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Zero-Determinant Strategies in 

Iterated Public Goods Game
Liming Pan1, Dong Hao1, Zhihai Rong1 & Tao Zhou1,2

Recently, Press and Dyson have proposed a new class of probabilistic and conditional strategies for 

the two-player iterated Prisoner’s Dilemma, so-called zero-determinant strategies. A player adopting 

zero-determinant strategies is able to pin the expected payoff of the opponents or to enforce a 
linear relationship between his own payoff and the opponents’ payoff, in a unilateral way. This paper 
considers zero-determinant strategies in the iterated public goods game, a representative multi-

player game where in each round each player will choose whether or not to put his tokens into a 

public pot, and the tokens in this pot are multiplied by a factor larger than one and then evenly 

divided among all players. The analytical and numerical results exhibit a similar yet different scenario 
to the case of two-player games: (i) with small number of players or a small multiplication factor, 

a player is able to unilaterally pin the expected total payoff of all other players; (ii) a player is able 
to set the ratio between his payoff and the total payoff of all other players, but this ratio is limited 
by an upper bound if the multiplication factor exceeds a threshold that depends on the number of 

players.

Repeated games have long been exemplary models for the emergence of cooperation in socioeconomic 
and biological systems1,2. Learned from these studies, the most significant lesson is that in the long term, 
selfish behavior will hurt you as much as your opponents. Therefore, from both scientific and moral 
perspectives, we all live in a reassuring world: altruists will eventually dominate a reasonable population. 
Very recently, however, Press and Dyson3 have shattered this well-accepted scenario by introducing a 
new class of probabilistic memory-one strategies for the two-player iterated Prisoner’s Dilemma (IPD), 
so-called zero-determinant (ZD) strategies. Via ZD strategies, a player can unilaterally pin his oppo-
nents’ expected payoff or extort his opponents by enforcing a linear relationship between his own payoff 
and the opponents’ payoff. In a word, egotists could become more powerful and harmful if they know 
mathematics. Though being challenged by the evolutionary stability4–6, studies on ZD strategies as a 
whole3–18 will dramatically change our understanding on repeated games (see also recent commentaries 
and reviews19–21). Indeed, knowing the existence of ZD strategies has already changed the game.

ZD strategies in IPD can be naturally extended to other two-player repeated games22, which are still 
uncultivated lands for scientists. However, we turn our attention to the multi-player repeated games 
and try to answer a blazing question: could a single ZD player in a group of considerable number 
of players unilaterally pin the expected total payoff of all other players and extort them? Investigating 
zero-determinant strategies of multi-player game can extend our understanding of cooperation evolution 
from pairwise interactions to group interactions23–25.

This paper focuses on a notable representative of multi-player games, the public goods game 
(PGG)26,27. In the simplest N-player PGG, each player chooses whether or not contribute a unit of cost 
into a public pot. The total contribution in the public pot will be multiplied by a factor r (1 <  r <  N) and 
then be evenly divided among all N players, regardless whether they have contributed or not. As a simple 
but rich model, the PGG raises the question why and when a player is willing to contribute against the 
obvious Nash equilibrium at zero28, which is critical for the understanding, predicting and intervening 
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of many important issues ranging from micro-organism behaviors29,30 to global warming31–33. Among a 
couple of candidates34–40, the repeated interactions may be a relevant mechanism to the above question, 
since reputation, trustiness, reward and punishment can then play a role41,42. We thus study the iterated 
public goods game (IPGG, also named as repeated public goods game in the literatures) where the same 
players in a group play a series of stage games.

It is found by surprise that in multi-player repeated games, a single player can pin the total payoff of 
all others or extort them in a unilateral way. However, different from the observations in IPD, there exist 
some unreported restrictive conditions related to the group size and multiplication factor, which deter-
mine the feasibility to pin the total payoff of all other players and the upper bound of extortionate ratio.

Results
ZD Strategies in Multi-Player Games. Consider an N-player repeated game, in which some stage 
game between N players is infinitely repeated. We prove the theorem (see Supplementary Methods) that 
in such multi-player infinitely repeated games, a long-memory player has no advantages over short-mem-
ory players. Therefore, in this paper we assume a player’s action in the current round depends only on 
the outcome of the previous round. Consider in each stage game, every player may choose cooperation 
(C) or defection (D), thus there are 2N possible outcomes for each round. For an arbitrary player 

∈ , , ,x N{1 2 }, a (mixed) strategy px is a vector, which consists of conditional probabilities for coop-
eration with respect to each of these possible outcomes, as:

=  , , , 
 ( ) p p p p 1

x x

i

x x T

1 2N

where p
i

x represents the cooperating probability in the current round conditioning on the i-th outcome 
of the previous round. Figure 1(a,b) depict an example for a three-player repeated game, in which the 
possible outcomes are {CCC,CCD,CDC,CDD,DCC,DCD,DDC,DDD}.

In many well-known multi-player symmetric games (e.g., public goods game26,27, collective-risk social 
dilemma31, volunteers dilemma43, multi-player snowdrift44 and multi-player stag-hunt games45), whether 
a specific opponent chooses to cooperate is less meaningful, instead, it is crucial for a player to know 

Figure 1. Illustration of the three-player repeated game. (a) For a previous outcome CDD, the conditional 

probabilities that the player 1, 2 and 3 select C in the current round are 
,

p
C 0
1 , 

,
p

D 1
2  and 

,
p

D 1
3 , respectively. 

Therefore, the probability of transiting from the previous state CDD to the current state CDD is 

( )−
, , ,

p p p1
C D D0
1

1
2

1
3 . (b) The strategies and payoff vectors for the three-player IPGG. (c) After some 

elementary column operations on matrix M-I, the dot product of an arbitrary vector u with the stationary 

vector v is equal to the determinant det(p1, p2, p3, u), in which the fourth, sixth and seventh columns p1, p2 

and p3 are only controlled by the players 1, 2 and 3, respectively.



www.nature.com/scientificreports/

3Scientific RepoRts | 5:13096 | DOi: 10.1038/srep13096

how many of his opponents cooperate. In such a scenario, a player’s current move depends only on his 
last move and the number of cooperators among his opponents in the last round. Without loss of gen-
erality, we discuss player 1 and omit the superscripts. If his previous move is C (or D) and the number 
of cooperators among the opponents in the last round is ∈ , , , −n N{0 1 1}, the probabilities for him 
to cooperate in the current round is pC,n (or pD,n). Therefore, the strategy vector for him is represented 
as

( )

( )
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in which there are only 2N independent components. Figure 1(b) gives an example of the strategy vector 
for the three-player case.

Since we consider memory-one strategies, the game can be characterized by a Markov chain with a 
state transition matrix = 



 ×

MM ij
2 2N N

, where i and j are the indexes of the old and new states, respec-

tively. In this paper we only consider when the transition matrix M is regular. Then there is a unique 
stationary distribution vector which is independent of initial conditions, thus we do not specify the initial 
cooperation probabilities for the players. Denote u1 player 1’s payoff vector which consists of payoffs 
under different outcomes. The payoff vectors for the three-player IPGG are shown in Fig. 1(b). Denote 
v the stationary vector of M such that vT · M =  vT, the inner product vT · u1 yields player 1’s expected 
payoff in the stationary state. In the Methods Section and the SI we show that: (i) The inner product  
vT · u1 is equal to the determinant of a matrix which is obtained via replacing the last column of M −  I 
by u1; (ii) In this determinant, there is one column which can be determined by only player 1’s strategy 
p1 (see proof in the Materials and Methods). Record this special column as p1. Figure  1(c) shows the 
determinant for the three-player IPGG, in which the fourth column is solely determined by player 1 (It 
is worth noting that, since the IPGG we considered is a symmetrical game, the sixth column is solely 
determined by player 2 and the seventh column is solely determined by player 3). If player 1 sets p1 
properly and makes

∑ α α= + , ( )=
p u 1 3x

N
x

x1
0

then he can unilaterally enforce a linear relationship among all players’ expected payoffs such that

∑ α α+ = . ( )=
E 0 4x

N
x

x

1 0

Here Ex denotes the expected payoff for player x, and α0, α α, , n1  are coefficients for linear combina-
tion. The strategy p1 resulting in the linear equation  (4) is called the multi-player zero-determinant 
strategy.

We further study the features of multi-player ZD strategies under the iterated public goods game, 
which is a common paradigm for studying social dilemmas. Consider there are N  players involved in the 
IPGG, and each player obtains an initial endowment c >  0 in each stage game31,39. Without loss of gen-
erality, we set c =  1. Then each chooses either to cooperate by contributing his own endowment c =  1 into 
a public pool, or to defect by contributing nothing. At the end of each stage game, the total contribution 
will be multiplied by a factor r (1 <  r <  N) and divided equally among the N players. An arbitrary player 
x’s payoff under outcome i is denoted as

=
( ( ) + )

+ ( − ),
( )

u
r n i h

N
h1

5i
x

x
x

where n(i) is the number of cooperators among x’s N −  1 opponents in the outcome i, and hx =  1 if player 
x chooses to cooperate while hx =  0 otherwise. Hence the payoff vector of player x is 

= 

, , , , 


 u u uux x

i
x x

T

1 2N
. Figure 1(b) gives an example of the payoff vectors for a three-player public 

goods game.

Equalizer Strategies. By utilizing the multi-player ZD strategy, player 1 can unilaterally set his oppo-
nents’ total payoff to a fixed value. Such a unilateral controlling strategy is called the equalizer strategy46. 
Player 1 can implement the equalizer strategy by choosing a vector p1 so that
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∑µ ξ= + , ( )=
p u 1 6x

N x1

2

which only requires α1 =  0 and αx≠1 =  µ. Adopting such a strategy p1, according to equation (4), player 
1 can establish a linear relationship among all opponents’ payoffs, as:

∑µ ξ+ = . ( )=
E 0 7x

N x

2

Equation (6) is equivalent to a system of 2N linear equations, in which there are 2N independent ones 
corresponding to the 2N independent components. These 2N independent equations have the form:

µ ξ= +
( + )( − ) + ( − − )

+ ,
( ),

p
r n N N n N
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9D n

where ∈ , , , −n N{0 1 1}.
According to equations (7–9), by adopting an equalizer strategy, player 1 can enforce a total payoff for 

his opponents as:

∑
ξ

µ γ
= − = ( − ) +

( − )( − )

+
,
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E N

r N
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1 1

1 10x
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where γ =
−

, −

,

p

p

1
C N

D

1

0

 denotes the relation between pC,N−1 and pD,0. The opponents’ total payoff thus 

depends on the number of players N, the multiplication factor r and the parameter γ. Player 1 can thus 
adjust the opponents’ total payoff by adopting strategies that results in different values of γ. Note that the 
same equalizer effect can be realized by different equalizer strategies with the same γ. Figure 2 shows the 
relationship between player 1’s payoff and the other two players’ average payoff in a three-player IPGG, 
when player 1 adopts non-ZD and ZD strategies while his opponents adopt random strategies. Under 
different equalizer strategies, the average payoff of the opponents varies. By inspection on equation (10), 
a large pC,N−1 or a small pD,0 brings a small γ, and consequently increases the total payoff of the oppo-
nents. The range of possible total payoff of the opponents is also strongly affected by r and N: (i) when 

< ≤
−

r1
N

N 1
, player 1 can set this value from (N −  1) to r(N −  1), or equivalently, he can set the average 

payoff of co-players from 1 to r; (ii) when < <
− −

r
N

N

N

N1 2
, the feasible region shrinks as the increase 
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Figure 2. The payoff of player 1 versus the average payoff of other two players in a three-player IPGG 

with r = 1.6. The game is simulated 50000 times and each payoff pair is depicted as a single point in the 

two-dimensional area. (a) Player 1 adopts a non-ZD strategy with p1 =  [1, 0, 0, 0, 0, 1, 1, 1] for the outcomes 

of {CCC,CCD,CDC,CDD,DCC,DCD,DDC,DDD}, where the payoff pairs are distributed into a two-

dimensional area. (b) Player 1 adopts an equalizer strategy p1 =  [0.08, 0.15, 0.15, 0.22, 0.17, 0.24, 0.24, 0.31] 

and player 2 and player 3 both adopt random strategies. The sample points of payoffs form a straight line 

with slope zero, regardless of player 2’s and player 3’s strategies.(c) Player 1 adopts a χ-extortion strategy 

with p1 =  [0.87, 0.87, 0.87, 0.86, 0.01, 0, 0, 0] and χ =  7.9. The sample points of payoff pairs fall into a 

straight line with slope less than 1, which indicates the extortioner always seize a larger payoff than the 

opponents’ average payoff.
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of r; and (iii) when =
−

r
N

N 2
, player 1 can only fix the opponents’ total payoff to −

−

N

N

1

2
 (see more detail in 

Supplementary Methods).
Moreover, according to equations  (8) and (9), all the other 2N −  2 strategy components and the 

coefficients µ and ξ can be represented by pC,N−1 and pD,0. In Supplementary Methods, the monotonicity 
analysis affirms that as long as the probability constraints 0 ≤  pC,N−1 ≤  1 and 0 ≤  pD,0 ≤  1 are satisfied, 
the nontrivial equalizer strategies exist. Generally, the feasible regions of equalizer strategies are the inter-
sections of two half-planes determined by pC,N−1 and pD,0, which can be obtained by linear programming. 
In Fig.  3, we illustrate the feasible regions of equalizer strategies under different cases of r and N, as 
well as the allowed upper bound of r versus different N. It is shown that as the increase of the number 
of player N, the allowed upper bound of r decreases with the number of players N, namely the feasible 
regions of equalizer strategies get narrow. Thus it is difficult for player 1 to pin his opponents’ payoff 
when more players participate in the game.

Extortion Strategies. Besides setting the opponents’ total payoff, a ZD player can also extort all his 
opponents and guarantee that his own surplus over the free-rider’s payoff is χ-fold of the sum of oppo-
nents’ surplus. This is the so-called χ-extortion strategy. Formally, the extortion strategy is defined as:

∑χ= Φ

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

( − ) − ( − )
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

,

( )=

p u u1 1
11x

N
x1 1

2

where χ is the extortionate ratio and Φ  is a free parameter. This vector equation gives us 2N linear 
equations
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13D n

where ∈ , , , −n N{0 1 1}.
Following Press and Dyson’s definition for two-player games3, we assume that χ >  0. By analyzing the 

probability constraints and the sign constraints (see Supplementary Methods), we find that: for any value 
of r, χ has its lower bound 

−N

1

1
. When >

−
r

N

N 1
, χ also has its upper bound 

( − ) −

r

r N N1
. Note that 

−

N

N 1
 

is monotonously decreasing with N. Thus given a specific multiplication factor r, the extortionate ratio 
χ is more likely to have an upper bound when more players are involved in the game. That is to say, in 
a game with more players it is more difficult for the extortioner to secure his own payoff by using ZD 

Figure 3. (a) The feasible region of the equalizer strategies when < ≤
−

r1
N

N 1
, which is determined by the 

intersection of the two half-planes formed in terms of the two linear inequalities in equations (18) and (19) 

in Supplementary Methods, except for the singular point (pC,N−1, pD,0) =  (1, 0). (b) The feasible region of the 

equalizer strategies when < ≤
− −

r
N

N

N

N1 2
, which is determined by the intersection of the two half-planes 

formed by the two linear inequalities in equations (24) and (25) in Supplementary Methods. The intersected 

region is a convex hull with four extreme points. This region shrinks as the gradients of the two confine 

lines approaches each other. (c) Log-log plot of the upper bound of r. The upper bound =
−

r
N

N 2
 is a 

monotonously decreasing function of the group size N, namely with the increasing of N, the allowed region 

of multiplication factor for an equalizer strategy shrinks.
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strategy and setting a fixed ratio between his and the opponents’ surplus. A tricky strategy of the extor-
tioner thus will be restrained when he plays with more opponents. On the other hand, given a fixed 
group size, a large multiplication factor r results in a better reward for each player, which promotes 
mutual cooperation and simultaneously shrinks the feasible region of χ. Therefore, the above analysis 
reveals the significant fact that, to reduce the possible injuries from a crafty egoist, increasing the coop-
eration incentive r is an effective approach. Figure 2(c) shows numerical examples of extortion strategies. 
Within the allowed range of χ, the average payoff of all other opponents falls in a line with slope greater 
than 

−N

1

1
.

Normalizing ∑ ( − )= u 1X
N X

2  by the number of opponents ( − )N 1 , player 1 can extort over the aver-

age payoff of his opponents by ratio χ ( − )N 1 , which has an upper bound ( − )

( − ) −

r N

r N N

1

1
. Thus for a suffi-

ciently large N, the maximum extortionate factor reads

χ ( − ) =
−
.

( )→∞
N

r

r
lim 1

1 14N
max

Figure 4 shows the upper bound of χ as a function of the group size N and the multiplication factor r. 
For a large group size N, it is allowed to set r close to 1 leading to a very large upper bound χ. However, 
in such a case, due to the small reward induced by r, opponents are usually not willing to cooperate. 
That is to say, although the effective extortionate ratio can be very large, the payoff under such a severe 
extortion will be limited. Moreover, substituting the bounds of χ into the probabilistic strategies in equa-
tions (12) and (13), we can obtain the allowed range of Φ :

χ
< Φ ≤

− + ( − )
.

( )

N

N r r N
0

1 15

Choosing a fixed extortionate factor χ but different Φ , player 1 will enforce different values for pC,n 
and pD,n. However, the extortion lines under these different pC,n and pD,n are identical. This means the 
same extortion ratio can be realized by different strategy vectors.

Due to the high dimension of the determinant constituted by N players’ strategies, it is not straight-
forward to get an explicit analytical expression of these players’ payoffs. However, the payoffs can be 
easily computed numerically, and it is possible to give simple expressions for the payoffs for certain 
boundary cases. For the three-player IPGG, we examine two extreme cases of extortion strategies. 
Analytically, under every possible extortion strategy, there exists a positive linear relationship between 
player 1’s payoff and the average payoff of its opponents. Thus both E1 and ∑ = Ex

N x
2  will be maximized 

when all the other players fully cooperate. For the three-player IPGG,

χ χ

χ
( ) =

− +

− +
,

( )
E

r

r r

8 6 3

2 3 16
1

max

Figure 4. The upper bounds of χ under different (r, N), when χ > 0. Generally, given a specific 

multiplication factor r, the upper bound of χ slightly decreases as N increases. A high upper bound of χ is 

more likely to be realized when r is small, which indicates increasing the reward in a game will restrain the 

extortion.
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2 3 17x
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Discussion
To explore the general applicability and limitations of ZD strategies, we have taken a step from two-player 
games to multi-player games, with the iterated public goods game being the selected template. The proof 
of the existence of ZD strategies for multi-player games in the paper is a direct extension of Press and 
Dyson’s method, and the conditions of multi-player equalizer and extortion strategies are carefully dis-
cussed. We showed that the capacity of a ZD player to either pin or extort other opponents is more 
strictly limited compared with the two-player games. Roughly speaking, we can suppress the influences 
of the ZD player by increasing the number of participants and/or encouraging cooperation via enlarging 
the multiplication factor. Whereas, a single ZD strategy player cannot fix his own expected payoff. Notice 
that there is an alternative proof for the existence of ZD strategies given by Hilbe et al. in Ref. [47]. Their 
proof is by extending Akin’s derivations7, and is intuitive to understand why the ZD strategy works in 
multi-player game.

In this paper we mainly focus on two classes of ZD strategies, namely equalizer and extortion strate-
gies. It has been found that a ZD player does not need to be selfish. It has been shown that another class 
of ZD strategies, called generosity strategies, can be favored by evolution and thereby promote cooper-
ation6. The concept of generosity strategies recently has been extended to multi-player games47 as well.

Researchers can also design laboratory experiments and study responses of human beings when fac-
ing ZD strategies48. A player may vary his strategy frequently that cannot generate a Markovian station-
ary state. Therefore, there are some interesting problems such as whether some proper ZD strategies can 
control opponents’ payoff in a short timescale and how a smart player alters his ZD strategies in terms 
of his opponents’ responds. Very recently Ref. [49] showed through laboratory experiment that although 
extortioners can take advantage of their human opponents, the extortion strategy obtains lower payoff 
than the generosity strategy.

Recently the concept of zero-determinant alliances in multi-player games has been studied by Hilbe  
et al.47. In a ZD alliance, each player uses a ZD strategy, and the combination of these ZD strategies from 
the alliance enforces a linear relationship between the payoff of the alliance members and the payoff of 
outsiders. The analysis of coalitions has been known as a long-standing hard problem in game theory, 
and Ref.  [47] shows a good start of introducing control into coalition games50. As a further step, in 
Supplementary Methods, we try to extend the collusion to a more general case, where several players 
try to jointly control a single column of the matrix M′ while each of them is not essentially launching a 
ZD strategy independently. For instance, the second column of the matrix in Fig. 1(c) depends on the 
strategies of player 1 and player 2 simultaneously. If these two players collude to set their own strategies 
and make the determinant vanish, linear relationships among the payoffs of players can be enforced. 
However, in this collusion scenario, it is not required that player 1 or player 2’s strategy is a ZD strategy. 
Thus we call such strategies as collusive ZD strategies. The collusive ZD strategies will extend the space 
of ZD strategy when the game is subjected to coalition and collusion, which deserves further studies.

Methods
Multi-Player ZD Strategies. Denote the state transition matrix of the IPGG as:

= 




, ( )×
MM 18ij

2 2N N

where the element Mij is a one-step transition probability of moving from state i to state j. It is essentially 
a joint probability that can be calculated as:
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where x runs over all players, and

( ) ( )

( ) ( )
=











− ,

− , .
( )

, ( ) , ( )

−

, ( ) , ( )

−
m

p p x C i

p p x D i

1 if takes in state ;

1 if takes in state
20

x C n i

x
h

C n i

x
h

D n i

x
h

D n i

x
h

1

1

j
x

j
x

j
x

j
x

Here n(i) is the number of cooperators among x’s opponents in state i. h j
x is an indicator, a binary variable 

determined by player x’s action in state j. Conventionally, if player x's action in state j is C, then =h 1;j
x  

otherwise, =h 0j
x .

In equation  (19) and equation  (20), the transition probabilities are dependent on all the N  players’ 
strategies, reflecting the complexity of the multi-player games. Define a matrix M′ =  M −  I, where I is 
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the unit diagonal matrix. After some elementary column operations on this matrix, the joint probabilities 
will be finely separated, leaving one column solely controlled under player x's strategy but not dependent 
on other players anymore (see more detail in Supplementary Methods). For convenience, we assume 
player 1 is the ZD strategy player under investigation. The corrsponding column p1 is

( )

( )

=












− + , , − + , , − + ,

− + , , , , , , ,










 ( )

, , ,

−

, − , , ,

−

, −

⋯ ⋯
� ������������ ������������

⋯

⋯ ⋯
� ������ ������

⋯

� p p p

p p p p p

p 1 1 1

1

21

C C n C n

N
n

C N D D n D n

N
n

terms

D N

1

0

1

1 0

1

1

The detailed proof that a column can depend on one player’s strategy is shown in SI. The complete 
expression of M′ after the elementary column operations can also be found in SI. In equation (21), all 
the probabilities depend only on the elements in equation  (2), which indicates that p1 is unilaterally 
controlled by player 1. Note that p1 is a 2N-dimensional vector, and the elements − 1 +  pC,n and pD,n each 

appears ( )−N
n

1  times.

If the state transition matrix M is regular, it will be ensured that there exists a unique stationary 
vector v, such that

⋅ = . ( )v M v 22T T

The stationary vector v is the very eigenvector corresponding to the eigenvalue 1 of M. Press and 
Dyson3 prove that, there is a proportional relationship between the stationary vector v and each row in 
the adjugate matrix Adj(M′), which links the stationary vector and the determinant of transition matrix. 
Here we briefly summarize their proof. By applying Cramer’s rule to the matrix M′, we have 
Adj(M′)M′ =  det(M′)I =  0. Meanwhile from equation  (22), we have vT · M′ =  0. Comparing the above 
two equations implies that every row of Adj(M′) is proportional to v. Thus for an N-vector u, 

⋅ = ∑ ( ′) = ∑ ( , ) ′= =a j iv u M u M uAdj [ minor of ]
T

j
N

ij j j
N

j1 1
, where ( , )j i minor means the minor of M′ji. 

This is exactly the definition of determinant of the matrix which by replacing the i-th column of M′ with 
u. Assume i the last column, we have:

⋅ = ( , , , , , ), ( ) v u p p p udet 23T x N1

where ( , , , , , ) p p p udet x N1  is a determinant of a certain 2N ×  2N matrix and u is the last column 
of M′. This theorem is of much significance since it allows us to calculate one player’s long-term expected 
payoff by using the Laplace expansion on the last column of M′. Let u1 denote the payoff vector for the 

player 1, player 1’s long-term expected payoff E1 is given by ⋅

⋅

v u

v 1

T

T

1

. Replacing the last column of M′ by u1, 

we can calculate player 1’s long-term expected payoff as:

=
( , , , , , )

( , , , , , )
,

( )

 
 

E
p p p u

p p p

det

det 1 24

x N

x N

1
1 1

1

where 1 is an all-one vector introduced for normalization. Player 1’s expected payoff depends linearly 
on its own payoff vector u1. Thus making a linear combination of all the players’ expected payoffs yields 
the following equation:

∑ α α

α α

+ =

( , , , , , ∑ + )

( , , , , , )
,

( )

=

= 
 

E

p p p u

p p p

det 1

det 1 25

x

N
x

x

x N
x
N

x
x

x N

1 0

1
1 0

1

where α0 =  and αx ( = , , , )x N1 2  are constants. Recall that in the matrix M′ there exists a column 

p1 totally determined by p1. If player 1 sets p1 in terms of equation (3), then he can unilaterally make the 
determinant in equation (25) vanish and, consequently, enforce a linear relationship between the players’ 
expected payoffs. Since the determinant of M′ is zero, the strategy p1 is a multi-player ZD strategy of 
player 1.
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