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2 HARLAN D. MILLS 

1. Background and Introduction 

Software is either correct or incorrect in design to a specification, in contrast 

with hardware, which is reliable to a certain level in performing to a correct 

design. Certifying the correctness of such software requires two conditions, 

namely: 

1. Statistical testing with inputs characteristic of actual usage, and 

2. No failures in the testing. 

If any failures arise in testing or subsequent usage, the software is incorrect, 

and the certification is invalid. If such failures are corrected, the certification 

process can be restarted, with no use of previous testing results. Such correc

tions may or may not lead to additional failures. So, ·certifying the correct

ness of software is an empirical process that is bound to succeed if the 

software is indeed correct and may appear to succeed for some time if the 

software is incorrect. 

Cleanroom Engineering introduces new levels of practical precision for 

achieving correct software, using three engineering teams. First, one team 

of specification engineers creates formal specifications and breaks them into 

increments for development and certification. Next, another team of develop

ment engineers creates software to the specifications of these increments with 

formal verification, but without testing or debugging. Finally, another team 

of certification engineers tests and certifies the correctness of growing num

bers of increments by stratified statistical testing. Any failures are returned 

for fixing to the development engineers and for retesting by the certification 

engineers for a new certification of correctness of the software. A new level 

of human capability is required in specification engineering, development 

engineering, and certification engineering, but it is a level that software 

engineers find possible. 

In order to carry out effective software testing and to achieve high reli

ability, one needs to start with well-specified and well-developed software. 

Highly reliable performance cannot be tested into poorly developed 

software. So we will be concerned with the entire software engineering pro

cess that culminates in the certification of well-specified and well-developed 

software. 

Software can be developed and certified as correct under statistical quality 

control to well-formed specifications of user requirements. To be humanly 

practical in sizable software systems, the specifications must be structured 

and defined in construction increments that accumulate into the final sys

tems. This ability requires a sound development methodology to create 

software that is easily testable by engineering design and mathematical ver

ification, in particular with no unit testing at all by the developers. Unit 

,.. ____.- .. - - " - - - - - --- .---=~ -



ZERO DEFECT SOFTWARE 3 

testing and fixing of informally developed code is the most error-prone 

activity in software development today, leading to deeper failures in 15% or 

more of the fixes. 

This ability also requires a test methodology based not only on the func

tion and performance specifications, but also on the usage specifications, 

namely how critical each test case is to assessing the practical correctness of 

system behavior. Such a test methodology must be based on a stratified 

statistical strategy derived from the statistics of usage and the importance 

of the usage expected for the software. For an important case, a stratus may 

even consist of a single case (with probability 1), or may consist of a small 

ubset of cases, on out to strata containing large sections of the software. A 

test design defines each stratus (possibly hundreds or thousands) and the 

number of tests in each one. Testing without any failures found leads to 

certification of correctness of the software or software segment. 

If failures are later found, the certification is negated. If failures are fixed, 

the certification process can be started again. In any case, certification contin

ues with software release to users, moving with confidence from a level of 

some three sigma at release up to and beyond six sigma with sufficient usage 

without failures. 

Software is either correct or incorrect in design to a specification, in con

trast with hardware that is reliable to a certain level in performing to a 

correct design. For small and regular software, it may be possible to test 

exhaustively the software to determine its correctness. But software of any 

size or complexity can only be tested partially, and typically a very small 

fraction of possible inputs are actually tested. While possibly frustrating at 

first glance, this is all humans can assert about the correctness of software. 

But on second glance, the sequential history of certification efforts provides 

a human basis for assessing the quality of the software and some expectations 

for achieving future correctness. 

1.1 History in Statistical Quality Control 

Computer software is little over a human generation old, and software 

development as it is practiced today has been worked out in just that short 

time. Think of accounting when it was just a human generation old, when

ever and wherever that may have been. It certainly did not have double entry 

bookkeeping, and not even sound arithmetic methods. Civil engineering did 

not have right triangles or methods of calculating areas at that stage. 

Software has many more people than accounting and civil engineering at 

that time, but fundamental ideas still take time to develop, even though 

people in the field are making do with what is available. 
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In another direction, statistical quality control (SQC) came into being 

about a human generation ago, with the work of Dr. Edward Deming and 

others in manufacturing in the 1950s. However, American industry largely 

ignored the new ideas of SQC in that period, getting along with however 

they were dealing (or not dealing) with quality. Statistics seemed like odd 

and extraneous effort in the industry, and hardly seemed worth doing in 

manufacturing. Of course, the rest of the story is well known, with Dr. 

Deming and others taking SQC to Japan with dramatic successes in Japanese 

industry, creating products with entirely new levels of both quality and 

productivity. By now American industry has largely caught up with Japanese 

industry in manufacturing SQC, but it has taken quite a while. 

It is now known how to develop software also by using statistical quality 

control. IBM and the US DOD DARPA STARS Program have supported 

this basis of SQC in software development. There is a considerable difference 

in SQC between manufacturing and software. But manufactuing SQC has 

been very informative and helpful in going to software. 

In manufacturing, the design is considered correct and the SQC applies 

to creating physical products to the design specifications. The design may 

be wrong for the product, but the job of manufacturing is to meet the design, 

right or wrong. The physical parts may be slightly incorrect but the product 

must still meet the design on a physical basis. For example, a wire cannot 

be cut to a 10 mm length exactly, but say within 0.001 mm, and still meet 

specifications in the product performance. 

Manufacturing under SQC is very different from that under previous 

controls. For example, in a 1950 assembly line of 20 stations, each station 

generating parts and adding to the product was producing products at a 

rapid rate, but many such products might then be found to be defective in 

the testing that followed. The attempted solution to such problems was to 

improve the part-making stations, because if each station was producing 

perfect parts the product would be satisfactory. But while some 

improvements were indeed made, new products had similar problems no 

matter how hard people tried. 

Manufacturing under SQC used ideas that first seemed strange and of no 

use. In the assembly line of 20 stations, first work out how each intermediate 

assembly at each point should perform; in many cases the stations must be 

redesigned to make this possible. Next; provide statistical measurements for 

the performances of the intermediate assemblies at each station, and make 

these measurements right there as each partial product comes down the line. 

Now, shocking as it may seem, stop the entire assembly line if any partial 

product fails its performance test. Fix the reason for the failure in whatever 

preceding stations necessary. All the workers are idle now! What a dumb 

thing that seems. In the old assembly line everybody worked hard all the 

±±~-.- ........ .;.·,:..-. ......... _-.... §* p &Mf·~ ........... .-k.y:.if'"t ..... _ . .,.._ - __,_.: ~-~~~ .· . --=---=-- - -: ... _.-' ~ 
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time. But forcing all the parts to be right during assembly created a dramatic 

improvement in both quality and productivity. The idle workers were a 

clear motivation for getting the work stations accurate to levels previously 

unimagined. 

So, in retrospect, SQC seemed very strange for manufacturing assembly 

lines in American industry. Who would think such ideas would be practical? 

No wonder American industry turned it down in the 1950s. And the objective 

is not statistics, it is quality control. The reason for statistics is that it is the 

only way to achieve real quality control. The improvement in productivity 

is a pleasant surprise, but it becomes understandable when the amount of 

rework becomes known. It is now understood as unnecessary with better 

parts work and good management. 

1.2 Application of SOC to Software Development 

With this background, it is time to apply SQC to software development. 

However, it is the design that must be produced correctly to meet a software 

specification. Just as in American manufacturing in the 1950s, American 

software in the 1990s is created in well-intended ways without SQC. Its 

performance is low in both quality and productivity compared with what is 

possible. In a 1990 European conference in Oslo, a Japanese group stated 

that Japanese companies were moving into SQC as described in this chapter. 

But American companies need not bring up the rear this time around in 

software. Just as in manufacturing SQC 40 years ago, it is not easy for 

managers and workers of today to move into software SQC. Everyone is so 

busy, how do they find time to learn the new ideas? It requires new capabili

ties, but capabilities present in educated and disciplined people. For example, 

manufacturing workers discovered they could create parts that were orders 

of magnitude more accurate than previously imagined, with increased pro

ductivity. Right now, well-intentioned and experienced programmers imag

ine that software must have a few failures- say one to five per thousand 

lines of code- on release, and they cannot imagine a serious objective of 

creating software with no failures and higher productivity. It is not right to 

ask programmers to work faster, but to work smarter with real engineering 

discipline under SQC. 

Zero failure software is not possible with heuristic methods of program

ming used in this first human generation of software development. It is 

possible with mathematics-based design discipline and statistics-based test 

discipline as discussed in Mills (1986) . Despite the experiences of the first 

human generation in software development, zero defect software is possible 

with the use of formal methods of program design and verification. Correct

ness verification and statistical testing reinforce and complement each other 
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in surprising ways in achieving zero defects. Design discipline is made pos

sible by the work of Dijkstra, Parnas and Wang (1989), and others. Test 

discipline is made possible by the work of Poore et al. (1990), Whittaker 

(1992), and others. Such a design discipline was taught in a six-course curric

ulum in Software Engineering (Linger et al. , 1979 ; Mills et al. , 1986) across 

IBM in the 1980s with a faculty of over 60 well-prepared teachers and over 

10,000 students. SEI (Software Engineering Institute at Carnegie Mellon 

University) can teach and help others teach good design discipline. 

Software development has certainly improved in many ways over the past 

40 years. It has become better managed, here and there, in dealing with 

larger and more complex system development and software product prob

lems. Basic technology has improved dramatically, with high-level languages, 

structured programming, and modular design for uniprogramming. It has 

not improved as dramatically for uniprogram testing or multi program design 

or testing. But the most deficient activity in software development today 

is the use of, and dependence on, private unit testing and debugging of 

software. 

It seems unbelievable from the outside that debugging software should be 

so difficult. But such debugging with a fix for a discovered fault will lead to 

a new fault at least 15% of the time (Adams, 1980). This number of new 

faults resulting from fixes has been a major surprise. Many large software 

systems or products cannot be successfully debugged because of such new 

faults. For example, the first optimized PL/ I compiler, with more than 50 

programmers for more than two years, was never released because it could 

not be debugged. An airline passenger reservation system that involved even 

more effort and time was never released and resulted in a major loss by the 

developer. At the moment, there seems no other way to create software than 

to code, unit test, and debug it the way it has always been done. But major 

and minor software development failures continue, and there is another way 

to create software, namely to outlaw private unit testing and debugging, as 

discussed next. 

2. Cleanroom Engineering 

As noted, two major properties of Cleanroom Engineering are: 

1. No debugging by the developers before the software goes to indepen

dent testers, and 

2. Statistical testing taking into account both the usage and the criticalness 

of software parts. 

As we discuss next, there are more properties, but these two both seem 

critical or impossible at first glance compared with how software is developed 

. ~------- ·---- -~ - .... ' 
-~ -~~~ 
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today. They are both related to the short history of software of just a single 

human generation. For example, it took a human generation to discover 

touch typing for typewriters and it was not easy to make that happen. In 

another direction, farming today is entirely different than it was a human 

generation ago. It has become mechanized even more and moved from 

small one-family farms to larger corporate farms. In a similar way, serious 

software development will become a large-scale engineering operation rather 

than an intuitive programming operation. 

Cleanroom Engineering develops software of certified correctness under 

statistical quality control in a pipeline of increments that accumulate into the 

specified software product. In the cleanroom process no program debugging 

is permitted before independent statistical usage testing of the increments as 

they accumulate into the final product (Cobb and Mills, 1990 ; Dyer, 1992a) . 

The Cleanroom process provides rigorous methods of software specification, 

development, and certification, through which disciplined software engineer

ing teams are capable of producing zero defect software of arbitrary size 

and complexity (Whittaker and Poore, 1992). Such engineering discipline is 

capable not only of producing correct software, but also of the certification 

of the correctness of the software as specified. 

Software is either correct or incorrect in design to a well-defined specifica

tion, in contrast to hardware which is reliable to a certain level in performing 

to a design that is assumed to be correct. For small and regular software, it 

may be possible to test exhaustively the software to determine its correctness. 

Even then, failures from human fallibility can be overlooked. But software 

of any size or complexity can only be tested partially, and typically only a 

very small fraction of possible inputs can actually be tested. At first glance, 

the fractions are so small for systems of ordinary size that the task of 

testing looks impossible. But when combined with mathematical verification, 

correct software is indeed possible. 

For interactive software, the statistical correlation of successive inputs 

must be treated as well. If any failures arise in testing or subsequent usage, 

the software is incorrect, and the certification is invalid. If such failures are 

orrected, the certification process can be restarted, with no use of previous 

testing results. Such corrections may lead to additional failures, or they may 

not. So certifying the correctness of software is an empirical process that is 

bound to succeed if the software is indeed correct and may succeed for some 

time if the software is incorrect. 

2.1 Cleanroom Statistical Quality Control 

Cleanroom software engineering achieves statistical quality control over 

software development by strictly separating the design process from the 
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testing process in a pipeline of incremental software development. There are 

three major engineering activities in this process (Linger and Mills, 1988; 

Mills et al., 1987b): 

Software Specification: First, structured architecture and precise speci

fication of a pipeline of software increments that accumulate into the final 

software product, which includes the statistics of its use as well as its function 

and performance requirements. 

Software Development: Second, box structured design and functional ver

ification of each increment, delivery for testing and certification without 

debugging beforehand, and subsequent correction of any failures that may 

be uncovered during certification. 

Software Certification: Third, statistical testing and certification of the 

software reliability for the usage specification, notification to developers of 

any failures discovered during certification, and subsequent recertification 

as failures are corrected. 

These three activities are defined and discussed in later sections. 

As noted, there is an explicit feedback process between certification and 

development on any failures found in statistical usage testing. This feedback 

process provides an objective measure of the reliability of the software as it 

matures in the development pipeline. It does, indeed, provide a statistical 

quality control process for software development that has not been available 

in this first human generation of trial-and-error programming. 

Humans are fallible, even in using sound mathematical processes in func

tional verification, so software failures are possible and almost certain during 

the certification process. But there is a surprising power and synergism 

between functional verification and statistical usage testing (Dyer, 1992b). 

First, as already noted, functional verification can be scaled up for high 

productivity and still leave no more errors than heuristic programming often 

leaves after unit and system testing combined. Second, it turns out that the 

mathematical errors left are much easier to find and fix during testing than 

errors left behind in debugging, by a factor of five as measured in practice 

(Mills et al., 1987b) . Mathematical errors usually turn out to be simple 

blunders in the software, whereas errors left behind or introduced in debug

ging are usually deeper in logic or wider in system scope than those fixed. 

As a result, statistical usage testing not only provides a formal, objective 

basis for the certification of reliability under use, but also uncovers the errors 

of mathematical fallibility with remarkable efficiency. 

• 1 

- . -- --- --
-y- ~-~ 
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2.2 Zero Defect Software Is Really Possible 

In spite of the experiences of this first human generation in software 

development, zero defect software is really possible. However, there is no 

foolproof logical way to know that software is zero defect. The proof is in 

using the product without ever finding any failures. Mathematics is very 

helpful in creating software that executes with no defects, but it is insufficient 

by itself to guarantee it. Statistics is also very helpful in creating software 

that executes zero defect, but is also insufficient by itself. Even so, mathemat

ics and statistics foundations combined are very powerful bases for software 

engineering with zero defects . Three illustrations of zero defect software are 

noted next. 

First, the U.S. 1980 Census was acquired by a nationwide network system 

of 20 miniprocessors. The system was controlled by a 25 KLOC program, 

hich operated its entire 10 months in field use with no failure observed. It 

was developed by Mr. Paul Friday, of the U.S. Census Bureau, using step

wise refinement and functional verification in Pascal. Mr. Friday used formal 

university courses in software engineering to achieve this feat. He was given 

the highest technical award of the U.S. Department of Commerce for that 

achievement. 

Second, the IBM wheelwriter typewriter products released in 1984 are 

controlled by three microprocessors with a 65 KLOC program. It has had 

millions of users since, with no failures ever detected. The IBM team creating 

rhis software also used functional verification and extensive testing in a well

managed software engineering environment to achieve this result. The team 

had completed pass/ fail courses in formal software engineering before enter

ing this project. 

Third, the NASA space shuttle software of some 500 KLOC, while not 

completely zero defect, has been zero defect in all flights. The first space 

shuttle flight initialization failed because of five computers, three initialized 

on one time frame, the other two on another time frame. That fault was 

fixed and did not reappear. The IBM team also used functional stepwise 

refinement and verification and extensive testing to achieve this result. The 

pace shuttle software is such a large, complex, and visible product that 

there are real lessons in it. All managers and programmers were required to 

complete a basic curriculum of six pass/ fail courses in understanding pro

grams as rules for mathematical functions, and functional verification of 

programs and modules (Linger et al., 1979). The team received the highest 

NASA award for this achievement. 

Looking ahead, Hevner and Becker (1992) introduce an integrated devel

opment environment based on repository data models that support Clean

room specification, verification, and certification, as well as incremental 
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development. Appropriate data models help identify tool requirements for 

this environment. 

3. Statistical Quality Control in Software Engineering 

The fundamental concepts of SQC in software versus other fields are 

significantly different. First, SQC in manufacturing or services assumes a 

correct design and deals with efforts to realize such a design. In this case the 

statistics deals with departures of the product from the design. But software 

is design whose manufacture is practically perfect in program compiling, 

linkage editing, etc. The design itself is under question and the statistics deals 

with departures of the design from the specifications that are discovered 

during testing and use. 

Second, software development is a creative human activity only a human 

generation old, largely carried out today by heuristic, trial-and-error meth

ods. In this first human generation, testing during development has been 

primarily coverage and ad hoc, with no scientific basis, rather than based 

on statistical usage that can provide certified correctness. The objective 

generation of testing on the basis of statistical usage specifications, and the 

certification of software correctness from such objective statistical testing 

leads to new human understandings of software development as a rigorous 

and repeatable engineering process. 

Third, we need to work more on certification of correctness by statistical 

quality control because the other two areas of specification and development 

are better thought out with many fundamental problems well addressed. 

Certification of software is in its infancy, so there is much to learn, which 

will result in many substantial improvements over the present state of 

software testing. The technological goals are to create an entirely new human 

capability for developing zero defect software using methods of SQC. 

Many people presently believe that software has nothing to do with SQC 

because software is deterministic, not statistical, with results that are either 

right or wrong. In these people's view software is bound to have periodic 

failures, and good software just exhibits fewer failures than poor software. 

The innovation is to make usage statistics into the foundation for SQC as 

applied to an imperfect design process rather than to a manufacturing pro

cess where the design is considered perfect. The elements of the Cleanroom 

Engineering process have been shown to be very practical and successful in 

creating software with zero defects and increased productivity. 

In this connection, Dyer ( 1992b) describes the merger of functional 

correctness verification in cleanroom engineering with formal inspections 

often used today. The systematic, stepwise process of functional verification 

-- - ..>.....:c...:~ -- - - - - ~ -_ ~~ 
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provides a framework for effective team inspections of software designs. 

Procedures for conducting inspection-based verification are given in Dyer 

1992b). 

3.1 Statistical Test Design 

In order to certify the correctness of software, it is necessary to define 

statistical testing that yields meaningful results. Measurements are needed 

to serve as a basis for the estimation of how well the software as designed 

and implemented will satisfy its requirements in actual use. In the past few 

years we have made significant progress in recognizing what measurements 

need to be made and in developing a program for making and utilizing the 

measurements. 

This testing program must recognize both the statistics of use and the 

importance of this use. First, failures in execution may be of many degrees 

of seriousness. Some failures may produce correct data in incorrect formats, 

but otherwise not affect continued execution. Other failures may produce 

incorrect data but continue execution correctly. Still other failures may con

tinue execution incorrectly, possibly losing data. The most serious of failures 

may terminate execution unintentionally andj or lose data. The more serious 

the failure, the more important it is to find it. For this reason, the criticalness 

as well as the probabilities of failures must be considered. Some conditions 

are so critical that they should be tested for sure, with probability 1. At first 

glance this may not appear to be statistical testing, but it is at the endpoint 

of a statistical domain. 

The usage statistics of a software system or product is a new idea for 

testing. Usage statistics is often used informally to evaluate designs against 

performance requirements. For example, relative efficiency required -for 

different responses, say for entering and accessing data, will help define data 

tructures and algorithms required. If accessing data is much more frequent 

than entering it, perhaps the data should be stored alphabetically and 

accessed by binary search, while if entering is more frequent than accessing, 

perhaps the data should be stored in sequence of entry and accessed by 

linear search. 

But usage statistics can be used to make testing more realistic. Well

intentioned testing by ad hoc invention can miss critical areas, for example 

incorrect entries that are expected occasionally and require recovery opera

tions. Testing by simple uniform probability can be entirely unrealistic if 

usage statistics is far from uniform. For example, a programming language 

compiler accepts a remarkably small fraction of all text sequences. So the 

usage statistics of programs or near programs is important for realistic test

ing of compiler software. Any one user may not use exactly the usage statis-
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tics defined for testing, but a class of users can be used to define a realistic 

usage statistics expected for them as a class. So the definition of realistic 

usage statistics is a substantial job that goes beyond functional and perform

ance specifications into the likely usage of the software. 

3.2 Markov Chain Techniques for Software Certification 

Markov chains have exceptional value in software testing (Whittaker, 

1992; Whittaker and Poore, 1992). First, there is a question of how to use 

a specification as a guide in constructing a Markov chain to model the usage 

of correct software. Second, the testing process itself is modeled by another 

Markov chain which includes any possible failures in execution. If the 

software is correct, these two chains are identical. But if incorrect, the chains 

are slightly different. While testing proceeds, the reliability and mean time 

between failures in the second Markov chain can be estimated, both to 

measure progress and to evaluate the reality for reaching zero defect 

operations. 

As already noted, the certification team must account for both the statis

tical concerns in testing and the relative importance of various inputs and 

operations to users. A specific input under a specific condition may happen 

rarely, but it can be important and therefore critical for testing. As a result, 

a test design involves a hierarchical structure of tests, each requiring a speci

fication Markov chain, ranging all the way from the entire system to a 

single important operation. Just as with the software design, this test design 

requires long-term, systematic research into usage statistics and usage 

importance. 

While unlikely, if all inputs under all conditions are equally important, a 

single usage, statistics defined- set of tests is sufficient. But more likely, some 

inputs under some conditions will be more important than others. Today, 

much of testing is identified with specific cases of known importance, 

independent of their statistics. These specific cases can be brought into the 

statistics test designs as special cases. If an important test is defined with 

probability 1, it is now part of the hierarchical structure that defines the 

entire test. Usually, inputs and conditions will be partitioned naturally into 

subsets of the entire input space. Such subsets will themselves be partitioned 

into smaller subsets, and so on, clear down to single inputs and conditions. 

The test analyses will involve successive inputs for which the Markov 

process provides a good model. It not only matters at what frequencies 

various inputs and conditions will arise, but also how these frequencies 

depend on previous inputs (and thereby outputs) with input-to-input 

frequencies, as well. This requirement for estimating usage frequencies is 

new, and brings a new level of design to the testing process. Because of the 

--·- "'~-~- ~ 
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test design work, the certification team must begin its analysis and design in 

parallel with the development team. 

4. Software Testing in This First Human Generation 

4.1 Unit Testing as a Private Activity 

In this first generation of software development and maintenance, the 

primary methods of software specification and design have been heuristic, 

going from informal and imprecise natural language to formal programming 

language by trial and error. When programs don't do the right things, was 

it the specification or the design at fault? If the specification was informal, 

how can one tell? The specifier may have had the right idea, but never written 

it down completely. Or the programmer may have met all requirements that 

were written down and extrapolated differently than the specifier intended. 

As already noted, private unit testing and fixing is used without question. 

What other way makes any sense? It seems so simple and so natural just to 

get the small errors out. How could that be harmful? It hasn't been suspected 

that so many new failures are introduced by unit testing and fixing. Unit 

testing is regarded as a private activity for getting defects out of the small 

parts of programs before assembling and integrating them into larger parts. 

Subsequently, more defects are discovered in the larger parts as smaller parts 

are tied together. The original programmers are often gone by this time. 

Finally, entire systems are frequently (almost always) delivered with more 

defects yet to be found. Users frequently find many more defects than the 

developers believed remained. As a result, many organizations have learned 

to expose new software products to a select few users for initial shakedown 

before distributing the products widely. 

This first generation of heuristic methods and experiences seem to work; 

after all, products are built. Advanced software teams do better than others 

in using the best technical and managerial methods that can be found. And 

_-et, even the advanced software teams stub their toes now and then. In fact, 

more systems and products than casual observers might imagine are seriously 

delayed or even abandoned with all the programs written, because they are 

too error-prone to release. Hundreds of person years may be involved, but 

the software still cannot be made to work correctly. In more recent times, 

several major PC upgraded products for word processing and financial 

analysis have been released more than a year behind their announcements 

at a major cost to their producing companies. 

The strange thing about most such software disasters is that they were 

not looked on as dangerous undertakings in their beginnings. Of course, 
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any software effort is a bit risky because computer code is so detailed and 

programmers are a little unpredictable. But "nobody said it would be so hard 

at the outset," is a typical comment. New and better heuristics, especially 

supported by CASE tools, are becoming available in object-oriented 

methods. With object-oriented methods, better approaches to high-level 

designs and specifications seem possible. But the software rubber meets 

the hardware road with the program code, and unit debugging is seldom 

questioned. At that stage, larger parts and entire products are tested, often 

with good records kept on the coverage testing, to ensure that every branch 

is exercised both ways and that all code is tested at least once. Yet in spite 

of the testing coverage, users often find unexpected levels of failures in 

operations, making the product marginal or unacceptable. 

The barely recognized fact is that unit debugging is the most error-prone 

activity in software development today. Fixing any failure found is usually 

successful. But creating a new and deeper failure occurs 15% of the time or 

more. This occurs because debugging strives to ensure correct outputs, which 

leads to developers modifying code to produce a correct output, and not 

modifying the code to produce the correct function. As a result, large failure

filled software systems may never be debugged sufficiently to be released, 

even though extensive efforts are made. 

4.2 A Historical Lesson in Typewriting 

These experiences are not surprising in this first human generation of 

software development. They just seem part of the problem facing people in 

the field. Or are they? A hundred years ago people faced another set of 

problems in using the new typewriters, whose practical invention occurred 

late in the 19th century. How to type text and tabular material without 

errors at reasonable rates? Typewriters were special machines for special 

purposes. Executives, even the president of the United States, hand wrote 

their own letters by and large, and assistants or secretaries did likewise. 

Typewriters were used to write reports and documents with relatively poor 

quality reprints compared with printing. They certainly did not replace 

assembling print for printing machines. Typewriting was error-prone. One 

had to look at the keys, of course, while typing, so a reasonable way was to 

memorize the text a sentence at a time. But in going back and forth between 

the text and the typewriter, small mistakes or lapses were very possible from 

time to time. Correcting a character, even a word, might not be so bad. 

Correcting a missed sentence early on a typed page was better fixed by 

starting the page over. 

With this background for almost a human generation of using typewriters, 

the new idea of touch typing, typing without looking at the keys, was a 

H>_ ••• - rr~ · ,--, , « e;;.... q"l 
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very strange one. "That's silly. Who could possibly do that?" In teaching 

typewriting, people who look at the keys can get useful work done in the 

very first day. In fact they learn practically all there is to know about a 

typewriter in the very first day, and just need to get more practice and skill 

by typewriting. In teaching touch typing, people get no useful work done in 

rbe first day or the first week. "Why would anyone spend time in such a 

useless activity?" Of course, we know that touch typing turned out to be an 

internationally useful method that put typewriters into business offices on a 

mass basis. Typewriter makers improved their products in many ways, but 

the reason typewriters were eventually made in such quantities was due to 

people knowing how to use them well rather than to companies knowing 

bow to make them well. 

There is a lesson in touch typing for software development. In software, 

teaching a programming language and how to compile and execute programs 

allows people to write programs right away. Very likely, such programs will 

require considerable debugging, and many text books say just that. With 

more and more experience in programming alone or in teams, errors and 

unit debugging are just an accepted and integral part of programming. 

But people with the right education and training do not need to unit debug 

their software any more than people need to look at the keys when they 

cype. Yet, just as in teaching touch typing, much less trial and error program

ming is done at the beginning in good software education, with much greater 

emphasis on formal methods in program specification, design, and verifica

tion. When serious programming begins only after formal methods, very 

little debugging will be required, because of more explicit design and ver

ification from good specifications. But "why not let the computers find the 

errors, why make so much of a simple program?" For simple programs, 

that may be a perfectly good question. But as programs get larger and more 

complex, computers don't find the errors, and much more time will be spent 

debugging than writing the code originally. 

4.3 Two Sacred Cows in Software 

Software engineering and computer science are relatively new subjects, 

only a human generation old. In this first generation, two major sacred cows 

have emerged from the heuristic, error-prone software development of this 

entirely new human activity-namely program debugging and coverage test

ing. As noted previously, program debugging before independent usage test

ing is unnecessary and creates deeper errors in software than are generally 

ound and fixed. It is also a surprise to discover that coverage testing is a 

yery inefficient way of getting reliable software and provides no capability 

for scientific certification of reliability. 
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As a first generation effort, it has only seemed natural to debug programs 

as they are written, and even to establish technical and managerial standards 

for such debugging. For example, in the first generation in typing, it only 

seemed natural to look at the keys. Touch typing without looking at the 

keys must have looked very strange to the first generation of hunt and peck 

typists. Similarly, software development without debugging before indepen

dent, certification testing of user function looks very strange to the first 

generation of trial and error programmers. It is quite usual for human 

performance to be surprising in new areas, and software development will 

prove to be no exception. 

Just as debugging programs has seemed natural, coverage testing has also 

seemed to be a natural and powerful process. Although 100% coverage 

testing is known to still leave errors behind, coverage testing seems to provide 

a systematic process for developing tests and recording results in well

managed development. So it comes as a major surprise to discover that 

statistical usage testing is more than an order of magnitude more effective 

than coverage testing in increasing the time between failures in use. Coverage 

testing may, indeed, discover more errors in error-prone software than usage 

testing, but it discovers errors of all failure rates, while usage testing discovers 

the high failure rate errors more critical to users . 

4.4 The Power of Usage Testing over Coverage Testing 

The writings and data of Adams ( 1980) in the analysis of software testing, 

and the differences between software errors and failures, give entirely new 

insights in software testing. Since Adams has discovered an amazingly wide 

spectrum in failure rates for software errors, it is no longer sensible to treat 

errors as homogeneous objects to find and fix. Finding and fixing errors with 

high failure rates produces much more reliable software than finding and 

fixing just any errors, which may have average or low failure rates . 

The major surprise in Adams' data is the relative power of finding and 

fixing errors in usage testing over coverage testing, a factor of 30 in increasing 

mean time to failure (MTTF). That factor of 30 seems incredible until the 

facts are worked out from Adams' data. But it explains many anecdotes 

about experiences in testing. In one such experience, an operating systems 

development group used coverage testing systematically in a major revision 

and for weeks measured mean time to crashes in seconds. It reluctantly 

allowed user tapes in one weekend, but on fixing those errors, found that 

the mean time to abends jumped literally from seconds to minutes. 

The Adams data is given in Table I (from Adams, 1980). It describes 

distributions of failure rates for errors in nine major IBM products, including 

the major operating systems, language compilers, and database systems. 
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TABLE I 

DISTRIBUTIONS O F ERRORS (IN %) AMONG MEAN TIME TO FAILURE (MTTF) CLASSES 

MTTF in K months 

60 19 6 1.9 0.6 0.19 0.06 0.019 

Product 

1 34.2 28.8 17.8 10.3 5.0 2.1 1.2 0.7 

2 34.2 28.0 18.2 9.7 4.5 3.2 1.5 0.7 

3 33.7 28.5 18.0 8.7 6.5 2.8 1.4 0.4 

4 34.2 28.5 18.7 11.9 4.4 2.0 0.3 0.1 

5 34.2 28.5 18.4 9.4 4.4 2.9 1.4 0.7 

6 32.0 28 .2 20.1 11 .5 5.0 2.1 0.8 0.3 

7 34.0 28.5 18.5 9.9 4.5 2.7 1.4 0.6 

8 31.9 27.1 18.4 11.1 6.5 2.7 1.4 1.1 

9 31.2 27.6 20.4 12.8 5.6 1.9 0.5 0.0 

The uniformity of the failure rate distributions among these very different 

products is truly amazing. But even more amazing is a spread in failure rates 

over four orders of magnitude, from 19 months to 5,000 years (60K months) 

calendar time in MTTF, with about 33% of the errors having an MTTF of 

-,000 years, and 1% having an MTTF of 19 months. 

With such a range in failure rates, it is easy to see that coverage testing 

will find the very low failure rate errors a third of the time with practically 

no effect on the MTTF by the fix, whereas usage testing will find many more 

of the high failure rate errors with much greater effect. Table II develops the 

data, using Table I, that shows the relative effectiveness of fixes in usage 

esting and coverage testing, in terms of increased MTTF. Table II develops 

the change in failure rates for each MTTF class of Table I, because it is the 

failure rates of the MTTF classes that add up to the failure rate of the 

product. 

Line 1, Table II, denoted M (MTTF), is repeated directly from Table I, 

namely the mean time between failures of the MTTF class. Line 2, denoted 

ED (Error Density), is the average of the error densities of the nine products 

of Table I, column by column, which represents a typical software product. 

TABLE II 

ERROR DEN SIT IES AND FAILURE DENSITIES IN THE MTTF CLASSES OF TABLE I 

?roperty 

M 60 19 6 1.9 0.6 0.19 0.06 0.0 19 

E D 33 .2 28.2 18.7 10.6 5.2 2.5 1.1 0.5 

E D / M 0.6 1.5 3.1 5.6 8.7 13.2 18.3 26.3 

F D 0.8 2.0 3.9 7.3 11.1 17.1 23 .6 34.2 

F D / M 0 0 4 18 90 393 1,800 
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Line 3, denoted ED /M, is the contribution of each class, on average, in 

reducing the failure rate by fixing the next error found by coverage testing 

(1/M is the failure rate of the class, ED is the probability that a member of 

this class will be found next in coverage testing, so their product, ED j M, is 

the expected reduction in the total failure rate from that class). Now ED / M 

is also proportional to the usage failure rate in each class, since failures of 

that rate will be distributed by just that amount. Therefore, line 3 is normal

ized to add to 100% in line 4, denoted FD (Failure Density) . It is interesting 

to note that Error Density (ED) and Failure Density (FD) are almost reverse 

distributions, Error Density being about a third at the high end of MTTFs 

and Failure Density being about a third at the low end of MTTFs. Finally, 

line 5, denoted FD /M, is the contribution of each class, on average, in 

reducing the failure rate by fixing the next error found by usage testing. 

The sums of the two lines ED / M and FD /M turn out to be proportional 

to the decrease in failure rate from the respective fixes of errors found by 

coverage testing and usage testing, respectively. Their sums are 77.3 and 

2,306, with a ratio of about 30 between them. That is the basis for the 

statement of their relative worth in increasing MTTF. It seems incredible at 

first glance, but that is the number! 

To see this in more detail, consider first the relative decreases in failure 

rate R in the two cases : 

Fix next error from coverage testing 

R--+ R - (sum of ED/ M values)/( errors remaining) 

= R - 77.3 / E . 

Fix next error from usage testing 

R--+ R - (sum of FD/ M values) / (errors remaining) 

= R - 2,306/ E. 

Next, the increase in MTTF in each case will be 

1/ (R - 77.3/E)- 1/ R = 77.3/[R * (E * R- 77.3)] 

and 

1/ (R- 2,306/ E) - 1/ R = 2,306/ [R * (E * R- 2,306)] . 

In these expressions, the numerator values 77.3 and 2,306 dominate, and the 

denominators are nearly equal when E * R is much larger than 77.3 or 2,306 

(either 77.3/ (E * R) or 2,306/ (E * R) is the fraction of R reduced by the 

next fix and is supposed to be small in this analysis). As noted previously, 

the ratio of these numerators is about 30 to 1, in favor of the fix with usage 

testing. 
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5. What Is Cleanroom Engineering of Software? 

5.1 Cleanroom Engineering Process 

The Cleanroom Engineering process develops software of certified correct

ness under statistical quality control in a pipeline of increments, with box 

structured design and functional verification but no program debugging 

permitted before independent statistical usage testing of the increments. It 

provides rigorous methods for software specification, development, and cer

tification that are capable of producing low or zero defect software of arbi

trary size and complexity. Box structured design is based on a Parnas usage 

hierarchy of modules. Such modules, also known as data abstractions or 

objects, are described by a set of operations that may define and access 

internally stored data. Functional verification is based on the fact that any 

program or program part is a rule for a mathematical function. It may not 

be the function desired, but it is a function. 

The term Cleanroom is taken from the hardware industry to mean an 

emphasis on preventing errors, rather than allowing errors to appear and 

removing them later (of course any errors introduced should be removed). 

Cleanroom Engineering of software involves rigorous methods that enable 

greater control over both product and process. The Cleanroom process not 

only produces software of high correctness and high performance, but does 

o while yielding high productivity and meeting schedules. The intellectual 

control provided by the rigorous Cleanroom process allows both technical 

and management control. 

Cleanroom Engineering achieves statistical quality control over software 

development by strictly separating the design process from the testing pro

cess in a pipeline of incremental software development. There are three major 

engineering activities in the process (Linger and Mills, 1988; Mills eta!., 

1987b): 

Specification: First, a specification team creates an incremental specifica

tion that defines a pipeline of software increments that accumulate into the 

final software product, which includes the statistics of its use as well as its 

function and performance requirements. 

Development: Second, a development team designs and codes increments 

specified using box structured design and functional verification of each 

increment, with delivery to certification with no debugging beforehand, and 

provides subsequent correction for any failures that may be uncovered dur

ing certification. 

Certification: Third, a certification team uses statistical testing and analy

sis for the certification of the software correctness to the usage specification, 
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notification to designers of any failures discovered during certification, and 

subsequent recertification as failures are corrected. 

As noted, there is an explicit feedback process between certification and 

development on any failures found in statistical usage testing. This feedback 

process provides an objective measure of the correctness of the software as 

it matures in the development pipeline. It does, indeed, provide a statistical 

quality control process for software development that has not been available 

in this first human generation of trial and error programming. 

5.2 Cleanroom Engineering Methods 

Cleanroom Engineering provides a set of rigorous methods for software 

development under statistical quality control, based on sound mathematical 

and statistical principles. While millions of people are involved in software, 

most of them regard software development as an intuitive, heuristic activity. 

They do not imagine software engineering as a mathematics-based subject 

with complete rigor being possible. But software engineering should be and 

can be a mathematics-based activity. When mathematical rigor is applied, 

both quality and productivity increase. Nor can they imagine software engi

neering based on statistics since computers are completely deterministic in 

behavior. And yet the usage of software is statistical in nature. 

For software engineering, being mathematics-based does not mean being 

numbers-based. Numbers are part of mathematics, but the finite basis of 

computers adds complexity to dealing with numbers. With integers, compu

ters face overflow possibilities that need to be assured against. With real 

numbers, computers face roundoff problems, so arithmetic becomes approxi

mate, not exact. In these cases, software must deal with computer operations, 

not with ideal numerical operations. But mathematics deals with any 

operations performed by computers, not simply approximate numerical 

operations. Fortunately, the nonnumerical operations are typically exact in 

computers, for example logic operations, even text processing operations, so 

their mathematical basis is very solid. At first glance, nonnumerical 

operations may not look mathematical, but they are. Logic, set theory, and 

function theory are clearly nonnumerical mathematics, but sorting theory, 

text processing theory, and graph theory can also be framed as mathematics 

as well. 

Software is a human generation old, while mathematics is many human 

generations old. Although not understood early or widely, software has 

direct mathematical foundations because of the very deterministic behavior 

of computers. A computer program is a rule for a mathematical function, 

mapping all possible initial states into final states. Such functions are very 

• - . -s1"Q! ~ 
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omplex compared with functions in physical science and engineering, and 

traditional mathematical notation is very insufficient. But sufficient mathe

matical notation is emerging in computer science and software engineering 

for dealing with the syntax and semantics of programs and their functions. 

As an example of deep and useful mathematics, place notation and long 

division moved arithmetic from error-prone operations on whole numbers 

to rigorous methods a numerical place at a time a thousand years ago in the 

Western world. As a result, school children today can out perform Archi

medes and Euclid in arithmetic. Similar movement is possible in software 

today. Place notation and long division look pretty simple today, but it has 

taken hundreds of years to arrive at this simple form. For example, it took 

the Italian business world several hundred years to move from Roman 

numerals to arabic numbers in practice. 

Statistics is another subject of longer professional development than 

software. But only a hundred years ago, statistics was intuitive and heuristic, 

even though rigorous arithmetic was used in creating sums and averages. 

Yet in this time, statistics has become a rigorous, mathematics-based subject, 

often finding counterintuitive results using statistics in specific topics. For 

example, the agriculture industry of the Western world has been greatly 

improved by the effective use of statistics in both plant selection and 

treatment. The application of statistics now makes it possible for software 

developers to predict with confidence the quality level of the software when 

it is fully developed quite early in the development life cycle. 

Cleanroom Engineering not only puts software development under statis

tical quality control, but takes out debugging from the list of developer 

activities, instead using mathematical reasoning before independent testing 

and certification. Just as typists looked at the keys when typewriters first 

came out, programmers have felt the need to debug programs in this first 

human generation of programming. But while counterintuitive at the time, 

typists went to touch typing with both higher productivity and fewer errors. 

In the same way, well-educated software engineers can create software with 

no execution or debugging before it is tested by independent test and certifi

cation engineers with the product having higher productivity and much 

greater quality than previously. 

5.3 Dealing with Human Fallibility 

Humans are fallible, even in using sound mathematical processes in 

functional verification, so finding software failures is possible during the 

certification process. But there is a surprising power and synergism between 

functional verification and statistical usage testing (Mills et al. , 1987b ). First, 

as already noted, functional verification can be scaled up for high produc-
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tivity and still leave no more errors than heuristic programming often leaves 

after unit and system testing combined. Second, it turns out that the 

mathematical errors left are much easier to find and fix during testing than 

errors left behind in debugging, measured at a factor of five in practice (Mills 

et al., 1987b). Mathematical errors usually turn out to be simple oversights 

in the software, whereas errors left behind or introduced in debugging are 

usually deeper in logic or wider in system scope than those fixed. As a result, 

statistical usage testing not only provides a formal, objective basis for the 

certification of correctness under use, but also uncovers the errors of mathe

matical fallibility with remarkable efficiency. 

In Cleanroom Engineering a major discovery is the ability of well-educated 

and motivated people to create nearly defect-free software before any execu

tion or debugging, with many fewer than five defects per thousand lines of 

code. Such code is ready for usage testing and certification with no unit 

debugging by the designers. In this first human generation of software 

development it has been counterintuitive to expect software with so few 

defects at the outset. Typical heuristic programming leaves 50 defects per 

thousand lines of code, then reduces that number to five or fewer by debug

ging. The problem is that for programmers with good capabilities and 

intentions, it seems on the surface that unit debugging makes complete 

correctness on first coding unnecessary. But the unknown result is the 

number of faults, over 15%, created in even the simple seeming fixes. 

The mathematical foundations for Cleanroom Engineering come from the 

deterministic nature of computers themselves. As noted, a computer pro

gram is no more and no less than a rule for a mathematical function (Linger 

et al., 1979; Mills, 1975). Such a function need not be numerical, of course, 

and most programs do not define numerical functions. But for every legal 

input, a program directs the computer to produce a unique output, whether 

correct as specified or not. And the set of all such input- output pairs is a 

mathematical function. A more intuitive way to view a program in this first 

generation is as a set of instructions for specific executions with specific input 

data. While correct, this view misses a point of reusing well-known and 

tested mathematical ideas, regarding computer programming as new and 

private art rather than more mature and public engineering. 

With these mathematical foundations, software development becomes a 

process of constructing rules for functions that meet required specifications, 

which need not be a trial and error programming process. The functional 

semantics of a structured programming language can be expressed in an 

algebra of functions with function operations corresponding to program 

sequence, alternation, and iteration (Linger et al., 1979). The systematic top 

down development of programs is mirrored in describing function rules in 

terms of algebraic operations among simpler functions, and their rules in 
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terms of still simpler functions until the rules of the programming language 

are reached. It is a new mental base for most programmers to consider the 

complete functions needed, top down, rather than computer executions for 

specific data. 

Trammel et al. (1992) discuss the practical realities in adopting the Clean

room process in software organizations. They define a three-phase process 

for introducing Cleanroom in a software development organization, includ

ing management commitment and team ownership as critical success factors. 

5.4 Cleanroom Experiences 

The IBM COBOL Structuring Facility (IBM COBOL/ SF), a complex 

product of some 80K lines of PL/I source code, was developed in the Clean

room discipline, with box-structured design and functional verification but 

no debugging before usage testing and certification of its correctness. A 

Yersion of the U.S. A.F. HH60 (helicopter) flight control program of over 

0 KLOC was also developed using Cleanroom. The Coarse/ Fine Attitude 

Determination Subsystems (CFADS) of the UARS Attitude Ground 

Support System (AGSS) of some 30 KLOC has been developed with Clean

-oom at NASA. 

The IBM COBOL/ SF converts an unstructured COBOL program into a 

5lructured one of identical function. It uses considerable artificial intelligence 

:o transform a flat structured program into one with a deeper hierarchy that 

- much easier to understand and modify. The product line was prototyped 

i th Cleanroom discipline at the outset, then individual products were gener-

_ted in Cleanroom extensions. In this development, several challenging 

- hedules were defined for competitive reasons, but every schedule was met. 

The COBOL/ SF products have high function per line of code. The proto

--pe was estimated at 100 KLOC by an experienced language processing 

.: oup, but the Cleanroom developed prototype was 20 KLOC. The software 

designed not only in structured programming, but also in structured 

~ ta access. No arrays or pointers were used in the design; instead, sets, 

ueues, and stacks were used as primitive data structures (Mills and Linger, 

986). Such data-structured programs are more reliably verified and 

· pected, and also more readily optimized with respect to size or perfor

mance, as required. 

COBOL/ SF, Version 2, consists of 80 KLOC, 28 KLOC reused from 

revious products, 52 KLOC new or changed, designed and tested in a 

ipeline of five increments (Linger and Mills, 1988), the largest over 

9 KLOC. A total of 179 corrections were required during certification, 

-ewer than 3.5 corrections per KLOC for new code with no developer execu

·on, fewer than 2 corrections per KLOC for all code. The productivity of 
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the development was 740 LOC per staff month, including all specification, 

design, implementation, and management, in meeting a very short deadline. 

The HH60 flight control program was developed on schedule. Program

mers' morale went from quite low at the outset (" why us? " ) to very high on 

discovering their unexpected capability in accurate software design without 

debugging. The 12 programmers involved had all passed the pass/ fail course

work in mathematical (functional) verification of the IBM Software 

Engineering Institute, but were provided a week's review as a team for the 

project. The testers had much more to learn about certification by objective 

statistics (Currit et al., 1986). 

The subsystem Coarse/ Fine Attitude Determination System (CFADS) of 

the NASA Attitude Ground Support System (AGSS) of some 30 KLOC 

was developed in Fortran. Sixty-two percent of the subroutines, which aver

aged 258 source lines each, compiled correctly the first time, with but one 

of the rest compiled correctly on the second attempt. Compared with well

measured related systems, the failure rate was down by a factor of five while 

the productivity was up by 70% (Kouchakdjian et al. , 1989). 

V. R. Basili and F. T . Baker introduced Cleanroom ideas in an under

graduate software engineering course at the University of Maryland, assisted 

by R. W. Selby. As a result, a controlled experiment in a small software 

project was carried out over two academic years, using 15 teams with both 

traditional and Cleanroom methods. The result, even on first exposure to 

Cleanroom, was positive in the production of reliable software, compared 

with traditional results (Selby et al., 1987). 

Cleanroom projects have been carried out at the University of Tennessee, 

under the leadership of J. H. Poore (Mills and Poore, 1988) and at the 

University of Florida under H . D . Mills. At Florida, seven teams of under

graduates produced uniformly successful systems for a common structured 

specification of three increments. It is a surprise for undergraduates to 

consider software development as a serious engineering activity using 

mathematical verification instead of debugging, since software development 

is typically introduced primarily as a trial-and-error activity with no real 

technical standards. 

6. Box Structured Software System Design 

Box structured design is based on a Parnas usage hierarchy of modules 

(Parnas, 1972, 1979). Such modules, also known as data abstractions or 

objects, are described by a set of operations that may define and access 

internally stored data. In Ada, such modules are defined as packages, with 

operations defined by the calls of the procedures and functions of the pack

ages, and internal data declared in the package. 

-::=rr ts srttx. 
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Stacks, queues, and sequential or random access files provide simple 

=xamples of such modules or packages. Part of their discipline is that inter

ilillly stored data cannot be accessed or altered in any way except through 

-· e explicit operations of the package. It is critical in box structured design 

·o recognize that packages exist at every level from complete systems to 

dividual program variables. It is also critical to recognize that a verifiable 

;:esign must deal with a usage hierarchy rather than a parts hierarchy in its 

srructure. A program that stores no data between invocations can be 

.:escribed in terms of a parts hierarchy of its smaller and smaller parts, 

xcause any use depends only on data supplied to it on its call with no 

~~p endence on previous calls. But each call to a specific realization of a 

_ ckage, say a queue, will depend not only on the present call and data 

_ pplied to it, but also on previous calls and data supplied then. 

The parts hierarchy of a structured program identifies every sequence, 

ternation, and iteration (say every begin-end, if-then-else, while-loop) at 

=':ery level. It turns out that the usage hierarchy of a system of packages 

say an object-oriented design with all objects identified) also identifies every 

::all (use) of every operation of every package. The semantics of the struc

!lred program are defined by a mathematical function for each sequence, 

· ternation, and iteration in the parts hierarchy. That doesn't quite work for 

·· e operations of packages because of usage history dependencies. But there 

- a simple extension for packages that does work. It is to model the behavior 

f a package as a state machine, with its calls of its several operations as 

puts to the common state machine. Then the semantics of such a package 

-defined by the transition function of its state machine (with an initial state). 

llen the operations are defined by structured programs, the semantics of 

• ckages becomes a simple extension of the semantics of structured 

_To grams. 

Deck et al. ( 1992) introduce a taxonomy of black box semantics based on 

teractive properties of the system to be specified. They define three classes 

-semantics to specify systems of increasing complexity in their interactions 

"th other systems in the execution environment. The semantics extend to 

teractive and concurrent system specifications. 

6.1 The Basis for Box Structured Design 

While theoretically straightforward, the practical design of systems of 

1>arnas modules (object-oriented systems) in usage hierarchies can seem quite 

w mplex on first exposure. It seems much simpler to outline such designs in 

?<Uis hierarchies and structures, for example in data flow diagrams, without 

_;· tinguishing between separate usages of the same module. While that may 

.seem simpler at the moment, such design outlines are incomplete and often 
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lead to faulty completions at the detailed programming levels. In spite of 

their common use in this first human generation of system design, data flow 

diagrams should only be used within rigorous design methods rather than 

leaving critical requirements to details with incomplete specifications. 

In order to create and control such designs based on usage hierarchies in 

more practical ways, their box structures provide standard, finer grained 

subdescriptions for any package of three forms, namely as black boxes, as 

state boxes, and as clear boxes, defined as follows (Mills, 1988; Mills et al., 

1986, 1987). 

Black Box: External view of a Parnas package, describing its behavior as 

a mathematical function from historical sequences of stimuli to its next 

response. 

State Box: Intermediate view of a Parnas package, describing its behavior 

by use of an internal state and internal black box with a mathematical 

function from historical sequences of stimuli and states to its next response 

and state, and an initial internal state. 

Clear Box: Internal view of a Parnas package, describing the internal 

black box of its state box in a usage control structure of other Parnas 

packages; such a control structure may define sequential or concurrent use 

of the other packages. 

Box structures enforce completeness and precision in design of software 

systems as usage hierarchies of Parnas packages. Such completeness and 

precision lead to pleasant surprises in human capabilities in software engi

neering and development. The surprises are in capabilities to move from 

system specifications to design in programs without the need for unit/ 

package testing and debugging before delivery to system usage testing. In 

this first generation of software development, it has been widely assumed 

that trial-and-error programming, unit testing, and debugging were neces

sary. But well-educated, well-motivated software professionals are indeed 

capable of developing software systems of arbitrary size and complexity 

without program debugging before system usage testing (Anderson and 

Goodman, 1957). 

Fetzer and Poore (1992) introduce techniques for using the Z notation in 

defining box structures using the set theoretic and predicate calculus con

structs defined in Z. Z provides a rigorous, formal language for the inner 

syntax of black box and state box forms. They introduce the integration of 

box structures and Z notation in a miniature specification. 

In Rosen et al. (1992), Rosen introduces general design language selection 

criteria based on the design and verification requirements of cleanroom 
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software development. Syntactic and semantic language requirements are 

described for disciplined control and data structures, for well-defined 

intended functions, and for function theoretic proof rules for verification as 

described. In the definition of the Design C language, a specialization of Z 

is given in terms of these requirements. 

Fuhrer et al. ( 1990) describe some cleanroom tools, including the Develop

ment Assistant, Certification Assistant, and Management Assistant CASE 

tools for supporting cleanroom operations. A summary is given of the 

cleanroom development of these tools themselves through seven code in

crements, including metrics from design, verification, and statistical quality 

certification. 

6.2 Stepwise Refinement and Verification of Software 

Once the design is complete, the clear box at each level is expanded to 

code to implement fully the defined function rule for the black box function 

at that level by stepwise refinement, as introduced by Wirth (1971). Follow

ing each expansion, functional verification is used to help structure a proof 

that the expansion correctly implements the specification. The nature of the 

proof revolves around the fact that a program is a rule for a function and 

the specification for the program is a relation or function. What must be 

hown in the proof is that the rule (the program) correctly implements the 

relation or function (the specification) for the full range of the specification 

and no more. Linger, Mills and Witt (1979) have developed a correctness 

theorem that defines what must be shown to prove that a program is equiva

lent to its specification for each of the structured programming language 

constructs. The proof strategy is subdivided into small parts which easily 

accumulate into a proof for a large program. Experience indicates that 

people are able to master these ideas and construct proof arguments for very 

large software systems. 

The development team expands each clear box in the usage hierarchy into 

the selected target code using stepwise refinement and functional verification. 

As the development team designs and implements the software, it is held 

collectively responsible for the quality of the software. 

In describing the activities of software development, no mention is made 

of testing or even of compilation. The cleanroom development team does 

not test or even compile. They use mathematical proofs (functional verifi

cation) to demonstrate the correctness of programming units. Testing and 

measuring failures by program execution is the responsibility of the 

certification team. 
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6.3 The Mathematical Basis for Functional Verification 

As noted, any program or program part is a rule for a mathematical 

function. It may not be the function desired, but it is a function. In structured 

programs, the rules are direct in form, building program rules out of just 

two function building operations: first, function composition, which 

corresponds to sequential execution of program parts, and second, disjoint 

function union, which corresponds to alternative execution of one program 

part or another, as in if/or case structures. Program iteration uses no more 

than these two operations together, and function recursion provides a useful 

view of an iteration process. 

Any program part or total program defines a single, possibly complex 

function. The function is seldom a numerical function in classical terms. 

Even numerical programs must deal with finite sets of numbers in which 

overflow and roundoff's depart from classical number systems. Given the 

text or name of a program or program part in whatever language, say a 

program called Alpha in Ada defined by a set of external packages Gamma 

and an internal procedure called Beta 

Alpha = with Gamma; 

procedure Beta 

IS 

begin 

end Beta; 

the program function will be denoted by brackets [ ] around the name or 

text, such as 

[Alpha] = [with Gamma; 

procedure Beta 

is 

begin 

end Beta;] 

In this case [Alpha] is a set of ordered pairs 

[Alpha] = {(X, Y) I Given initial state X, Alph~ will produce final 

state Y} 

If Alpha loops indefinitely, or does not terminate for some other reason, for 

some entry state, that state is not part of [Alpha]. The function [Alpha] is 

••• a;:. 
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determined by Ada text, but is independent of the language Ada. In this 

case, Alpha is a rule for the function [Alpha], but there are many rules for 

a single function. The same function can be defined by a rule in Fortran 

text, COBOL text, etc., even machine code. 

6.4 Functional Verification of Program Parts 

From programs to program parts, starting with simple assignment state

ments, such as 

x:=y; 

in Ada, the program part function 

[x := y;] 

takes its initial data state to its final data state. If legal, it will change the 

value of x in the final state to the value of y in the initial state and change 

no other values of variables in the initial state. If illegal, the final state 

may be quite different from the initial state, possibly with both x and y 

disappearing, as well as other variables, in terminating the entire program 

execution. So assignment statements have simple function parts when legal, 

but possibly more complex function parts when illegal. In summary, the 

function [x := y] is a set of ordered pairs with second members determined 

uniquely by the first members 

[x := y;] = { «x, y, ... ), <y, y, ... »I x := y; is legal} 

u { «x, y, ... ), <???))I x := y; is illegal} 

where ??? will be determined by other aspects of the initial state. Illegal 

situations will be suppressed in what follows for the sake of time. In more 

direct function notation, dealing only with the legal situation, 

[x := y;]( <x, y , ... >) = (y , y, ... > 

in which the function argument <x, y , ... > produces the function value 

(y,y, .. . ). 

Next, for a sequence of statements, such as 

x := y; y := z; z := x; 

in Ada, the part function 

[x := y; y := z; z := x;] 
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will alter values of x, y, and z as a composition of the three individual 

assignment functions 

[x := y;] * [y := z;] * [z := x;] . 

That is, beginning with an initial state as argument, the first assignment 

function gives a new state as value 

[x := y ;]( (x, y, z, . .. ) ) = (y, y, z, ... ) 

the second assignment function uses this value as an argument 

[y := z ;]( (y, y, z, 0 0 0)) = (y, z, z, 0 . 0) 

and the third assignment function uses this last value as argument 

[z := x;]( (y, z, z, ... )) = (y, z, y, ... ) 

That is, the composition function is a nested set of simpler functions that 

evaluate as 

([x := y;] * [y := z;] * [z := x;])( (x, y, z, ... )) 

= [z := x ;]([y := z ;]([x := y;]( (x, y, z, ... ) ))) 

= [z := x; ]([y := z;]( (y, y, z, . .. ) )) 

= [z := x ;]( (y, z, z, ... ) ) 

= (y, z,y, ... ) 

as worked out just before. In summary, this composition function will inter

change the values of y and z and leave x with the initial value of y, not 

changing any other data in the initial state. 

Finally, for an alternation statement, such as 

if x > y then y : = z; else x : = z end if; 

in Ada, the part function will execute either the then part or the else part, 

so that 

[if x > y then y := z; else x := z; end if;] 

= (x > y-> [y := z; ] I x = y-> [x := z;]) 

= [y:=z;lx> y] u [x:=z; lx=y] 

where the expression [y := z; I x > y] means the function [y := z;] with its 

domain restricted to the condition x > y. That is, the part function is a union 

of disjoint functions. 
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7. Statistical Quality Control 

Software is either correct or incorrect in design to a specification, in con

trast to hardware which is reliable to a certain level in performing to a 

correct design. For small and regular software, it may be possible to test 

exhaustively the software to determine its correctness. But software of any 

size or complexity can only be tested partially, and typically a very small 

fraction of possible inputs are actually tested. Certifying the correctness of 

such software requires two conditions, namely 

1. statistical testing with inputs characteristic of actual usage, and 

2. no failures in the testing. 

F or interactive software, the statistical correlation of successive inputs must 

be treated as well. If any failures arise in testing or subsequent usage, the 

-oftware is incorrect, and the certification is invalid. If such failures are 

orrected, the certification process can be restarted, with no use of previous 

esting results. Such corrections may lead to additional failures, or may not. 

So certifying the correctness of software is an empirical process that is bound 

o succeed if the software is indeed correct and may succeed for some time 

if the software is incorrect. While possibly frustrating at first glance, this is 

all humans can assert about the correctness of software. But on second 

glance, the sequential history of certification efforts provides a human basis 

-or assessing the quality of the software and expectations for achieving future 

~o rrectness. 

The statistical foundations for cleanroom engineering come from adding 

:ISage statistics to software specifications, along with function and perfor

::nance requirements (Cobb and Mills, 1990; Mills et al., 1987b; Whittaker 

:md Poore, 1992). Such usage statistics provide a basis for measuring the 

correctness of the software during its development, and thereby measuring 

- e accuracy of the design in meeting functional and performance require-

ents. A more usual way to view development in this first generation is as 

~ difficult-to-predict art form. Software with no known errors at delivery 

:"requently experiences many failures in actual usage. 

7.1 Precision Specifications 

In this first human generation of software development, most of the 

rogress and discipline has been discovered in the latter parts of the life 

:cle, first in coding machine programs in higher level languages, then in 

::!.feaS such as structured programming and object-oriented design. Problems 
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in requirements analyses and specifications are more difficult. Defining pre

cisely what is needed and what should be provided by software is more 

general and difficult than simply producing working software in hopes that 

it will be satisfactory on trial by users. Even when specifications are required, 

they are frequently provided in informal, natural languages with consider

able room for misunderstandings between designers and users, and with gaps 

in exact details in which programming misinterpretations are possible and 

likely. 

Precision specifications require formal languages, just as programming 

does. In the case of programming the need is very obvious because computer 

machine languages are formal. But as systems become more complex and 

are used by more people with more critical impacts on business, industry, 

and government institutions, the need for formal languages for specifications 

becomes clearer. New programming languages have improved primarily in 

their abilities to provide explicit structure in data and procedure. For 

example, Ada has no more capability in defining machine operations than 

Fortran or COBOL. But it has more explicit design structures for people to 

use, for example in packages for data abstractions or objects. Specification 

languages also need explicit structures for the same reason, to allow people 

to express requirements as directly as possible. 

Regardless of the language, formal or informal, a functional specification 

defines not only legal system inputs, but legal input histories, and for each 

legal input history, a set of one or more legal outputs. Such legal input 

.histories may be defined in real time systems in which real time is a critical 

factor, and the outputs given real time requirements as well. Illegal inputs 

and histories may be treated in various ways, from ignoring them to attempts 

to decipher or correct them. Any definite treatments of illegal inputs or 

histories become part of the specification as well. The abstraction of any 

such functional specification, in any language, is a mathematical relation

a set of ordered pairs whose first members are input histories and whose 

second members are outputs. Then, there is a very direct and simple mathe

matical definition for a program meeting a specification. It is that the func

tion defined by the program determines a value for every argument in the 

domain of the specification relation and that this value be associated with 

that argument in the relation (Mills, 1986; Mills et al., 1987a). 

In cleanroom software engineering, precision specifications are extended 

in two separate ways to create a structured architecture. First, the functional 

specifications are designed as a set of nested subspecifications, each a strict 

subset of the preceding subspecification. Then, beginning with the smallest 

subspecification, a pipeline of software increments is defined with each step 

going to the next larger subspecification (Mills et al., 1987b ). Second, the 

usage of the functional specifications is defined as a statistical distribution 
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over all possible input histories (Dyer, 1992a ; Whittaker and Poore, 1990). 

The structured architecture makes statistical quality control possible in sub

equent incremental software development to the functional specifications. 

The usage statistics provide a statistical basis for testing and certification of 

the reliability of the software in meeting its specifications. 

The creation of a structured architecture defines not only what a software 

ystem is to be when it is finished, but also a construction plan to design 

and test the software in a pipeline of subsystems, step-by-step. The pipeline 

must define step sizes that the design group can complete without debugging 

prior to delivery to the certification group. Well-educated and disciplined 

design groups may handle step sizes up to 20,000 lines of high level code. 

But the structured architecture must also determine a satisfactory set of user 

executable increments for the development pipeline of overlapping design 

and test operations. 

7.2 Statistical Certification 

As each specified increment is completed by the designers, it is delivered 

to the certifiers, combined with preceding increments, for testing based on 

usage statistics. As noted, the cleanroom architecture must define a sequence 

of nested increments that are to be executed exclusively by user commands 

as they accumulate into the entire system required. Each subsequence repre

sents a subsystem complete in itself, even though not all the user function 

may be provided in it. For each subsystem, a certified reliability is defined 

from the usage testing and failures discovered, if any. 

The COBOL Structuring Facility consisted of80 KLOC, 28 KLOC reused 

from previous products, 52 KLOC new or changed, designed and tested in 

a pipeline of five increments (Kouchakdjian, 1989), the largest over 

19 KLOC. A total of 179 corrections were required during certification, 

under 3.5 corrections per KLOC for code with no previous execution. The 

productivity of the development was 740 LOC per person/ month, including 

all specification, design, implementation, and management, in meeting a very 

short deadline. 

Cleanroom statistical certification of software involves, first, the specifica

tion of usage statistics in addition to function and performance specifi

cations. Such usage statistics provide a basis for assessing the correctness of 

the software being tested under expected use. As each specified increment is 

completed by the designers, it is delivered to the certifiers, who combine it 

with preceding increments, for testing based on usage statistics. As noted, 

the cleanroom architecture must define a sequence of nested increments that 

are to be executed exclusively by user commands as they accumulate into the 

entire system required. Each subsequence represents a subsystem complete in 
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itself, even though not all the user function may be provided in it. For each 

subsystem, a certified correctness is defined from the usage testing and 

failures discovered, if any. 

It is characteristic that each increment goes through a maturation during 

the testing, becoming more reliable, from corrections required for failures 

found, serving thereby as a stable base as later increments are delivered and 

integrated to the developing system. For example, the HH60 flight control 

program had three increments (Cobb and Mills, 1990; Dyer, 1992a) of 

over 10 KLOC each. Increment 1 code required 27 corrections for failures 

discovered in its first appearance in increment 1 testing, but then only 1 

correction during increment 1/ 2 testing, and 2 corrections during increment 

1/ 2/ 3 testing. Code in increment 2 required 20 corrections during its first 

appearance in increment 1/2 testing, and 5 corrections during increment 

1/2/3 testing. Increment 3 code required 21 corrections on its first appear

ance in increment 1/ 2/ 3 testing. In this case, 76 corrections were required 

in a system of over 30 KLOC, under 2.5 corrections per KLOC for verified 

and inspected code, with no previous execution or debugging. 

In the certification process, it is not only important to observe failures in 

execution, but also the times between such failures in execution of usage

representative statistically generated inputs. Such test data must be devel

oped to represent the sequential usage of the software by users, which, of 

course, will account for previous outputs seen by the users and what needs 

the users will have in various circumstances. The state of mind of a user and 

the current need can be represented by a stochastic process determined by 

a state machine whose present state is defined by previous inputs/ outputs 

and a statistical model that provides the next input based on that present 

state (Mills et al., 1987b ). 

7.3 Certification Tasks 

In parallel with the cleanroom development team, the cleanroom certifi

cation team prepares to certify the software up to and including the incre

ment being developed by the development team. The certification team uses 

the usage profile and the portion of the specification that is applicable to the 

increments to be verified to prepare test cases including proper outputs to 

tests. 

When the development team has completed an increment, the certification 

team creates a version of the accumulated system up through this increment. 

For each version the certification team compiles the increment, combines it 

with previous increments, and certifies the accumulated system through this 

version. If failures are encountered in the certification of a version, they are 

returned to the development team for analysis and for engineering changes 
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to whatever increments are causing the failures. While failures are likely to 

be caused by the latest increment added, previous increments may be at fault 

and changed as well, as noted in the HH60 experience. Each redelivery of 

changed increments defines a new version of the accumulated system. If no 

failures are encountered in the certification of a version, no additional 

versions are required. 

Within each version of the accumulating system, tests are constructed at 

random in accordance with the specified usage statistics profile and then 

exercised. Test results are compared with a standard and either a failure 

occurred or the result was correct. 

7.4 Certification on a Scientific Basis 

Certification of software on a scientific basis requires a statistical usage 

specification as well as functional and performance specifications. The testing 

must be carried out by statistical selection of tests from these specifications. 

Tests selected directly are ad hoc, and give no basis for statistical inference 

on the correctness of the software. Some uses of the software may be much 

more important than other uses, and the statistical selections can be given 

in various levels of stratified sampling. Thus, not only basic statistical usage 

is to be defined, but the relative importance of correctness for each usage. 

This is new information that is often not known until the software is put 

into actual use, but should be generated with functional and performance 

specifications beforehand. 

Next, the actual statistical testing must be carried out when the software 

is available, possibly in stratified form. One extreme form of stratified form 

is an important case chosen with probability 1 in that stratus. Next, if a 

failure is found in testing, the software should be returned to the developers 

for correction before further testing. When the correction is made, a new 

start of testing is begun. The Time to Failure (TTF) is recorded for each 

failure discovered. The Time without Failure (TWF) is tracked when no 

failures have appeared. This TWF can be tracked after the software is 

distributed to users as part of the characterization of its correctness. If 

failures appear with users, the same rules of correction and restart of TWF 

should occur. 

As already noted, there is a profound difference between the correctness 

of software and the reliability of hardware. When software has hundreds 

or thousands of errors, its behaviour may seem to approximate hardware 

reliability. But when software has under 0.1 failures per KLOC, possibly 

none, the statistics of hardware failures are not valid. In this first human 

generation, it has seemed impossible to create zero defect software, but it 

can be, and has been, done, as will be discussed further. Part of the issue is 
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discovering a new human possibility, with more engineering education and 

engineering management. Part of the issue is the economic feasibility. It 

requires less human effort to produce zero defect software with new methods 

than error prone software with older methods. The human effort required 

is both engineering verification and statistical testing, and they complement 

each other in unexpected ways. 

7.5 Usage Testing 

A user's specification for a substantial software system will identify various 

classes of user commands and data for various parts of the system. For 

example, bringing up an interactive system at the beginning of the day will 

require and accept certain kinds of user commands and data of which the 

ordinary interactive users may not even be aware. But bringing the system 

up is an integral part of the process for a certain class of users . During the 

day, several distinct classes of users may be interacting simultaneously and 

independently, such as users adding data to the system, or users making 

enquiries, or users monitoring the system use and performance. Within each 

such class, several or many users may be interacting simultaneously and 

independently, as well. 

However, as simultaneously and concurrently as these various users seem 

to interact with the system, the individual computers in the system each 

operate strictly sequentially in real time, shifting from one user to another 

so rapidly that each user gets almost immediate response, even though ten, 

or a thousand, other users may have been serviced between the user's stimu

lus and the system's response. As a rule, users are separated from one another 

by operating in different, relatively. protected, data spaces that represent the 

tasks they are doing. But users can interact, intentionally or not, as their 

tasks become more intertwined. 

For example, in an airline reservation system, a ticket agent may inquire 

about availability of seats on a given flight and get the response that seats 

are available. Then when the seats are requested a moment later, the response 

is that no seats are available. Other users have interacted in picking up the 

seats in the previous moment. Such system behavior is designed. It would 

be conceivable to design an airline reservation system such that seats could 

be held from inquiry to request, but it would require entirely different levels 

of data storage and processing. In this way, it is clear that user independence 

is relative, with economic and technical issues involved with multiple users 

in systems. 

This understanding that significant software systems have different kinds 

of uses applies whether there are single or multiple users . A single user may 

be using a system in different ways at different times, even within a single 
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session. The design of the software will typically reflect such different uses 

by packaging similar operations in common modules. For example, various 

kinds of data searching may be handled in a search module, but data retriev

als may be handled in a different retrieval module. It also makes similar 

sense to identify similar stimuli response operations in specifications, entirely 

from the user point of view and state of mind. In particular, complex spe

cifications need to be designed as carefully as programs to reflect the natural 

structure of the problem being solved and to find effective specification 

structures that reflect user activities and understandings. 

7.6 Software Usage as a Markov Process 

As noted, software specifications deal with functional behavior and per

formance. Functional behavior is ordinarily decomposed into various 

subfunctions in ways understandable by users, and often obtained from users 

as requirements. Performance will usually affect design in fundamental ways. 

But expected usage of the software will have critical impacts on performance 

issues. For example, a data base system with much more querying than data 

addition or deletion may call for a design with high performance queries at 

the expense of data addition and deletion performance. Such a design can 

be entirely unsatisfactory with different usage. Thus, expected usage statistics 

can play a key role in software system design. 

However, there is another critical use for usage statistics as part of 

oftware specifications. It is to permit the certification of software. Software 

behavior depends not only on how correct the software is but also on how 

it is used. For every possible state of internally stored data, any command 

and input data is handled either correctly or incorrectly, denoted as a failure 

in the latter case at some level of seriousness. 

Now, with a statistical usage specification for each possible internal state, 

the probability of each selection of commands and input data in such a state 

will be known. Next, the functional specification will define what the new 

internal state will become, as well as the response to the user. These two 

facts define a Markov process, namely the set of all internal data states and 

the probability of getting from each member of the state set to the next 

member. Of course, some members may be terminal when the process 

terminates. 

In a Ph.D. thesis by Whittaker (1992), a sound approach to certification 

· given using the Markov processes to maintain the sequential integrity of 

testing. The first Markov process, called the usage Markov chain, describes 

usage of the software in terms of stimuli and state transitions. This chain is 

used as a test sequence generator for the statistical test. Furthermore, a 
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comprehensive analysis of the usage chain is developed that characterizes 

the stochastic properties of the sequence used in the statistical test. The 

second Markov process, called the testing Markov chain, describes the his

tory of the statistical test including failure data. A method for constructing 

the testing chain is given and an analysis is performed that results in a 

discrete, data-driven software reliability model. Derived from this model are 

estimates of the reliability, the mean time between failure, and an analytical 

stopping criterion based on the stochastic properties of both Markov chains. 

8. Conclusions 

Software is either correct or incorrect in design to a well-defined specifica

tion, in contrast to hardware which is reliable to a certain level in performing 

to a design assumed to be correct. For small and regular software, it may 

be possible to test exhaustively the software to determine its correctness. 

Even then, failures can be overlooked from human fallibility. But software 

of any size or complexity can only be tested partially, and typically a very 

small fraction of possible inputs are actually tested. At first glance, the 

fractions are so small for systems of ordinary size that the task of testing 

looks impossible. But when combined with mathematical verification, getting 

correct software is indeed possible. 

Certifying the correctness of such software requires two conditions, 

namely: 

1. Statistical testing with inputs characteristic of actual usage, and 

2. No failures in the testing. 

For interactive software, the statistical correlation of successive inputs must 

be treated as well. If any failures arise in testing or subsequent usage, the 

software is incorrect, and the certification is invalid. If such failures are 

corrected, the certification process can be restarted, with no use of previous 

testing results. Such corrections may lead to additional failures, or may not. 

So certifying the correctness of software is an empirical process that is bound 

to succeed if the software is indeed correct and may succeed for some time 

if the software is incorrect. 

While possibly frustrating at first glance, this is all humans can assert 

about the correctness of software. In both verification and testing, human 

fallibility is present. But on second glance, the sequential history of certifi

cation efforts provides a human basis for assessing the quality of the software 

and expectations for achieving future correctness. 
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