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The zero-bias anomaly in the dependence of the tunneling density of states v(e) on the energy e of the 
tunneling particle for two- and one-dimensional multilayered structures is studied. We show that for a ballistic 
two-dimensional (2D system the first-order interaction correction to density of states due to the plasmon 
excitations studied by Khveshchenko and Reizer is partly compensated by the contribution of electron-hole 
pairs, which is twice as small and has the opposite sign. For multilayered systems the total correction to the 
density of states near the Fermi energy has the form <5v/v0 = max(|e|,e*)/4eF , where e* is the plasmon 
energy gap of the multilayered 2D system. For a 2D system with finite-range interaction the particle-hole 
contribution precisely cancels with the contribution of the zero-sound mode, in agreement with the Fermi 
liquid theory. In the case of one-dimensional conductors we study multiwall nanotubes with the elastic mean 
free path exceeding the radius of the nanotube. The dependence of the tunneling density-of-states energy, 
temperature and on the number of shells is found.
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I. INTRODUCTION

Electron-electron interaction results in a singular suppres
sion of the tunneling (single-particle) density of states at the 
Fermi surface of low-dimensional metallic systems.1 The ef
fect, known as the zero-bias anomaly, was first discussed by 
Altshuler and Aronov2 for diffusive systems with a short- 
range interaction, and by Altshuler, Aronov, and Lee3 for the 
Coulomb interaction. In the two-dimensional 2D case the 
correction to the density of states DOS is double 
logarithmic,3 <5jVj>0~ ( e Fr ) _1 lnde^ln^F ^/e), where r  is 
the impurity scattering time, is the energy of the tunneling 
electron measured from the Fermi energy F . Zuzin4 showed 
that the second logarithm in this formula is cut off at low 
energies for the experimental setup of a 2D electron plane 
screened by a metal shield. Rudin, Aleiner, and Glazman5 
generalized the theory of the zero-bias anomaly to incor
porate the ballistic energies 1/ , and argued that the 
correction actually has the form, / 0
~  — ( e Fr ) ~ 1 ln(eF/|e|)ln^F^/e). Khveshchenko and Reizer6 
analyzed the contribution of the collective electron excita
tions, 2D plasmons, to the tunneling DOS and obtained an 
additional correction v 0 =  ( | e| — eF)/2eF . This correction 
is less singular near the Fermi surface but is dominant in the 
wide range of energies and is present even in the absence of 
disorder.

In the present paper we consider the interaction correction 
to the tunneling DOS of a different system, consisting of a 
number of identical periodically spaced two-dimensional 
electron layers. We also neglect the possibility of electron 
tunneling between the layers. While analyzing such a setup 
we primarily have in mind high-T c materials, which are at
tracting considerable interest with respect to the properties of 
electron-electron interactions. The electron transport in these 
materials is extremely anisotropic, and the interlayer tunnel
ing amplitude in some crystals can be as weak as 0.05-2 K.7

Even though the motion of electrons tunneling from the tip 
of the tunneling electron microscope TEM is confined to 
the outermost layer only, the presence of internal layers is 
important as they participate in the screening of the Coulomb 
interaction between electrons in the top layer.

We also consider a similar, yet slightly different, tunnel
ing geometry that is realized in multi-wall carbon nanotubes 
(MWNT). A typical MWNT consists of a few graphine 
monolayer sheets rolled concentrically into cylinders with 
radius R ~  10 nm. At zero doping they can be either metals 
or semiconductors, depending on the helical arrangement of 
the carbon hexagons. In the measurements of the tunneling 
DOS the tunneling current propagates through the outermost 
shell8,9 while the intershell tunneling is suppressed. Depend
ing on the degree of disorder the transport around the elastic 
mean-free path l  can be shorter or longer than the radius of 
the nanotube corresponding to the diffusive ( l  R ) or ballis
tic (R  l ) motion along the circumference of the nanotube. 
For energies exceeding the inverse time of propagation 
around the circumference the zero-bias anomaly is described 
by 2D formulas. At lower energies a crossover to the regime 
of a quasi-one-dimensional (quasi-1D) conductor is realized.

For diffusive quasi-1D conductors the interaction correc
tion to DOS in the lowest order of perturbation theory was 
found to be more singular than in the 2D case, <5j>/j>0 
~  — 1/\/|e|-r.2 Working beyond the perturbation approxima
tion, Nazarov10 found that close to the Fermi surface DOS 
has an exponential behavior, ln( / 0) 1 this result was 
later obtained by Levitov and Shytov11 in a different way . 
Ballistic 1D conductors were studied by several authors12,13 
and were shown to have a power-law behavior / 0 of 
the tunneling DOS. The crossover between diffusive and bal
listic regimes as well as the temperature behavior of DOS in 
multiwall carbon nanotubes were recently studied in Ref. 14 
under the assumption that electrons reside on the outermost 
shell only.

Here we study the zero-bias anomaly due to dynamically
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screened intershell and intrashell Coulomb interaction in 
two- and one-dimensional layered systems and its effects on 
the tunneling DOS. In Sec. II the system of two-dimensional 
layers is analyzed, with both regimes of diffusive and ballis
tic in-plane electron motion considered. In Sec. III we dis
cuss the zero-bias anomaly in multiwall nanotubes assuming 
that the doping electrons are distributed uniformly across the 
shells.

For the solution of Eq. (4  we refer the reader to Appendix A. 
We obtain,

4 tte 2 sinh q d  
U(<a, q ) = ~ e $ {  (a, q  ,0)=  ------------ ——, (6)

q ( e  —e qd)

where k is given by the solution of the equation

II. SYSTEM OF TWO-DIMENSIONAL ELECTRON 
LAYERS

We consider a semi-infinite system of identical conduct
ing two-dimensional layers separated by the distance d, as in 
Fig. 3 in Appendix A. The interlayer tunneling is neglected, 
and the tunneling electron from the TEM propagates within 
the upper layer only. The properties of an isotropic two
dimensional electron system are described by the in-plane 
Fermi velocity and the electron-impurity scattering rate 
1/ . The presence of internal layers is important as they con
tribute to the screening of the Coulomb interaction between 
electrons in the top layer.

The first-order perturbation correction to the tunneling 
DOS (see Refs. 1,5,6) of the 2D conductor at zero tempera
ture has the form

Sv(e) f  *f s
-= d « V (« ), 1

w  x T I cQd(l  {<* + UT)U{(0,q)T2{(0,q) 
V(&>) — Illl |  ̂ 0  ̂ ii 2 2i3/2 ’

o 27r“ [(w + / / r ) “ — q“u“]

where 0 is the thermodynamic two-dimensional density of 
states v 0 =  m / tt, counting both spin directions. The (inverse) 
impurity-dressed vertex function is given by

2 e2
cosh k d =  cosh q d ----------TI(« ,q)sinh qd, (7)

having a non-negative real part Rek  0. When the wave
length decreases q d  , Eq. 6 gives

U  ,q
2 e2

q  2 e 2 ,q
(8)

and the conventional expression for the screened interaction 
in a single 2D layer is recovered. For static interactions Eq.
8 gives U ( 0,q ) 2 e 2/ ( q  ), where 2 e 2 0 is 

the inverse static screening length. In what follows we as
sume that d  1 . This condition ensures that different layers 
are at least for low frequencies weakly coupled. In the op
posite limit d  1 the system could be treated effectively as 
the 3 d  metal with the cylindric Fermi surface. This regime is 
beyond the scope of our paper.

Within the random-phase approximation electrons can be 
viewed as noninteracting but moving is a fluctuating electric 
field whose propagator is given by Eq. 7 . In this picture 
Eqs. (1)-(2) describes the suppression of the tunneling den
sity of states due to fluctuations of the electric field with 
various frequencies and various momenta q .

2„2i1/2 'i/ 2 q2 2 (3)

The function U (« , q ) denotes the Coulomb interaction of 
two electrons residing in the top plane and dynamically 
screened by the infinite number of conducting layers below 
it. To find this function, we consider the Coulomb potential 
<j)(<a,r) created by the tunneling electron located in the out
ermost plane z = 0. It satisfies the Poisson equation, that has 
the following form in the Fourier representation with respect 
to the in-plane coordinates:

“ t t ' \— - — q2 + 47re2TT(q,£tj) 2  S (z  — n d ) \  <f>{to,q,z)
,d z~  «=« I

=  4 tt e S ( z ) , (4)

where the last term in the brackets describes the polarization 
charge induced in the system of 2D layers, and the polariza
tion operator of a single 2D electron layer is

i/ i/ 2 q2 2 1/2
TT(w,q)= V 0 ~ ------— -----2 2 1/2— ----- . (5)i/ 2 q2 2 1/2 i/

A. Ballistic motion

First we consider the ballistic limit when the tunneling 
bias exceeds the scattering rate 1/ . In this case the main 
contribution to the integral in Eq. 2 comes from the electric 
field fluctuations from two regions of the momentum space:
i low-momentum region, q  , where the fluctuating elec
tric field has a plasmon resonance; ii) particle-hole con
tinuum q  where the fluctuations of the electric field 
decay due to Landau damping.15 We analyze the contribution 
of the plasmon region in Sec. IIA  1 and that of the particle- 
hole region in Sec. II A 2.

1. Plasmon region contribution

In the plasmon region, q  , the polarization operator
5 may be approximated by

,q
2 2  

^0 q v 

m 2 ’
(9)

where we introduced the notation 2 ( i / ). Solving 
Eq. 7 with respect to ekd, we obtain
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FIG. 1. The plasmon spectra of an infinite number of 2D metal
lic layers are shown. The frequency o) is plotted as a function of the 
in-plane momentum q. The dashed line shows the plasmon spec
trum of a single 2D layer. Plasmons of different layers interact with 
each other thus creating a band inner area between solid lines . The 
upper solid line (q) represents the upper boundary
= &>+( q ) of the plasmon continuum, with the uniform charge dis
tribution across the layers ( q 0) while the lower solid line marks 
the lower boundary corresponding to the alternating charge in adja
cent layers (qL = tt/ d ).

VplM =
1

4 ^  epO)2 

X [ f i 2 -

Im
qO)dq r, j

—  (e2 qd- 
0 q

1

V (n 2- w 2 ) ( n 2_ w 2 )].

(10)

Here a>±(q) represents the upper/lower boundaries of the 
continuum of plasmons with a fixed in-plane momentum q in 
an infinite system of layers z = 0, ±  1, ±  2 , . . .  . Each member 
of the continuum can be parametrized by the wave vector q 
along the z direction,

q d
n . coth —  

, q v  I 2
« W) = ^ i  q i  

tanh —
11

1 1 K q ^ v 2
Vpi(®) = _  2 w e PMT ln a 2

2. Particle-hole region contribution

12

The region of high transferred momenta q / q rep
resents the contribution of particle-hole pairs. In this region 
propagating modes of the electromagnetic fluctuations are 
absent because of Landau damping.15 Under the condition 
KdP-1, the second term on the right-hand side of Eq. (7) 
always exceeds the first term screened interaction and the 
interaction takes the form

{/(« , q) =
1 V(w + i /  t) 2 — q 2v 2 — i /

v 0 yj(c0 + i / T)2 2 2  q2 2 i /
(13)

Substituting Eqs. (13  and (3  into Eq. (2) and integrating 
from q to infinity we find

1
^p-h( ̂ )  TT"

1 CO
ln ----- . (14)

4 p 2 p q

We note that although this calculation for a finite scattering 
rate is rather simple and straightforward, taking the limit 
1/ 0 in the calculation should be done with care. Assum
ing 1/ 0 in Eq. 13 , and hence restricting oneself to the 
principal part of the integral, leads to the incorrect answer 
Vp-h(« ) = 1/8eP that is twice as small as the correct result 
14 . One has to keep 1/ a positive infinitesimal to bypass 

the square-root singularity at q . We discuss this point in 
greater detail in Appendix B.

3. Total density o f  states

Adding the contributions of the plasmon and the particle 
hole regions 12 and 14 we obtain the following expres
sion for the total spectral weight function:

pl p-h 

1 1 KV

4 p 2 p
« > e * . (15)

The mode (q ) corresponds to the uniform charge distri
bution across all layers, q 0, while the other mode, 

( q ) , describes the alternating charge in adjacent planes 
(q / d ). The former mode has a frequency gap * 
= v ( k / d ) 1/2, and at q d —► 0 gives the usual three-dimensional 
plasmon (in an anisotropic metal). At q d —► °°, both branches 
tend to the usual plasmon spectrum of a two-dimensional 
electron gas. This is illustrated by Fig. 1.

We chose the momentum cutoff q in Eq. 10 to be 
larger than the characteristic momenta of the plasmon modes 
but still less than the momentum of the particle-hole excita
tions, i.e., q m<s Wu.

When the frequency is higher than the plasmon gap,
*, the integral over the momentum is dominated by large 

values of q 1/d  where and converge exponentially, 
(a2± = K q v 2[ |± e x p (—qd)]. Simple calculations give

The results 12 and 15 hold as long as the frequency 
exceeds the plasmon gap e* = v ( k / d ) 1/2. In this large fre
quency and large wave number q d  1 region the plasmons 
have virtually no dispersion along the z direction due to 
weak interaction of electron densities on different layers. At 
lower frequencies and wave numbers, * and q d  1, 
electron densities on different layers interact strongly, and 
the plasmon spectrum acquires a significant dispersion along 
the z  direction. In this region we may approximate 2 

d q 2 2/4, 2 2/ d , exp(2qd) 1 2qd , and take the 
inverse interlayer distance as the momentum cutoff q 
~ 2 /d . Taking the integral in Eq. {2) explicitly and extracting 
the imaginary part, we find instead of Eq. 12 ,

1
Vpl( w) = -  —

1 *
4 p 2 p

(16)
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The high-momentum particle-hole contribution does not 
depend as long as d  1 ) on the distance between layers. 
This can be readily seen from Eq. 13 that does not contain 
d. This is quite natural as the particle-hole pairs do not in
duce long-range oscillations of electric field. Therefore, we 
can take the old expression 14 but with the new cutoff q  
~ 2 /d , and obtain

H « )  =
1

-----------ln — ,
2 ^ e FWT e* « < e * . (17)

Integrating the expressions 15 and 17 over the frequency 
according to Eq. 1 , we found the perturbation correction to 
the tunneling DOS in the ballistic regime

S v b(e)  m a ^ ^ e ^ e ^  eF

0 4 e  F

ln
4 k  £f T

KV

m ax(|e|,e*)
ln

KV
— max( I e \, e * )

(18)

We observe that the correction 18 is less singular near the 
Fermi surface than in the case of a single 2D layer.

The suppression of the tunneling DOS for a single iso
lated plane is given by the d ^= ° ( e * ^ 0 )  limit of Eq. (18). 
This differs from the result of Khveshchenko and Reizer,6 as 
the leading contribution the first term of Eq. 18 is twice 
as small as their result. The difference arises from the con
tribution of the particle-hole excitations, Vp-h(« )  in Eq. (15) 
whose first term partially cancels the first term in the plas- 
mon contribution 12 . The overall sign of the DOS correc
tion remains unchanged suppression .

The contribution of the particle-hole region (15) arises 
from the low-frequency region q  where the interaction 
is screened. It is, therefore, independent of the bare interac
tion between the particles. The contribution of the high- 
frequency region q  arises from the collisionless collec
tive modes that depend essentially on the bare interaction. 
The overall correction to the tunneling DOS must remain 
negative for an arbitrary interaction. Indeed, ( ) is related 
to the retarded correlator of fluctuating electric field.16 There
fore, its imaginary part is strictly negative for 0, which 
leads to the suppression of the tunneling density of states 1 . 
We show in Sec. II A 4 in the case of the short-range inter
actions the contribution of the particle-hole region 15 can
cels the contribution of the collective modes in the high- 
frequency region q  . Thus, in order to reproduce the 
results of the Fermi-liquid theory it is essential to take into 
account the particle-hole contribution 15 .

U (« , q) =
2 tt e

q 0 2 e 2 ,q
(19)

For q 0 , like in the case of the Coulomb interaction con
sidered above, the main contribution to Eq. 2 comes from 
two well separated regions of the momentum space: i the 
collective excitation zero sound region, q ( q 0 / ) / , 
and ii the particle-hole region, q / .

Following the procedure outlined above we introduce a 
momentum cutoff q b), such that (q 0/k )« /u < sq m<s(a/v.  In 
the particle-hole region q / the first term in the denomi
nator in Eq. 19 may be neglected the interaction is com
pletely screened . Therefore, the contribution of this region is 
identical to that for the case of the Coulomb interaction, Eq.
15 . To evaluate the contribution zs( ) of the zero sound 

region, q q , we substitute the high-frequency asymptotics 
of the polarization operator 9 into Eq. 19 and use Eq. 2 
to obtain

1 1
ln

2 22q 2

4e f 4 ^  €f u t  2 q o«2 '
20

Adding the particle-hole contribution 15 and using Eq. 1 
we obtain for the DOS correction

S v(e ) 1 F
4 ln2— ln- •0 4 F 2q 0

21

Note that the linear in energy -independent correction, 
which appears for the Coulomb interaction first term in Eq.
18 , is now absent in agreement with the Fermi-liquid 

theory. This comes about because the first term in the zero 
sound contribution 20 cancels with the first term in the 
particle-hole contribution 15 . Thus, when considering the 
interaction correction to the tunneling DOS for a two
dimensional gas with a finite-range interaction, it is essential 
to take into account the contribution of the particle-hole ex
citations in order to obtain results consistent with the Fermi- 
liquid theory.

B. Diffusive motion

Next we address the regime of strong impurity scattering, 
1/ , when the motion of the tunneling electron is diffu

sive and the polarization operator has the form, ( ,q ) 
= -  v 0D q 2/ ( D q 2- i c o ), where D = v 2t/2 is the diffusion co
efficient.

The main contribution to the integral (2) comes from the 
region of transferred momenta max{«/D k , ^ t o / D n d } < q  
<  Vw/D . In this region the interaction takes the form

4. Finite-range interaction

Let us consider a single conducting plane in the case 
when the Coulomb interaction between electrons is screened 
at some finite length scale 1/q 0. We consider a relatively 
long-range interaction, q 0^ k , when it can be treated within 
the random-phase approximation. The screened interaction 
can then be written in the form

U (« , q) =
0D q 2

and we obtain

Ho») = - ln
D 2

4 2 0D  max , D / d
22

1

1
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For a strongly disordered system, tD/c/ d <  1, and for a rela
tively high bias, |e |> D k / d  integration over the frequency 
gives the following DOS correction:

S v d(e)~-
1

8 tt2D
ln

D  V t
ln ( |e |r )+  S v b\ —J, (23)

where the first term is the well-known double logarithmic 
correction of Altshuler, Aronov, and Lee3 and the second 
term is the constant contribution of ballistic frequencies 
>  1/t given by Eq. (18.

At lower bias, |e| <D /c/ d , we have instead of Eq. (23),

8 v d{e ) =  S v h{- ]  +
1

ln
tD k \

ln d  ln

(24)

For a relatively clean system with tD k / d >  1 (i.e., such 
that 12> d / k ) the DOS correction is given by Eq. (24) with 
the second term in the brackets absent.

Comparing Eq. (24) with the result by Zuzin4 for the DOS 
correction for a 2D electron system screened by a bulk metal, 
we observe that in the diffusive regime at low energies the 
role of an infinite set of 2D electron layers z 

d ,2d ,3d , . . . is equivalent to a bulk metal screen located 
at a distance d /2 from the outermost plane.

C. Interlayer tunneling

Throughout the analysis performed above we disregarded 
completely the possibility of tunneling electrons between dif
ferent layers. We now consider the corrections to the density 
of states originating from interlayer tunneling and establish 
conditions for neglecting such processes. We treat them per- 
turbatively, in the lowest- second order in the tunneling 
Hamiltonian

f t - i ?
d  p  

( 2 tt) :
■[#+1(p) + p ] fa(p , (25)

which conserves the in-plane momentum during tunneling. 
Having in mind mainly applications to the system with 
strong in-plane scattering (like high-Tc materials) we focus 
here on the diffusive transport regime 1/ . The correc
tions to the density of states to the lowest order in the inter
layer tunneling amplitude t are shown in Fig. 2. Of the six 
diagrams drawn here the more important ones are Figs. 2 e 
and 2 f that contain four diffusions each. They correspond 
to the tunneling corrections to the screened Coulomb inter
action rather than to corrections to Green’s function of the 
tunneling electron itself, which are given by Figs. 2(a)-2(d).

To evaluate the contributions of these diagrams one has to 
know the interaction Unm(rn,q) between electrons residing 
on arbitrary layers n  and m . As finding such a general ex
pression seems to be quite a cumbersome task for a semi
infinite system of layers, we utilize the corresponding ex
pressions for the infinite system to obtain a qualitative 
estimate of the effect. It has the form see Appendix A

FIG. 2. The diagrammatic representation of the correction to the 
single-particle density of states from the interlayer tunneling pro
cesses to the lowest order of perturbation theory in the tunneling 
amplitude t . The electron from the microscope probe tunnels into 
white circles. Solid lines stand for the Green’s functions, wavy lines 
denote the dynamically screened Coulomb interaction, black dots 
represent the tunneling matrix elements, and the dashed lines are 
the impurity ladders diffusons .

Unm ( u , q ) = U  0„(«», q ) e - \ * ~ m k i , 

2 tte 2 sinh qd
U00 ,q q sinh kd

(26)

Figures 2 e and 2 f are computed to yield for the tunneling 
correction,

Vt{ w) =  r i ' 0wTRe
q d q  U20(« , q) tanh kd/2

2 tt2 ( D q 2— ia) )4
(27)

If the frequency is large, « > D k / d , the main contribution to 
the integral in Eq. 27 arises from the interval 1/d  q 
<(d/ k  D , where we can approximate U 00tanh kd/2
— k 2/ v 20q 2, to obtain

8v, {e)  ___ e4t2voT 

vo e2
ln

d

~Dk  '
(28)

For smaller frequencies o><Dk / d , the leading contribution 
comes from the integral 0 q 1/d  and reads

Svt (e )

vo

e 4t2 0 d

2 |e |D k  '
(29)

It is worth noting that the interlayer correction changes its 
sign around the point |e| —D k / d  and in fact leads to the 
increase in the density of states for |e |> D k / d . Comparing 
the expressions (28) and (29) with the formulas (23) and 
24 , we observe that interlayer tunneling correction is small 

provided that t ^ |e | / ( e f T). This much stronger condition 
than the one that might be naively expected ( t ^  | e |) is due to

d

2
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the enhancement of the electron-electron interaction by the 
interlayer tunneling. When this condition is violated the sum
mation of a wider class with all possible transitions of dia
grams is necessary.

III. MULTIWALL NANOTUBES

In this section we consider the interaction suppression of 
the tunneling DOS in multiwall carbon nanotubes. A multi
wall nanotube is built up of M  concentric carbon tubes (or 
shells each of which can be obtained by rolling a graphine 
sheet into a cylinder.

In tunneling experiments9 the tunneling current is be
lieved to propagate along the outermost shell only while the 
tunneling between the shells is largely suppressed. Thus, the 
role of electrons in the inner shells is reduced to merely 
screening the interaction between the outer shell electrons.

The electron band structure of a single metallic carbon 
nanotube consists of N  (this number is usually of the order of 
a few tens and depends on the doping level and gate voltage) 
conducting subbands en( k ) characterized by the Fermi ve
locities along the tube axis u n and around the circumference 
v l n . Each of the M  shells has, in general, its own band 
structure en( k ). The electrons are scattered between different 
bands but mostly within the same tube by impurities, lattice 
imperfections and incommensurate potential of ajacent tubes. 
Not all the tubes are necessarily metallic, some of them 
could well be insulating. Experimental evidence of the inter
nal structure of MWNT is usually not easy to obtain and 
leaves some room for speculation. The scenario when the 
dopants are situated outside the nanotube was considered in 
Ref. 14. In this case the doping electrons reside in the out
ermost shell only to minimize their electrostatic energy, and 
the screening of the interaction due to inner shells may be 
neglected.

Here we study the case when the dopant distribution re
sults in a finite number M  of conducting shells. To simplify 
the problem we consider an approximation in which all M  
shells have the same band structure and the same doping 
level. In Sec. III A we obtain the first-order pertubative cor
rection to the tunneling DOS TDOS . This correction di
verges at low energies. Therefore, the study TDOS at low 
energies and temperatures requires a nonperturbative ap
proach. This regime is addressed in Sec. III B.

A. Perturbation theory

Unlike the case of the 2D conductors considered above, in 
the one-dimensional wires the contribution of plasmon fre
quencies q , logarithmically exceeds that of the 
electron-hole interval q . Therefore, the weight function 
can be written in a simple form compare this with Eqs. 2 
and 3 ,

1 f yc dq
V (w )= —  I m 2  — ; U 00( (o ,q ,qm), (30)

& r  q m

where the sum is taken over the quantized transverse mo
mentum q m = m /R  0, m = 0 ,± 1 ,± 2 , . . .  The function 
Uoo(«,q ,q m) should be understood as the 00 element of the

matrix U ij ( w , q) that represents the dynamically screened 
Coulomb interaction of an electron in shell i with an electron 
in shell j  and satisfies the matrix equation

{/(a), q) = V( q) + V( q) rt( a ,  q) U( a ,  q), (31a)

where n ij ( to ,q ,q m) is the polarization operator that, accord
ing to our assumptions, is proportional to the unit matrix and 
in the plasmon region q has the form

n !7( « ,q , q m) '
2 2 2 2 q 2 q m 

: OiAl= dijV 1— -—
1 1 + i / t )

(31b)

Here we introduced the one-dimensional density of states
1 n( n) 1 and the average squares of the longitudinal,n n
2 and the transverse, 2 electron velocities,

1 2
n n

In Eq. (31a) V ij(  q , m ) denotes the bare Coulomb potential,

2e2 f v
= ----  d f i K ^ q R ^ c o s t r K f f .  (31c)

TT Jo J

In this equation we introduced the notations R 2k(4>) = R 2 
+ R ^ - 2 R iR k cos<̂ >, with R i being the radii of concentric 
shells forming the MWNT (i 0 is the external shell, i 

M  1 the innermost shell .
To proceed further with Eqs. 31 we assume that the 

radius of the j  th shell is a linear function of its number Rj  
= R 0(1 —11). In the long-range limit q R 0<  1, we obtain 
from Eq. 31c for the bare interaction,

' 1 /1 -£ m a x ( i , j )

V i j{q, qm) m\ \ 1 -£ m in ( i ,j)

P

m 0

32
ln

(q R 0 ) :
2 min i , j  , m  0.

Here 4 e 2 1.26, with being the Euler constant. 
While the second line in Eq. 32 holds provided 1 , the 
first line utilizes only the approximation q R 0<  1.

We use the set of eigenvectors w(k)( q ) and eigenvalues 
Vk( q , m ) of the bare interaction matrix (31c) to write the 
screened Coulomb interaction in the form

U ii(<*>, q , qm) = '2 l
k Vk *(q ,q m ) - n ( ^ q ,qm)

33

The eigenvalues Vk(q ,q m) determine the spectrum of collec
tive plasmon excitations «m:)( q ) through the poles of the 
interaction U ^ c a , q ,q m) in Eq. (33 , and the eigenvectors 
w(k\ m ) determine the distribution of charge between differ
ent shells in these plasmon oscillations.

n
2 2

m

2e

235310-6



ZERO-BIAS ANOMALY IN TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 65 235310

Typically, MWNT’s exhibit ballistic transport around the 
circumference ~  10-100 nm > R . The plasmon modes 
with m¥= 0 have finite gaps, ranging between v ^ K i ; / R  and 
v tJ M k /R , where k  is the inverse 2D Debye screening length 
for one layer. These modes do not contribute to the spectral 
density 30 at frequencies below the corresponding gaps 
since their contribution to the imaginary part of the screened 
interaction 33 vanishes. Therefore, the contribution of the 
m¥= 0 modes to the TDOS correction (1) is energy- 
independent at low energies. The m  0 plasmons, on the 
other hand, are gapless. Their contribution to Eq. 30 con
tinues to depend on frequency and leads to a singular correc
tion to TDOS at e—>0. Therefore, to study the energy depen
dence of TDOS at e—>0 we can neglect the nonsingular 
contribution of the m  0 plasmons and retain only the m  

0 term in Eq. 30 .
The index k  labels the plasmon modes and is equal to the 

number of nodes in the charge distribution in the k  th plas- 
mon across the section of a multishell nanotube. The mode 
k  0 is characterized by the uniform distribution of the os
cillating charge and corresponds to the logarithmic eigen
value, V 0(q ) — e 2M  ln(/3/(qR0)2), with w(0)— 1/VM. All other 
M — 1 modes correspond to q-independent eigenvalues of the 
bare interaction, Vk = 2£e2a k and, therefore, have soundlike 
spectrum. The coefficients k are to be computed numeri
cally. They range roughly from a few tenths to a few units, 
e.g., for M =  10 we obtain a k = 10.0;2.6; 1.2;0.72; 
0.50;0.38;0.31;0.28;0.26. The components w 0k) of the eigen
vectors are also computed numerically. As the eigenvalues of 
the matrix 33 depend at most only logarithmically on the 
momentum q , we can perform the integral in Eq. 30 taking 
these eigenvalues at characteristic plasmon momenta, q 2 
~  (o( m + i / t) / N M v 2,

V(o>) =
g J(o + i / T
NfM(<° )Re- ,3/2 34

where we defined the average Fermi velocity v = '2„v„ /N  
and the dimensionless coupling strength g = e 2/ ( 2 ttv) in a 
single channel. The function f M ( ) is given by the 
00-element of the matrix V1/2,

f ^ ^ S  (w0k)) \ I V k / 2 e 2 
k

ln1/2 \ INMV
7m  , (35)

4 M  R\/|w(&) + i/ t  ^

the last term representing the contribution of the M  1 
soundlike plasmons, with values of M given in the table.

M

M

1
0

2
0.35

3
0.60

5
0.84

10
1.38

The contribution of the k  0 plasmon decreases with the 
number of tubes M  due to the screening by internal shells, 
while the contribution of soundlike plasmons increases

roughly linearly with M . Since the number of shells may not 
exceed 1/ the second term in Eq. 35 is never greater than 
the first one, and at most becomes comparable to it at M

1/ . The approximation q used above assumes that 
the case of strong interaction is realized, £a k>  1/4e2vj 
~  1/4N. This is equivalent to the condition that the two
dimensional Debye screening length for one layer be shorter 
than the spacing between the shells, R  1.

Substituting the expression 34 into Eq. 30 and evalu
ating the frequency integral we obtain the following pertur
bation correction to the tunneling DOS of an M-shell multi
wall nanotube,

M

1 4
VI e| t

f M  ln

R

\ I N M V 1/
IdR ’ M > 1 /t

36

If a metallic gate is present at a distance R  from the 
nanotube the long-range Coulomb interaction is screened at 
long wavelengths,4 and the first term in the function f M(|e |), 
Eq. (35), should be replaced by 1/VM ln1/2£>/R . Then Eq.
36 reproduces the lowest-order interaction correction i for 

a diffusive wire with a short-range interaction1 at 1/ , and 
(ii) for a Luttinger liquid in the ballistic regime at e>  1/r. In 
the absence of the screening gate the correction 36 exhibits 
an additional ln1/2|e| dependence on energy in comparison to 
the case of a finite-range interaction.

B. Tunneling DOS at low energies

We now discuss how the results obtained for multiwall 
nanotubes can be extended to the very vicinity of the Fermi 
surface where the perturbation correction 36 diverges and 
the nonperturbative approach is required. This question was 
addressed for a single-wall metallic nanotube in Ref. 14 that 
utilized the phase approximation first proposed by Nazarov10 
and further developed in Ref. 16. Here we concentrate on the 
dependence of the DOS on the number of shells M , skipping 
the derivation that could be found in Ref. 14.

At zero temperature the tunneling DOS can be expressed 
through the spectral density ( ) in the form16

v ie )

V1
Re

d t  sinle\t

TTt
exp d «V («  ) ( 1 -  e ^ “ )

37

At low energies the t integration in Eq. 37 can be carried 
out in the saddle-point approximation. The saddle point lies 
on the imaginary axis at i t* and corresponds to the imagi
nary time that the particle spends under the Coulomb barrier 
in the approach of Ref. 11.

Using the spectral density (34) we obtain that in the bal
listic regime the saddle point is given by t * ~  Vg/ ( N M ) / e  
< t , and thus corresponds to energies e> (V N M r)_1, and 
not to 1/ as may be naively expected. This is related to 
the fact that the characteristic plasmon velocity is propor-

1 0
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tional to the square root of the number of channels VN M .  In 
the ballistic regime the tunneling density of states is given by 
the exponential of the perturbative correction 36 ,

v( e ) y- exp VflnHd( VsM ln ■+ 7m

(38)

In the regime of strong diffusive suppression of DOS, 
|e |< g /(N M r), the integral in Eq. (3 7  can again be evalu
ated in the saddle-point approximation. The saddle point is 
given by t * ~ g / ( N M 2r), and we obtain

39

where e0 = TTg/2N r. This result holds provided that the argu
ment of the exponential is large.

At finite temperature the nonperturbative expression for 
the tunneling DOS can be obtained using Eq. (14) of Ref. 14. 
At low energies, 2/ 0 T  , this equation gives

v{ D ^exp] + 7 m  \ l^)

(40)

At higher energies, 2/ 0 T , the tunneling DOS in the dif
fusive regime, e<  g /(N M t), is given by the zero tempera
ture result 39 .

In the case when the Coulomb interaction is screened by a 
metal gate it is straighforward to show following Ref. 14 that 
in the crossover region between the high-energy, Eq. 39 , 
and the low-energy, Eq. 40 , regimes the tunneling DOS 
depends on energy only through the dimensionless variable 
\ e \ / ^ e 0T , see Eqs. (16  and (17  in Ref. 14.

IV. DISCUSSION

We considered the zero-bias anomaly in the tunneling 
density of states in layered 2D and quasi-1D materials with 
dynamically screened Coulomb interaction. The theory pre
sented above is applicable to high-Tc materials and semicon
ductor heterostructures as well as to the multiwall carbon 
nanotubes. We showed that the presence of many conducting 
shells in 2D systems weakens the singularity in the DOS 
correction at the Fermi level: for energies below k D / d  in

1/2 indiffusive systems or below the plasmon gap v ( k / d ) 
ballistic systems the DOS correction becomes logarithmic 

ln , rather than double logarithmic ln2 as in the case 
of a single layer.

In addition to the logarithmic terms mentioned above that 
originate from the broad region of the transferred frequency 
and momentum there are also terms coming from the regions 
around the plasmon and particle-hole singularities. These 
contribute correction to DOS m ax(|e |,e*)/4eF that is not 
singular but dominant in the wide range of energies 
>ln(eFr)/r. The contribution of the particle-hole continuum 
is especially interesting in 2D ballistic systems. It turns out 
that the contribution of the particle-hole continuum to the

DOS correction, which corresponds to the region q in 
the interaction frequency/momentum transfer, of the same 
order as the contribution originating rom the plasmon pole 
but has a different sign. Namely, the particle-hole continuum 
increases the density of states. For the long-range Coulomb 
interaction the total effect is still a suppression of DOS for 
low energies as the plasmon contribution larger than that of 
the particle-hole continuum twice as large for a single 2D 
layer . For a finite-range interaction and for a single 2D layer 
the contribution of the particle-hole continuum exactly can
cels that of the collective zero-sound mode nullifying the 
linear in | e| correction to TDOS in agreement with the Fermi 
liquid theory.

The validity condition for neglecting the intershell tunnel
ing was found for the diffusive regime. It was shown that 
instead of the naively expected requirement of the tunneling 
time t 1 being greater than the characteristic measurement 
time 1, the much more stringent condition t 1 F /

1 must be satisfied.
With respect to multiwall carbon nanotubes our analysis 

was concentrated on the dependence of DOS on the number 
M  of coaxial shells for both the regimes of perturbative and 
strong suppression. We found that this dependence can be 
described by a single function M found numerically. The 
energy and temperature dependence of DOS found in Ref. 14 
for a nanotube with a single conducting shell is preserved for 
an arbitrary number of shells. When comparing our results 
with experiments it is important to bear in mind the the 
crossover between the ballistic (38) and the diffusive (39) 
behavior of the tunneling DOS in multichannel wires occurs 
not at e~  1/r but at much lower energies e ~  V(g /N M ) / t . 
This is related to the fact that the plasmon velocity in a 
multichannel wire is proportional to the square root of the 
total number of channels ~  v VN M .
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APPENDIX A: SOLUTION OF THE POISSON EQUATION

To solve the Poisson equation 5 we first derive the 
Green function for the infinite stack of layers,

( —  - q 2 + 47re2TT X  8 ( z - n d )  ] G ( z , z ' )  = 8 { z ~ z ' ) ,  
\ d z~  n = - r .  j

(Al)

with the boundary condition G (z , z  ) 0 when z z 
. The homogeneous solutions of Eq. A1 are easily 

written in terms of quasiperiodic Bloch functions,

v

2

2
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FIG. 3. The crystal consisting of a semi-infinite system of 2D 
metallic layers (z = 0,d,2d, . . .) is shown. The thin solid line at z 
= — d/2 hosts a fictitious (image) charge Q that accounts for the 
absent z = —d , — 2 d , . .. layers.

ii>± (z)  = e ±kni( sinh  q ( z - ( n  + 1) d ] - e ±ki

sinh q z n d  , n d  z n  1 d  A2 

with k  given by the solution of the equation

2 e2
cosh k d  cosh qd

q
sinh q d , A3

having a positive real part, Re k  0. This choice means that 
the function (z ) decreases and the function (z ) in
creases with z  increasing. The Green function can then be 
written in the conventional form

G ( z , z ' ) = -
1 f I/»_(z)^+(z'), z > z '

2 q sinh q d  sinh k d \ & +( z ) & - ( z ' ) , z < z ' .
A4

To find the solution for the semi-infinite problem, Eq. 4 , 
we impose a fictitious charge Q  located at z d /2 see Fig. 
3 .  This charge has to be found from the condition that the 
total potential of the electronic charge e and the fictitious 
charge Q ,

<f>(z)= 4 w  [ e G ( z  ,0 ) -  Q G ( z , — d /2)], A5

contain only the exponent e qz for the negative values of the 
coordinate, d /2 z  0.

This condition ensures that the electric field in the outside 
region (z <  0) decays exponentially with the distance from 
the outermost plane, with the fictitious charge, therefore, tak
ing care of the absent (z=  — dn, n =  1 ,2 , . . . )  planes. We 
obtain the following value of the fictitious charge:

FIG. 4. The contour of integration in the complex plane z .

Q = e
0 „kd eqd

(A6)

Substituting Eq. (A6) into Eq. (A 3 and making use of Eqs. 
(A 3 and (A4), we obtain the final expression (6).

In Sec. II C the formula for interaction U nm of two elec
trons residing at different layers z n d  and z m d  in an 
infinite system is used. To obtain it one can write Unm 
= —47te2G (n d , m d ) ,  which leads to the expression (26).

APPENDIX B: PARTICLE-HOLE CONTRIBUTION 
IN THE CLEAN LIMIT Vt-*0

The particle-hole contribution to the spectral density 2 
in the clean limit has the form see Eq. 13

2 Im
q dq

2 tt2 v 0 Jo (io + i.7))2 — q 2v 2 

1y/_______________________
V(w + ^  )2 — q 2v 2—co — it]

(B1)

where the lower limit could be extended to zero. Making the 
substitution z = \lq2v 2 — ( a  + i q )2 we write it in the form

2
co

Im
dz

2  TT2  V q J u , j Z ( i Z - C 0 )
B2

The integrand in this expression does not have singularities 
in the upper half plane. We can, therefore, deform the inte
gration contour as shown in Fig. 4. The integral along the 
imaginary axis is real and does not contribute to 2. The 
integral around z  0 point and the integral along the real 
axis give 1/4 p each. We, therefore, establish the first term in 
the expression 14 .
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