
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

The Harlan D. Mills Collection Science Alliance

1993

Zero-Defect Software - Cleanroom Engineering Zero-Defect Software - Cleanroom Engineering

Harlan D. Mills

Follow this and additional works at: https://trace.tennessee.edu/utk_harlan

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation

Mills, Harlan D., "Zero-Defect Software - Cleanroom Engineering" (1993). The Harlan D. Mills Collection.

https://trace.tennessee.edu/utk_harlan/13

This Article is brought to you for free and open access by the Science Alliance at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in The Harlan D. Mills Collection by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_harlan
https://trace.tennessee.edu/utk-scialli
https://trace.tennessee.edu/utk_harlan?utm_source=trace.tennessee.edu%2Futk_harlan%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=trace.tennessee.edu%2Futk_harlan%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

ontents
COYTRIBUTORS

?REF ACE

Zero Defect Software: Cleanroom Engineering

Harlan D. Mills

Background and Introduction

:.. Cleanroom Engineering

:::_ Statistical Quality Control in Software Engineering

- - Software Testing in This First Human Generation

: _ What is Cleanroom Engineering of Software?

- Box Structured Software System Design

- _ Statistical Quality Control

Conclusions

References .

IX

XI

2

6

10

13

19

24

31

38

39

Role of Verification in the Software Specification Process

Marvin V. Zelkowitz

Good Software Specifications

- Axiomatic Correctness .

- Functional Correctness .

- - Denotational Semantics

- .Ylultiattribute Specifications

Conclusions

Acknowledgments

References .

44

57

65

80
95

106

108
108

Computer Appl icat ions in Music Composition and Research

Gary E. Wittlich, Eric J. Isaacson, and Jeffrey E. Hass

Introduction .

~ Music Score Encoding

~ Music Score Input Systems

Music Score Output Systems

- Musical Instruments Digital Interface (MIDI)

Digital Sound Synthesis

- Computer-Aided Composition

v

112

113

120
124

130

139

151

Zero Defect Software:
Cleanroom Engineering

HARLAN D. MILLS

Florida Institute of Technology
and
Software Engineering Technology, Inc.

Vera Beach, Florida

Background and Introduction .

1.1 History in Statistical Quality Control

1.2 Application of SQC to Software Development

Cleanroom Engineering .

2.1 Cleanroom Statistical Quality Control .

2.2 Zero Defect Software Is Really Possible.

Statistical Quality Control in Software Engineering

3.1 Statistical Test Design.

3.2 Markov Chain Techniques for Software Certification

Software Testing in This First Human Generation .

4.1 Unit Testing as a Private Activity.

4.2 A Historical Lesson in Typewriting .

4.3 Two Sacred Cows in Software .

4.4 The Power of Usage Testing over Coverage Testing

What Is Cleanroom Engineering of Software?

5.1 Cleanroom Engineering Process

5.2 Cleanroom Engineering Methods .

5.3 Dealing with Human Fallibility

5.4 Cleanroom Experiences .

Box Structured Software System Design

6. 1 The Basis for Box Structured Design.

6.2 Stepwise Refinement and Verification of Software

6.3 The Mathematical Basis for Functional Verification

6.4 Functional Verification of Program Parts

Statistical Quality Control .

7 .I Precision Specifications

7.2 Statistical Certification

7.3 Certification Tasks .

7.4 Certification on a Scientific Basis .

7.5 Usage Testing

7.6 Software Usage as a Markov Process

Conclusions .

References

2

3

5

6

7

9

10

11

12

13

13

14

15

16

19

19

20

21

23

24

25

27

28

29

31

31

33

34

35

36

37

38

39

-.:>VANCES IN COMPUTERS, VOL. 36 1 Copyright © 1993 by Academic Press, Inc.

All rights of reproduction in any form reserved.

ISBN 0-12-012136 -0

2 HARLAN D. MILLS

1. Background and Introduction

Software is either correct or incorrect in design to a specification, in contrast

with hardware, which is reliable to a certain level in performing to a correct

design. Certifying the correctness of such software requires two conditions,

namely:

1. Statistical testing with inputs characteristic of actual usage, and

2. No failures in the testing.

If any failures arise in testing or subsequent usage, the software is incorrect,

and the certification is invalid. If such failures are corrected, the certification

process can be restarted, with no use of previous testing results. Such correc

tions may or may not lead to additional failures. So, ·certifying the correct

ness of software is an empirical process that is bound to succeed if the

software is indeed correct and may appear to succeed for some time if the

software is incorrect.

Cleanroom Engineering introduces new levels of practical precision for

achieving correct software, using three engineering teams. First, one team

of specification engineers creates formal specifications and breaks them into

increments for development and certification. Next, another team of develop

ment engineers creates software to the specifications of these increments with

formal verification, but without testing or debugging. Finally, another team

of certification engineers tests and certifies the correctness of growing num

bers of increments by stratified statistical testing. Any failures are returned

for fixing to the development engineers and for retesting by the certification

engineers for a new certification of correctness of the software. A new level

of human capability is required in specification engineering, development

engineering, and certification engineering, but it is a level that software

engineers find possible.

In order to carry out effective software testing and to achieve high reli

ability, one needs to start with well-specified and well-developed software.

Highly reliable performance cannot be tested into poorly developed

software. So we will be concerned with the entire software engineering pro

cess that culminates in the certification of well-specified and well-developed

software.

Software can be developed and certified as correct under statistical quality

control to well-formed specifications of user requirements. To be humanly

practical in sizable software systems, the specifications must be structured

and defined in construction increments that accumulate into the final sys

tems. This ability requires a sound development methodology to create

software that is easily testable by engineering design and mathematical ver

ification, in particular with no unit testing at all by the developers. Unit

,.. ____.- .. - - " - - - - - --- .---=~ -

ZERO DEFECT SOFTWARE 3

testing and fixing of informally developed code is the most error-prone

activity in software development today, leading to deeper failures in 15% or

more of the fixes.

This ability also requires a test methodology based not only on the func

tion and performance specifications, but also on the usage specifications,

namely how critical each test case is to assessing the practical correctness of

system behavior. Such a test methodology must be based on a stratified

statistical strategy derived from the statistics of usage and the importance

of the usage expected for the software. For an important case, a stratus may

even consist of a single case (with probability 1), or may consist of a small

ubset of cases, on out to strata containing large sections of the software. A

test design defines each stratus (possibly hundreds or thousands) and the

number of tests in each one. Testing without any failures found leads to

certification of correctness of the software or software segment.

If failures are later found, the certification is negated. If failures are fixed,

the certification process can be started again. In any case, certification contin

ues with software release to users, moving with confidence from a level of

some three sigma at release up to and beyond six sigma with sufficient usage

without failures.

Software is either correct or incorrect in design to a specification, in con

trast with hardware that is reliable to a certain level in performing to a

correct design. For small and regular software, it may be possible to test

exhaustively the software to determine its correctness. But software of any

size or complexity can only be tested partially, and typically a very small

fraction of possible inputs are actually tested. While possibly frustrating at

first glance, this is all humans can assert about the correctness of software.

But on second glance, the sequential history of certification efforts provides

a human basis for assessing the quality of the software and some expectations

for achieving future correctness.

1.1 History in Statistical Quality Control

Computer software is little over a human generation old, and software

development as it is practiced today has been worked out in just that short

time. Think of accounting when it was just a human generation old, when

ever and wherever that may have been. It certainly did not have double entry

bookkeeping, and not even sound arithmetic methods. Civil engineering did

not have right triangles or methods of calculating areas at that stage.

Software has many more people than accounting and civil engineering at

that time, but fundamental ideas still take time to develop, even though

people in the field are making do with what is available.

4 HARLAN D. MILLS

In another direction, statistical quality control (SQC) came into being

about a human generation ago, with the work of Dr. Edward Deming and

others in manufacturing in the 1950s. However, American industry largely

ignored the new ideas of SQC in that period, getting along with however

they were dealing (or not dealing) with quality. Statistics seemed like odd

and extraneous effort in the industry, and hardly seemed worth doing in

manufacturing. Of course, the rest of the story is well known, with Dr.

Deming and others taking SQC to Japan with dramatic successes in Japanese

industry, creating products with entirely new levels of both quality and

productivity. By now American industry has largely caught up with Japanese

industry in manufacturing SQC, but it has taken quite a while.

It is now known how to develop software also by using statistical quality

control. IBM and the US DOD DARPA STARS Program have supported

this basis of SQC in software development. There is a considerable difference

in SQC between manufacturing and software. But manufactuing SQC has

been very informative and helpful in going to software.

In manufacturing, the design is considered correct and the SQC applies

to creating physical products to the design specifications. The design may

be wrong for the product, but the job of manufacturing is to meet the design,

right or wrong. The physical parts may be slightly incorrect but the product

must still meet the design on a physical basis. For example, a wire cannot

be cut to a 10 mm length exactly, but say within 0.001 mm, and still meet

specifications in the product performance.

Manufacturing under SQC is very different from that under previous

controls. For example, in a 1950 assembly line of 20 stations, each station

generating parts and adding to the product was producing products at a

rapid rate, but many such products might then be found to be defective in

the testing that followed. The attempted solution to such problems was to

improve the part-making stations, because if each station was producing

perfect parts the product would be satisfactory. But while some

improvements were indeed made, new products had similar problems no

matter how hard people tried.

Manufacturing under SQC used ideas that first seemed strange and of no

use. In the assembly line of 20 stations, first work out how each intermediate

assembly at each point should perform; in many cases the stations must be

redesigned to make this possible. Next; provide statistical measurements for

the performances of the intermediate assemblies at each station, and make

these measurements right there as each partial product comes down the line.

Now, shocking as it may seem, stop the entire assembly line if any partial

product fails its performance test. Fix the reason for the failure in whatever

preceding stations necessary. All the workers are idle now! What a dumb

thing that seems. In the old assembly line everybody worked hard all the

±±~-.-;.·,:..-. _-.... §* p &Mf·~-k.y:.if'"t _ . .,.._ - __,_.: ~-~~~ .· . --=---=-- - -: ... _.-' ~

ZERO DEFECT SOFTWARE 5

time. But forcing all the parts to be right during assembly created a dramatic

improvement in both quality and productivity. The idle workers were a

clear motivation for getting the work stations accurate to levels previously

unimagined.

So, in retrospect, SQC seemed very strange for manufacturing assembly

lines in American industry. Who would think such ideas would be practical?

No wonder American industry turned it down in the 1950s. And the objective

is not statistics, it is quality control. The reason for statistics is that it is the

only way to achieve real quality control. The improvement in productivity

is a pleasant surprise, but it becomes understandable when the amount of

rework becomes known. It is now understood as unnecessary with better

parts work and good management.

1.2 Application of SOC to Software Development

With this background, it is time to apply SQC to software development.

However, it is the design that must be produced correctly to meet a software

specification. Just as in American manufacturing in the 1950s, American

software in the 1990s is created in well-intended ways without SQC. Its

performance is low in both quality and productivity compared with what is

possible. In a 1990 European conference in Oslo, a Japanese group stated

that Japanese companies were moving into SQC as described in this chapter.

But American companies need not bring up the rear this time around in

software. Just as in manufacturing SQC 40 years ago, it is not easy for

managers and workers of today to move into software SQC. Everyone is so

busy, how do they find time to learn the new ideas? It requires new capabili

ties, but capabilities present in educated and disciplined people. For example,

manufacturing workers discovered they could create parts that were orders

of magnitude more accurate than previously imagined, with increased pro

ductivity. Right now, well-intentioned and experienced programmers imag

ine that software must have a few failures- say one to five per thousand

lines of code- on release, and they cannot imagine a serious objective of

creating software with no failures and higher productivity. It is not right to

ask programmers to work faster, but to work smarter with real engineering

discipline under SQC.

Zero failure software is not possible with heuristic methods of program

ming used in this first human generation of software development. It is

possible with mathematics-based design discipline and statistics-based test

discipline as discussed in Mills (1986) . Despite the experiences of the first

human generation in software development, zero defect software is possible

with the use of formal methods of program design and verification. Correct

ness verification and statistical testing reinforce and complement each other

6 HARLAN D. MILLS

in surprising ways in achieving zero defects. Design discipline is made pos

sible by the work of Dijkstra, Parnas and Wang (1989), and others. Test

discipline is made possible by the work of Poore et al. (1990), Whittaker

(1992), and others. Such a design discipline was taught in a six-course curric

ulum in Software Engineering (Linger et al. , 1979 ; Mills et al. , 1986) across

IBM in the 1980s with a faculty of over 60 well-prepared teachers and over

10,000 students. SEI (Software Engineering Institute at Carnegie Mellon

University) can teach and help others teach good design discipline.

Software development has certainly improved in many ways over the past

40 years. It has become better managed, here and there, in dealing with

larger and more complex system development and software product prob

lems. Basic technology has improved dramatically, with high-level languages,

structured programming, and modular design for uniprogramming. It has

not improved as dramatically for uniprogram testing or multi program design

or testing. But the most deficient activity in software development today

is the use of, and dependence on, private unit testing and debugging of

software.

It seems unbelievable from the outside that debugging software should be

so difficult. But such debugging with a fix for a discovered fault will lead to

a new fault at least 15% of the time (Adams, 1980). This number of new

faults resulting from fixes has been a major surprise. Many large software

systems or products cannot be successfully debugged because of such new

faults. For example, the first optimized PL/ I compiler, with more than 50

programmers for more than two years, was never released because it could

not be debugged. An airline passenger reservation system that involved even

more effort and time was never released and resulted in a major loss by the

developer. At the moment, there seems no other way to create software than

to code, unit test, and debug it the way it has always been done. But major

and minor software development failures continue, and there is another way

to create software, namely to outlaw private unit testing and debugging, as

discussed next.

2. Cleanroom Engineering

As noted, two major properties of Cleanroom Engineering are:

1. No debugging by the developers before the software goes to indepen

dent testers, and

2. Statistical testing taking into account both the usage and the criticalness

of software parts.

As we discuss next, there are more properties, but these two both seem

critical or impossible at first glance compared with how software is developed

. ~------- ·---- -~ - '
-~ -~~~

ZERO DEFECT SOFTWARE 7

today. They are both related to the short history of software of just a single

human generation. For example, it took a human generation to discover

touch typing for typewriters and it was not easy to make that happen. In

another direction, farming today is entirely different than it was a human

generation ago. It has become mechanized even more and moved from

small one-family farms to larger corporate farms. In a similar way, serious

software development will become a large-scale engineering operation rather

than an intuitive programming operation.

Cleanroom Engineering develops software of certified correctness under

statistical quality control in a pipeline of increments that accumulate into the

specified software product. In the cleanroom process no program debugging

is permitted before independent statistical usage testing of the increments as

they accumulate into the final product (Cobb and Mills, 1990 ; Dyer, 1992a) .

The Cleanroom process provides rigorous methods of software specification,

development, and certification, through which disciplined software engineer

ing teams are capable of producing zero defect software of arbitrary size

and complexity (Whittaker and Poore, 1992). Such engineering discipline is

capable not only of producing correct software, but also of the certification

of the correctness of the software as specified.

Software is either correct or incorrect in design to a well-defined specifica

tion, in contrast to hardware which is reliable to a certain level in performing

to a design that is assumed to be correct. For small and regular software, it

may be possible to test exhaustively the software to determine its correctness.

Even then, failures from human fallibility can be overlooked. But software

of any size or complexity can only be tested partially, and typically only a

very small fraction of possible inputs can actually be tested. At first glance,

the fractions are so small for systems of ordinary size that the task of

testing looks impossible. But when combined with mathematical verification,

correct software is indeed possible.

For interactive software, the statistical correlation of successive inputs

must be treated as well. If any failures arise in testing or subsequent usage,

the software is incorrect, and the certification is invalid. If such failures are

orrected, the certification process can be restarted, with no use of previous

testing results. Such corrections may lead to additional failures, or they may

not. So certifying the correctness of software is an empirical process that is

bound to succeed if the software is indeed correct and may succeed for some

time if the software is incorrect.

2.1 Cleanroom Statistical Quality Control

Cleanroom software engineering achieves statistical quality control over

software development by strictly separating the design process from the

8 HARLAN D. MILLS

testing process in a pipeline of incremental software development. There are

three major engineering activities in this process (Linger and Mills, 1988;

Mills et al., 1987b):

Software Specification: First, structured architecture and precise speci

fication of a pipeline of software increments that accumulate into the final

software product, which includes the statistics of its use as well as its function

and performance requirements.

Software Development: Second, box structured design and functional ver

ification of each increment, delivery for testing and certification without

debugging beforehand, and subsequent correction of any failures that may

be uncovered during certification.

Software Certification: Third, statistical testing and certification of the

software reliability for the usage specification, notification to developers of

any failures discovered during certification, and subsequent recertification

as failures are corrected.

These three activities are defined and discussed in later sections.

As noted, there is an explicit feedback process between certification and

development on any failures found in statistical usage testing. This feedback

process provides an objective measure of the reliability of the software as it

matures in the development pipeline. It does, indeed, provide a statistical

quality control process for software development that has not been available

in this first human generation of trial-and-error programming.

Humans are fallible, even in using sound mathematical processes in func

tional verification, so software failures are possible and almost certain during

the certification process. But there is a surprising power and synergism

between functional verification and statistical usage testing (Dyer, 1992b).

First, as already noted, functional verification can be scaled up for high

productivity and still leave no more errors than heuristic programming often

leaves after unit and system testing combined. Second, it turns out that the

mathematical errors left are much easier to find and fix during testing than

errors left behind in debugging, by a factor of five as measured in practice

(Mills et al., 1987b) . Mathematical errors usually turn out to be simple

blunders in the software, whereas errors left behind or introduced in debug

ging are usually deeper in logic or wider in system scope than those fixed.

As a result, statistical usage testing not only provides a formal, objective

basis for the certification of reliability under use, but also uncovers the errors

of mathematical fallibility with remarkable efficiency.

• 1

- . -- --- --
-y- ~-~

·-------=-~-:--.·--~ ~~·~ ~- ~.,..........,..--

ZERO DEFECT SOFTWARE 9

2.2 Zero Defect Software Is Really Possible

In spite of the experiences of this first human generation in software

development, zero defect software is really possible. However, there is no

foolproof logical way to know that software is zero defect. The proof is in

using the product without ever finding any failures. Mathematics is very

helpful in creating software that executes with no defects, but it is insufficient

by itself to guarantee it. Statistics is also very helpful in creating software

that executes zero defect, but is also insufficient by itself. Even so, mathemat

ics and statistics foundations combined are very powerful bases for software

engineering with zero defects . Three illustrations of zero defect software are

noted next.

First, the U.S. 1980 Census was acquired by a nationwide network system

of 20 miniprocessors. The system was controlled by a 25 KLOC program,

hich operated its entire 10 months in field use with no failure observed. It

was developed by Mr. Paul Friday, of the U.S. Census Bureau, using step

wise refinement and functional verification in Pascal. Mr. Friday used formal

university courses in software engineering to achieve this feat. He was given

the highest technical award of the U.S. Department of Commerce for that

achievement.

Second, the IBM wheelwriter typewriter products released in 1984 are

controlled by three microprocessors with a 65 KLOC program. It has had

millions of users since, with no failures ever detected. The IBM team creating

rhis software also used functional verification and extensive testing in a well

managed software engineering environment to achieve this result. The team

had completed pass/ fail courses in formal software engineering before enter

ing this project.

Third, the NASA space shuttle software of some 500 KLOC, while not

completely zero defect, has been zero defect in all flights. The first space

shuttle flight initialization failed because of five computers, three initialized

on one time frame, the other two on another time frame. That fault was

fixed and did not reappear. The IBM team also used functional stepwise

refinement and verification and extensive testing to achieve this result. The

pace shuttle software is such a large, complex, and visible product that

there are real lessons in it. All managers and programmers were required to

complete a basic curriculum of six pass/ fail courses in understanding pro

grams as rules for mathematical functions, and functional verification of

programs and modules (Linger et al., 1979). The team received the highest

NASA award for this achievement.

Looking ahead, Hevner and Becker (1992) introduce an integrated devel

opment environment based on repository data models that support Clean

room specification, verification, and certification, as well as incremental

10 HARLAN D. M ILLS

development. Appropriate data models help identify tool requirements for

this environment.

3. Statistical Quality Control in Software Engineering

The fundamental concepts of SQC in software versus other fields are

significantly different. First, SQC in manufacturing or services assumes a

correct design and deals with efforts to realize such a design. In this case the

statistics deals with departures of the product from the design. But software

is design whose manufacture is practically perfect in program compiling,

linkage editing, etc. The design itself is under question and the statistics deals

with departures of the design from the specifications that are discovered

during testing and use.

Second, software development is a creative human activity only a human

generation old, largely carried out today by heuristic, trial-and-error meth

ods. In this first human generation, testing during development has been

primarily coverage and ad hoc, with no scientific basis, rather than based

on statistical usage that can provide certified correctness. The objective

generation of testing on the basis of statistical usage specifications, and the

certification of software correctness from such objective statistical testing

leads to new human understandings of software development as a rigorous

and repeatable engineering process.

Third, we need to work more on certification of correctness by statistical

quality control because the other two areas of specification and development

are better thought out with many fundamental problems well addressed.

Certification of software is in its infancy, so there is much to learn, which

will result in many substantial improvements over the present state of

software testing. The technological goals are to create an entirely new human

capability for developing zero defect software using methods of SQC.

Many people presently believe that software has nothing to do with SQC

because software is deterministic, not statistical, with results that are either

right or wrong. In these people's view software is bound to have periodic

failures, and good software just exhibits fewer failures than poor software.

The innovation is to make usage statistics into the foundation for SQC as

applied to an imperfect design process rather than to a manufacturing pro

cess where the design is considered perfect. The elements of the Cleanroom

Engineering process have been shown to be very practical and successful in

creating software with zero defects and increased productivity.

In this connection, Dyer (1992b) describes the merger of functional

correctness verification in cleanroom engineering with formal inspections

often used today. The systematic, stepwise process of functional verification

-- - ..>.....:c...:~ -- - - - - ~ -_ ~~

ZERO DEFECT SOFTWARE 11

provides a framework for effective team inspections of software designs.

Procedures for conducting inspection-based verification are given in Dyer

1992b).

3.1 Statistical Test Design

In order to certify the correctness of software, it is necessary to define

statistical testing that yields meaningful results. Measurements are needed

to serve as a basis for the estimation of how well the software as designed

and implemented will satisfy its requirements in actual use. In the past few

years we have made significant progress in recognizing what measurements

need to be made and in developing a program for making and utilizing the

measurements.

This testing program must recognize both the statistics of use and the

importance of this use. First, failures in execution may be of many degrees

of seriousness. Some failures may produce correct data in incorrect formats,

but otherwise not affect continued execution. Other failures may produce

incorrect data but continue execution correctly. Still other failures may con

tinue execution incorrectly, possibly losing data. The most serious of failures

may terminate execution unintentionally andj or lose data. The more serious

the failure, the more important it is to find it. For this reason, the criticalness

as well as the probabilities of failures must be considered. Some conditions

are so critical that they should be tested for sure, with probability 1. At first

glance this may not appear to be statistical testing, but it is at the endpoint

of a statistical domain.

The usage statistics of a software system or product is a new idea for

testing. Usage statistics is often used informally to evaluate designs against

performance requirements. For example, relative efficiency required -for

different responses, say for entering and accessing data, will help define data

tructures and algorithms required. If accessing data is much more frequent

than entering it, perhaps the data should be stored alphabetically and

accessed by binary search, while if entering is more frequent than accessing,

perhaps the data should be stored in sequence of entry and accessed by

linear search.

But usage statistics can be used to make testing more realistic. Well

intentioned testing by ad hoc invention can miss critical areas, for example

incorrect entries that are expected occasionally and require recovery opera

tions. Testing by simple uniform probability can be entirely unrealistic if

usage statistics is far from uniform. For example, a programming language

compiler accepts a remarkably small fraction of all text sequences. So the

usage statistics of programs or near programs is important for realistic test

ing of compiler software. Any one user may not use exactly the usage statis-

12 HARLAN D. MILLS

tics defined for testing, but a class of users can be used to define a realistic

usage statistics expected for them as a class. So the definition of realistic

usage statistics is a substantial job that goes beyond functional and perform

ance specifications into the likely usage of the software.

3.2 Markov Chain Techniques for Software Certification

Markov chains have exceptional value in software testing (Whittaker,

1992; Whittaker and Poore, 1992). First, there is a question of how to use

a specification as a guide in constructing a Markov chain to model the usage

of correct software. Second, the testing process itself is modeled by another

Markov chain which includes any possible failures in execution. If the

software is correct, these two chains are identical. But if incorrect, the chains

are slightly different. While testing proceeds, the reliability and mean time

between failures in the second Markov chain can be estimated, both to

measure progress and to evaluate the reality for reaching zero defect

operations.

As already noted, the certification team must account for both the statis

tical concerns in testing and the relative importance of various inputs and

operations to users. A specific input under a specific condition may happen

rarely, but it can be important and therefore critical for testing. As a result,

a test design involves a hierarchical structure of tests, each requiring a speci

fication Markov chain, ranging all the way from the entire system to a

single important operation. Just as with the software design, this test design

requires long-term, systematic research into usage statistics and usage

importance.

While unlikely, if all inputs under all conditions are equally important, a

single usage, statistics defined- set of tests is sufficient. But more likely, some

inputs under some conditions will be more important than others. Today,

much of testing is identified with specific cases of known importance,

independent of their statistics. These specific cases can be brought into the

statistics test designs as special cases. If an important test is defined with

probability 1, it is now part of the hierarchical structure that defines the

entire test. Usually, inputs and conditions will be partitioned naturally into

subsets of the entire input space. Such subsets will themselves be partitioned

into smaller subsets, and so on, clear down to single inputs and conditions.

The test analyses will involve successive inputs for which the Markov

process provides a good model. It not only matters at what frequencies

various inputs and conditions will arise, but also how these frequencies

depend on previous inputs (and thereby outputs) with input-to-input

frequencies, as well. This requirement for estimating usage frequencies is

new, and brings a new level of design to the testing process. Because of the

--·- "'~-~- ~

ZERO DEFECT SOFTWARE 13

test design work, the certification team must begin its analysis and design in

parallel with the development team.

4. Software Testing in This First Human Generation

4.1 Unit Testing as a Private Activity

In this first generation of software development and maintenance, the

primary methods of software specification and design have been heuristic,

going from informal and imprecise natural language to formal programming

language by trial and error. When programs don't do the right things, was

it the specification or the design at fault? If the specification was informal,

how can one tell? The specifier may have had the right idea, but never written

it down completely. Or the programmer may have met all requirements that

were written down and extrapolated differently than the specifier intended.

As already noted, private unit testing and fixing is used without question.

What other way makes any sense? It seems so simple and so natural just to

get the small errors out. How could that be harmful? It hasn't been suspected

that so many new failures are introduced by unit testing and fixing. Unit

testing is regarded as a private activity for getting defects out of the small

parts of programs before assembling and integrating them into larger parts.

Subsequently, more defects are discovered in the larger parts as smaller parts

are tied together. The original programmers are often gone by this time.

Finally, entire systems are frequently (almost always) delivered with more

defects yet to be found. Users frequently find many more defects than the

developers believed remained. As a result, many organizations have learned

to expose new software products to a select few users for initial shakedown

before distributing the products widely.

This first generation of heuristic methods and experiences seem to work;

after all, products are built. Advanced software teams do better than others

in using the best technical and managerial methods that can be found. And

_-et, even the advanced software teams stub their toes now and then. In fact,

more systems and products than casual observers might imagine are seriously

delayed or even abandoned with all the programs written, because they are

too error-prone to release. Hundreds of person years may be involved, but

the software still cannot be made to work correctly. In more recent times,

several major PC upgraded products for word processing and financial

analysis have been released more than a year behind their announcements

at a major cost to their producing companies.

The strange thing about most such software disasters is that they were

not looked on as dangerous undertakings in their beginnings. Of course,

14 HARLAN D. MILLS

any software effort is a bit risky because computer code is so detailed and

programmers are a little unpredictable. But "nobody said it would be so hard

at the outset," is a typical comment. New and better heuristics, especially

supported by CASE tools, are becoming available in object-oriented

methods. With object-oriented methods, better approaches to high-level

designs and specifications seem possible. But the software rubber meets

the hardware road with the program code, and unit debugging is seldom

questioned. At that stage, larger parts and entire products are tested, often

with good records kept on the coverage testing, to ensure that every branch

is exercised both ways and that all code is tested at least once. Yet in spite

of the testing coverage, users often find unexpected levels of failures in

operations, making the product marginal or unacceptable.

The barely recognized fact is that unit debugging is the most error-prone

activity in software development today. Fixing any failure found is usually

successful. But creating a new and deeper failure occurs 15% of the time or

more. This occurs because debugging strives to ensure correct outputs, which

leads to developers modifying code to produce a correct output, and not

modifying the code to produce the correct function. As a result, large failure

filled software systems may never be debugged sufficiently to be released,

even though extensive efforts are made.

4.2 A Historical Lesson in Typewriting

These experiences are not surprising in this first human generation of

software development. They just seem part of the problem facing people in

the field. Or are they? A hundred years ago people faced another set of

problems in using the new typewriters, whose practical invention occurred

late in the 19th century. How to type text and tabular material without

errors at reasonable rates? Typewriters were special machines for special

purposes. Executives, even the president of the United States, hand wrote

their own letters by and large, and assistants or secretaries did likewise.

Typewriters were used to write reports and documents with relatively poor

quality reprints compared with printing. They certainly did not replace

assembling print for printing machines. Typewriting was error-prone. One

had to look at the keys, of course, while typing, so a reasonable way was to

memorize the text a sentence at a time. But in going back and forth between

the text and the typewriter, small mistakes or lapses were very possible from

time to time. Correcting a character, even a word, might not be so bad.

Correcting a missed sentence early on a typed page was better fixed by

starting the page over.

With this background for almost a human generation of using typewriters,

the new idea of touch typing, typing without looking at the keys, was a

H>_ ••• - rr~ · ,--, , « e;;.... q"l

ZERO DEFECT SOFTWARE 15

very strange one. "That's silly. Who could possibly do that?" In teaching

typewriting, people who look at the keys can get useful work done in the

very first day. In fact they learn practically all there is to know about a

typewriter in the very first day, and just need to get more practice and skill

by typewriting. In teaching touch typing, people get no useful work done in

rbe first day or the first week. "Why would anyone spend time in such a

useless activity?" Of course, we know that touch typing turned out to be an

internationally useful method that put typewriters into business offices on a

mass basis. Typewriter makers improved their products in many ways, but

the reason typewriters were eventually made in such quantities was due to

people knowing how to use them well rather than to companies knowing

bow to make them well.

There is a lesson in touch typing for software development. In software,

teaching a programming language and how to compile and execute programs

allows people to write programs right away. Very likely, such programs will

require considerable debugging, and many text books say just that. With

more and more experience in programming alone or in teams, errors and

unit debugging are just an accepted and integral part of programming.

But people with the right education and training do not need to unit debug

their software any more than people need to look at the keys when they

cype. Yet, just as in teaching touch typing, much less trial and error program

ming is done at the beginning in good software education, with much greater

emphasis on formal methods in program specification, design, and verifica

tion. When serious programming begins only after formal methods, very

little debugging will be required, because of more explicit design and ver

ification from good specifications. But "why not let the computers find the

errors, why make so much of a simple program?" For simple programs,

that may be a perfectly good question. But as programs get larger and more

complex, computers don't find the errors, and much more time will be spent

debugging than writing the code originally.

4.3 Two Sacred Cows in Software

Software engineering and computer science are relatively new subjects,

only a human generation old. In this first generation, two major sacred cows

have emerged from the heuristic, error-prone software development of this

entirely new human activity-namely program debugging and coverage test

ing. As noted previously, program debugging before independent usage test

ing is unnecessary and creates deeper errors in software than are generally

ound and fixed. It is also a surprise to discover that coverage testing is a

yery inefficient way of getting reliable software and provides no capability

for scientific certification of reliability.

16 HARLAN D. MI LLS

As a first generation effort, it has only seemed natural to debug programs

as they are written, and even to establish technical and managerial standards

for such debugging. For example, in the first generation in typing, it only

seemed natural to look at the keys. Touch typing without looking at the

keys must have looked very strange to the first generation of hunt and peck

typists. Similarly, software development without debugging before indepen

dent, certification testing of user function looks very strange to the first

generation of trial and error programmers. It is quite usual for human

performance to be surprising in new areas, and software development will

prove to be no exception.

Just as debugging programs has seemed natural, coverage testing has also

seemed to be a natural and powerful process. Although 100% coverage

testing is known to still leave errors behind, coverage testing seems to provide

a systematic process for developing tests and recording results in well

managed development. So it comes as a major surprise to discover that

statistical usage testing is more than an order of magnitude more effective

than coverage testing in increasing the time between failures in use. Coverage

testing may, indeed, discover more errors in error-prone software than usage

testing, but it discovers errors of all failure rates, while usage testing discovers

the high failure rate errors more critical to users .

4.4 The Power of Usage Testing over Coverage Testing

The writings and data of Adams (1980) in the analysis of software testing,

and the differences between software errors and failures, give entirely new

insights in software testing. Since Adams has discovered an amazingly wide

spectrum in failure rates for software errors, it is no longer sensible to treat

errors as homogeneous objects to find and fix. Finding and fixing errors with

high failure rates produces much more reliable software than finding and

fixing just any errors, which may have average or low failure rates .

The major surprise in Adams' data is the relative power of finding and

fixing errors in usage testing over coverage testing, a factor of 30 in increasing

mean time to failure (MTTF). That factor of 30 seems incredible until the

facts are worked out from Adams' data. But it explains many anecdotes

about experiences in testing. In one such experience, an operating systems

development group used coverage testing systematically in a major revision

and for weeks measured mean time to crashes in seconds. It reluctantly

allowed user tapes in one weekend, but on fixing those errors, found that

the mean time to abends jumped literally from seconds to minutes.

The Adams data is given in Table I (from Adams, 1980). It describes

distributions of failure rates for errors in nine major IBM products, including

the major operating systems, language compilers, and database systems.

ZERO DEFECT SOFTWARE 17

TABLE I

DISTRIBUTIONS O F ERRORS (IN %) AMONG MEAN TIME TO FAILURE (MTTF) CLASSES

MTTF in K months

60 19 6 1.9 0.6 0.19 0.06 0.019

Product

1 34.2 28.8 17.8 10.3 5.0 2.1 1.2 0.7

2 34.2 28.0 18.2 9.7 4.5 3.2 1.5 0.7

3 33.7 28.5 18.0 8.7 6.5 2.8 1.4 0.4

4 34.2 28.5 18.7 11.9 4.4 2.0 0.3 0.1

5 34.2 28.5 18.4 9.4 4.4 2.9 1.4 0.7

6 32.0 28 .2 20.1 11 .5 5.0 2.1 0.8 0.3

7 34.0 28.5 18.5 9.9 4.5 2.7 1.4 0.6

8 31.9 27.1 18.4 11.1 6.5 2.7 1.4 1.1

9 31.2 27.6 20.4 12.8 5.6 1.9 0.5 0.0

The uniformity of the failure rate distributions among these very different

products is truly amazing. But even more amazing is a spread in failure rates

over four orders of magnitude, from 19 months to 5,000 years (60K months)

calendar time in MTTF, with about 33% of the errors having an MTTF of

-,000 years, and 1% having an MTTF of 19 months.

With such a range in failure rates, it is easy to see that coverage testing

will find the very low failure rate errors a third of the time with practically

no effect on the MTTF by the fix, whereas usage testing will find many more

of the high failure rate errors with much greater effect. Table II develops the

data, using Table I, that shows the relative effectiveness of fixes in usage

esting and coverage testing, in terms of increased MTTF. Table II develops

the change in failure rates for each MTTF class of Table I, because it is the

failure rates of the MTTF classes that add up to the failure rate of the

product.

Line 1, Table II, denoted M (MTTF), is repeated directly from Table I,

namely the mean time between failures of the MTTF class. Line 2, denoted

ED (Error Density), is the average of the error densities of the nine products

of Table I, column by column, which represents a typical software product.

TABLE II

ERROR DEN SIT IES AND FAILURE DENSITIES IN THE MTTF CLASSES OF TABLE I

?roperty

M 60 19 6 1.9 0.6 0.19 0.06 0.0 19

E D 33 .2 28.2 18.7 10.6 5.2 2.5 1.1 0.5

E D / M 0.6 1.5 3.1 5.6 8.7 13.2 18.3 26.3

F D 0.8 2.0 3.9 7.3 11.1 17.1 23 .6 34.2

F D / M 0 0 4 18 90 393 1,800

18 HARLAN D. MILLS

Line 3, denoted ED /M, is the contribution of each class, on average, in

reducing the failure rate by fixing the next error found by coverage testing

(1/M is the failure rate of the class, ED is the probability that a member of

this class will be found next in coverage testing, so their product, ED j M, is

the expected reduction in the total failure rate from that class). Now ED / M

is also proportional to the usage failure rate in each class, since failures of

that rate will be distributed by just that amount. Therefore, line 3 is normal

ized to add to 100% in line 4, denoted FD (Failure Density) . It is interesting

to note that Error Density (ED) and Failure Density (FD) are almost reverse

distributions, Error Density being about a third at the high end of MTTFs

and Failure Density being about a third at the low end of MTTFs. Finally,

line 5, denoted FD /M, is the contribution of each class, on average, in

reducing the failure rate by fixing the next error found by usage testing.

The sums of the two lines ED / M and FD /M turn out to be proportional

to the decrease in failure rate from the respective fixes of errors found by

coverage testing and usage testing, respectively. Their sums are 77.3 and

2,306, with a ratio of about 30 between them. That is the basis for the

statement of their relative worth in increasing MTTF. It seems incredible at

first glance, but that is the number!

To see this in more detail, consider first the relative decreases in failure

rate R in the two cases :

Fix next error from coverage testing

R--+ R - (sum of ED/ M values)/(errors remaining)

= R - 77.3 / E .

Fix next error from usage testing

R--+ R - (sum of FD/ M values) / (errors remaining)

= R - 2,306/ E.

Next, the increase in MTTF in each case will be

1/ (R - 77.3/E)- 1/ R = 77.3/[R * (E * R- 77.3)]

and

1/ (R- 2,306/ E) - 1/ R = 2,306/ [R * (E * R- 2,306)] .

In these expressions, the numerator values 77.3 and 2,306 dominate, and the

denominators are nearly equal when E * R is much larger than 77.3 or 2,306

(either 77.3/ (E * R) or 2,306/ (E * R) is the fraction of R reduced by the

next fix and is supposed to be small in this analysis). As noted previously,

the ratio of these numerators is about 30 to 1, in favor of the fix with usage

testing.

ZERO DEFECT SOFTWARE 19

5. What Is Cleanroom Engineering of Software?

5.1 Cleanroom Engineering Process

The Cleanroom Engineering process develops software of certified correct

ness under statistical quality control in a pipeline of increments, with box

structured design and functional verification but no program debugging

permitted before independent statistical usage testing of the increments. It

provides rigorous methods for software specification, development, and cer

tification that are capable of producing low or zero defect software of arbi

trary size and complexity. Box structured design is based on a Parnas usage

hierarchy of modules. Such modules, also known as data abstractions or

objects, are described by a set of operations that may define and access

internally stored data. Functional verification is based on the fact that any

program or program part is a rule for a mathematical function. It may not

be the function desired, but it is a function.

The term Cleanroom is taken from the hardware industry to mean an

emphasis on preventing errors, rather than allowing errors to appear and

removing them later (of course any errors introduced should be removed).

Cleanroom Engineering of software involves rigorous methods that enable

greater control over both product and process. The Cleanroom process not

only produces software of high correctness and high performance, but does

o while yielding high productivity and meeting schedules. The intellectual

control provided by the rigorous Cleanroom process allows both technical

and management control.

Cleanroom Engineering achieves statistical quality control over software

development by strictly separating the design process from the testing pro

cess in a pipeline of incremental software development. There are three major

engineering activities in the process (Linger and Mills, 1988; Mills eta!.,

1987b):

Specification: First, a specification team creates an incremental specifica

tion that defines a pipeline of software increments that accumulate into the

final software product, which includes the statistics of its use as well as its

function and performance requirements.

Development: Second, a development team designs and codes increments

specified using box structured design and functional verification of each

increment, with delivery to certification with no debugging beforehand, and

provides subsequent correction for any failures that may be uncovered dur

ing certification.

Certification: Third, a certification team uses statistical testing and analy

sis for the certification of the software correctness to the usage specification,

20 HARLAN D. MILLS

notification to designers of any failures discovered during certification, and

subsequent recertification as failures are corrected.

As noted, there is an explicit feedback process between certification and

development on any failures found in statistical usage testing. This feedback

process provides an objective measure of the correctness of the software as

it matures in the development pipeline. It does, indeed, provide a statistical

quality control process for software development that has not been available

in this first human generation of trial and error programming.

5.2 Cleanroom Engineering Methods

Cleanroom Engineering provides a set of rigorous methods for software

development under statistical quality control, based on sound mathematical

and statistical principles. While millions of people are involved in software,

most of them regard software development as an intuitive, heuristic activity.

They do not imagine software engineering as a mathematics-based subject

with complete rigor being possible. But software engineering should be and

can be a mathematics-based activity. When mathematical rigor is applied,

both quality and productivity increase. Nor can they imagine software engi

neering based on statistics since computers are completely deterministic in

behavior. And yet the usage of software is statistical in nature.

For software engineering, being mathematics-based does not mean being

numbers-based. Numbers are part of mathematics, but the finite basis of

computers adds complexity to dealing with numbers. With integers, compu

ters face overflow possibilities that need to be assured against. With real

numbers, computers face roundoff problems, so arithmetic becomes approxi

mate, not exact. In these cases, software must deal with computer operations,

not with ideal numerical operations. But mathematics deals with any

operations performed by computers, not simply approximate numerical

operations. Fortunately, the nonnumerical operations are typically exact in

computers, for example logic operations, even text processing operations, so

their mathematical basis is very solid. At first glance, nonnumerical

operations may not look mathematical, but they are. Logic, set theory, and

function theory are clearly nonnumerical mathematics, but sorting theory,

text processing theory, and graph theory can also be framed as mathematics

as well.

Software is a human generation old, while mathematics is many human

generations old. Although not understood early or widely, software has

direct mathematical foundations because of the very deterministic behavior

of computers. A computer program is a rule for a mathematical function,

mapping all possible initial states into final states. Such functions are very

• - . -s1"Q! ~

ZERO DEFECT SOFTWARE 21

omplex compared with functions in physical science and engineering, and

traditional mathematical notation is very insufficient. But sufficient mathe

matical notation is emerging in computer science and software engineering

for dealing with the syntax and semantics of programs and their functions.

As an example of deep and useful mathematics, place notation and long

division moved arithmetic from error-prone operations on whole numbers

to rigorous methods a numerical place at a time a thousand years ago in the

Western world. As a result, school children today can out perform Archi

medes and Euclid in arithmetic. Similar movement is possible in software

today. Place notation and long division look pretty simple today, but it has

taken hundreds of years to arrive at this simple form. For example, it took

the Italian business world several hundred years to move from Roman

numerals to arabic numbers in practice.

Statistics is another subject of longer professional development than

software. But only a hundred years ago, statistics was intuitive and heuristic,

even though rigorous arithmetic was used in creating sums and averages.

Yet in this time, statistics has become a rigorous, mathematics-based subject,

often finding counterintuitive results using statistics in specific topics. For

example, the agriculture industry of the Western world has been greatly

improved by the effective use of statistics in both plant selection and

treatment. The application of statistics now makes it possible for software

developers to predict with confidence the quality level of the software when

it is fully developed quite early in the development life cycle.

Cleanroom Engineering not only puts software development under statis

tical quality control, but takes out debugging from the list of developer

activities, instead using mathematical reasoning before independent testing

and certification. Just as typists looked at the keys when typewriters first

came out, programmers have felt the need to debug programs in this first

human generation of programming. But while counterintuitive at the time,

typists went to touch typing with both higher productivity and fewer errors.

In the same way, well-educated software engineers can create software with

no execution or debugging before it is tested by independent test and certifi

cation engineers with the product having higher productivity and much

greater quality than previously.

5.3 Dealing with Human Fallibility

Humans are fallible, even in using sound mathematical processes in

functional verification, so finding software failures is possible during the

certification process. But there is a surprising power and synergism between

functional verification and statistical usage testing (Mills et al. , 1987b). First,

as already noted, functional verification can be scaled up for high produc-

22 HARLAN D. MILLS

tivity and still leave no more errors than heuristic programming often leaves

after unit and system testing combined. Second, it turns out that the

mathematical errors left are much easier to find and fix during testing than

errors left behind in debugging, measured at a factor of five in practice (Mills

et al., 1987b). Mathematical errors usually turn out to be simple oversights

in the software, whereas errors left behind or introduced in debugging are

usually deeper in logic or wider in system scope than those fixed. As a result,

statistical usage testing not only provides a formal, objective basis for the

certification of correctness under use, but also uncovers the errors of mathe

matical fallibility with remarkable efficiency.

In Cleanroom Engineering a major discovery is the ability of well-educated

and motivated people to create nearly defect-free software before any execu

tion or debugging, with many fewer than five defects per thousand lines of

code. Such code is ready for usage testing and certification with no unit

debugging by the designers. In this first human generation of software

development it has been counterintuitive to expect software with so few

defects at the outset. Typical heuristic programming leaves 50 defects per

thousand lines of code, then reduces that number to five or fewer by debug

ging. The problem is that for programmers with good capabilities and

intentions, it seems on the surface that unit debugging makes complete

correctness on first coding unnecessary. But the unknown result is the

number of faults, over 15%, created in even the simple seeming fixes.

The mathematical foundations for Cleanroom Engineering come from the

deterministic nature of computers themselves. As noted, a computer pro

gram is no more and no less than a rule for a mathematical function (Linger

et al., 1979; Mills, 1975). Such a function need not be numerical, of course,

and most programs do not define numerical functions. But for every legal

input, a program directs the computer to produce a unique output, whether

correct as specified or not. And the set of all such input- output pairs is a

mathematical function. A more intuitive way to view a program in this first

generation is as a set of instructions for specific executions with specific input

data. While correct, this view misses a point of reusing well-known and

tested mathematical ideas, regarding computer programming as new and

private art rather than more mature and public engineering.

With these mathematical foundations, software development becomes a

process of constructing rules for functions that meet required specifications,

which need not be a trial and error programming process. The functional

semantics of a structured programming language can be expressed in an

algebra of functions with function operations corresponding to program

sequence, alternation, and iteration (Linger et al., 1979). The systematic top

down development of programs is mirrored in describing function rules in

terms of algebraic operations among simpler functions, and their rules in

-c· ,,...,..ffi

ZERO DEFECT SOFTWARE 23

terms of still simpler functions until the rules of the programming language

are reached. It is a new mental base for most programmers to consider the

complete functions needed, top down, rather than computer executions for

specific data.

Trammel et al. (1992) discuss the practical realities in adopting the Clean

room process in software organizations. They define a three-phase process

for introducing Cleanroom in a software development organization, includ

ing management commitment and team ownership as critical success factors.

5.4 Cleanroom Experiences

The IBM COBOL Structuring Facility (IBM COBOL/ SF), a complex

product of some 80K lines of PL/I source code, was developed in the Clean

room discipline, with box-structured design and functional verification but

no debugging before usage testing and certification of its correctness. A

Yersion of the U.S. A.F. HH60 (helicopter) flight control program of over

0 KLOC was also developed using Cleanroom. The Coarse/ Fine Attitude

Determination Subsystems (CFADS) of the UARS Attitude Ground

Support System (AGSS) of some 30 KLOC has been developed with Clean

-oom at NASA.

The IBM COBOL/ SF converts an unstructured COBOL program into a

5lructured one of identical function. It uses considerable artificial intelligence

:o transform a flat structured program into one with a deeper hierarchy that

- much easier to understand and modify. The product line was prototyped

i th Cleanroom discipline at the outset, then individual products were gener-

_ted in Cleanroom extensions. In this development, several challenging

- hedules were defined for competitive reasons, but every schedule was met.

The COBOL/ SF products have high function per line of code. The proto

--pe was estimated at 100 KLOC by an experienced language processing

.: oup, but the Cleanroom developed prototype was 20 KLOC. The software

designed not only in structured programming, but also in structured

~ ta access. No arrays or pointers were used in the design; instead, sets,

ueues, and stacks were used as primitive data structures (Mills and Linger,

986). Such data-structured programs are more reliably verified and

· pected, and also more readily optimized with respect to size or perfor

mance, as required.

COBOL/ SF, Version 2, consists of 80 KLOC, 28 KLOC reused from

revious products, 52 KLOC new or changed, designed and tested in a

ipeline of five increments (Linger and Mills, 1988), the largest over

9 KLOC. A total of 179 corrections were required during certification,

-ewer than 3.5 corrections per KLOC for new code with no developer execu

·on, fewer than 2 corrections per KLOC for all code. The productivity of

24 HARLAN D. MILLS

the development was 740 LOC per staff month, including all specification,

design, implementation, and management, in meeting a very short deadline.

The HH60 flight control program was developed on schedule. Program

mers' morale went from quite low at the outset (" why us? ") to very high on

discovering their unexpected capability in accurate software design without

debugging. The 12 programmers involved had all passed the pass/ fail course

work in mathematical (functional) verification of the IBM Software

Engineering Institute, but were provided a week's review as a team for the

project. The testers had much more to learn about certification by objective

statistics (Currit et al., 1986).

The subsystem Coarse/ Fine Attitude Determination System (CFADS) of

the NASA Attitude Ground Support System (AGSS) of some 30 KLOC

was developed in Fortran. Sixty-two percent of the subroutines, which aver

aged 258 source lines each, compiled correctly the first time, with but one

of the rest compiled correctly on the second attempt. Compared with well

measured related systems, the failure rate was down by a factor of five while

the productivity was up by 70% (Kouchakdjian et al. , 1989).

V. R. Basili and F. T . Baker introduced Cleanroom ideas in an under

graduate software engineering course at the University of Maryland, assisted

by R. W. Selby. As a result, a controlled experiment in a small software

project was carried out over two academic years, using 15 teams with both

traditional and Cleanroom methods. The result, even on first exposure to

Cleanroom, was positive in the production of reliable software, compared

with traditional results (Selby et al., 1987).

Cleanroom projects have been carried out at the University of Tennessee,

under the leadership of J. H. Poore (Mills and Poore, 1988) and at the

University of Florida under H . D . Mills. At Florida, seven teams of under

graduates produced uniformly successful systems for a common structured

specification of three increments. It is a surprise for undergraduates to

consider software development as a serious engineering activity using

mathematical verification instead of debugging, since software development

is typically introduced primarily as a trial-and-error activity with no real

technical standards.

6. Box Structured Software System Design

Box structured design is based on a Parnas usage hierarchy of modules

(Parnas, 1972, 1979). Such modules, also known as data abstractions or

objects, are described by a set of operations that may define and access

internally stored data. In Ada, such modules are defined as packages, with

operations defined by the calls of the procedures and functions of the pack

ages, and internal data declared in the package.

-::=rr ts srttx.

ZERO DEFECT SOFTWARE 25

Stacks, queues, and sequential or random access files provide simple

=xamples of such modules or packages. Part of their discipline is that inter

ilillly stored data cannot be accessed or altered in any way except through

-· e explicit operations of the package. It is critical in box structured design

·o recognize that packages exist at every level from complete systems to

dividual program variables. It is also critical to recognize that a verifiable

;:esign must deal with a usage hierarchy rather than a parts hierarchy in its

srructure. A program that stores no data between invocations can be

.:escribed in terms of a parts hierarchy of its smaller and smaller parts,

xcause any use depends only on data supplied to it on its call with no

~~p endence on previous calls. But each call to a specific realization of a

_ ckage, say a queue, will depend not only on the present call and data

_ pplied to it, but also on previous calls and data supplied then.

The parts hierarchy of a structured program identifies every sequence,

ternation, and iteration (say every begin-end, if-then-else, while-loop) at

=':ery level. It turns out that the usage hierarchy of a system of packages

say an object-oriented design with all objects identified) also identifies every

::all (use) of every operation of every package. The semantics of the struc

!lred program are defined by a mathematical function for each sequence,

· ternation, and iteration in the parts hierarchy. That doesn't quite work for

·· e operations of packages because of usage history dependencies. But there

- a simple extension for packages that does work. It is to model the behavior

f a package as a state machine, with its calls of its several operations as

puts to the common state machine. Then the semantics of such a package

-defined by the transition function of its state machine (with an initial state).

llen the operations are defined by structured programs, the semantics of

• ckages becomes a simple extension of the semantics of structured

_To grams.

Deck et al. (1992) introduce a taxonomy of black box semantics based on

teractive properties of the system to be specified. They define three classes

-semantics to specify systems of increasing complexity in their interactions

"th other systems in the execution environment. The semantics extend to

teractive and concurrent system specifications.

6.1 The Basis for Box Structured Design

While theoretically straightforward, the practical design of systems of

1>arnas modules (object-oriented systems) in usage hierarchies can seem quite

w mplex on first exposure. It seems much simpler to outline such designs in

?<Uis hierarchies and structures, for example in data flow diagrams, without

_;· tinguishing between separate usages of the same module. While that may

.seem simpler at the moment, such design outlines are incomplete and often

26 HARLAN D. MILLS

lead to faulty completions at the detailed programming levels. In spite of

their common use in this first human generation of system design, data flow

diagrams should only be used within rigorous design methods rather than

leaving critical requirements to details with incomplete specifications.

In order to create and control such designs based on usage hierarchies in

more practical ways, their box structures provide standard, finer grained

subdescriptions for any package of three forms, namely as black boxes, as

state boxes, and as clear boxes, defined as follows (Mills, 1988; Mills et al.,

1986, 1987).

Black Box: External view of a Parnas package, describing its behavior as

a mathematical function from historical sequences of stimuli to its next

response.

State Box: Intermediate view of a Parnas package, describing its behavior

by use of an internal state and internal black box with a mathematical

function from historical sequences of stimuli and states to its next response

and state, and an initial internal state.

Clear Box: Internal view of a Parnas package, describing the internal

black box of its state box in a usage control structure of other Parnas

packages; such a control structure may define sequential or concurrent use

of the other packages.

Box structures enforce completeness and precision in design of software

systems as usage hierarchies of Parnas packages. Such completeness and

precision lead to pleasant surprises in human capabilities in software engi

neering and development. The surprises are in capabilities to move from

system specifications to design in programs without the need for unit/

package testing and debugging before delivery to system usage testing. In

this first generation of software development, it has been widely assumed

that trial-and-error programming, unit testing, and debugging were neces

sary. But well-educated, well-motivated software professionals are indeed

capable of developing software systems of arbitrary size and complexity

without program debugging before system usage testing (Anderson and

Goodman, 1957).

Fetzer and Poore (1992) introduce techniques for using the Z notation in

defining box structures using the set theoretic and predicate calculus con

structs defined in Z. Z provides a rigorous, formal language for the inner

syntax of black box and state box forms. They introduce the integration of

box structures and Z notation in a miniature specification.

In Rosen et al. (1992), Rosen introduces general design language selection

criteria based on the design and verification requirements of cleanroom

ZERO DEFECT SOFTWARE 27

software development. Syntactic and semantic language requirements are

described for disciplined control and data structures, for well-defined

intended functions, and for function theoretic proof rules for verification as

described. In the definition of the Design C language, a specialization of Z

is given in terms of these requirements.

Fuhrer et al. (1990) describe some cleanroom tools, including the Develop

ment Assistant, Certification Assistant, and Management Assistant CASE

tools for supporting cleanroom operations. A summary is given of the

cleanroom development of these tools themselves through seven code in

crements, including metrics from design, verification, and statistical quality

certification.

6.2 Stepwise Refinement and Verification of Software

Once the design is complete, the clear box at each level is expanded to

code to implement fully the defined function rule for the black box function

at that level by stepwise refinement, as introduced by Wirth (1971). Follow

ing each expansion, functional verification is used to help structure a proof

that the expansion correctly implements the specification. The nature of the

proof revolves around the fact that a program is a rule for a function and

the specification for the program is a relation or function. What must be

hown in the proof is that the rule (the program) correctly implements the

relation or function (the specification) for the full range of the specification

and no more. Linger, Mills and Witt (1979) have developed a correctness

theorem that defines what must be shown to prove that a program is equiva

lent to its specification for each of the structured programming language

constructs. The proof strategy is subdivided into small parts which easily

accumulate into a proof for a large program. Experience indicates that

people are able to master these ideas and construct proof arguments for very

large software systems.

The development team expands each clear box in the usage hierarchy into

the selected target code using stepwise refinement and functional verification.

As the development team designs and implements the software, it is held

collectively responsible for the quality of the software.

In describing the activities of software development, no mention is made

of testing or even of compilation. The cleanroom development team does

not test or even compile. They use mathematical proofs (functional verifi

cation) to demonstrate the correctness of programming units. Testing and

measuring failures by program execution is the responsibility of the

certification team.

28 HARLAN D. MILLS

6.3 The Mathematical Basis for Functional Verification

As noted, any program or program part is a rule for a mathematical

function. It may not be the function desired, but it is a function. In structured

programs, the rules are direct in form, building program rules out of just

two function building operations: first, function composition, which

corresponds to sequential execution of program parts, and second, disjoint

function union, which corresponds to alternative execution of one program

part or another, as in if/or case structures. Program iteration uses no more

than these two operations together, and function recursion provides a useful

view of an iteration process.

Any program part or total program defines a single, possibly complex

function. The function is seldom a numerical function in classical terms.

Even numerical programs must deal with finite sets of numbers in which

overflow and roundoff's depart from classical number systems. Given the

text or name of a program or program part in whatever language, say a

program called Alpha in Ada defined by a set of external packages Gamma

and an internal procedure called Beta

Alpha = with Gamma;

procedure Beta

IS

begin

end Beta;

the program function will be denoted by brackets [] around the name or

text, such as

[Alpha] = [with Gamma;

procedure Beta

is

begin

end Beta;]

In this case [Alpha] is a set of ordered pairs

[Alpha] = {(X, Y) I Given initial state X, Alph~ will produce final

state Y}

If Alpha loops indefinitely, or does not terminate for some other reason, for

some entry state, that state is not part of [Alpha]. The function [Alpha] is

••• a;:.

ZERO DEFECT SOFTWARE 29

determined by Ada text, but is independent of the language Ada. In this

case, Alpha is a rule for the function [Alpha], but there are many rules for

a single function. The same function can be defined by a rule in Fortran

text, COBOL text, etc., even machine code.

6.4 Functional Verification of Program Parts

From programs to program parts, starting with simple assignment state

ments, such as

x:=y;

in Ada, the program part function

[x := y;]

takes its initial data state to its final data state. If legal, it will change the

value of x in the final state to the value of y in the initial state and change

no other values of variables in the initial state. If illegal, the final state

may be quite different from the initial state, possibly with both x and y

disappearing, as well as other variables, in terminating the entire program

execution. So assignment statements have simple function parts when legal,

but possibly more complex function parts when illegal. In summary, the

function [x := y] is a set of ordered pairs with second members determined

uniquely by the first members

[x := y;] = { «x, y, ...), <y, y, ... »I x := y; is legal}

u { «x, y, ...), <???))I x := y; is illegal}

where ??? will be determined by other aspects of the initial state. Illegal

situations will be suppressed in what follows for the sake of time. In more

direct function notation, dealing only with the legal situation,

[x := y;](<x, y , ... >) = (y , y, ... >

in which the function argument <x, y , ... > produces the function value

(y,y, .. .).

Next, for a sequence of statements, such as

x := y; y := z; z := x;

in Ada, the part function

[x := y; y := z; z := x;]

30 HARLAN D. MILLS

will alter values of x, y, and z as a composition of the three individual

assignment functions

[x := y;] * [y := z;] * [z := x;] .

That is, beginning with an initial state as argument, the first assignment

function gives a new state as value

[x := y ;]((x, y, z, . ..)) = (y, y, z, ...)

the second assignment function uses this value as an argument

[y := z ;]((y, y, z, 0 0 0)) = (y, z, z, 0 . 0)

and the third assignment function uses this last value as argument

[z := x;]((y, z, z, ...)) = (y, z, y, ...)

That is, the composition function is a nested set of simpler functions that

evaluate as

([x := y;] * [y := z;] * [z := x;])((x, y, z, ...))

= [z := x ;]([y := z ;]([x := y;]((x, y, z, ...))))

= [z := x;]([y := z;]((y, y, z, . ..)))

= [z := x ;]((y, z, z, ...))

= (y, z,y, ...)

as worked out just before. In summary, this composition function will inter

change the values of y and z and leave x with the initial value of y, not

changing any other data in the initial state.

Finally, for an alternation statement, such as

if x > y then y : = z; else x : = z end if;

in Ada, the part function will execute either the then part or the else part,

so that

[if x > y then y := z; else x := z; end if;]

= (x > y-> [y := z;] I x = y-> [x := z;])

= [y:=z;lx> y] u [x:=z; lx=y]

where the expression [y := z; I x > y] means the function [y := z;] with its

domain restricted to the condition x > y. That is, the part function is a union

of disjoint functions.

ZERO DEFECT SOFTWARE 31

7. Statistical Quality Control

Software is either correct or incorrect in design to a specification, in con

trast to hardware which is reliable to a certain level in performing to a

correct design. For small and regular software, it may be possible to test

exhaustively the software to determine its correctness. But software of any

size or complexity can only be tested partially, and typically a very small

fraction of possible inputs are actually tested. Certifying the correctness of

such software requires two conditions, namely

1. statistical testing with inputs characteristic of actual usage, and

2. no failures in the testing.

F or interactive software, the statistical correlation of successive inputs must

be treated as well. If any failures arise in testing or subsequent usage, the

-oftware is incorrect, and the certification is invalid. If such failures are

orrected, the certification process can be restarted, with no use of previous

esting results. Such corrections may lead to additional failures, or may not.

So certifying the correctness of software is an empirical process that is bound

o succeed if the software is indeed correct and may succeed for some time

if the software is incorrect. While possibly frustrating at first glance, this is

all humans can assert about the correctness of software. But on second

glance, the sequential history of certification efforts provides a human basis

-or assessing the quality of the software and expectations for achieving future

~o rrectness.

The statistical foundations for cleanroom engineering come from adding

:ISage statistics to software specifications, along with function and perfor

::nance requirements (Cobb and Mills, 1990; Mills et al., 1987b; Whittaker

:md Poore, 1992). Such usage statistics provide a basis for measuring the

correctness of the software during its development, and thereby measuring

- e accuracy of the design in meeting functional and performance require-

ents. A more usual way to view development in this first generation is as

~ difficult-to-predict art form. Software with no known errors at delivery

:"requently experiences many failures in actual usage.

7.1 Precision Specifications

In this first human generation of software development, most of the

rogress and discipline has been discovered in the latter parts of the life

:cle, first in coding machine programs in higher level languages, then in

::!.feaS such as structured programming and object-oriented design. Problems

32 HARLAN D. MILLS

in requirements analyses and specifications are more difficult. Defining pre

cisely what is needed and what should be provided by software is more

general and difficult than simply producing working software in hopes that

it will be satisfactory on trial by users. Even when specifications are required,

they are frequently provided in informal, natural languages with consider

able room for misunderstandings between designers and users, and with gaps

in exact details in which programming misinterpretations are possible and

likely.

Precision specifications require formal languages, just as programming

does. In the case of programming the need is very obvious because computer

machine languages are formal. But as systems become more complex and

are used by more people with more critical impacts on business, industry,

and government institutions, the need for formal languages for specifications

becomes clearer. New programming languages have improved primarily in

their abilities to provide explicit structure in data and procedure. For

example, Ada has no more capability in defining machine operations than

Fortran or COBOL. But it has more explicit design structures for people to

use, for example in packages for data abstractions or objects. Specification

languages also need explicit structures for the same reason, to allow people

to express requirements as directly as possible.

Regardless of the language, formal or informal, a functional specification

defines not only legal system inputs, but legal input histories, and for each

legal input history, a set of one or more legal outputs. Such legal input

.histories may be defined in real time systems in which real time is a critical

factor, and the outputs given real time requirements as well. Illegal inputs

and histories may be treated in various ways, from ignoring them to attempts

to decipher or correct them. Any definite treatments of illegal inputs or

histories become part of the specification as well. The abstraction of any

such functional specification, in any language, is a mathematical relation

a set of ordered pairs whose first members are input histories and whose

second members are outputs. Then, there is a very direct and simple mathe

matical definition for a program meeting a specification. It is that the func

tion defined by the program determines a value for every argument in the

domain of the specification relation and that this value be associated with

that argument in the relation (Mills, 1986; Mills et al., 1987a).

In cleanroom software engineering, precision specifications are extended

in two separate ways to create a structured architecture. First, the functional

specifications are designed as a set of nested subspecifications, each a strict

subset of the preceding subspecification. Then, beginning with the smallest

subspecification, a pipeline of software increments is defined with each step

going to the next larger subspecification (Mills et al., 1987b). Second, the

usage of the functional specifications is defined as a statistical distribution

ZERO DEFECT SOFTWARE 33

over all possible input histories (Dyer, 1992a ; Whittaker and Poore, 1990).

The structured architecture makes statistical quality control possible in sub

equent incremental software development to the functional specifications.

The usage statistics provide a statistical basis for testing and certification of

the reliability of the software in meeting its specifications.

The creation of a structured architecture defines not only what a software

ystem is to be when it is finished, but also a construction plan to design

and test the software in a pipeline of subsystems, step-by-step. The pipeline

must define step sizes that the design group can complete without debugging

prior to delivery to the certification group. Well-educated and disciplined

design groups may handle step sizes up to 20,000 lines of high level code.

But the structured architecture must also determine a satisfactory set of user

executable increments for the development pipeline of overlapping design

and test operations.

7.2 Statistical Certification

As each specified increment is completed by the designers, it is delivered

to the certifiers, combined with preceding increments, for testing based on

usage statistics. As noted, the cleanroom architecture must define a sequence

of nested increments that are to be executed exclusively by user commands

as they accumulate into the entire system required. Each subsequence repre

sents a subsystem complete in itself, even though not all the user function

may be provided in it. For each subsystem, a certified reliability is defined

from the usage testing and failures discovered, if any.

The COBOL Structuring Facility consisted of80 KLOC, 28 KLOC reused

from previous products, 52 KLOC new or changed, designed and tested in

a pipeline of five increments (Kouchakdjian, 1989), the largest over

19 KLOC. A total of 179 corrections were required during certification,

under 3.5 corrections per KLOC for code with no previous execution. The

productivity of the development was 740 LOC per person/ month, including

all specification, design, implementation, and management, in meeting a very

short deadline.

Cleanroom statistical certification of software involves, first, the specifica

tion of usage statistics in addition to function and performance specifi

cations. Such usage statistics provide a basis for assessing the correctness of

the software being tested under expected use. As each specified increment is

completed by the designers, it is delivered to the certifiers, who combine it

with preceding increments, for testing based on usage statistics. As noted,

the cleanroom architecture must define a sequence of nested increments that

are to be executed exclusively by user commands as they accumulate into the

entire system required. Each subsequence represents a subsystem complete in

34 HARLAN D. MILLS

itself, even though not all the user function may be provided in it. For each

subsystem, a certified correctness is defined from the usage testing and

failures discovered, if any.

It is characteristic that each increment goes through a maturation during

the testing, becoming more reliable, from corrections required for failures

found, serving thereby as a stable base as later increments are delivered and

integrated to the developing system. For example, the HH60 flight control

program had three increments (Cobb and Mills, 1990; Dyer, 1992a) of

over 10 KLOC each. Increment 1 code required 27 corrections for failures

discovered in its first appearance in increment 1 testing, but then only 1

correction during increment 1/ 2 testing, and 2 corrections during increment

1/ 2/ 3 testing. Code in increment 2 required 20 corrections during its first

appearance in increment 1/2 testing, and 5 corrections during increment

1/2/3 testing. Increment 3 code required 21 corrections on its first appear

ance in increment 1/ 2/ 3 testing. In this case, 76 corrections were required

in a system of over 30 KLOC, under 2.5 corrections per KLOC for verified

and inspected code, with no previous execution or debugging.

In the certification process, it is not only important to observe failures in

execution, but also the times between such failures in execution of usage

representative statistically generated inputs. Such test data must be devel

oped to represent the sequential usage of the software by users, which, of

course, will account for previous outputs seen by the users and what needs

the users will have in various circumstances. The state of mind of a user and

the current need can be represented by a stochastic process determined by

a state machine whose present state is defined by previous inputs/ outputs

and a statistical model that provides the next input based on that present

state (Mills et al., 1987b).

7.3 Certification Tasks

In parallel with the cleanroom development team, the cleanroom certifi

cation team prepares to certify the software up to and including the incre

ment being developed by the development team. The certification team uses

the usage profile and the portion of the specification that is applicable to the

increments to be verified to prepare test cases including proper outputs to

tests.

When the development team has completed an increment, the certification

team creates a version of the accumulated system up through this increment.

For each version the certification team compiles the increment, combines it

with previous increments, and certifies the accumulated system through this

version. If failures are encountered in the certification of a version, they are

returned to the development team for analysis and for engineering changes

ZERO DEFECT SOFTWARE 35

to whatever increments are causing the failures. While failures are likely to

be caused by the latest increment added, previous increments may be at fault

and changed as well, as noted in the HH60 experience. Each redelivery of

changed increments defines a new version of the accumulated system. If no

failures are encountered in the certification of a version, no additional

versions are required.

Within each version of the accumulating system, tests are constructed at

random in accordance with the specified usage statistics profile and then

exercised. Test results are compared with a standard and either a failure

occurred or the result was correct.

7.4 Certification on a Scientific Basis

Certification of software on a scientific basis requires a statistical usage

specification as well as functional and performance specifications. The testing

must be carried out by statistical selection of tests from these specifications.

Tests selected directly are ad hoc, and give no basis for statistical inference

on the correctness of the software. Some uses of the software may be much

more important than other uses, and the statistical selections can be given

in various levels of stratified sampling. Thus, not only basic statistical usage

is to be defined, but the relative importance of correctness for each usage.

This is new information that is often not known until the software is put

into actual use, but should be generated with functional and performance

specifications beforehand.

Next, the actual statistical testing must be carried out when the software

is available, possibly in stratified form. One extreme form of stratified form

is an important case chosen with probability 1 in that stratus. Next, if a

failure is found in testing, the software should be returned to the developers

for correction before further testing. When the correction is made, a new

start of testing is begun. The Time to Failure (TTF) is recorded for each

failure discovered. The Time without Failure (TWF) is tracked when no

failures have appeared. This TWF can be tracked after the software is

distributed to users as part of the characterization of its correctness. If

failures appear with users, the same rules of correction and restart of TWF

should occur.

As already noted, there is a profound difference between the correctness

of software and the reliability of hardware. When software has hundreds

or thousands of errors, its behaviour may seem to approximate hardware

reliability. But when software has under 0.1 failures per KLOC, possibly

none, the statistics of hardware failures are not valid. In this first human

generation, it has seemed impossible to create zero defect software, but it

can be, and has been, done, as will be discussed further. Part of the issue is

36 HARLAN D. MILLS

discovering a new human possibility, with more engineering education and

engineering management. Part of the issue is the economic feasibility. It

requires less human effort to produce zero defect software with new methods

than error prone software with older methods. The human effort required

is both engineering verification and statistical testing, and they complement

each other in unexpected ways.

7.5 Usage Testing

A user's specification for a substantial software system will identify various

classes of user commands and data for various parts of the system. For

example, bringing up an interactive system at the beginning of the day will

require and accept certain kinds of user commands and data of which the

ordinary interactive users may not even be aware. But bringing the system

up is an integral part of the process for a certain class of users . During the

day, several distinct classes of users may be interacting simultaneously and

independently, such as users adding data to the system, or users making

enquiries, or users monitoring the system use and performance. Within each

such class, several or many users may be interacting simultaneously and

independently, as well.

However, as simultaneously and concurrently as these various users seem

to interact with the system, the individual computers in the system each

operate strictly sequentially in real time, shifting from one user to another

so rapidly that each user gets almost immediate response, even though ten,

or a thousand, other users may have been serviced between the user's stimu

lus and the system's response. As a rule, users are separated from one another

by operating in different, relatively. protected, data spaces that represent the

tasks they are doing. But users can interact, intentionally or not, as their

tasks become more intertwined.

For example, in an airline reservation system, a ticket agent may inquire

about availability of seats on a given flight and get the response that seats

are available. Then when the seats are requested a moment later, the response

is that no seats are available. Other users have interacted in picking up the

seats in the previous moment. Such system behavior is designed. It would

be conceivable to design an airline reservation system such that seats could

be held from inquiry to request, but it would require entirely different levels

of data storage and processing. In this way, it is clear that user independence

is relative, with economic and technical issues involved with multiple users

in systems.

This understanding that significant software systems have different kinds

of uses applies whether there are single or multiple users . A single user may

be using a system in different ways at different times, even within a single

ZERO DEFECT SOFTWARE 37

session. The design of the software will typically reflect such different uses

by packaging similar operations in common modules. For example, various

kinds of data searching may be handled in a search module, but data retriev

als may be handled in a different retrieval module. It also makes similar

sense to identify similar stimuli response operations in specifications, entirely

from the user point of view and state of mind. In particular, complex spe

cifications need to be designed as carefully as programs to reflect the natural

structure of the problem being solved and to find effective specification

structures that reflect user activities and understandings.

7.6 Software Usage as a Markov Process

As noted, software specifications deal with functional behavior and per

formance. Functional behavior is ordinarily decomposed into various

subfunctions in ways understandable by users, and often obtained from users

as requirements. Performance will usually affect design in fundamental ways.

But expected usage of the software will have critical impacts on performance

issues. For example, a data base system with much more querying than data

addition or deletion may call for a design with high performance queries at

the expense of data addition and deletion performance. Such a design can

be entirely unsatisfactory with different usage. Thus, expected usage statistics

can play a key role in software system design.

However, there is another critical use for usage statistics as part of

oftware specifications. It is to permit the certification of software. Software

behavior depends not only on how correct the software is but also on how

it is used. For every possible state of internally stored data, any command

and input data is handled either correctly or incorrectly, denoted as a failure

in the latter case at some level of seriousness.

Now, with a statistical usage specification for each possible internal state,

the probability of each selection of commands and input data in such a state

will be known. Next, the functional specification will define what the new

internal state will become, as well as the response to the user. These two

facts define a Markov process, namely the set of all internal data states and

the probability of getting from each member of the state set to the next

member. Of course, some members may be terminal when the process

terminates.

In a Ph.D. thesis by Whittaker (1992), a sound approach to certification

· given using the Markov processes to maintain the sequential integrity of

testing. The first Markov process, called the usage Markov chain, describes

usage of the software in terms of stimuli and state transitions. This chain is

used as a test sequence generator for the statistical test. Furthermore, a

38 HAR LAN D. MILLS

comprehensive analysis of the usage chain is developed that characterizes

the stochastic properties of the sequence used in the statistical test. The

second Markov process, called the testing Markov chain, describes the his

tory of the statistical test including failure data. A method for constructing

the testing chain is given and an analysis is performed that results in a

discrete, data-driven software reliability model. Derived from this model are

estimates of the reliability, the mean time between failure, and an analytical

stopping criterion based on the stochastic properties of both Markov chains.

8. Conclusions

Software is either correct or incorrect in design to a well-defined specifica

tion, in contrast to hardware which is reliable to a certain level in performing

to a design assumed to be correct. For small and regular software, it may

be possible to test exhaustively the software to determine its correctness.

Even then, failures can be overlooked from human fallibility. But software

of any size or complexity can only be tested partially, and typically a very

small fraction of possible inputs are actually tested. At first glance, the

fractions are so small for systems of ordinary size that the task of testing

looks impossible. But when combined with mathematical verification, getting

correct software is indeed possible.

Certifying the correctness of such software requires two conditions,

namely:

1. Statistical testing with inputs characteristic of actual usage, and

2. No failures in the testing.

For interactive software, the statistical correlation of successive inputs must

be treated as well. If any failures arise in testing or subsequent usage, the

software is incorrect, and the certification is invalid. If such failures are

corrected, the certification process can be restarted, with no use of previous

testing results. Such corrections may lead to additional failures, or may not.

So certifying the correctness of software is an empirical process that is bound

to succeed if the software is indeed correct and may succeed for some time

if the software is incorrect.

While possibly frustrating at first glance, this is all humans can assert

about the correctness of software. In both verification and testing, human

fallibility is present. But on second glance, the sequential history of certifi

cation efforts provides a human basis for assessing the quality of the software

and expectations for achieving future correctness.

ZERO DEFECT SOFTWARE 39

REFERENCES

Adams, E. N. (1980). Minimizing Cost Impact of Software Defects. IBM Research Report RC

8228 (#35669).

Anderson, T. W., and Goodman, L. A. (1957). Statistical Inference About Markov Chains.

Annals Math Stat. 28, 89- 109.

Bogott, R. P., and Franklin, M.A. (1975). Evaluation of Markov Program Models in Virtual

Memory Systems. Software Practice Exp. 5, 337- 346.

Cheung, R. C., (1980) . A User-Oriented Software Reliability Model. IEEE Trans Software

Eng. SE-6(1), 118- 125.

Chow, T. S. (1978). Testing Software Design Modeled by Finite-State Machines. IEEE Trans

Software Eng. SE-4(1), 178- 187.

Cobb, R. H., and Mills, H. D. (1990). Engineering Software Under Statistical Quality Control.

IEEE Software, 44-54.

Currit, P. A., Dyer, M., and Mills, H. D. (1986). Certifying the Reliability of Software. IEEE

Trans Software Eng. SE-12(1), 3- 11.

Curtis, B. (1980). Measurement and Experimentation in Software Engineering. Proc. IEEE

68(9), 1144- 1157.

Dalal, S. R. , and Mallows, C. L. (1988). J. Am. Stat. Assoc. 83(403), 872- 879.

Deck, M. D., Pleszkoch, M. G., Linger, R. C., and Mills, H. D. (1992). Extended Semantics

for Box Structures. Proc. Hawaii Tnt. Conf. System Sciences, Vol. II, IEEE, pp. 382- 393.

Duran, J. W., and Ntafos, S. C. (1984). An Evaluation of Random Testing. IEEE Trans

Software Eng. SE-10(4) , 438- 444.

Duran, J. W. , and Wiorkowski, J. J. (1980). Quantifying Software Validity by Sampling. IEEE

Trans Reliability R-29(2) , 141- 144.

Dyer, M. (1992a). "The Cleanroom Approach to Quality Software Development." Wiley, New

York.

Dyer, M. (1992b). Verification-Based Inspection. Proc. Hawaii Int. Conf. System Sciences, Vol.

II, IEEE, pp. 418- 427.

Feller, W. (1950). "An Introduction to Probability Theory and Its Application." Vol. I. Wiley,

New York.

Fetzer, D. T. , and Poore, J. H. (1992). Using Box Structures with the Z Notation. Proc. Hawaii

Int. Conf. System Sciences, Vol. II, IEEE, pp. 394-405.

Fuhrer, D., Mao, H., and Poore, J. H. (1992). OS/ 2 Cleanroom Environment: A Progress

Report on a Cleanroom Tools Development Project. Proc. Hawaii Int. Conf. System Sci

ences, Vol. II, IEEE, pp. 449- 458 .

Hamlet, D. , and Taylor, R . (1990) . Partition Testing Does Not Inspire Confidence. IEEE Trans

Software Eng. SE-16(12), 1402- 1411.

Hetzel, W. (Ed.) (1972). "Program Test Methods." Prentice-Hall, New York.

Hevner, A. R. , and Becker, S. A. (1992). Central Repository Data models for Cleanroom

Systems Development. Proc. Hawaii Int. Conf. System Sciences, Vol. II, IEEE, pp. 459- 469.

Howden, W. E. (1976). Reliability of the Path Analysis Testing Strategy. IEEE Trans Software

Eng. SE-2(3) , 208- 215 .

Ianinio, A. , Littlewood, B. , Musa, J. D. , and Okumoto, K. (1984) . Criteria for Software

Reliability Model Comparisons. IEEE Trans Software Eng. SE-10, 687- 691.

Jelinski, Z., and Maranda, P. B. (1972). Software Reliability Research. In "Statistical Computer

Performance Evaluation," (W. Friedberger, ed.), Academic Press, Boston.

luang, B. H. , and Rabiner, L. R. (1985) . A Probabilistic Distance Mmeasure for Hidden

Markov models. AT&T Tech. J. 64(2), 391- 408 .

h.emeny, J. G., and Snell, J. L. (1976). "Finite Markov Chains. " Springer-Verlag, New York.

40 HARLAN D. MILLS

Kouchakdjian, A., Green, S. E., and Basili, V. R . (1989). The C1eanroom Case Study in the

Software Engineering Laboratory: An Experiment in Formal Methods. SEL, University of

Maryland.

Leveson, N. G. (1986). Software Safety: Why, What, and How. Computing Surveys 18(2),

125- 163.

Linger, R. C., and Mills, H. D. (1988). A Case Study in Cleanroom Software Engineering: the

IBM COBOL Structuring Facility. Proceedings of COMPSAC '88, IEEE.

Linger, R. C., Mills, H. D., and Witt, B. I. (1979). "Structured Programming: Theory and

Practice." Addison-Wesley, Reading, Massachusetts.

Littlewood, B. (1978). How To Measure Software Reliability and How Not To. Proc. 3rd

Inter. Conf. Software Eng.

Mills, H. D. (1975). The New Math of Computer Programming. Comm ACM 18(1).

Mills, H. D. (1983). "Software Productivity." Little, Brown and Company.

Mills, H. D. (1986). Structured Programming: Retrospect and Prospect. IEEE Software, 58- 66.

Mills, H. D. (1988). Stepwise Refinement and Verification in Box-Structured Systems. IEEE

Computer, 23-36.

Mills, H. D. (1992). Certifying the Correctness of Software. Proc. Hawaii Int. Conf. System

Sciences, Vol. II, IEEE, pp. 373- 381.

Mills, H. D., and Linger, R. C. (1986). Data Structured Programming: Program Design without

Arrays and Pointers. IEEE Trans Software Eng. SE-12(2), 192- 197.

Mills, H. D., and Poore, J . H. (1988). Bringing Software Under Statistical Quality Control.

Quality Progress, November, 52- 55.

Mills, H. D., Linger R. C., and Hevner, A. R. (1986). " Principles of Information Systems

Analysis and Design." Academic Press, Boston.

Mills, H. D., Basili, V. R., Gannon, J . D., and Hamlet, R. G. (1987a). "Principles of Computer

Programming: A Mathematical Approach." William C. Brown.

Mills, H. D., Dyer, M., and Linger, R. C. (1987b). Cleanroom Software Engineering. IEEE

Software, September, 19- 24.

Mills, H. D., Linger R. C., and Hevner, A. R. (1987c). Box Structured Information Systems.

IBM Systems J. 26(4), 395- 413.

Musa, J.D. (1975). A Theory of Software Reliability and Its Application. IEEE Trans Software

Eng. SE-1, 312- 321.

Musa, J. D. (1980). The Measurement and Management of Software Reliability. Proc. IEEE

68(9), 1131-1143.

Parnas, D. L. (1972). A Technique for Software Module Specification with Examples. CACM

15, 330- 336. •

Parnas, D. L. (1979). Designing Software for Ease of Extension and Contraction . IEEE Trans

Software Eng. SE-5, 128-138.

Parnas, D. L. (1990). An Evaluation of Safety-Critical Software. Comm ACM 23(6), 636-648.

Parnas, D. L., and Wang, Y. (1989). The Trace Assertion Method of Module-Interface Spe

cification. Technical Report 89-261, Queen's University, TRIO.

Poore, J. H., Mills, H. D., Hopkins, S. L. , and Whittaker, J. A. (1990) . Cleanroom Reliability

Mmanager: A Case Study Using Cleanroom with Box Structures ADL. Technical Report,

Software Engineering Technology, IBM-SID, STARS CDRL 1880.

Poore, J. H ., Duitz, M., Fuhrer, D ., Mao, H., Trammel, C., and Whittaker, J. A. (1991a). A

Preprocessor for a Box Structured Design Language for C (Cleanroom Case Study). Techni

cal Report, Dept. Computer Science, Univ. of Tennessee.

Poore, J. H., Dodson, J., Duitz, M., Fuhrer, D., Mao, H., and Whittaker, J. A. (1991b).

Certification Model (Cleanroom case Study). Technical Report, Dept. Computer Science,

Univ. of Tennessee.

ZERO DEFECT SOFTWARE 41

Poore, J. H. , Dodson, J., Duitz, M ., Fuhrer, D. , Mao, H., and Whittaker, J. A. (1991c). OS/

2 Cleanroom Environment (Cieanroom Case Study). Technical Report, Dept. Computer

Science, Univ. of Tennessee.

Rosen, S. J. (1992) . Design Languages for Cleanroom Software Engineering. Proc. Hawaii Int.

Con f. System Sciences, Vol. II , IEEE, pp. 406-417 .

Selby, R. W., Basili, V. R., and Baker, F. T. (1987). Cleanroom Software Development : an

Empirical Evaluation. IEEE Trans Software Eng. SE-13(9).

Siegrist, K . (1988) . Reliability of Systems with Markov Transfer of Control. IEEE Trans

Software Eng. 14(7), 1049-1053.

Trammell, C. J., Hausler, P. A., and Galbraith, C. E. (1992). Incremental Implementation of

Cleanroom Practices. Proc. Hawaii Int. Conf. System Sciences, Vol. II , IEEE, pp. 437-448.

Whittaker, J. A. (1992). Markov Chain Techniques for Software Testing and Reliability Analy

sis, Ph.D. dissertation, Univ. of Tennessee.

Whittaker, J. A. , and Poore, J. H. (1992). Statistical Testing for Cleanroom Software Engineer

ing. Proc. Hawaii Int. Conf. System Sciences, Vol. II, IEEE, pp. 428- 436.

Wirth, N. (1971). Program Development by Stepwise Refinement. Comm. A CM 14(4), 221 - 227.

	Zero-Defect Software - Cleanroom Engineering
	Recommended Citation

	tmp.1317774993.pdf.TMb0i

