calculations.
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FIG. 2: Perpendicular magnetic field dependence of the dI/dV measured in diamond γ.

Using Eq. (14), with a diffusion constant D = vF l/3 ≈ 22.5cm2s−1, measured in 30 nm-thick Al thin films [15], we
estimate τ−1

dp ≈ 6.68 × 1010s−1 for a perpendicular magnetic field of B⊥ = 20mT , which is close to B⊥
c . This gives

γ(AG) ≈ 0.2∆0 (where ∆0 ≈ 155µeV ). In our modelling we have used the relation γ(B) = 0.4(B/Bc)∆(B) to describe
the phenomenological Dynes broadning term. Considering a critical field B⊥

c ≈ 23mT (as experimentally observed in,
e.g., diamond α), this relation yields γ(B) ranging from ≈ 0.15∆0 to ≈ 0.2∆0 in the interval 9.5mT < B⊥ < 21mT ,
which is in consistent with the value estimated from the AG theory. Hence, field-induced pair breaking can indeed
provide a reasonable explanation for the observed softening of the superconducting gap near Bc.
It is noteworthy that our assumption that γ(B) is proportional to ∆(B) becomes unphysical (hence incompatible

with the AG theory) when B is very close to Bc. However, as discussed above, it does describe well the γ values
expected from theory over a wide field range, including that relevant to our experimental observations.

Zeeman splitting of the zero-bias peak in the normal state

To complement the data shown in the main text, we include here the perpendicular magnetic field dependence of
dI/dV at the center of diamond γ, measured up to 3 T (Fig. 2). Due to the width of the zero-bias Kondo peak, the
splitting of the Kondo resonance induced by the Zeeman effect is not obvious for magnetic fields slightly higher than
the critical field. From the splitting at higher fields, we estimate a g-factor of approximately 5.

Temperature dependence of zero-bias Kondo peak

We now discuss the temperature (T ) dependence of the reported zero-bias Kondo anomalies in the regime of
coexistence between the Kondo effect and superconductivity. We start by presenting data corresponding to Kondo
resonance δ (TK,δ ≈ 0.35 K), which was not discussed in the main text. First, we verified that the overall magnetic
field behavior of δ is qualitatively identical to that observed in diamonds α, β and γ (described in the main text).
Fig. 3a depicts the persistance and the narrowing of the zero-bias Kondo peak below the critical field B⊥

c . Side
peaks related to the superconducting gap are also visible. The temperature dependence measurements were taken
at B⊥ = 10 mT. Fig. 3b clearly demonstrates that the zero-bias Kondo peak and the finite-bias side peaks show
distinct temperature dependences. Indeed, the zero-bias peak is strongly suppressed, while the side peaks are only
weakly affected. This behavior relates to the fact that the height of the persisting Kondo anomaly follows the usual

T -dependence for a normal state regime: G(T )/G0 = [1/(1 + (T/T
′

K)2]s, where T
′

K = T ∗
K/
√

2
1
s − 1, s = 0.22 and

T ∗
K is the effective Kondo temperature [16]. This implies that a 40% conductance drop is expected for T = 0.2 K,

assuming TK,δ ≈ 0.35 K (in fact T ∗
K is expected to be lower than the normal state TK,δ ≈ 0.35 K, as deduced from

the narrowing of the zero-bias peak). By its turn,the superconducting gap at B=0, ∆0 ≈ 150 µeV, is only reduced in
≈ 10% at T = 0.2 K. As a consequence, the position of the side peaks in Fig. 3b are only marginally affected by T .
Temperature dependence measurements performed in diamond β are shown in Fig. 4. The observed behavior is

qualitatively identical to that of diamond δ, i.e., the zero-bias Kondo peak is strongly suppressed by increasing T ,
while the side peaks related to ∆ are only weakly affected. In addition, we show that T ∗

K , obtained by fitting the
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FIG. 3: (a) Persistance and narrowing of the Kondo peak below Bc. The side peaks observed in the red trace are related to
the superconducting gap (see main text). (b) Temperature dependence of the persisting zero-bias Kondo anomaly. (c) dI/dV
of the zero-bias peak plotted as a function of the temperature.

FIG. 4: (a) Evolution of the dI/dV measured at B⊥
≈ 15 mT, as a function of the temperature (T ). The zero-bias Kondo

peak and the gap-related side peaks show distinct T dependences. The former is strongly suppressed with increasing T . (b)
Temperature dependence of the normalized conductance of the zero-bias Kondo peak measured either above (squares) or below
(circles and triangles) B⊥

c . G(0) denotes the peak height measured at base temperature. The inset reveals that the effective
Kondo temperature T ∗

K decreases with increasing ∆.

above mentioned Kondo T dependence to the experimental data, decreases with decreasing B⊥ (inset of Fig. 4b), as
expected from the reduced intra-gap quasiparticle DOS.
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