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Abstract: The bivariate Poisson model is the most widely used model for bivariate counts, and in
recent years, several bivariate Poisson regression models have been developed in order to analyse
two response variables that are possibly correlated. In this paper, a particular class of bivariate
Poisson model, developed from the bivariate Bernoulli model, will be presented and investigated.
The proposed bivariate Poisson models use dependence parameters that can model positively and
negatively correlated data, whereas more well-known models, such as Holgate’s bivariate Poisson
model, can only be used for positively correlated data. As a result, the proposed model contributes to
improving the properties of the more common bivariate Poisson regression models. Furthermore,
some of the properties of the new bivariate Poisson model are outlined. The method of maximum
likelihood and moment method were used to estimate the parameters of the proposed model.
Additionally, real data from the healthcare utilization sector were used. As in the case of healthcare
utilization, dependence between the two variables may be positive or negative in order to assess
the performance of the proposed model, in comparison to traditional bivariate count models. All
computations and graphs shown in this paper were produced using R programming language.

Keywords: Poisson; Bernoulli; count data; maximum likelihood; moment method; regression;
bivariate models
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1. Introduction

Bivariate count models have received increasing scholarly attention in recent years,
mainly because they offer flexibility for fitting across a wide variety of random phenom-
ena. For instance, applications based on discrete bivariate models are often used in the
fields of health sciences, traffic accidents, economics, actuarial science, social sciences, envi-
ronmental studies, and so forth [1]. For more information about bivariate count models,
the reader is directed to [2–8]. The most widely used model for bivariate counts is the
bivariate Poisson model, which was developed by [9]. The bivariate Poisson model, which
was developed by [9], is considered the limit of a bivariate contingency table model. The
literature outlines the main contributions and applications of bivariate Poisson models.
For instance, the bivariate Poisson model can be used in modelling data in sports [10,11],
health [12–14], econometrics and insurance [15,16], and so forth. Furthermore, the use of
the bivariate Poisson model is not unique in its different methodological applications. One
of the methods is the trivariate reduction, which was studied by [17] and developed by [18].
Bivariate Poisson models have been developed based on the method of trivariate reduction
using convolutions of independent Poisson random variables. These models allow for only
non-negative correlation between variables. For a comprehensive review of the bivariate
Poisson model and its applications, the reader is directed to references [4,19–21].
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More recently, researchers have developed bivariate Poisson regression models. These
models analyse two response variables that are possibly correlated, and they allow the
two response variables to be affected by different predictive factors. This means that
bivariate Poisson regression models can be used for inference and prediction purposes.
Early studies of the use of bivariate count regression models to analyse correlated count
events include those by [3], who use a bivariate Poisson regression in a labour mobility
study. Furthermore, using a bivariate Poisson regression model, [22] study the relationship
between types of health insurance and various responses that measure the demand for
health care. Only recently have bivariate regression models been compared and their
application in different fields analysed in depth. A study by [13] examines bivariate
and zero-inflated bivariate Poisson regression models using the conditional method, as
compared with the standard method, using a joint probability distribution (j.p.d). Therefore,
bivariate Poisson regression models play a vital role in modeling, analyzing, and improving
the fit results when two dependent variables in a data set are highly correlated [1,12,23].

Although the bivariate Poisson regression model offers useful properties for modeling
paired count data that exhibits correlations, some models have major drawbacks. One
drawback is that some models can only model data with positive correlations [24]. For
instance, a bivariate Poisson model based on the trivariate reduction method studied
by [17] lacks generality, because it shows a positive correlation only. A few previous
studies have explored and developed bivariate Poisson regression models that allow for
negative correlations, including bivariate Poisson distribution as a product of Poisson
marginals with a multiplicative factor [5]. In addition, [25] have proposed a bivariate
Poisson distribution that allows for negative correlations by using conditional probabilities.
This current paper will consider a class of bivariate Poisson models generated from the
bivariate Bernoulli model, which can model positively and negatively correlated data. This
is a progression on from other bivariate Poisson models already proposed in previous
research, including the well-known Holgate [17] bivariate Poisson model. One of the merits
of the proposed model is that its structure is relatively simple. The proposed models seek
to contribute to improving the properties of commonly used bivariate Poisson models. In
this paper, the statistical properties of the new model are studied, and the parameters of
the proposed model are estimated using the maximum likelihood and moment methods.
In this respect, a simulation study was carried out to investigate the performance of the
parameter estimation ability of the proposed model using the maximum likelihood and
moment method. Finally, applications of the proposed model will be presented in the
healthcare sector, and the model’s performance will be compared against well-known
bivariate Poisson models.

This paper is organized into sections as follows: Section 2 will detail the proposed
bivariate Poisson model and the relevant estimation methods used. Section 3 will present
relevant application of this model, using data drawn from different fields and will compare
the results with well-known models. Finally, a conclusion will be presented in Section 4.

2. Zero-Dependent Bivariate Poisson Model (ZDBP)

Different methods have been used to construct bivariate Poisson distributions, with
specified marginal distributions. Most of the well-known bivariate Poisson models use the
popular reduction method [4]. However, this method has two main drawbacks. Firstly,
it does not support negative correlation values and secondly, it does not cover the entire
range of feasible correlations. In the current study, the construction of a developed bivariate
Poisson model is presented, without the aforementioned drawbacks as follows:

If we consider that (B1, B2) has Bernoulli marginals, then it has only four possible
values (1, 1), (1, 0), (0, 1), and (0, 0) with the probabilities p11, p10, p01, and p00, which are
pij = P(B1 = i, B2 = j), i, j = 0, 1. If the marginal probability discrete random variables
are independent of (B1, B2), and have a probability mass function of zero-truncated Poisson
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distribution with the parameters θ1 and θ2, respectively, then the probability mass function
can be defined as follows:

P(Xi = j) =
e−θi

1− e−θi

θi
j

j!
, j = 1, 2, . . . , i = 1, 2

.
Here, set Yi = BiXi, i = 1, 2, where pi = 1− e−θi , i = 1, 2. Then, Yi has a Poisson

distribution with the parameter θi. The j.d.f of the two random variables, Y1 and Y2, can be
expressed as follows:

P(Y1 = y1, Y2 = y2) =
1

∑
i,j=0

P(Y1 = y1, Y2 = y2|B1 = i, B2 = j)pij

Then:

P(Y1 = y1, Y2 = y2)

= θ1
y1

y1!
θ2

y2
y2!

(
1−p1

p1

)1−δ(y1)
(

1−p2
p2

)1−δ(y2)
p00

δ(y1)δ(y2)p10
(1−δ(y1))δ(y2)p01

δ(y1)(1−δ(y2))p11
(1−δ(y1))(1−δ(y2))

(1)

for y1, y2 = 0, 1, . . . where δ(x) = 1 if x = 0 and 0 is otherwise.
Generally, Y1 and Y2 are dependent and therefore (1) defines a new bivariate Poisson

distribution, which will be called the zero-dependent Bivariate Poisson Model (ZDBP)
model. Since bivariate Bernoulli distribution is completely determined by the three param-
eters p1, p2, and p11, then, the above shows that the ZDBP model is completely determined
by the three parameters θ1, θ2, and p11. Therefore, the ZDBP (θ1, θ2, p11) model can be used
whenever the parameters matter and as a result, (1) can be rewritten as follows:

P(Y1 = y1, Y2 = y2)

= θ1
y1

y1!
θ2

y2
y2!

(
e−θ1

1−e−θ1

)1−δ(y1)
(

e−θ2

1−e−θ2

)1−δ(y2) (
e−θ1 + e−θ2 + p11 − 1

)δ(y1)δ(y2) (1− e−θ1

−p11)
δ(y2)(1−δ(y1))

(
1− e−θ2 − p11

)δ(y1)(1−δ(y2))p11
(1−δ(y1))(1−δ(y2))

(2)

To visualize the j.p.d for the ZDBP model in (2), the representative j.p.d plots for
different parameter choices are shown in Figures 1–3, where negative dependence is
apparent in Figures 1 and 3. The package “plot3D” in R is needed to represent the plots in
Figures 1–3.
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Figure 1. The j.p.d of the ZDBP model for θ1 = 0.79, θ2 = 0.79 and p11 = 0.19 with cor = −0.3.
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Figure 2. The j.p.d of the ZDBP model for θ1 = 1.96, θ2 = 1.96 and p11 = 0.85 with cor = 0.3.
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Figure 3. The j.p.d of the ZDBP model for θ1 = 0.84, θ2 = 0.58 and p11 = 0.15 with cor = −0.3.

2.1. Statistical Properties

The ZDBP model has statistical properties that can be easily proven. These properties
are shown as follows:

Theorem 1. The conditional probability function of Y1 given Y2 is

P(Y1 = y1| Y2 = y2) =

{
P0(y2) y1 = 0

(1− P0(y2))
θ1

y1
y1!

(
e−θ1

1−e−θ1

)
y1 = 1, 2, . . .

,

where,

P0(y2) = eθ2

(
e−θ2

1− e−θ2

)1−δ(y2) (
e−θ1 + e−θ2 + p11 − 1

)δ(y2)
(

1− e−θ2 − p11

)(1−δ(y2))

Proof . Dividing (2) by θ2
y2

y2! e−θ2 one gets

P(Y1 = y1| Y2 = y2) = eθ2
θ1

y1

y1!

(
e−θ1

1− e−θ1

)1−δ(y1)( e−θ2

1− e−θ2

)1−δ(y2) (
e−θ1 + e−θ2 + p11 − 1

)δ(y1)δ(y2)

(
1− e−θ1 − p11

)δ(y2)(1−δ(y1))
(

1− e−θ2 − p11

)δ(y1)(1−δ(y2))
p11

(1−δ(y1))(1−δ(y2)).

Therefore, for y1 = 0, we have

P(Y1 = 0| Y2 = y2) = eθ2

(
e−θ2

1− e−θ2

)1−δ(y2) (
e−θ1 + e−θ2 + p11 − 1

)δ(y2)
(

1− e−θ2 − p11

)(1−δ(y2))
= P0(y2).
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In addition, for y1 6= 0, we have

P(Y1 = y1| Y2 = y2) = eθ2
θ1

y1

y1!

(
e−θ1

1− e−θ1

)(
e−θ2

1− e−θ2

)1−δ(y2) (
1− e−θ1 − p11

)δ(y2)
p11

(1−δ(y2))

From the two cases y2 = 0 and y2 6= 0, we conclude that

eθ2

(
e−θ2

1− e−θ2

)1−δ(y2) [(
e−θ1 + e−θ2 + p11 − 1

)δ(y2) (
1− e−θ2 − p11

)(1−δ(y2))
+ eθ2

θ1
y1

y1!

(
1− e−θ1 − p11

)δ(y2)
p11

(1−δ(y2))
]
= 1,

As a result, we get

eθ2

(
e−θ2

1− e−θ2

)1−δ(y2) (
1− e−θ1 − p11

)δ(y2)
p11

(1−δ(y2)) = 1− P0(y2).

This completes the proof. �

From the above, it is clear that Theorem 1 implies that the conditional distribution
of Y1 given Y2 is mixture of degenerated distribution at zero and zero-truncated Poisson
distribution with mixing probabilities dependent on the value of y2. In other words, we can
write Y1

∣∣∣Y2 =d I(Y2)R, where I(Y2) is the Bernoulli random variable with failure probabil-
ity as P0(Y2) independent of the zero-truncated Poisson random variable R. Therefore, we
have the following corollary.

Corollary 1.

E[Y1|Y2 = y2] =
θ1

1− e−θ1
[1− P0(y2)] =

θ1

1− e−θ1

{
eθ2
(
1− e−θ1 − p11

)
, y2 = 0

p11
1−e−θ2

, y2 6= 0

Theorem 2. The covariance of Y1 and Y2 is cov(Y1, Y2) =
θ1θ2
p1 p2

(p11 − p1 p2)

Proof . The covariance of Y1 and Y2 according to the assumption Yi = BiXi, i = 1, 2 can be
defined as follows:

cov(Y1, Y2) = cov(B1X1, B2X2) = E(B1X1B2X2)− E(B1X1)E(B2X2)

Since X1 and X2 are independent of (B1, B2), then

cov(Y1, Y2) = E(X1)E(X2)E(B1B2)− E(X1)E(X2)E(B1)E(B2) = E(X1)E(X2)[E(B1B2)− E(B1)E(B2)]

=
θ1θ2(

1− e−θ1
)(

1− e−θ2
) cov(B1, B2)

Since cov(B1, B2) = p11 − p1 p2 and pi = 1− e−θi , therefore we get the result

cov(Y1, Y2) =
θ1θ2

p1 p2
(p11 − p1 p2)

�

From Corollary 1, it is clear that Y1 and Y2 will be independent variables when
p11 = p1 p2.

Corollary 2. The correlation of Y1 and Y2 is cor(Y1, Y2) =
√

θ1θ2(1−p1)(1−p2)
p1 p2

cor(B1, B2) .
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Proof . The correlation of Y1 and Y2 according to the assumption Yi = BiXi, i = 1, 2 is
defined as follows:

cor(Y1, Y2) = cor(B1X1, B2X2) =
cov(Y1, Y2)

σ(Y1)σ(Y2)

From Corollary 1 and since Yi ∼ Poisson(θi), i = 1, 2, then

cor(Y1, Y2) =

√
θ1θ2

p1 p2
(p11 − p1 p2)

Since cor(B1, B2) =
p11−p1 p2√

p1(1−p1)p2(1−p2)
, then the equation above can be written as

cor(Y1, Y2) =

√
θ1θ2(1− p1)(1− p2)

p1 p2
cor(B1, B2)

�

From Corollary 2, we can conclude that the correlation of Y1 and Y2 allows the ZDBP
model to be positively or negatively correlated since it depends on cor(B1, B2), which can
be a negative or a positive correlation.

2.2. Parameter Estimation

An estimation of the ZDBP model parameters was obtained using the maximum like-
lihood estimation (ML) and moment methods (MM). The ZDBP model has six parameters
that can be estimated based on three parameters, which are θ1, θ2, and p11. If we consider n
as the independent vectors (yi1, yi2), where the i-th vector is the ZDBP model shown in (2),
then the estimators can be expressed as follows:

2.2.1. Maximum Likelihood Estimation (ML)
The likelihood function of (2) is shown below as

L(θ1, θ2, p11, p00, p10, p01, p11; y1i , y2i)

=
n
∏
i=1

θ1
y1i

y1i !
θ2

y2i
y2i !

(
e−θ1

1−e−θ1

)1−δ(y1i)
(

e−θ2

1−e−θ2

)1−δ(y2i)(
e−θ1 + e−θ2 + p11 − 1

)δ(y1i)δ(y2i)(1− e−θ1

−p11)
δ(y2i)(1−δ(y1i))

(
1− e−θ2 − p11

)δ(y1i)(1−δ(y2i))p11
(1−δ(y1i))(1−δ(y2i))

It is worth mentioning that θ1, θ2, and p11 are sufficient to be used with ML method
in order to estimate the other parameters. This is because of the dependent relationship
between the parameters. The corresponding log likelihood can be given as follows:

` = logL(θ1, θ2, p11; y1i , y2i)

=
n
∑

i=1
[y1i log(θ1)− log(y1i!) + y2i log(θ2)− log(y2i!)− (1− δ(y1i))

(
θ1 + log

(
1− e−θ1

))
−(1− δ(y2i))

(
θ2 + log

(
1− e−θ2

))
+ δ(y1i)δ(y2i) log

(
e−θ1 + e−θ2 + p11 − 1

)
+δ(y2i)(1− δ(y1i))log

(
1− e−θ1 − p11

)
+ δ(y1i)(1− δ(y2i))log(1− e−θ2 − p11)

+(1− δ(y1i))(1− δ(y2i)) log(p11)]

Furthermore, the corresponding likelihood equations are shown below:

∂`

∂θ̂1
= 0,

∂`

∂θ̂2
= 0 and

∂`

∂ p̂11
= 0 (3)
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These equations can be solved numerically to estimate the parameters θ1, θ2, and p11.
Following on from this, other parameters were estimated using the following equations:

p̂1 = 1− e−θ̂1

p̂2 = 1− e−θ̂2

p̂10 = 1− e−θ̂1 − p̂11

p̂01 = 1− e−θ̂2 − p̂11

p̂00 = e−θ̂1 + e−θ̂2 + p̂11 − 1


(4)

2.2.2. Moment Method Estimation (MM)

Using the MM, the following equations were considered in order to estimate the
parameters θ1, θ2, and p11 as follows:

y1 = θ̂1
y2 = θ̂2

p̂11 =
(

1− e−θ̂1
)(

1− e−θ̂2
)[

γ̂

θ̂1 θ̂2
+ 1
]


Following on from this, other parameters were estimated using (4).

2.2.3. Simulation Study

A simulation study was conducted to assess the performance of the ML method and
MM used for the estimation of ZDBP’s parameters. The simulation was executed according
to the steps outlined below:

1. A total of 1000 data sets with sizes of 20, 50, 200, and 1000, relating to each data set,
were generated from the ZDBP model using four different theoretical parameters
values, with varying positive and negative correlations as follows:

(a) Case 1: Model ZDBP (0.30, 1.57, 0.05) with cor = −0.5;
(b) Case 2: Model ZDBP (0.54, 0.89, 0.07) with cor = −0.5;
(c) Case 3: Model ZDBP (0.44, 0.37, 0.19) with cor = 0.3;
(d) Case 4: Model ZDBP (0.17, 0.19, 0.13) with cor = 0.7.

2. Calculating the ML estimates of θ1, θ2, and p11 and considering that 1− e−θ̂1 − e−θ̂2 ≤
p̂11 ≤ min

{
1− e−θ̂1 , 1− e−θ̂2

}
, the obtained estimates by step 1 were ignored.

3. The bias and mean square error (MSE) were calculated for all considered models.

In Step 1, packages “mipfp”, “VGAM”, and “actuar” in R were used in order to
generate data from the ZDBP model. In addition, in Step 2, Equation (3) is solved numeri-
cally using the function “optim” in R. The method “BFGS”, a quasi-Newton method, was
chosen for the optimization problem among other methods in optim function because it is
relatively quick. Tables 1–4 below show the performance of the ML method and the MM
used for estimation of the ZDBP’ parameters, taking into account the MSE and bias relating
to the cases shown in Step 1 of the simulation study. In general, the results revealed the
superiority of the ML method for the estimation of positive and negative correlations in
comparison with the MM, taking into account the MSE. In addition, the ML results of θ1, θ2,
and p11 were better than the MM results of these parameters based on the MSE for n = 20,
except for the ML results of θ1, θ2, when θ1 > θ2, as shown in Table 1.

It can be seen that the performance using the ML method for the estimation of the
parameters θ1, θ2, and p11 is similar to that generated by the MM for 1000, especially for
positive correlations. See Table 3.

The MSE of ML for θ1 and θ2 are the same as the MSE of MM estimates of these
parameters when n = 50 for θ2 only, and when n = 200 for both parameters. Moreover,
Table 4 shows that the MSE of ML for θ1 and p11 are the same as the MSE of MM estimates
of these parameters when n = 200. For n = 1000, the performance of ML in general is the
same as MM for the estimation of θ1, θ2, and p11, according to the MSE when either the
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correlation is positive or negative. As a result, it can be concluded that the ML estimates
of the ZDBP model’s parameters are useful for estimation, in comparison with the MM
estimates, especially for small samples and for when θ1, θ2 < 1.

Figure 4 shows the MSE results using the ML of θ1, θ2, where cor related to the cases is
shown in Step 1 of the simulation study. It is clear from Figure 4a–d that using the MLE, as
the sample size increases, the MSE for θ1, θ2 and cor decreases simultaneously. Using the
ML method, the MSE for θ1 and θ2 is less than the MSE for cor in relation to the positive
correlation, as shown in Figure 4c,d. On the other hand, using the ML method, the MSE for
cor, as shown in Figure 4a,b, is less than the MSE for θ1 and θ2 for the large sample sizes
and for the negative correlation.

Table 1. MSE and bias between parentheses for the different simulated data sizes: n = 20, 50, 200,
1000 for the ZDBP (0.30, 1.57, 0.05) model with cor = −0.5.

n 20 50 200 1000

Method ML MM ML MM ML MM ML MM

θ̂1
MSE 0.0038 0.0022 0.0101 0.0014 0.0002 0.0017 0.0002 0.0004
bias 0.0467 0.0468 0.2867 0.0368 0.0092 0.0393 0.0087 0.0138

θ̂2
MSE 0.1937 0.1092 0.0002 0.0271 0.0090 0.0096 0.0007 0.0004
bias −0.4347 −0.2630 −0.0138 0.1570 0.0948 0.0970 −0.0254 −0.0205

p̂11
MSE 0.0027 0.0047 0.0001 0.0001 0.0005 0.0006 0.0001 0.0001
bias −0.0329 −0.0600 0.0075 0.0010 0.0213 0.0204 0.0010 −0.0031

ˆcor
MSE 0.0165 0.0682 0.0004 0.0088 0.0016 0.0010 0.0001 0.0007
bias −0.1118 −0.2447 0.0145 −0.0809 0.0397 −0.0034 −0.0032 −0.0257

Table 2. MSE and bias between parentheses for the different simulated data sizes: n = 20, 50, 200,
1000 for the ZDBP (0.54, 0.89, 0.07) model with cor = −0.5.

n 20 50 200 1000

Method ML MM ML MM ML MM ML MM

θ̂1
MSE 0.0227 0.0251 0.0082 0.0097 0.0022 0.0027 0.0004 0.0005
bias −0.0048 0.0192 0.0026 0.0135 −0.0047 −0.0037 0.0001 0.0002

θ̂2
MSE 0.0390 0.0415 0.0149 0.0162 0.0040 0.0043 0.0008 0.0009
bias −0.0061 0.0132 0.0012 0.0090 0.0006 0.0009 0.0005 0.0011

p̂11
MSE 0.0021 0.0040 0.0010 0.0017 0.0003 0.0005 0.0001 0.0001
bias −0.0155 −0.0163 0.0017 0.0018 −0.0003 0.0006 0.0005 0.0006

ˆcor
MSE 0.0123 0.0290 0.0045 0.0100 0.0012 0.0027 0.0002 0.0005
bias −0.0600 −0.0900 −0.0048 −0.0164 0.0006 0.0021 0.0008 0.0007

Table 3. MSE and bias between parentheses for the different simulated data sizes: n = 20, 50, 200,
1000 for the ZDBP (0.44, 0.37, 0.19) model with cor = 0.3.

n 20 50 200 1000

Method ML MM ML MM ML MM ML MM

θ̂1
MSE 0.0194 0.0200 0.0091 0.0093 0.0023 0.0023 0.0004 0.0004
bias 0.0161 0.0125 −0.0026 −0.0036 −0.0013 −0.0016 −0.0001 −0.0003

θ̂2
MSE 0.0175 0.0181 0.0073 0.0073 0.0019 0.0019 0.0004 0.0004
bias −0.0068 −0.0108 0.0020 0.0002 −0.0016 −0.0018 −0.0004 −0.0003

p̂11
MSE 0.0060 0.0070 0.0027 0.0032 0.00070 0.0008 0.0001 0.0001
bias 0.0157 0.0178 0.0024 0.0006 −0.0007 −0.0008 0.0003 0.0003

ˆcor
MSE 0.0275 0.0415 0.0131 0.0209 0.0031 0.0054 0.0007 0.0011
bias 0.0375 0.0524 0.0010 −0.0031 −0.0012 −0.0015 0.0011 0.0012
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Table 4. MSE and bias between parentheses for the different simulated data sizes: n = 20, 50, 200,
1000 from the ZDBP (0.17, 0.19, 0.13) model with cor = 0.7.

n 20 50 200 1000

Method MLE MM MLE MM MLE MM MLE MM

θ̂1
MSE 0.0070 0.0081 0.0029 0.0033 0.0007 0.0007 0.0002 0.0002
bias −0.0356 −0.0403 −0.0069 −0.0100 −0.0002 −0.0007 0.0001 0.0001

θ̂2
MSE 0.0072 0.0079 0.0035 0.0037 0.0008 0.0009 0.0002 0.0002
bias −0.0219 −0.0264 0.0014 −0.0006 0.0010 0.0005 0.0001 −0.0001

p̂11
MSE 0.0034 0.0035 0.0019 0.0020 0.0005 0.0005 0.0001 0.0001
bias 0.0119 0.0099 0.0075 0.0070 0.0012 0.0008 0.00003 −0.00002

ˆcor
MSE 0.0599 0.0662 0.0153 0.0191 0.0030 0.0047 0.0006 0.0010
bias 0.2130 0.2143 0.0664 0.0736 0.0051 0.0048 −0.0006 −0.0008
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Figure 4. Summary of the results provided by lines of MSE of the estimates θ̂1, θ̂2, and ˆcor for the
different simulated data sizes n = 20, 50, 200, 1000 relating to the models (a) ZDBP (0.30, 1.57, 0.05),
(b) ZDBP (0.54, 0.89, 0.07), (c) ZDBP (0.44, 0.37, 0.19), and (d) ZDBP (0.17, 0.19, 0.13).

2.2.4. Applications

Real data examples were studied to investigate the performance of the ZDBP model
for fitting positively and negatively correlated bivariate data compared to other models.
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Health and Retirement Study (HRS) Data

The first data set used to illustrate the application of the ZDBP model was drawn from
the tenth wave of the Health and Retirement Study (HRS). A summary of the descriptive
statistics of dependent variables for this data are provided by Islam and Chowdhury [26].
In the same study, bivariate Poisson-Poisson (BP-P) and bivariate right-truncated Poisson-
Poisson (BRTP-P) models are fitted to the data from the Health and Retirement Study. The
variables comprise the number of conditions a patient has ever had, as noted by doctors, X1,
and the utilization of healthcare services, where the services derive from hospitals, nursing
homes, doctors, and home care assistants, X2. The sample size is 5567 and the correlation
between X1 and X2 is 0.06.

For the current study, the proposed ZDBP model was fitted to the same data and
compared with the models in [26]. Table 5 summarises results for the fittings for the ZDBP
model, the bivariate Poisson model with independent marginals (BP), and the BP-PR and
the BRTP-P models. These results are shown in terms of the number of parameters used,
and according to the Akaike Information Criteria (AIC), Bayesian Information Criteria
(BIC), and loglikelihood estimate (`). The results show the superiority of the ZDBP model
for fitting the Health and Retirement Study (HRS) data in comparison with the other models,
based on AIC and BIC, show the ability of the ZDBP model to fit positively correlated data.
An analysis of the ML estimates derived for the ZDBP model is presented in Table 6.

Table 5. Comparison between models from the Health and Retirement Study data.

Model AIC BIC `

ZDBP 31,727.26 31,747.14 −15,860.63

BP 32,707.61 32,720.86 −16,351.81

BP-P 33,419.33 33,432.58 −16,707.66

BRTP-P 33,196.42 33,209.67 −16,596.21

Table 6. Fitting Results for the ZDBP model from the Health and Retirement Study data.

Model Parameter Estimate SE

Parameter

p11 0.582 0.006

θ1 2.768 0.023

θ2 0.545 0.013

cor 0.588

Australian Health Data (1977–1978)

The data discussed in this example comes from the Journal of Applied Econometrics
1997 Data Archive [27]. The data covers 5190 single-person households, and provides
healthcare service utilization information from the 1977–1978 Australian Health Survey. A
study by [28] uses this data in their analysis of various measures of health-care utilisation.
A detailed summary of the statistics for the dependent and explanatory variables of this
data is provided in [28]. We consider the number of consultations with doctors during
the two-week period prior to the survey (Y1) and the number of prescribed medicines
used in the past 2 days (Y2). The mean and the standard deviation of Y1 are 0.302 and
0.798, respectively. The corresponding values for Y2 are 0.863 and 1.415 and the correlation
between Y1 and Y2 is 0.31.

The ZDBP model was fitted to the data and compared with the BP model. Table 7
presents a summary of results for the ZDBP and BP models, in terms of the number of
parameters, AIC, BIC, and `. The results show the superiority of the ZDBP model compared
with the BP model for fitting the Australian Health data, based on AIC and BIC. An analysis
of the ML parameter estimates derived for the ZDBP model is shown in Table 8. In addition,
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we consider the dependent variables, Y2, and the number of non-prescribed medications
used in past two days, Y3. The mean and the standard deviation of Y2 are 0.863 and 1.42,
the corresponding values for Y3 are 0.356 and 0.71, and the correlation between Y2 and Y3
is−0.04. Table 9 presents a summary of the results for the ZDBP and BP models, in terms of
the number of parameters, AIC, BIC, and `. The results show that the ZDBP model appears
to be competitive with the BP model for fitting the Australian Health data in comparison
with the other models, based on AIC and BIC. Therefore, this example emphasises the
ability of the ZDBP model to fit positively and negatively correlated data. An analysis of
the ML estimates derived for the ZDBP model is provided in Table 10.

Table 7. Comparison between the ZDBP and BP models from the Australian Health data.

Model AIC BIC `

ZDBP 22,498.39 22,518.05 −11,246.19

BP 23,176.13 23,189.24 −11,586.07

Table 8. Fitting results for the ZDBP model from the Australian Health data.

Model Parameter Estimate SE

Parameter

p11 0.261 0.006

θ1 0.367 0.009

θ2 0.891 0.013

cor 0.252

Table 9. Comparison between ZDBP and BP models from the Australian Health data.

Model AIC BIC `

ZDBP 23,543.50 23,563.16 −11,768.75

BP 23,541.73 23,554.84 −11,768.86

Table 10. Fitting results for the ZDBP model from the Australian Health data.

Model Parameter Estimate SE

Parameter

p11 0.172 0.006

θ1 0.862 0.013

θ2 0.354 0.009

cor −0.01

3. Zero-Dependent Bivariate Poisson Regression Model (ZDBPR)

In this section, the Bivariate Bernoulli Poisson Regression Model will be considered. In
this context, αk = zT

i βkl , k = 1, 2, and 3 is where zi denotes a vector of explanatory variables
of length l for the i-th observation related to the k-th parameter. This means that βkl is the
corresponding vector of regression coefficients. In this respect, the ZDBPR model can take
the following form:

(Y1i, Y2i) ∼ ZDBPR(θ1i, θ2i, p11i)

p11i =
eα1i
D , p10i =

eα2i
D , p01i =

eα3i
D , p00i =

1
D

}
(5)

where D = 1+ eα1i + eα2i + eα3i , P
(

Bj = 0
)
= p01i + p00i = e−θji , j = 1, 2, and i = 1, 2, · · · , n

and n denotes the observation number.
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The ZDBPR model uses two response variables that are positively and negatively
correlated. In addition, this model can be compared with other models to show that it has
identical AIC, BIC, and parameter estimates.

3.1. Applications
3.1.1. Health and Retirement Study (HRS) Data

In this example, the same dependent variables used by [26] were considered, as
outlined in “Health and Retirement Study (HRS) Data” Section. A study by [26] fit this
data using bivariate right-truncated Poisson-Poisson regression (BRTP-PR), and bivariate
Poisson-Poisson regression (BP-PR) models. They found that the BRTP-PR model appears
to be significantly better than the BP-PR model for fitting the data.

For the purpose of this research, the ZDBPR model was used to fit the data, and was
compared with the model used by [26]. Furthermore, the ZDBPR model was compared with
the joint bivariate Poisson regression (JBPR) model used by [13], in which the covariates
are gender (1 male, 0 female), age (in years), race (1 Hispanic, 0 others), and veteran status
(1 yes, 0 no). Table 11 shows the results for the ZDBPR, JBPR, BPR, BP-PR, and BRTP-PR
models in terms of the number of parameters, i.e., AIC, BIC, and `. The results show
the superiority of the ZDBPR model for fitting the Health and Retirement Study data in
comparison with the other models, based on AIC and BIC. This suggests that the ZDBPR
model is able to fit positively correlated data. An analysis of the ML estimates derived for
this model is provided in Table 12.

Table 11. Comparison between models for the Health and Retirement Study data.

Number of Parameters AIC BIC `

ZDBPR 15 31,982.88 32,082.25 −15,976.44

JBPR 15 32,524.53 32,623.90 −16,247.26

BPR 15 32,514.53 32,580.77 −16,247.26

BP-PR 15 33,192.13 33,258.38 −16,586.07

BRTP-PR 15 33,021.41 33,087.66 −16,500.71

Table 12. Fitting results for the ZDBPR model from the Health and Retirement Study data.

Parameter Covariate Coefficient SE

α1

constant −0.471 0.591

gender 0.014 0.063

age 3.265 0.804

Hispanic −0.107 0.090

Veteran 0.209 0.072

α2

constant −2.295 0.655

gender −0.528 0.072

age 5.716 0.889

Hispanic 0.201 0.093

Veteran −0.011 0.088

α3

constant −15.164 135.930

gender −2.239 706.157

age 2.519 19.098

Hispanic −0.166 417.107

Veteran −1.296 1572.270
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3.1.2. Australian Health Data (1977–1978)

In this example, the same dependent variables as used by [13] are used, namely Y1 and
Y2. The covariates used are gender (1 female, 0 male), age in years divided by 100 (measured
as midpoints of age groups), and the annual income in Australian dollars divided by 1000
(measured as midpoint of coded ranges). In the study by [13], model (A) was fitted as a
JBPR model, where the covariates were gender, age, income, and age multiplied by gender,
with gender as a covariate on the covariance scale. In addition, model (B) was fitted as a
JBPR model, where the covariates were gender, age, and income, with a constant covariance
term. A study by [13] concludes that the JBPR model performs better than the other models
examined in their study. For the purposes of this current research, Model A and B have
been fitted for the ZDBPR model. Table 13 shows the results for the ZDBPR and JBPR
models, relating to the number of parameters, AIC, BIC, and `. These results show the
superiority of the ZDBPR model for fitting the Health Care Australia data in comparison
with the JBPR model, based on AIC and BIC. This suggests that the ZDBPR model can
positively fit the correlated data. An analysis of the ML estimates derived for this model is
provided in Table 14.

Table 13. Comparison between ZDBPR and JBPR models from the Health Care Australia data.

Model Number of Parameters AIC BIC `

ZDBPR
A

15 19,856.41 19,954.73 −9913.21

JBPR 12 19,912.90 19,991.55 −9944.45

ZDBPR
B

12 19,910.80 19,989.45 −9943.40

JBPR 11 19,942.16 20,014.26 −9960.08

Table 14. Fitting results for the ZDBPR model from the Health Care Australia data using Model A.1
and B.1.

Model A B

Parameter Covariate Coefficient SE Coefficient SE

constant −3.161 0.170 −2.670 0.127

gender 5.980 0.298 4.780 0.177

age 1.621 0.184 0.762 0.073

income −0.531 0.110 −0.509 0.106

Age∗gender −1.963 0.361

α2

constant −2.302 0.212 −2.202 0.188

gender 0.894 0.491 0.430 0.324

age 0.547 0.263 0.254 0.123

income −0.133 0.167 −0.105 0.167

Age∗gender −0.974 0.657

α3

constant −3.371 0.158 −2.798 0.116

gender 6.031 0.286 4.589 0.162

age 2.065 0.167 1.139 0.069

income −0.101 0.089 −0.076 0.091

Age∗gender −2.196 0.341

This current study also considered the same dependent variables used by Zamani et.al. [29],
which are Y2 and Y3. Furthermore, [29] fit their data using a bivariate Poisson regression
model, whereby the j.p.d is proposed by [5]. The bivariate Poisson model developed by [5]
is defined from the product of two Poisson marginals with a multiplicative factor parameter.
For ease of notation, the current study will refer to the Zamani et al. model as BPR [29].
Table 15 shows that the ZDBPR model performs better than the BPR [29] model in terms
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of AIC and BIC. This suggests that the ZDBPR model can fit negatively correlated data.
Table 16 provides an analysis of the ML estimates derived for this model.

Table 15. Comparison between ZDBPR and BPR [29] models from the Health Care Australia data.

Number of Parameters AIC BIC `

ZDBPR 39 19,025.4 19,281.03 −9473.70

BPR [29] 26 19,097.2 19,267.60 −9522.59

Table 16. Results from fitting the ZDBPR model to the Health Care Australia data.

Parameter Covariate Coefficient SE

α1

constant −5.791 0.349

gender 1.383 0.110

age 6.083 1.785

agesq −4.448 1.970

income 0.323 0.152

levyplus 0.442 0.126

freepoor −0.036 0.293

freerepa 0.243 0.173

illness 0.695 0.032

actdays 0.097 0.014

hscore 0.080 0.020

chcond1 1.217 0.118

chcond2 1.569 0.155

α2

constant −3.278 0.251

gender 0.949 0.071

age 1.737 1.343

agesq 1.674 1.481

income 0.052 0.110

levyplus 0.225 0.089

freepoor −0.165 0.205

freerepa 0.277 0.122

illness 0.463 0.032

actdays 0.077 0.014

hscore 0.056 0.017

chcond1 1.098 0.077

chcond2 1.541 0.114

α3

constant −2.422 0.283

gender 0.348 0.084

age 5.403 1.671

agesq −6.079 1.946

income 0.083 0.122

levyplus −0.145 0.089

freepoor −0.083 0.179

freerepa −0.449 0.167

illness 0.344 0.032

actdays −0.010 0.020

hscore 0.054 0.020

chcond1 0.312 0.089

chcond2 0.067 0.164
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4. Conclusions

This paper has presented new bivariate Poisson models that can be fitted to bivariate
and correlated count data with and without covariates. The main advantage of the ZDBP
model and the ZDBPR model is their ability to fit positively and negatively correlated count
data. This advantage is valuable for fitting different kinds of data in the healthcare field, as
in the case of healthcare data, dependence between the two variables may be positive or
negative. The statistical properties of the ZDBP model were discussed, and some properties
of this model were proven, which shows that the pair of ZDBP variables can be positively
or negatively correlated. Estimation for the ZDBP model was achieved using the ML and
the MM methods, with different parameters, and with positive and negative correlations.
In the simulation, the ML method showed good performance for estimation in comparison
with the MM. Real data were used to examine the performance of the ZDBP model and the
ZDBPR model for fitting positive and negative correlated count data, in comparison with
other models. The applications for both models show the superiorities of these models
in comparison with other models. This suggests that the ZDBP model and the ZDBPR
model can allow the correlation structure to be positive or negative. Finally, although the
proposed model was applied in two healthcare data sets, the model can be generalized and
utilized in the other areas of research as well.
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