

Zero-dimensional models for plasma chemistry

Citation for published version (APA):
Graef, W. A. A. D. (2012). Zero-dimensional models for plasma chemistry. [Phd Thesis 1 (Research TU/e /
Graduation TU/e), Applied Physics]. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR733421

DOI:
10.6100/IR733421

Document status and date:
Published: 01/01/2012

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. Aug. 2022

https://doi.org/10.6100/IR733421
https://doi.org/10.6100/IR733421
https://research.tue.nl/en/publications/579563e1-d73e-4722-b9c5-ae481fb85011

ZERO-DIMENSIONAL MODELS

FOR PLASMA CHEMISTRY

Wouter Graef

Zero-dimensional models
for plasma chemistry

Wouter Graef

This research was financially supported by the CATRENE SEEL project (CA502)

CIP-DATA TECHNISCHE UNIVERSITEIT EINDHOVEN

Graef, Wouter Antonius Anna David

Zero-dimensional models for plasma chemistry / by Wouter Graef. -

Eindhoven : Technische Universiteit Eindhoven 2012. - Proefontwerp.

A catalogue record is available from the Eindhoven University of Technology Library.

ISBN: 978-90-386-3168-4

NUR 928

Subject headings : plasma physics / plasma modeling / plasma chemistry / computer

simulations / EUV lithography / sputtering / photoionization / non-equilibrium

plasmas / software design

Copyright © 2012 W.A.A.D. Graef

All rights reserved. No part of this book may be reproduced, stored in

a database or retrieval system, or published, in any form or in any way,

electronically, mechanically, by print, photo-print, microfilm or any

other means without prior written permission of the author.

Printed by: Ipskamp Drukkers B.V.

Typeset in LATEX 2εusing the Vim editor.

Figures made with PYX, Inkscape, and GIMP.

Cover made with Scribus.

Zero-dimensional models
for plasma chemistry

PROEFONTWERP

ter verkrijging van de graad van doctor aan de

Technische Universiteit Eindhoven, op gezag van de

rector magnificus, prof.dr.ir. C.J. van Duijn, voor een

commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen

op dinsdag 26 juni 2012 om 16.00 uur

door

Wouter Antonius Anna David Graef

geboren te Horn

De documentatie van het proefontwerp is goedgekeurd door de promotoren:

prof.dr. J.J.A.M. van der Mullen
en
prof.dr. W.J. Goedheer

Copromotor:
dr.ir. J. van Dijk

Summary

Zero-dimensional models for plasma chemistry

In this thesis two different models for examining the chemistry in a plasma are
studied. Both are zero dimensional, meaning that the configuration and transport
aspects of plasmas are combined and reduced to frequencies. The first type of
models are Collisional Radiative Models (CRM), in which the atomic state dis-
tribution function can be seen as being composed by contributions of a limited
number of atomic states, typically the atom and ion ground state. Transitions
between levels are facilitated by electrons and photons. The second type of mod-
els are Global Plasma Models (GPM), whose goal it is to predict mean values of
internal plasma parameters as a function of external control parameters.

Collisional Radiative Models

The tasks of a CRM are threefold: calculating the Atomic State Distribution Func-
tion (ASDF), the effective conversion frequencies, and the source terms for the
energy equation. In a general exploration, the derivation is described to struc-
ture the various collisional and radiative processes into simple matrix equations.
Initially, a Quasi Steady State (QSS) solution is pursued, but the results are ex-
tended to a time dependent solution. The properties of the agents facilitating the
transitions (electrons and photons), are allowed to be of a transient nature.

This description of a CRM is implemented in the plasimo framework; a plasma
modeling platform. The addition of a CRM in the form of a model plug-in to pla-
simo is described, as well as the details for constructing and solving the CRM, both
for the case of QSS and transient plasmas.

The plasimo CRM is used in two applications: a CRM of an Extreme UltraVi-
olet (EUV) driven plasma in Ar, and a Laser Induced Fluorescence experiment in
Ar plasmas. Both models are time dependent; in the first application due to the
electrons created by an EUV pulse, in the second application due to a laser pulse.

I

Summary

The CRM of the EUV driven plasma gives insight into the time dependent
spectrum of the plasma. It is shown that optical emission spectroscopy can be
used to monitor the electron energy in the plasma, and thereby the sputtering
action of ions.

The CRM of an Ar LIF experiment helps in understanding the mechanisms
that follow a perturbation imposed on the Ar system by a laser pulse. The results
of the model are compared to the results of experiments on a Surfatron Induced
Plasma in which the electron density and temperature are well known.

Global Plasma Models

A GPM is also implemented as a model plug-in for plasimo. As in the CRM plug-
in, the species densities are modeled, but this is extended with the modeling of
the electron density and electron energy balance. The model is a collection of
chemical reactions, and the external control parameter is the input power density.

This model plug-in is used to model a High Power Impulse Magnetron Sput-
tering plasma. Although the model is zero dimensional, sputtering is included in
the form of a frequency of particle density entering the plasma; the same as deal-
ing with other transport aspects. The model plug-in is a valuable tool in studying
the relevant processes in the creation of species.

II

Contents

Summary I

1 General introduction 1

1.1 Thesis outline . 2

I Theoretical framework and implementation 5

2 Particle balances: species and rate domain 7

2.1 Introduction . 7
2.2 Analysis . 10
2.3 Balance domains . 12

2.3.1 Species density domain . 13
2.3.2 Reaction rate domain . 13

2.4 Wall reactions . 15
2.5 Conclusion . 16

3 The tasks of collisional radiative models 17

3.1 Introduction . 17
3.2 General exploration . 19

3.2.1 Two level system . 19
3.2.2 Three level system . 22
3.2.3 Generalization . 23
3.2.4 Further generalization . 24

3.3 The system of coupled particle balance equations 24
3.3.1 Reordering . 26
3.3.2 Matrix notation . 27

3.4 Simplification . 28
3.4.1 Local chemistry versus transport sensitive 28
3.4.2 Cut-off procedure . 29

III

Contents

3.5 Structure and tasks of a CRM . 30

3.5.1 A {2-entry/2-level} system . 30

3.5.2 A {2-entry/3-level} system . 31

3.5.3 The tasks of a CRM . 32

3.6 Generalization . 37

3.7 Further generalization . 38

3.8 Level sensitive to radiation transport 40

3.9 Time dependence . 42

3.10 Conclusion . 43

4 Description of a general CRM code 45

4.1 Introduction . 45

4.2 Model . 45

4.2.1 Quasi Steady State (QSS) . 46

4.2.2 Transient behavior . 47

4.3 Transition-matrix . 48

4.3.1 Electron excitation . 48

4.3.2 Electron de-excitation . 55

4.3.3 Ionization and recombination 56

4.3.4 Radiative transitions . 58

4.3.5 Cut-off procedure . 59

4.3.6 Optimization . 60

4.3.7 Matrix composition . 61

4.3.8 Additional processes . 62

4.4 Conclusion . 63

5 Implementation of a CRM code in the plasimo framework 65

5.1 Introduction . 65

5.2 History of plasimo . 65

5.3 C++: C with classes . 68

5.3.1 A simple cross section code 68

5.3.2 A simple class . 70

5.3.3 Class derivation and polymorphism 74

5.3.4 Self registering objects . 77

5.4 The CRM as a plasimo model . 78

5.4.1 The basic model . 80

5.4.2 The CRM model plug-in . 81

5.4.3 Input file . 84

5.4.4 Optimization . 87

5.5 Solution procedure . 90

5.5.1 Quasi Steady State . 90

5.5.2 Transient . 91

IV

Contents

5.5.3 Callback using a functor . 91

5.5.4 Implemented steppers . 93

5.5.5 Transient results . 98

5.6 Conclusion . 98

6 Implementation of a GPM code in the plasimo framework 99

6.1 Introduction . 99

6.2 General equations . 100

6.2.1 Species balance . 100

6.2.2 Energy balance . 102

6.2.3 Solution procedure . 102

6.3 Special cases . 103

6.3.1 Wall reactions . 103

6.3.2 Extra sources . 104

6.4 Implementation . 105

6.4.1 Model construction . 106

6.4.2 Solution procedure . 108

6.5 Conclusion . 109

II Applications 111

7 A CRM of EUV induced plasmas 113

7.1 Introduction . 113

7.2 Background . 114

7.2.1 Lithography . 114

7.2.2 Previous research . 115

7.2.3 The EUV induced plasma . 116

7.2.4 Optical emission spectroscopy 117

7.3 CRM . 119

7.3.1 Non-equilibrium . 119

7.3.2 Classification of excitation balances 121

7.3.3 CRM construction . 122

7.4 EEDF modeling . 128

7.4.1 Particle-in-Cell Monte-Carlo model 128

7.4.2 PIC-MC model of EUV driven plasma 130

7.4.3 EEDF analysis . 132

7.4.4 Elastic collisions . 133

7.4.5 Excitation . 134

7.4.6 Ionization . 139

7.4.7 Complete PIC-MC model . 143

7.5 CRM results . 146

V

Contents

7.6 Experimental results and discussion 152
7.6.1 Experimental setup . 152
7.6.2 Results . 154

7.7 Conclusion . 157

8 A CRM of time dependent LIF experiments 159

8.1 Introduction . 159
8.2 The Ar CRM . 160

8.2.1 Levels . 160
8.2.2 Radiative transitions . 160
8.2.3 Cross sections . 162
8.2.4 Heavy particle induced processes 163
8.2.5 Laser induced processes . 164

8.3 CRM results . 166
8.3.1 LIF saturation . 167
8.3.2 System response . 169
8.3.3 Comparison to experiments 170

8.4 Conclusion . 173

9 A global model of HiPIMS discharges 175

9.1 Introduction . 175
9.2 Model . 176

9.2.1 Volume relations . 176
9.2.2 Wall losses . 178
9.2.3 Sputtering . 179
9.2.4 Electron energy density balance 180

9.3 Implementation in GPM . 180
9.4 Results and discussion . 182
9.5 Conclusion . 184

10 General conclusions 187

Appendices 191

A General C/C++ constructs 193

A.1 C: data types and functions . 193
A.2 C++: a simple class . 195
A.3 Operator overloading . 197
A.4 Pointers and references . 199
A.5 Templates . 200
A.6 Frequently used operators . 201

B Rachah & Paschen notation 203

VI

Contents

C Ar CRM data 205

Bibliography 213

Acknowledgements/Dankwoord 223

Curriculum vitæ 225

Glossary 227

VII

Chapter 1

General introduction

Plasma is a gas of which a substantial amount of the particles is ionized, allowing
charges to flow freely, and giving it distinct properties, mainly in relation to elec-
tromagnetic fields. It is often called the fourth state of matter, though taking into
account its abundance in the universe, 99% of all visible matter is in the plasma
state [1], one could rank it as the first state of matter. Plasmas can be found in
many shapes, sizes, and forms. The most common plasmas found in nature are
the stars and galaxies. On earth, a well known manifestation of the plasma state is
lightning. But plasmas are also artificially created for a plethora of applications.
These applications range from use in every day life, such as lighting [2, 3, 4], to
industrial processes, such as welding and cutting, and the processes of etching,
deposition, and sputtering involved in the fabrication of semiconductors [5].

In contrast to solids and liquids, plasmas often display a high degree of non-
equilibrium. This means that transport aspects play an important role. A plasma
is affected by its environment, be it the shape and size of the vessel it is created
in, or the way power coupling into the plasma is achieved. These characteristics
are the configuration aspects. The nature of plasmas enables the effective creation
and destruction of species; i.e., chemistry.

Plasma aspects can thus be divided into three categories: transport, configura-
tion, and chemistry. These three categories are, however, not distinctly separated,
but are strongly interwoven. For instance, chemistry causes gradients in species
density to occur, giving rise to transport.

Chemistry in plasmas is very rich in nature, involving many species between
which many reactions can take place. In this thesis we use chemistry in its broad-
est sense; i.e., including excitation and de-excitation, and ionization and recombi-

1

1. General introduction

nation. Consequently, the term species is also used in its broadest sense: a group
of particles with unique chemical properties. Any excited level of an atom or
molecule can therefore also be regarded as a separate species.

Chemistry is one of the most important aspects of plasmas, and certainly the
wide variety offered by plasma chemistry is the reason why it is used in so many
applications. Thus it is desirable to study chemistry aspects themselves, indepen-
dently of transport and configuration aspects.

An important feature of plasmas is the relation with electromagnetic waves;
more specifically light. Some plasmas are created with the intention to produce
light (fluorescent lamp), some are created by light (laser produced plasmas), but
all plasmas interact in some way with light. This has been vital to the field of
astrophysics, were the light produced by plasma (stars and nebulae) is studied
to gain insight in astrophysical phenomena. These studies started out with the
investigation of atomic H and He plasmas; the main constituents of the universe.
The light reveals the Atomic State Distribution Function (ASDF), which is formed
by Electron Excitation Kinetics (EEK). In these investigations Collisional Radiative
Models (CRM) have widely been applied.

Nowadays, plasmas are studied with a far more rich composition of species, in
which also molecules play an important role, for instance in the fields of biochem-
istry (plasma wound healing [6]), and environmental sciences (gas cleaning [7]).
Apart from the electrons facilitating processes between species as in simple atomic
plasmas, in these plasmas Heavy particles (HEK) (and Mixed, MEK) also take on
the role of agents in excitation kinetics. To focus on chemistry, zero-dimensional
models have been developed in which transport and configuration aspects are
“collapsed”; i.e. reduced to frequencies. These are so-called Global Plasma Mod-
els (GPM).

1.1 Thesis outline

The goal of this thesis is to document the design of zero-dimensional models fo-
cusing on plasma chemistry, and to demonstrate the use of these models. The
thesis is therefore divided into two parts: theory (chapters 2 through 6) and ap-
plication (chapters 7 through 9). In chapter 2 a distinction between three differ-
ent forms of zero-dimensional models for plasmas is made, describing the main
characteristics of each. These models are CRMs, GPMs, and Reaction Exploration
Models (REM).

CRMs are the subject of chapters 3, 4, and 5. In chapter 3 the tasks of a CRM are
described, and a general mathematical description for these tasks is derived. This
description will be given in the form of simple matrix-vector notation. How the
elements of these matrices and vectors are formed from a general description of an
atomic system is the subject of chapter 4. In chapter 5 a description is given of the
implementation of the general CRM in the plasimo framework, a flexible, multi-

2

1.1. Thesis outline

purpose plasma modeling platform written in the object oriented programming
language C++.

The plasimo framework is also used for the implementation of a general GPM
code, the design of which is the subject of chapter 6.

With these two zero-dimensional model codes three types of plasmas are mod-
eled. In chapter 7 the CRM code is used to model the radiation from Ar plasmas
that are created by Extreme UltraViolet (EUV) radiation. The goal is to verify
whether time resolved spectral lines can give information about the Electron En-
ergy Distribution Function (EEDF) and its evolution in time.

Another application of the CRM code is given in chapter 8, where it is used to
model Laser Induced Fluorescence (LIF) experiments in Ar plasmas. The CRM
allows to study the response of excited level densities, as a result of a disturbance
of the ASDF imposed by a laser pulse.

The third application is a case study of High Power Impulse Magnetron Sput-
tering (HiPIMS) Ar plasmas in chapter 9. In this chapter the GPM code is used to
investigate the ionization degree of metal species in plasmas, that are introduced
by sputtering. Furthermore, the model enables the analysis of reaction paths, so
that the dominant mechanism for the creation of the metal ions is revealed.

We will end in chapter 10 with some general conclusions.

3

Part I

Theoretical framework and
implementation

5

Chapter 2

Particle balances:
Species and rate domain

2.1 Introduction

In this chapter we will explore different types of models for plasma chemistry.
These models describe the densities of particles within a plasma as a result of
processes between these particles. Plasmas have many distinct features, which
can be grouped into three main blocks:

• Configuration describes the interaction of the plasma with the environment.
This includes aspects such as geometry, boundary conditions, and energy cou-
pling.

• Transport describes the transport of species, momentum, and energy within the
plasma and with its direct surroundings, resulting from sources and sinks.

• Chemistry describes the creation and destruction of species in the plasma.

These three blocks, however, are not strictly distinct but strongly interwoven. The
main subject of this thesis is chemistry. It is evident that the mechanisms of species
creation and destruction described by chemistry form the sources and sinks for
the transport aspects of the plasma. Furthermore, as the composition determines
the electrical conductivity, which is an important factor in the energy coupling,
the chemistry aspects are also closely linked with the configuration.

As the processes in plasmas result in countless numbers of distinct species,
it is desirable to restrict the number of species to a more practical size. How-
ever, the restricted number of species must still properly describe the chemistry

7

2. Particle balances: species and rate domain

and the plasma features determined by the chemistry. It is seductive to simply
neglect the species with the lowest densities, and to only take under considera-
tion the Principal Density Reservoirs (PDR). However, species with low densities
might provide fast transition routes between species with high densities. When
low density species are removed, it is important to account for these intermediate
processes in the form of Effective Conversion Coefficients (ECC) between PDRs.

In plasma chemistry the following three issues are important:

1. Determine the minimum set of relevant species that has to be taken into ac-
count, in order to properly describe the distribution of mass over the species.

2. Removal of species with small densities must not affect other plasma as-
pects. This might require introduction of effective conversion coefficients
between PDRs.

3. Construct flexible zero-dimensional models that describe the essence of the
chemistry in plasmas, and that are detached from configuration and trans-
port aspects. This means that wall processes have to be accounted for in the
form of rates of species appearing in or disappearing from the plasma.

In literature various types of models have been described that deal with these
issues. They can be classified in three groups:

• Collisional Radiative Models (CRM).

• Reaction Exploration Models (REM).

• Global Plasma Models (GPM).

Collisional Radiative Models

These models originate from astrophysics and plasma spectroscopy and were,
among others, initiated by the classical paper of Bates et al. [8]. Usually in these
models the atomic state distribution function (ASDF) can be seen as being com-
posed by two contributions: one from the atom ground state, the other from the
ion ground state. These two ground states are the PDRs, and they are linked to-
gether by electron collisions and radiative transitions, most of which involve the
intermediate, excited levels. The electrons and photons are treated as external
agents that facilitate the transitions between the levels, making the system lin-
ear∗. The number of PDRs in an atomic system can be increased. An example
of this is demonstrated by Van Dijk et al. [9] in order to treat the generation and
transport of resonance radiation in low pressure Hg lamps.

∗ The CRMs in this work (chapters 7 and 8) will not include non-linear processes, though a de-
scription is given of how their inclusion can be realized.

8

2.1. Introduction

CRMs form a major part of this work; in the next chapter an in-depth treatment
will be presented, followed by the description of a general implementation using
the plasimo plasma modeling framework in chapters 4 and 5. Furthermore, two
specific CRMs will be presented in chapters 7 and 8.

Reaction Exploration Models

The purpose of these models, mainly developed in the field of plasma chemistry,
is to study reaction kinetics in especially molecular plasmas. Available models in
this category are ZDplaskin [10] and the commercial package Quantemol-P [11].

In contrast to CRMs, the kinetics are not restricted to a external agents, but all
species can initiate reactions. An example of this is the energy exchange between
two vibrationally excited N molecules, taken from Guerra et al. [12]:

N2(X, v) + N2(X, w) → N2(X, v − 1) + N2(X, w + 1). (2.1)

Because the densities of particles that also facilitate transitions need to be deter-
mined, the system is non-linear.

Chapter 6 presents ZDM, a zero-dimensional model plug-in for the plasimo
framework. This model plug-in is the continuation of a model by Jiménez [13]
called RateLab, which in turn is based on the model PyRate by Van den Donker [14].
The aim of PyRate was to give insight into the oxygen chemistry for plasmas with a
given elemental oxygen concentration, electron density, and electron temperature.
A set of differential equations, one for each species, is solved in time, giving the
species densities as a function of time. Analysis of the results reveals the PDRs
and the effective conversion routes between them. The RateLab model extended
the functionality of PyRate by including the electron density and energy balance
in the computation. Furthermore, the flexibility was increased through the use of
input files, and the possibility for a time dependent power input into the plasma.
The ZDM module has the same basic functionality as RateLab, but the usability is
greatly increased by the graphical user interface of plasimo. Models can easily be
manipulated, and results can be analyzed while the computation is running.

Global Plasma Models

These models are often used in the field of plasma engineering. Their goal is to
predict mean values of internal plasma parameters, such as electron density and
temperature, as a function of external control settings. These control settings, such
as pressure, geometry, and input power, can be seen like a set of control knobs,
much like controlling an industrial setup.

In literature many different GPMs can be found, see for instance [15, 16, 17].
Also the plasimo team has experience in this field, for instance the model by Broks
et al. presented in [18]. This is a model for Ar plasmas based on the electron

9

2. Particle balances: species and rate domain

density and electron energy balance combined with the heavy particle energy
balance. Only essential species, the atom and ion ground state, are taken into
account, making the model lean and flexible. Since intermediate levels are not
considered, effective conversion rates are required, which are available from a
CRM of Ar. This demonstrates the fact that a GPM can not stand on its own. The
results of other models are required, in this case a CRM.

The distinction between CRM, REM, and GPM is thus as follows:

• CRM and REM are mainly methods to describe the chemical interactions in a
system of species, whereas a GPM models plasma parameters controlled by
a limited set of external parameters, most importantly the (time dependent)
power input. A GPM can use either the CRM or REM method to achieve a
solution.

• The distinction between CRM and REM lies in the difference in agents that
drive the reactions. While in a CRM they are external resulting in a linear
system, in an REM the agents can be any species included in the model, so
the system is non-linear.

This chapter serves as an introduction to chapters 3, 4, and 5 that treat CRMs
and chapter 6, where a GPM with CRM and REM characteristics is presented.
The goal is to narrow down the aspects of chemistry and the interaction with con-
figuration and transport under consideration. Furthermore, two approaches to
tackling the system of coupled balances are described, one used for CRMs and
one for GPMs. The models mentioned so far are all zero dimensional, so the geo-
metrical variances are somehow averaged. The interaction with the surroundings
is in general heavily dependent on the specific geometry which means that extra
care has to be taken to incorporate these processes in a model. The last section
therefore deals with wall reactions.

2.2 Analysis

The density of a species in a plasma will behave according to the balance, de-
scribing the fact that the net production gives lead to accumulation and efflux, or
simply put:

Net Production = Accumulation + Efflux. (2.2)

The “efflux” in this equation results from the configuration and transport aspects
whereas “Net production” is the result of chemistry. This balance can be writ-
ten in a more formal way using the zeroth moment of the Boltzmann transport
equation:

Ss =
∂ns

∂t
+∇ · Γs, (2.3)

10

2.2. Analysis

where ns, Γs, and Ss are the density, flux density, and source of species s, respec-
tively. The chemical source term itself can be split into production and destruc-
tion:

Ss = Ps −Dsns, (2.4)

where Ds, the destruction, is a frequency. As we will see, this frequency can be
used to make a classification of species.

To simplify the analysis we can write the efflux term using a transport fre-
quency:

Fs =
1

ns
∇ · (nsvs). (2.5)

If the transport mechanism is diffusive, it can also be written as:

Fs =
Ds

Λ2
, (2.6)

demonstrating the combination of the transport and configuration aspects. The
transport aspects are represented by the diffusion coefficient Ds. The configu-
ration aspects are represented by the characteristic diffusion length Λ, which is
mainly determined by the shortest plasma size.

The diffusion coefficient for neutral (excited) species is [19]:

Ds =
1

3
λvth. (2.7)

With the thermal velocity vth =
√

8kBTh/(πMs) and the mean free path λ =
1/(σn

√
2) this becomes:

Ds =
2

3nσ

√

kBTh

πMs
, (2.8)

where n is the buffer gas density, σ the cross section for elastic collisions, and Ms

the species mass.

For charged species the electric field comes into play, which adds a drift com-
ponent. When quasi neutrality is assumed, the extra drift leads to ambipolar dif-
fusion, so the diffusion is enhanced:

Da = Ds

(

1 +
Te

Th

)

. (2.9)

Whereas the frequencies for transport of species typically range up to 104 Hz,
destruction frequencies can be much higher, up to 108 Hz. In most cases the
destruction frequencies of the excited species are much higher than their trans-
port frequencies, while for the atom and ion ground states the destruction and
transport frequencies are in a comparable range. This enables us to categorize

11

2. Particle balances: species and rate domain

the species, which we will show in more detail using the general balance equa-
tion (2.3):

∂ns

∂t
+Fsns = Ps −Dsns, (2.10)

with the substitutions mentioned in (2.4) and (2.5). If we assume Fs, Ps, and Ds

to be constant in time, the density of the species is described by:

ns(t) = ns(0) e−(Fs+Ds)t +
Ps

Fs +Ds

(

1 − e−(Fs+Ds)t
)

, (2.11)

with ns(0) some initial density. This solution immediately shows that on a time-
scale (Fs + Ds)−1 the density of species s converges to Ps/(Fs + Ds). Further-
more, when the destruction frequency is much higher than the transport fre-
quency, or Ds ≫ Fs, the density converges to:

ns =
Ps

Ds
, (2.12)

on a timescale D−1
s .

The derivation shows that species can be categorized depending on their de-
struction frequency compared to their transport frequency: species with high de-
struction frequency are named Local Chemistry (LC) species, the other species are
Transport Sensitive (TS) species. In general, LC species will not have a high density
because of their high Ds values. Their density is mainly determined by TS species
that form the principal density reservoirs. This distinction between LC and TS
levels is comparable to the QSSS procedure as described by Bates et al. [8].

The assumption that leads to the simple solution for the species density (2.11)
is, while being instructive, not very realistic. The different frequencies can be time
dependent and can depend on the densities of other species. This means that the
balance equations of all species form a set of coupled equations that have to be
solved simultaneously. If the destruction frequency of a species also depends on
the density of the species itself, the problem is also non-linear.

2.3 Balance domains

We can combine the balance equations for all species under consideration in a
vector equation:

∂n

∂t
+ Tn(t) = S(n(t)), (2.13)

where n(t) is a vector of species densities, T a matrix of transport frequencies (on
the diagonal), and S(n(t)) the source vector. The source vector depends on the
densities of other species and can be constructed in two domains:

12

2.3. Balance domains

• Species Density Domain (SDD), where the source vector is formed by multi-
plying a frequency matrix with the density vector, or

• Reaction Rate Domain (RRD), where the source vector is formed by multiply-
ing a stoichiometry matrix with the reaction rate vector.

2.3.1 Species density domain

In the species density domain the source vector is formed by:

S = Fn, (2.14)

where the matrix F is a combination of the production and destruction frequen-
cies (2.4), with destruction frequencies populating the diagonal of the matrix. This
form is commonly used in CRMs, and very convenient in case the balance equa-
tions are linear, i.e. when the destruction frequency of a species is independent
of its own density.

In chapter 3 this method of forming the source vector will be treated in great
detail. The frequency matrix F will describe the electron collisional processes and
radiative processes between species. The electrons {e} and photons {f} are consid-
ered the agents facilitating transitions between species. The frequency matrix is
therefore dependent on the electrons through the electron density and electron
energy distribution function (EEDF). The photons influence the frequency matrix
via the radiation field. This is used in chapter 8, where we present a CRM for
Laser Induced Fluorescence (LIF) experiments. The electron density, EEDF, and
radiation field can also be time dependent.

The frequency matrix describes the relations between levels, provided by the
agents electrons and photons. In chapter 3 the three main tasks of a CRM will be
treated, that can be derived from this matrix. They are to obtain:

1. the Atomic State Distribution Function (ASDF);

2. the effective conversion rates between TS levels;

3. the energy transport between the agents and the chemistry.

For these three properties simple expressions will be derived in chapter 3. In
chapter 5 a code based on the plasimo framework will be presented to construct
these kind of models.

2.3.2 Reaction rate domain

The calculation of the source term in the reaction rate domain is best explained by
a simple example. For the following reaction with rate coefficient kAB dependent

13

2. Particle balances: species and rate domain

on the temperature T (note species B on both sides):

αA + βB
kAB(T)→ γC + δB, (2.15)

the rate RAB (in m−3 s−1) is given by:

RAB = nα
An

β
BkAB(T), (2.16)

where nA and nB are the densities of species A and B. For the three involved
species A, B, and C the source terms created by this particular reaction are −αR,
(δ − β)R, and γR respectively, since the net result is required.

In general we can write a reaction r as:

∑
s

νd
s,rXd

s → ∑
s

ν
p
s,rX

p
s , (2.17)

where the sum runs over all species Xs, and νd
s,r and ν

p
s,r are the stoichiometric

coefficients for destruction and production, respectively. When a species is not
involved the stoichiometric coefficient is simply zero. For this general reaction
the rate is:

Rr(n, T) = k(T)∏
s

n
νd

s,r
s . (2.18)

If a species is not involved in the reaction, it can still be included in the product

sequence, because n
νd

s,r
s = 1 when νd

s,r = 0. This is especially convenient from an
implementation point of view.

Although the rate is always expressed in m−3 s−1 the unit of the rate coefficient is
dependent on the number of involved species and their stoichiometric coefficients;
i.e. expressed in units m3Nr−1/s, with Nr = ∑s νd

s,r.
To determine the actual source term of a species for a reaction Ss,r, the net

stoichiometric coefficient Ws,r must be multiplied by the rate, as already shown for
the example in equation (2.15). This means that the left-hand side stoichiometric
coefficient is subtracted from the right-hand side coefficient, or Ws,r = ν

p
s,r − νd

s,r.
The total source for a species s involved in reactions r is therefore:

Ss = ∑
r

Ss,r = ∑
r

Ws,rRr. (2.19)

The source vector in equation (2.13) can now be written using a convenient
matrix-vector multiplication:

S = WR, (2.20)

where R is a vector of rates (one per reaction), and W the stoichiometry matrix.
The rows of W refer to the species and the columns to the reaction rates, so each
matrix element represents the “weight” a reaction has on a species. In other words
W projects the rate space onto the species density space.

14

2.4. Wall reactions

This representation of the reactions does not inherently include backward pro-
cesses. To include those the backward processes must be defined explicitly.

In chapter 6 an implementation of a global model code using the plasimo
framework is presented. The code is designed to create global models in which
the particle balances as well as the energy balance for electrons are included. The
system, including the balance equations for all other involved species, is solved
simultaneously as a function of time. In chapter 9 a specific model implemented
in this code for High Power Impulse Magnetron Sputtering (HiPIMS) plasmas is
presented.

2.4 Wall reactions

So far we have made an analysis of how the chemistry in a plasma affects the par-
ticle balances and how this can be formalized. Transport was simply included in
the balance equation in the form of a transport matrix consisting of transport fre-
quencies on the diagonal, see equation (2.13). This is because the models treated
in this thesis are zero dimensional; i.e., the configuration and transport aspects
are combined and “translated” into a frequency.

Representing the complex transport processes of a species in a plasma with a
certain configuration by only a single number is by all means not trivial. Whereas
in the bulk of the plasma these aspects can be reasonably described using earlier
mentioned (ambipolar) diffusion coefficients, interactions with the wall are quite
different. Due to the presence of a (pre)sheath the dynamics can be quite differ-
ent from the rest of the plasma. Because the wall can play an important role in
many reactions, great care must be taken to incorporate its effects in the transport
frequencies.

Near a wall, a plasma will form a layer that has an excess positive charge, called
the sheath. It can be shown (see e.g. [20]) that in order for the layer to be stable, the
so-called Bohm criterion must be fulfilled, stating that the velocity of ions entering
the sheath, v0, must be at least the Bohm velocity:

v0 ≥ vBohm =
√

kBTe/Mi, (2.21)

where e is the elementary charge, and Mi the ion mass. The directed velocity v0

dictates the presence of a finite electric field in the plasma over some region called
the presheath.

Analytic descriptions of the species densities and potential in the sheath and
presheath are only available for certain geometries and under certain assump-
tions. In general numerical techniques are required.

As an example we give the solution for the plasma density at the radial sheath

15

2. Particle balances: species and rate domain

edge of a cylindrically shaped plasma, attributed to Godyak et al. [21]:

nsheath

nbulk
≈ 0.80

(

4.0 +
R

λi

)−1/2

, (2.22)

where R is the radius of the plasma and λi the ion-neutral mean free path. The
sheath density determined by this equation multiplied with the Bohm velocity
gives the flux of particles leaving the plasma. In chapter 9 this will be used in a
GPM of a HiPIMS plasma.

Equation (2.22) demonstrates how configuration aspects affect the transport
aspects of a plasma. The combination of these two aspects are then “summarized”
into a single frequency acting upon the chemistry.

2.5 Conclusion

Zero-dimensional models in which transport and configuration aspects are pres-
ent in simplified form, can be employed to study the chemistry of plasmas. We
have distinguished three main types of these models, each developed in its own
discipline and aimed at different objectives. Chapters 3, 4, and 5 will focus on
atomic CRMs, while in chapter 6 the implementation of a GPM is presented that
possesses REM characteristics.

16

Chapter 3

The tasks of collisional radiative
models

3.1 Introduction

In the previous chapter a short introduction was given for Collisional Radiative
Models (CRMs). These models aim to describe chemistry aspects of plasmas in
contrast to transport and configuration. We will restrict ourselves to atomic sys-
tems where the chemistry is formed by reactions involving the ground and ex-
cited states. These reactions are electron collisional (de-)excitation and radiative
transitions in which the electrons and photons are the agents effectuating these
processes. We will make a distinction between levels based on the time scales at
which chemical processes act on the levels. Depending on the plasma conditions,
for most of the excited species the chemical processes will be much faster than
transport, so that local production will equate local destruction. These levels are
called Local Chemistry (LC) levels. The LC levels generally have a much lower den-
sity than the atom and ion ground state, that are the Principal Density Reservoirs
(PDRs). Since the PDRs are not only ruled by chemistry, but also by transport∗,
they are called Transport Sensitive (TS).

By this classification of levels, the system of excited levels, known as the ex-
citation space has at least two entries: one at the low energy side (atomic ground
level) and one at the high energy side (ion ground level). In between, the exci-
tation space is filled by the LC levels, or in this context the internal levels. The

∗ Transport is meant in a general sense, i.e., any process that is not part of the system itself and
that acts as a source term on a level.

17

3. The tasks of collisional radiative models

occupation of the internal (LC) levels is determined by the entry (TS) levels and
the excitation kinetics, which for many atomic plasmas is ruled by the electron
gas. Thus we see that through Electron Excitation Kinetics (EEK) the densities
of the LC levels are directly linked to those of the TS levels. Simultaneously, the
LC levels facilitate traffic between TS levels through the excitation space. Apart
from direct processes between TS levels, stepwise processes are possible involv-
ing the LC level. Between the atom and ion ground state, stepwise ionization and
recombination enhance the relation between the entry points, depending on the
agent (the electron gas). This method of distinguishing between TS and LC levels
is familiar to the method introduced in the past as the Quasi Steady State Solution
(QSSS) by Bates et al. [8].

The system of TS and LC levels and their relations is what the CRM describes.
Whereas in the past CRMs were mostly used as a tool for the interpretation of
spectroscopically determined atomic state distribution functions (ASDF), they are
nowadays also of great importance in the description of the competition between
chemistry and transport. As such they are a vital component for the formation of
Grand Plasma Models. The tasks of a CRM are thus threefold: to provide ingredi-
ents for the calculation of

1. the ASDF,

2. the rate coefficients for effective conversion between TS levels,

3. and the source terms for the energy equation.

In order to construct a CRM one must first decide how many species or atomic
levels have to be taken into account. A reduction of this number can be achieved
using a cut-off procedure, see for instance Van der Mullen [22], which is based
on the known analytical dependency of the ASDF of highly excited levels as a
function of ionization potential. The second step is to determine which levels are
classified as TS and LC. Subsequently the QSS solution can be employed, which
enables the expression of the three tasks solely in terms of the densities of the TS
levels.

This chapter will give an outline of the general structure of CRMs for atomic
plasmas. The emphasis will lie on atomic plasmas ruled by EEK. The description
of LC levels in terms of TS levels will be given in matrix form. Following this de-
scription, the three tasks will also be cast in the form of simple matrix expressions,
replacing the tedious (double) summations often found in literature.

The general description of the structure of a CRM for atomic plasmas ruled
by EEK, enables a proper description of the influence of radiation transport and
Heavy particle Excitation Kinetics (HEK). The effect of formation and destruction
of molecular ions is that extra sources and sinks are generated in the atomic exci-
tation space. The level at that location is promoted from an internal level (LC) to

18

3.2. General exploration

an entry point (TS). Radiation transport is dealt with in a similar manner, i.e. by
promoting a radiating level from LC to TS.

This chapter will continue with a general exploration of a few simple sys-
tems. In this exploration we will introduce the notation that is used and work
towards simple expressions for the dynamics in these systems. Subsequently, in
section 3.3, we will focus onto the different processes within an atomic system,
and onto how the balance equations can be cast into a matrix-vector notation. In
section 3.4 two aspects of dealing with the set of balance equations are treated: the
quasi steady state solution, and the cut-off technique. The general rules from sec-
tion 3.2 are cast into convenient matrix-vector notation describing the three CRM
tasks in section 3.5, and in section 3.6 they are generalized to more complex sys-
tems. Accommodation of external processes into the matrix notation is treated in
section 3.7. In section 3.8 we outline a method to deal with a system subjected to
radiation transport, demonstrating the promotion of an LC level to a TS level. In
the last section (3.9) some remarks about time dependent CRMs are given.

3.2 General exploration

We will start with a global exploration based on a case study of optically thin
plasmas. Initially, the most basic system consisting of two TS levels is treated.
Subsequently, the extension to a three level system will be described.

3.2.1 Two level system

Consider a plasma in steady state that consists of one atomic species with the cor-
responding ion of charge number Z = 1. This ion only exists in the ground level.
The system of excited levels between the atomic and ionic ground level is denoted
by the excitation space or the system, in short. We assume that only the ground levels
of the atom and ion are transport sensitive (TS), cf. Fig. 3.1 and 3.2.

Ionizing system

Figure 3.1 gives a representation of a purely ionizing atomic system [23] for which
the density at the high energy side, the ζ-side∗ , is set equal to zero: n(ζ) = 0. This
can be reached, or better, approached, if the efflux of ion-electrons pairs is ex-
tremely large; for instance due to fast diffusion created by large density gradients.
This efflux at the high-energy side demands (in steady state) for an influx at the
α-side and must be supported by an (net) ionization flux in the excitation space
leading to the α → ζ conversion. An important observation is that the transport

∗ To be as general as possible we use the symbol ζ for the high energy output side. In case of an
atomic system it represents the ion ground level, so ζ = +. The opposite side, the low energy input
side, is denoted by α.

19

3. The tasks of collisional radiative models

Figure 3.1. A sketch of an ionizing atomic system with two entries: the atom ground level
α, and ion ground level ζ. Only these levels (α, ζ) are transport sensitive (TS). We assume
to deal with a purely ionizing situation so that, due to the large efflux of ion-electron pairs,
the density at the ζ-side equals zero: n(ζ) = 0. This efflux demands (in steady state) for an
influx at the α-side and a flux in the excitation space that leads to the α → ζ conversion. This
conversion is accompanied by the generation of radiation. Both conversion and radiation are
ruled by the electron excitation kinetics, EEK. As illustrated by the dashed arrows, the EEK
conversion is the net result of several excitation and de-excitation processes. The shape of the
ASDF is determined by the density at the α entry level and the EEK, and because of the linear
nature of the system, we expect a relation between the ground level α and an arbitrary internal
level of the form nα(i) = Riαn(α). It can be understood that the radiative energy losses are
directly proportional to the ground state density (cf. Eqn. (3.3)).

efflux Γ (in m−3 s−1) at the input must (in absolute value) be the same as that of
the output side, so that:

Γ(α) = −Γ(ζ) or Γ(α) + Γ(ζ) = 0. (3.1)

We will use the sign-convention that Γ is reckoned positive for the case of out-
ward transport so that, in this case, Γ(ζ) > 0 whereas Γ(α) < 0, see Fig. 3.1. This
relation (Eqn. (3.1)) will be denoted by the system flux balance. In this example of
a purely ionizing atomic plasma the ASDF is determined by the density at the
entry level α and the electron excitation kinetics, EEK. Due to the linear nature of
the system, we can expect a relation between the ground level α and an arbitrary
internal level of the form:

nα(i) = Riα n(α). (3.2)

This “relation function” R is the result of various forward and backward pro-
cesses and heavily depends on the properties of the electron gas {e}: the density
ne and temperature Te. Furthermore, due to the fact that the population of all ra-
diating levels is directly proportional to that of the entry level α, we may assume
that also the radiation output is directly proportional to n(α). Thus, the power
density (W m−3) at which photons are created can be written as∗:

ε+f = Lα n(α), (3.3)

∗ The following notation convention is used: ε stands for the power density (W m−3), the subscript
e, f , and c refer to the electron {e}, photon { f }, and chemistry {c} energy reservoirs, respectively.

20

3.2. General exploration

Figure 3.2. A sketch of a recombining atomic system with the same entry levels as those given
in Fig. 3.1. In this purely recombining case we have n(α) = 0. The ASDF is now determined
by the density at the ζ entry and the EEK. We expect an ASDF of the form nζ(i) = Riζ n(ζ).

where Lα is called the specific effective emissivity cf. Van Dijk et al. [24]. The + sign
added as a superscript indicates that it is a gain term for the photon field { f }.
Apart from the radiation also the conversion will cost energy since the internal
energy of the ζ particles is larger than that of the α particles. Using the sign con-
vention given above it is obvious that the power density at which “chemistry” is
added to the plasma reads:

ε+c = E(α)Γ(α) + E(ζ)Γ(ζ), (3.4)

where E(α) and E(ζ) are the internal energies of the atom (ion) in level α and ζ.
Since both ε+c and ε+f originate from electron excitation we may assume that the

power density ε−e at which the electrons {e} lose energy must satisfy the following
relation:

ε−e = ε+f + ε+c or ε+e + ε+f + ε+c = 0 (3.5)

Equation (3.5) treats the reservoirs on an equal footing and is similar to the
Kirchhoff junction rule:

The sum of the currents in all the branches flowing from a junction equals
zero.

Here, current is replaced by power density, the branches by the reservoirs, while
the role of the junction is played by the excitation space. Equation (3.5) will be
denoted by the system energy balance.

Recombining system

Figure 3.2 gives a sketch of the situation opposite to that of Fig. 3.1, namely that
of a purely recombining atomic system. The same two entry levels (α = 1 and

The superscript − or + indicates whether the energy transfer is regarded as an effective loss (−) or
gain (+) for the reservoir indicated by the subscript; so, evidently, ε+x = −ε−x . If the sign is absent we
assume that we deal with a gain term; i.e., εx ≡ ε+x .

21

3. The tasks of collisional radiative models

Figure 3.3. A sketch of an atomic system in which level β, in this case β = 2 (the first excited
level) is promoted from LC to TS level. It thus forms a new entry for the excitation space. The
contribution of the population of β on the ASDF can be seen by setting the densities at the
other entry levels equal to zero, which will result in nβ(i) = Riβn(β).

ζ = +) are involved but now ζ is the input and α the output side, which means
that Γ(α) > 0 and Γ(ζ) < 0. In this situation the conservation laws in Eqns. (3.1)
and (3.5) are also expected to be valid. In this purely recombining situation the
ground state density is set to zero (n(α) = 0) so that the ASDF and the radiation
generation are determined by the density at the ζ entry (together with the EEK).
Thus the ASDF and the line radiation will have the form:

nζ(i) = Riζn(ζ), (3.6)

and

ε f = Lζ n(ζ). (3.7)

3.2.2 Three level system

In Fig. 3.3 the first excited level β = 2, is promoted from LC to TS level and thus
forms a new entry of the excitation space. The reasons for such a promotion can
be that the timescale of ordinary transport (diffusion and convection) of β may
be in the same order as that of the local chemistry. The influence of this extra
source at the entry β on the ASDF is found by setting the densities at the other
entries equal to zero. We expect for the ASDF and the radiation power density
the following forms:

nβ(i) = Riβ n(β), (3.8)

and

ε f = Lβ n(β). (3.9)

The system flux balance, cf. Eqn. (3.1), can be generalized to:

Γ(α) + Γ(β) + Γ(ζ) = ∑
ξ

Γ(ξ) = 0, (3.10)

22

3.2. General exploration

Figure 3.4. A sketch of an atomic system in which the excitation space is fed by levels α and
β.

where the index ξ runs over the collection {α, β, ζ}. The associated power density
will be of the form:

ε+c = E(α)Γ(α) + E(β)Γ(β) + E(ζ)Γ(ζ) = ∑
ξ

E(ξ)Γ(ξ). (3.11)

Alternatively, we define the vectors E and Γ containing the energy values and
efflux rates of the levels, so we can write the sum as a dot product:

ε+c = E · Γ = Et · Γ
t, (3.12)

where t denotes TS levels, which is valid since for LC levels (denoted by l) Γl = 0.
The system energy balance will retain the form given by (3.5).

3.2.3 Generalization

In Fig. 3.4 the three entry levels are simultaneously in action. The EEK makes the
conversion between α, β, and ζ via the excitation space possible. In this general
situation we may expect system energy and flux conservation laws of the same
form as Eqns. (3.5) and (3.10). The power density associated to radiation will now
be of the form:

ε+f = Lαn(α) + Lβn(β) + Lζ n(ζ) = ∑
ξ

Lξn(ξ), (3.13)

where we also introduce vectors to store the specific emissivities and densities: L

and n. We can then write ε f as:

ε+f = Lt · nt. (3.14)

The density of an LC level i is given by:

n(i) = ∑
ξ

nξ(i) = ∑
ξ

Riξ n(ξ), (3.15)

23

3. The tasks of collisional radiative models

which can be written in a general matrix-vector form by:

nl = Rlt nt, (3.16)

where the densities of the LC levels (superscript l) are expressed in the densities
of the TS levels (superscript t) by use of the matrix Rlt. Thus the species (or levels)
forming the system {s} can be split up into the collections of entry (or TS) levels
{t} and the internal (or LC) levels {l}; i.e., {s} = {t} ∪ {l}.

The factual form of the ASDF as described by the R-matrix depends on the
joint action of all the various transition processes. These are given by individual
transition frequencies D defined such that n(j)D(j, k) is the number of j → k
transitions per unit of time.

3.2.4 Further generalization

If a CRM is used to determine the source of a plasma transport model we are not
interested in all the details of the various processes. More important is to know the
effective conversion between the entry levels, for which the internal levels serve as
intermediates. Thus, what counts are the effective conversion coefficients. For ex-
ample, J(α, β) is defined such that n(α)J(α, β) is the number of effective processes
per unit of time and volume by which α is converted into β. Effective means that
apart from the direct processes from α to β, we also take the transport through
the system (over the internal levels) into account. The net effective conversion rate
from α to β is given by n(α)J(α, β)− n(β)J(β, α), where the adjective net refers to
the result of forward minus backward reactions. The effective conversion coefficients
can be stored in a matrix J, which will be treated in section 3.6.

This concludes the general exploration of the tasks of an atomic CRM. We have
found the general structure of the ASDF (3.16), the radiative power density asso-
ciated with the transport of radiation (3.14), and found the structure of the energy
and mass balance. We also took the opportunity to introduce the nomenclature
and the matrix representation. However, the actual form of the ASDF, the effective
conversion coefficients and source terms are still unknown. In the next sections
we will see how these are composed out of the rate coefficients of the various
elementary processes.

3.3 The system of coupled particle balance equations

The central role in the description of the relation between transport and elemen-
tary processes is played by the set of particle balance equations. Before we study
the set as a whole we will first investigate the form of a single equation. It is the 0-th
moment of the Boltzmann transport equation and expresses how the density n(p)
of a level p is determined by transport and various populating and depopulating

24

3.3. The system of coupled particle balance equations

processes; it reads:

∂

∂t
n(p)

︸ ︷︷ ︸

accumulation

+∇ ·
(

n(p) v(p)
)

︸ ︷︷ ︸

transport

=

ne n1 K(1, p)
︸ ︷︷ ︸

electron excitation from ground

B1

− n(p) ne K(p, 1)
︸ ︷︷ ︸

electron de-excitation to ground

(3.17a)

+ ∑
q

ne n(q)K(q, p)

︸ ︷︷ ︸

electron (de-)excitation from q

B
− n(p) ne ∑

q

K(p, q)

︸ ︷︷ ︸

electron (de-)excitation to q

(3.17b)

+ n2
e n+ K(+, p)
︸ ︷︷ ︸

two electron recombination

S
− n(p) ne K(p,+)

︸ ︷︷ ︸

electron induced ionization

(3.17c)

+∑
l

n(l)B(l, p)ρν

︸ ︷︷ ︸

absorption

Pl

− n(p) ∑
l

[A(p, l) + B(p, l) ρν]

︸ ︷︷ ︸

emission (spont. + stim.)

(3.17d)

+∑
u

n(u) [A(u, p) + B(u, p) ρν]

︸ ︷︷ ︸

cascade (spont. + stim.)

Pu

− n(p) ∑
u

B(p, u) ρν

︸ ︷︷ ︸

photo excitation

(3.17e)

+ ne n+ [Krad(+, p) + B(+, p) ρν]
︸ ︷︷ ︸

radiative recombination (spont. + stim.)

P+

− n(p)B(p,+) ρν
︸ ︷︷ ︸

photo ionization

, (3.17f)

where B refers to the Boltzmann balance, S the Saha balance, and P the Planck
balance. Upper and lower levels are denoted by u and l respectively, while q refers
to any other level (q 6= p), and 1 is the ground level. The symbol K(p, q) repre-
sents the rate coefficient for the transition p → q induced by electron collisions.
The symbols B(p, u) and B(u, p) are the coefficients for absorption and stimulated
emission, respectively, while A(u, l) refers to the transition probability for spon-
taneous decay (u → l). The symbol ρν represents the spectral energy density (in
J m−3 Hz−1).

The structure of the particle balance in Eqn. (3.17) demonstrates that the accu-
mulation, ∂n(p)/∂t, and efflux, ∇ · (n(p)v(p)), of a species p is coupled to the var-
ious (collisional C and radiative R) production and destruction processes. These
CR processes are grouped in forward and corresponding backward processes ac-
cording to so-called proper balances [25] of the types Boltzmann (B: excitation–
de-excitation), Saha (S : ionization–two electron recombination) or Planck (P : ab-
sorption–emission). Disequilibrium of one of these balances (rhs) either leads to
accumulation, will invoke transport (lhs), or demands for a complementary dis-

25

3. The tasks of collisional radiative models

equilibrium of another balance. For instance the escape of radiation will lead to
the disequilibrium of a balance of the Planck-type. This has to be compensated,
for instance with the non-equilibrium state of a Boltzmann balance (more exci-
tation than de-excitation) and/or the influx of excited species. A distinction was
made between the Boltzmann balance B1 of p with the ground level (p = 1),
Eqn. (3.17a), and those with other, higher levels, Eqn. (3.17b). We also distinguish
between Planck balances to lower levels Pl , higher levels Pu and the continuum
P+.

Planck equilibrium is in most cases not easy to establish, in the sense that
(line) emission can easily escape from the plasma and is not compensated by
(re)absorption. Therefore it is useful to introduce the effective radiative transition
probability A∗ which is defined such that Eqn. (3.17d) is replaced by the effective
decay:

n(l) B(l, p) ρν
︸ ︷︷ ︸

absorption

− n(p) [A(p, l) + B(p, l) ρν]
︸ ︷︷ ︸

emission (spontaneous + stimulated

≡ −n(p) A∗(p, l)
︸ ︷︷ ︸

effective emission

. (3.18)

The same can be done for Pu, Eqn. (3.17e), and P+, Eqn. (3.17f).

3.3.1 Reordering

The various terms in Eqn. (3.17) can also be ordered differently. For every level p
we can define a transition frequency:

F(p, q) = ne K(p, q) + A∗(p, q), (3.19)

which describes the frequency at which level p is depopulated in favor of level q.
It consists of two terms; one proportional to the electron density ne, reflecting the
electron induced transitions, and a constant term which refers to the (effective) ra-
diative transition. This structure, which among other reasons is the consequence
of the definition of A∗ in Eqn. (3.18), is essential for EEK plasmas, in which elec-
trons are the only agents ruling the traffic in excitation space.

When the ion level is the originating level (p = +), the transition frequency is
defined by:

F(+, q) = n2
e K(+, q) + ne Krad(+, q). (3.20)

We can now combine production terms for level p:

P(p) = ∑
q 6=p

n(q) F(q, p) + n+ F(+, p) (3.21)

and the destruction factor:

D(p) ≡ F(p, p) ≡ ∑
q 6=p

F(p, q) = ne K(p) + A∗(p), (3.22)

26

3.3. The system of coupled particle balance equations

where we use ne K(p) ≡ ne ∑q K(p, q) and A∗(p) ≡ ∑l A∗(p, l).

Using these combining terms we get for Eqn. (3.17):

∂

∂t
n(p)

︸ ︷︷ ︸

accumulation

+∇ ·
(

n(p) v(p)
)

︸ ︷︷ ︸

transport

= P(p)
︸︷︷︸

production

− n(p) D(p)
︸ ︷︷ ︸

destruction

, (3.23)

An even more abstract form for Eqn. (3.17), equating the transport to the (local)
chemical source, is given by:

T (p)
︸ ︷︷ ︸

transport

= S(p)
︸ ︷︷ ︸
source

, (3.24)

where evidently

T (p) ≡ ∂

∂t
n(p) +∇ ·

(

n(p) v(p)
)

≡ n(p) Ft(p), (3.25)

and

S(p) ≡ P(p)− n(p) D(p). (3.26)

So the efflux and accumulation are represented as a transport frequency Ft, show-
ing that accumulation can be viewed as transport in time and efflux as transport
in space. Note that in contrast to Eqns. (3.25) and (3.26), Eqn. (3.24) is not a def-
inition but an expression demonstrating the competition between transport and
chemistry. The source term S(p) has to be computed using local chemistry (i.e. el-
ementary processes) whereas the transport T (p) follows from (gradients in) the
density and velocity field and the transient behavior of the plasma.

3.3.2 Matrix notation

It is clearly demonstrated in Eqn. (3.17) that the chemical production of a certain
level p depends on the population of all other levels. Therefore a plasma model
should contain a set of coupled balance equations in the form of Eqn. (3.17). The
combined set can be cast in matrix form:

T = S ≡ Fn, (3.27)

where the chemistry is written as a matrix-vector multiplication. The elements
of vector T are of the form given in Eqn. (3.25), one for each level, vector n is a
vector composed of level densities, and matrix F a matrix containing the transition

27

3. The tasks of collisional radiative models

frequencies defined as∗†‡:

Fpq = F(q, p) for p 6= q (3.28)

Fpp = −F(p, p) ≡ − ∑
q 6=p

F(p, q) on the diagonal (3.29)

Since the transition frequency is a summation of electron excitation kinetics
(EEK) and radiative transitions (see Eqn. (3.19)), the frequency matrix F can be
decomposed into a collisional and radiative part:

F = eF + f F, (3.30)

where eF pq = ne K(q, p), and f F pq = A∗(q, p). We will now continue to discuss
how this matrix equation can be simplified.

3.4 Simplification

The set of balance equations described by Eqn. (3.27), can be simplified in two
ways. First, for many levels the chemistry is so fast compared to transport, that
we can disregard the latter. This leads to a distinction between LC and TS levels.
Second, we can restrict the number of levels that are taken into account, by the
assumption that the occupation of highly excited levels can be described analyti-
cally.

3.4.1 Local chemistry versus transport sensitive

For many plasma conditions transport is relatively slow and in most cases the
inequality Ft(p) < 106 s−1 holds for all species. However, for excited species the
elementary reactions are fast and the destruction factor is of the order D(p) ≈
107 s−1 or higher. If we divide Eqn. (3.24) by the destruction frequency we get:

P(p)

D(p)
− n(p) =

n(p) Ft(p)

D(p)
≈ 0 or n(p) ≈ P(p)

D(p)
(3.31)

This leads to a procedure known as the Quasi Steady State Solution (QSSS) [8].
The densities of excited states, for which (3.31) is fulfilled, are only determined
by local chemistry LC. This simplification does not hold for the ground states of

∗ According to mathematical convention, Fqp is the element of matrix F positioned on row q and
column p. At that location we find the frequency at which p populates q, which, by CRM convention,
is given by F(p, q). That is why Fqp = F(p, q).

† q and p run over all levels in the system including the ion level (“+”).
‡ The minus sign in the definition of Fpp is related to that placed before the destruction factor in

Eqns. (3.17) and (3.26). The summation in the definition of the so-called total destruction rate F(p, p) =
D(p) runs over all other levels q 6= p, cf. Eqn. (3.22).

28

3.4. Simplification

the atom and ion. These species are called transport sensitive and can be seen as
the entries to the excitation space. Therefore, they will be denoted by entry or TS
levels, the other levels are internal or LC levels.

In the past many CRMs with a two-entry structure were constructed. In sec-
tion 3.6 we will give a prescription of how the structure of a CRM can be extended
to situations in which more than two TS levels are needed.

3.4.2 Cut-off procedure

A further simplification is obtained by reducing the number of LC-levels, which
leads to a reduction of the dimension of the vector equation (3.27). This can be
done using the cut-off method that is based on the scaling of the destruction fre-
quencies as a function of the principal quantum number∗

p. The electron colli-
sional excitation rate coefficients follow the principal quantum number scaling
by [25]:

K(p) ∝ p
4
p Z−3, (3.32)

and for transition probabilities the scaling is:

A(p) ∝ p
−5
p Z4. (3.33)

The approximations demonstrate that for increasing pp we rapidly enter the do-
main of the excitation space where the collisional part dominates the radiative
part in the total destruction term in transition frequency (3.19). This happens
when p > pCR where pCR is the so-called CR-boundary given by the condition
ne K(pCR) = A∗(pcr). The CR-boundary is determined approximately by the ex-
pression:

p9
cr ≈ 9 × 1023 1

ne
Z7, (3.34)

where Z is the charge number of the core, and the electron density ne must be
given in m−3. This boundary condition shows that for increasing ne the boundary
level pCR shifts towards lower values.

It can be shown that for a wide range of conditions both the ASDF and the
flux in the collisional part of the excitation space (thus p > pCR) can be treated
analytically (see section 4.3.5). These analytical expressions make it possible to
construct a cut-off procedure so that the number of excited states that must be
treated numerically can be reduced drastically. Thus in general, a CRM can be
constructed with a numerical bottom and an analytical top and since only the nu-
merical part has to be solved by Eqn. (3.27) we can reduce the dimension of this

∗ Note that we use the symbol p among others to label the levels and thus the equations of
type (3.17). We use the notation p to refer to principal quantum numbers (pqn) defined as pp =

Z
√

Ry/Ep+ where Ep+ is the ionization potential of level p, Z the charge of the core, and Ry ≈ 13.6 eV

the Rydberg energy.

29

3. The tasks of collisional radiative models

Figure 3.5. The system of two levels being at the same time the two entries of the excitation
space and their interacting transition frequencies.

matrix-vector equation drastically. This cut-off technique will also be available in
the CRM implementation described in chapter 4.

Finally we would like to mention that there are conditions for which the whole
ASDF can be cast in an analytical form, thus for both the lower radiative (p < pCR)
and the upper collisional domain (p > pCR). This pure analytical expression was
found to give a fairly good description of the ionization flow through the chain of
ionic systems, ranging from, I (Z = 1) to X (Z = 10) of strongly ionizing Xe and Sn
pinch plasmas as used for lithography [26]. However, to be as general as possible
and to be prepared for the description of the influence of molecular processes and
radiative transfer on atomic excitation spaces we will study the general structure
of numerical CR Models.

3.5 Structure and tasks of a CRM

This section gives a systematic description of the structure and tasks of a numer-
ical CRM. It follows a step-by-step approach starting with the simplest system, a
system of 2 levels that are both entries of an atomic excitation space. Conversion
between these two can only take place by direct processes. This simple form of
the excitation space will be denoted by a {2-entry/2-level} system. After that we
will add in section 3.5.2 one extra “internal” level so that a {2-entry/3-level} sys-
tem is obtained. We will use the notation convention that entry levels are denoted
by Greek symbols (α, β, . . .), whereas Roman symbols (i, j, . . .) are used for the
internal levels.

3.5.1 A {2-entry/2-level} system

Consider a two-level atomic system with α = 1 and ζ = +; the ground state of
the atom and ion ground respectively. Due to electron excitation kinetics the con-
version α → ζ (ionization) will take place in a certain plasma region. The local
surplus of n(ζ) and defect of n(α) created by EEK leads to transport. This is illus-
trated in Fig. 3.5, where the competition between transport in configuration space
ruled by T (α) and T (ζ) and the traffic through the system (excitation space), the
chemistry, is shown.

30

3.5. Structure and tasks of a CRM

Figure 3.6. The system of three levels, two entries, and their interacting transition frequencies.

The set of balance equations 3.24 only contains two terms:

T (α) = S(α) S(α) ≡−n(α) F(α, α)+n(ζ) F(ζ, α) (3.35a)

T (ζ) = S(ζ) S(ζ) ≡ n(α) F(α, ζ)−n(ζ) F(ζ, ζ), (3.35b)

whereas T (α) and T (ζ) are given by Eqn. (3.25).
In this case the chemistry is rather simple, and since there are only two lev-

els, all destruction processes of α will lead to population of ζ and vice versa, so
F(α, α) = F(α, ζ), and also F(ζ, ζ) = F(ζ, α). This means that S(α) = −S(ζ) and
subsequently T (α) + T (ζ) = 0, which was already announced in (3.1).

The total system density ns = n(α) + n(ζ) is therefore ruled by:

∂

∂t
ns +∇ · (ns vs) = 0, (3.36)

where ns vs = n(α) v(α) + n(ζ) v(ζ). The source term for α is the net recombina-
tion and for ζ it is the net ionization.

3.5.2 A {2-entry/3-level} system

The 2-entry/2-level system given above is extremely simple and in fact a CRM is
not needed since only direct processes between α and ζ were involved. The next
step towards a more complex and realistic system is the addition of an internal
level to the system as shown in Fig. 3.6.

In this case the balance equations (3.24) with their respective source terms are:

T (α) = S(α), S(α) =−n(α)F(α, α)+n(i) F(i, α)+n(ζ)F(ζ, α) (3.37a)

0 = T (i) = S(i), S(i) = n(α) F(α, i)−n(i) F(i, i) +n(ζ)F(ζ, i) (3.37b)

T (ζ) = S(ζ), S(ζ) = n(α) F(α, ζ)+n(i) F(i, ζ)−n(ζ)F(ζ, ζ) (3.37c)

An essential aspect of this {2entry/3-level} system is that the density of level i is
not sensitive for transport phenomena: T (i) = 0, which is true as long as Ft(i) ≪
F(i, i), see Eqn. (3.31). Thus contrary to the levels α and ζ, which being located at
the entrance of the system are influenced by densities on other plasma locations
via transport, the occupation of level i only depends on the local chemistry (LC)
and thus on the densities of the entrance levels.

31

3. The tasks of collisional radiative models

3.5.3 The tasks of a CRM

Now we will concentrate on the three different tasks of a CRM, namely providing
tools and ingredients for the calculation of:

1. the atomic state distribution function, ASDF;

2. the effective conversion frequencies;

3. source terms of the energy equations.

The study of the task allocation will be guided by the simple {2-entry/3-level} struc-
ture given in the previous subsection. Insights gained in this way will be used to
understand more complex situations. Intuitively derived matrix relations will be
justified in section 3.6.

The ASDF construction

The ASDF construction can take place if we know how the densities of internal
states are related to those of the entry levels. For the simple {2-entry/3-level} case
we can use Eqn. (3.37b) and find that:

n(i) = F(i, i)−1 F(α, i) n(α) + F(i, i)−1 F(ζ, i) n(ζ), (3.38)

showing the same structure as (3.15), where also the density of the internal level(s)
was determined by the addition of mutually independent contributions from each
of the entry levels.

From (3.38) nα(i) is found by setting n(ζ) = 0:

nα(i) = F(i, i)−1 F(α, i) n(α). (3.39)

This demonstrates that the contribution to n(i) by level α is a balance between
production from α and the total destruction factor at i. The same holds (mutatis
mutandis) for the contribution by ζ to i.

Just like Eqn. (3.15), this can also be written in matrix format as in Eqn. (3.16),
where now nl only contains level i, and nt contains levels α and ζ. Matrix Rlt,
that relates the densities of the internal levels to those of the entry levels, is in this
case a 1× 2 matrix. The general structure of R will be given in section 3.6, where it
will be shown that the translation of F(i, i)−1F(α, i) into the corresponding matrix
form is rather straightforward.

The R matrix can be extended such that a mapping from the t-subspace to the
entire excitation space can be effectuated, by:

Rst =

(

Itt

Rlt

)

, (3.40)

32

3.5. Structure and tasks of a CRM

so that:

ns = Rst nt, (3.41)

where s denotes the entire excitation space (TS and LC levels)∗, or {s} = {t}∪ {l}.
Matrix Itt is the identity matrix leaving entry levels unaltered. Equation (3.40)
gives a simple matrix expression for ASDF.

The effective conversion frequencies

The {2-entry/3-level} system shows that apart from direct ionization and recombi-
nation also stepwise processes involving the intermediate level i are present. The
combination of direct and stepwise processes is the effective conversion frequency
J. The effective conversion frequency for ionization can be found by substituting
equation (3.38) into (3.37c), showing that the contribution to the source of species
ζ by species α is n(α) J(α, ζ), with:

J(α, ζ) = F(α, ζ) + F(i, ζ) F(i, i)−1 F(α, i). (3.42)

This shows that the effective conversion frequency J(α, ζ) equals the direct con-
version frequency F(α, ζ) representing the direct process α → ζ, plus a fraction
of the frequency F(α, i) representing the process α → i. The fraction equals the
fraction of the total destruction of i, F(i, i), that leads to the transition i → ζ: i.e.,
F(i, ζ)F(i, i)−1.

The effective recombination (ζ → α) can be found by exchanging α and ζ
in (3.42). The net conversion rate through the system in the direction from α → ζ
is given by:

S(ζ) = n(α) J(α, ζ)− n(ζ) J(ζ, α), (3.43)

which in matrix form reads:

St = Jttnt. (3.44)

This shows that the sources of the entry levels can be expressed in J-coefficients
and only depend on the densities of the TS levels.

In fact the J-coefficients are generalizations of the direct F-frequencies and by
applying these effective conversion coefficients, we get a transformation of the
{2-entry/3-level} system back to the {2-entry/2-level} system of section 3.5.1. Be-
cause only two entries are involved in this example, we have that J(α, α) = J(α, ζ);
that is, all conversions of α lead (direct or indirect) to a production of ζ. If there
are more than two entries, such as in the example given in Fig. 3.4, it is useful
to define for each entry level the total conversion rate; for instance J(α, α) =
J(α, ζ) + J(α, β). This quantity can be found on the diagonal of the matrix Jtt

∗ In cases for which it is clear from the context that we deal with the entire excitation space we
omit index s. For instance ns ≡ n and Fss ≡ F.

33

3. The tasks of collisional radiative models

that stores the coefficients for the effective conversion frequencies. In line with
Eqn. (3.29) we find on the diagonal for entry level ξ:

Jtt
ξξ = −J(ξ, ξ) = ∑

υ 6=ξ

J(ξ, υ), (3.45)

where υ runs over all possible entry levels.
Equation (3.44) has a structure that is comparable to the general source matrix

equation S = Fn (Eqn. (3.27)). But in contrast to Eqn. (3.27), Eqn. (3.44) does
not operate on the whole excitation space but on the subspace spanned up by the
entry levels. The vector at the left-hand side St contains the chemical sources for
the entry levels solely. Thus St has the same dimension as the vector nt, namely
the number of transport sensitive levels.

Energy conversion

Here we will derive important tools that can be used in the electron energy balance
for EEK plasmas and we anticipate to conditions for which other excitation agents
(like photons and heavy particles) are important as well. We start with the {2-
entry/3-level} example. Multiplying each particle balance of Eqn. (3.37) with the
energy of the level in question we get:

−Eα n(α) F(α, α) +Eα n(i) F(i, α) +Eα n(ζ) F(ζ, α) = Eα T (α) (3.46)

Ei n(α) F(α, i) −Ei n(i) F(i, i) +Ei n(ζ) F(ζ, i) = 0 (3.47)

Eζ n(α) F(α, ζ) +Eζ n(i) F(i, ζ) −Eζ n(ζ) F(ζ, ζ) = Eζ T (ζ). (3.48)

Adding up these equations, and using (3.29) for the total destruction factor we
get:

∑
ν

Eαν n(α) F(α, ν) + ∑
ν

Eiν n(i) F(i, ν) + ∑
ν

Eζν n(ζ) F(ζ, ν) = Eαζ T (ζ), (3.49)

where we have used Epq = Ep − Eq, and on the right-hand side the fact that
T (ζ) = −T (α). In vector notation this can be written as:

E · (Fn) = E · T, (3.50)

which was already announced in Eqn. (3.12). Here too, we can replace E · T with
Et · Tt, since non-entry levels have a transport term equal to zero. Equation (3.50)
can be used in the case of multiple entries.

The general form given in the matrix notation (3.50) is very compact and facili-
tates the algebra of the various summation procedures considerably. However, in
some cases it is preferable to retain an expression like Eqn. (3.49). For instance, one
should realize that each energy distance in this equation appears two times, once
positive, for the energy increasing processes (excitation/ionization), and the other

34

3.5. Structure and tasks of a CRM

time negative (de-excitation/recombination). By grouping the terms in pairs of
forward and corresponding backward processes, we can write Eqn. (3.49) as:

∑
k<j

∑
j

Ekj

(

n(k) F(k, j)− n(j) F(j, k)
)

= Eαζ T (ζ). (3.51)

If we then decompose the transition frequencies into a collisional and radiative
part, F = eF + f F, we get:

∑
k<j

∑
j

Ekj

(

n(k) eF(k, j)− n(j) eF(j, k)
)

+ ∑
k<j

∑
j

Ekj

(

n(k) f F(k, j)− n(j) f F(j, k)
)

= Eαζ T (ζ). (3.52)

Again, we can write this in matrix vector form by using F = eF + f F:

E · (eFn) + E · (f Fn) = E · T, (3.53)

or
ε−e + ε−f = ε+c , (3.54)

which proves the energy conservation announced in section 3.2.1, cf. Eqn. (3.5).
The term at the right-hand side ε+c = E · T is indeed identical to that given in
Eqn. (3.12). Concerning the left-hand side we must realize that due to the defi-
nition ε−e = E · (eFn) and ε−f = E · (f Fn) these power densities can be seen as

the energy investment of electrons and photons into the excitation space. For the
electrons this is the net result of excitation minus de-excitation, whereas for the
photons it is the net result of absorption minus emission. Thus in this represen-
tation the electrons and photons are equivalent agents, both ruling the excitation
space by energy investment. Equation (3.54) states that the power density associ-
ated to the investment done by electrons and photons into the system is the same
as that associated to the efflux of radicals∗ (chemistry). Treating electrons, pho-
tons, and radicals on an equal footing would lead to a Kirchhoff-like expression,
cf. Eqn. (3.5):

ε−e + ε−f + ε−c = 0. (3.55)

Note that by introducing the effective decay probability A∗, cf Eqn. (3.18), the
interaction of the radiation field is presented as an effective emission process, so
that ε−f = E · (f Fn) is negative. This can more easily be seen by inspecting the

double sum in Eqn. (3.52) where all the frequencies f F(k, j), for which k < j, are
zero, so that only the negative terms n(j) f F(j, k) survive.

∗ Note that we use the term radical in a general way. It is meant as a species effectuating a reaction
in the atomic system.

35

3. The tasks of collisional radiative models

We can use the expression for the ASDF (3.40) to derive an expression for the
power density of the radiation gain term:

ε+f = −E · (f Fn) = Ltnt, (3.56)

where we use the definition:

Lt = −E · (f FssRst) (3.57)

a vector consisting of the specific effective emissivities, see section 3.2.1. So, the
Lt vector allows us to express the plasma emission in the densities of the TS levels
(vector nt). The matrix Rst is already known, since it is needed for task 1; the
determination of the ASDF, Eqn. (3.16).

Similarly, we can derive an expression for the energy associated to the trans-
port of radicals:

ε+c =
(

n(α) J(α, ζ)− n(ζ) J(ζ, α)
)

Eαζ , (3.58)

or in matrix-vector notation:

ε+c = Et · Tt = Et · (Jttnt). (3.59)

As the J matrix is known in the framework of the CRM, task 2 (Eqn. (3.42)), we can
express the power density associated to the transport of charged particles again
in densities of the TS levels.

The energy-coefficients given here are essential ingredients for the electron en-
ergy equation of EEK plasmas. They can be used to convert the inelastic terms of
the “energy” moment of the Boltzmann transport equation in which the excitation
space is involved. However, it should be realized that there are inelastic processes
in which the excitation space is not (completely) involved; such as the radiative
losses in free-free and free-bound transitions. Therefore, the derivation given in
this section provides only specific tools for the energy balance. It is not a complete
derivation. The energy balance for non-LTE plasmas is beyond the scope of this
treatment.

The examples given until now are related to EEK plasmas where the electron
gas {e} is the only leading agent of excitation and thus radiation generation and
radical production. In a general treatment we must admit other agents on an equal
footing as {e} so that Eqn. (3.53) changes into:

∑
a

E · (aFn) = E · T, (3.60)

where the summation extends over all the agents [a = {e}, { f }, {h}, . . .]: that
is electrons, photons, the heavy particles and possible other active species. This
means that extra branches can and must be added in the Kirchhoff-like scheme.

36

3.6. Generalization

3.6 Generalization

In the preceding section we occasionally predicted how the insights obtained by
the 3-level example can be extended towards the general case of a block of LC
levels and more than two entries; i.e. TS levels. Especially the generalization of
task 3 was found to be rather straightforward. However, some of the tasks of the
general CRM were postponed and will be treated here by giving a short overview
of this general case. More details can be found in [24] and [9].

The source equations were given in Eqn. (3.27) by the matrix notation S = Fn.
For the general case of an LC-block and more than two TS levels it is useful to
re-arrange the elements of vectors S and n in sub-vectors and matrix F in blocks.
The following structure is obtained:

(

St

0

)

=

(

Ftt Ftl

F lt F ll

)(

nt

nl

)

or

(

St

0

)

=

(

Ftt nt + Ftl nl

F lt nt + F ll nl

)

, (3.61)

where the sub-vectors nt and nl consist respectively of densities of the entry and
internal levels. Parallel we have the division of the source vector into St and Sl

for which, anticipating on the transport vector, the latter was set equal to zero; i.e.
Sl = 0. The four F sub-matrices are related to the four different types of excitation
traffic routes, between the possible combinations of t and l blocks. For instance,
Ftl refers to the traffic between blocks t → l, while F ll relates to the internal traffic
between the LC levels. Comparing this matrix expression with that of the simple
three level system makes the following generalization plausible.

Task 1: The ASDF

The ASDF still contains as many components as there are entry levels. In the 2-
entry case we had two of them, now this number is in principle unlimited. Solving
the lower line of the matrix representation, Eqn. (3.61), we get the following gen-
eralization of Eqn. (3.40):

nl = −
(

F ll
)−1

Ftl nt. (3.62)

In comparison to the three level case given by Eqn. (3.38), we see that the trans-
formation to the matrix representation given here is rather straightforward; we
only need to replace the F frequency by the appropriate sub matrix of F. The
counter intuitive minus sign in the matrix equation corresponds to the fact that
Fpp = −F(p, p), see Eqn. (3.29).

In the form of Eqn. (3.40), the ASDF is given by:

ns = Rstnt with Rst =

(

Itt

−(F ll)−1 Ftl

)

. (3.63)

37

3. The tasks of collisional radiative models

Task 2: Effective conversion rates

The effective conversion rates are represented in the J matrix, Eqn. (3.44), with
elements defined by (3.42). It gives the effective conversion rate between each
pair of entry levels and is a square matrix with a rank equal to the number of
entry levels. We can use the definition of the four sub-matrices of the transition
matrix as defined in (3.61), to obtain J, which is given by:

J = Ftt − F lt (F ll)−1 Ftl . (3.64)

As was the case with the ASDF in Eqn. (3.63), the minus sign originates from
Eqn. (3.29).

Task 3: Energy source terms

The matrix equations for the energy power density of the photons and radicals
were already given in Eqns. (3.56) and (3.59). In generalized form they do not
change, the only issue is that a generalized form of Lt, Eqn. (3.57), and T t is
needed. The result of task 1 is used for matrix Lt, and the result of task 2 for
matrix T t. We will give the results here for completeness, starting with the power
density for radiation losses:

ε+f = −E · (f Fn) = −E · (f FssRst) · nt = Lt · nt, (3.65)

where we have used Eqn. (3.63).

The power density associated to the radicals is given by:

ε+c = Et · Tt = Et · (Jnt), (3.66)

where Eqn. (3.64) is used.

3.7 Further generalization

We have already seen that, due to its linear nature, the F-matrix can be split up
for instance into F = eF + f F, as in Eqn. (3.30). This leads to a linear split up
in the R (Eqn. (3.63)) and J (Eqn. (3.64)) matrices so that the implementation is
straightforward. In the same way it might be needed to admit other excitation
agents to the same atomic system. The consequences with respect to the energy
equations were already discussed in section 3.5.3. However, apart from admitting
more agents along the same channels it might also be needed to implement com-
pletely different sources. For instance if we want to construct a CRM for atomic
nitrogen we have to include all kinds of processes between excited atomic nitro-
gen states. We can start the construction of such a model by describing the effect

38

3.7. Further generalization

of the following excitation agents: the group of electrons, photons, and heavy par-
ticles. However, for a better description of reality we have to add sources that are
molecular of origin. For instance the dissociative recombination channel:

N+
2 + e → N∗ + N, (3.67)

will offer an extra and important source of excited nitrogen atoms. This means
that our formalism has to be extended so that the solution of more general source
matrices can be treated as well. The source vector as defined in Eqn. (3.27) is
extended with an extra term:

S = Fn + Sext, (3.68)

which can be split up, as in Eqn. (3.61), to:

(

St

0

)

=

(

Ftt F lt

Ftl F ll

)(

nt

nl

)

+

(

St
ext(n

t, nl)

Sl
ext(n

t, nl)

)

. (3.69)

The matrix algebra related to this extension is rather straightforward and can be
found in [27]. Here, we will only give the results for the ASDF and radiation losses
(tasks 1 and 3).

The external source term is dependent on TS densities and LC densities, and
typically non-linear, requiring a numerical solution procedure. If the external
source term for LC levels only depends on TS levels, or Sl

ext = Sl
ext(n

t), an analyt-
ical description is possible.

For the ASDF we can solve Eqn. (3.69), which gives the result for the internal
levels:

nl = −(F ll)−1
[

Ftl nt + Sl
ext(n

t)
]

. (3.70)

The density vector of the complete system is then, following Eqn. (3.63):

n =

(

I

−(F ll)−1 Ftl

)

nt +

(

0

−(F ll)−1

)

Sl
ext(n

t) (3.71)

≡ Rst nt + QSl
ext(n

t) ≡ nexc.sp. + next. (3.72)

This result, combined with Eqn. (3.65), gives the power density for radiation losses:

ε+f = −Lt · nt + E ·
(

f FssQSext(n
t)
)

. (3.73)

An application of this extended source method will be given in the next section
which is devoted to the effect of radiation transport.

39

3. The tasks of collisional radiative models

3.8 Level sensitive to radiation transport

In the previous section an outline was presented for a general CRM with more
than two entries. Here we will give an example of the application of such a sys-
tem, namely a system containing a level that is sensitive to radiation transport.
Consider the {2-entry/3-level} system as discussed in section 3.5.2. The density
of the internal (LC) level i is determined by the balance equation:

S(i) = n(α) F(α, i)− n(i) F(i, i) + n(ζ) F(ζ, i) = 0 (3.74)

The right-hand side of this equation was put equal to zero since the fluid transport
processes, usually with time scales in the order 10−4 s, are supposed to be much
slower than those associated to elementary processes. Therefore the elementary
processes have to compensate each other on each location; the overall source term
S(i) must be zero. So the density of level i depends solely on the local chemistry.

Now suppose that i is a resonant level, which decays to the ground level un-
der the emission of a photon. The decay probability A(i, α) of this elementary
process is often in the range 107 s−1 which justifies the reasoning sketched above.
However, due the large density of the ground level it is likely that a substantial
part of the emitted radiation will be reabsorbed, which implies that the reverse
process of absorption will lead to a high population frequency for the resonant
level. The transport of radiation can be seen as a transport of radiative species
and the corresponding transport frequency is much larger than that of material
transport, such as generated by convection or diffusion.

Normally the emission and re-absorption of radiation is accounted for by us-
ing the escape factor, changing A(i, α) into A∗(i, α) = θiα A(i, α) (see Eqn. (3.18)):

n(i) θi,α A(i, α) = n(i) A(i, α)− [n(α) B(α, i)− n(i) B(i, α)] ρν. (3.75)

The above equation gives the definition of the escape factor θ. In fact this is a
misnomer since it suggests that we deal with the chance that a photon emitted
at a certain plasma location escapes from the plasma. Thus one would expect
that 0 < θ ≤ 1, which is not the case, in general. What θ really gives is the
normalized net emission factor; that is the difference between spontaneous emission
and absorption normalized on emission. Since stimulated emission is accounted
for as negative absorption it is possible that θ > 1 for those conditions for which
stimulated emission prevails (see also table 4.1). On the other hand, if there is
more absorption than emission we can get θ < 0. Thus θ does not simply provide
the escape probability, it accounts for the net effect of emission and absorption.

Now suppose that the radiation field is not uniform, so that ρν in Eqn. (3.75)
is spatially dependent. In that case we can not use a constant escape factor and
the transport as induced by this inhomogeneity is very important. This means
that the associated transport frequency is in the order of A(i, α). This implies that

40

3.8. Level sensitive to radiation transport

A∗(i, α) in Eqn. (3.74) has to be replaced by the right-hand side of Eqn. (3.75) so
that Eqn. (3.74) changes to:

n(α) F�(α, i)− n(i) F�(i, i) + n(ζ) F(ζ, i) =

n(i) A(i, α)− [n(α) B(α, i)− n(i) B(i, α)] ρν (3.76)

In this equation we have corrected F(i, i) into F�(i, i) and F(α, i) into F�(α, i), a
direct consequence of replacing the constant A∗ by its form given in Eqn. (3.75).
At the left-hand side the LC processes are retained, such as (de-)excitation due
to electron collisions. At the right-hand side we will have a (radiative) transport
term which can be treated as the Sex in Eqn. (3.68). It can be seen that level i is no
longer an LC level but sensitive to transport; more precisely radiation transport.
Another consequence is that a comparable Sex term has to be present at the right-
hand side of the balance equation for the ground level α. But there is more; due to
the fact that ρν is determined by emission of other plasma parts, we can no longer
retain a local solution.

A solution procedure that can be employed is know as the Ray-Trace Control-
Volume (RTCV) method and consists of two steps [28, 29]. The method starts with
a given plasma composition of which the radiation intensity field and thus ρν can
be determined using a ray-trace (RT) method. This ρν provides (new) values of
θ, that is to say the right-hand side of Eqn. (3.76), and in fact the value of Sex.
Subsequently a control volume (CV) method is used to solve the system of the
combined modules∗ of fluid plus chemistry as prescribed by the new CRM. The
resulting new plasma composition provides ingredients to compute the radiation
field again so that the first step can be repeated. This obviously is an iterative
procedure.

The first step the ray-trace module takes, is to make a selection and discretiza-
tion of the spectral region of interest. Next, a network of lines (rays) through the
plasma has to be constructed. The number of lines largely depends on symmetry
aspects. Along these lines the intensity evolution is computed using the radiation
transfer equation:

dIν(ν)

dν
= jν − k(ν) Iν(ν), (3.77)

where Iν(ν) is the spectral intensity (in W m−2 sr−1 Hz−1) for the direction along
the lines through the plasma. Each line starts outside the plasma with Iν(ν) = 0.
While entering the plasma Iν(ν) will grow due to the emission generated in the
outer plasma layers. Proceeding further along the line the intensity will increase
but (depending on the k-value) absorption will realize an energy transfer from the
ray to the plasma. The computation (in the first step) of the evolution of Iν along

∗ The term “modules” refers to the fact that this model was implemented in the plasimo plasma
modeling framework. In plasimo complex models can be constructed by combining building blocks
called modules; fluid and chemistry being just two of the many available. See also chapter 5.

41

3. The tasks of collisional radiative models

the rays is of course prescribed by the j and k values. These are closely related
to the A and the B in Eqns. (3.75) and (3.76). The value of ρν can be determined
at the nodal points of each control by computing the direction-average of the Iν

values for the different (selected) directions.

3.9 Time dependence

In the preceding discussion, the Quasi Steady State Solution was used to express
the three tasks of a CRM in simple expressions. Considering the ASDF, the den-
sities of the LC levels, vector nl , were mapped to the densities of the TS levels,
vector nt, meaning that a solution requires fixed densities of the TS levels. We are
however also interested in a full time dependent system, in which the system of
balance equations is:

∂n(t)

∂t
+∇ · (n(t)v(t)) = S(t). (3.78)

The transport can be moved to the right-hand side, treating it like an additional
(destructive) source term Str:

∂n(t)

∂t
= F(t)n(t)− Str(t) + Sext(t), (3.79)

where also external sources are included, making the system potentially non-
linear. The densities of all the levels at t = 0 are known (for instance from a
QSS solution), making it an initial value problem. Due to the complexity of the
set of balances and their source terms this usually requires the set of equations to
be solved numerically as a function of time.

In case all source terms in Eqn. (3.79) are independent of time, it can still be
useful to study the response of a disturbance in the equilibrium ASDF as a func-
tion of time.

Time dependence can enter equation (3.79) through the transport and external
source vectors, but also the transition frequency matrix can be time dependent.
Here, we will only discuss the latter.

The most obvious manner in which the transition frequency matrix can be time
dependent is through the electrons. Both the electron density, ne, and the Electron
Energy Distribution Function (EEDF), feedf can be time dependent, resulting in a
time dependence of the rate coefficients, since:

eFpq(t) = ne(t)K(p, q)(t) = ne(t)
∫ ∞

Epq

σpq(E′) feedf(E′, t)
√

E′/2m dE′. (3.80)

This will be used in a CRM of an Ar plasma induced by Extreme UltraViolet ra-
diation, presented in chapter 7.

42

3.10. Conclusion

In chapter 8 we will present a time dependent CRM for Laser Induced Flu-
orescence (LIF) experiments in Ar. In that CRM, time dependence is the result
of a short laser pulse that excites an excited level to another, higher level. The
model starts with a steady state solution, calculated using QSSS. While the plasma
conditions remain the same, a single, time dependent transition is added to the
transition matrix. This transition represents the excitation (absorption) of the
lower level and de-excitation ((stimulated) emission) of the upper level by the
laser pulse. With the model the evolution in time of the ASDF, and dominant
processes in restoring the steady state can be studied.

As such, the time dependent CRM is no longer a tool to provide a fluid model
with parameters for a reduced chemistry, it is an independent model useful to
study the various chemistry aspects in a system.

3.10 Conclusion

Collisional radiative models play an important role in the description of the non-
equilibrium chemistry in plasmas. Basically we have seen that there are two sche-
mes: one in which transport of radiation is not important and another in which
it forms an essential part of the transport-chemistry interaction. In the first case
we can run the CRM module separate from the fluid module and use the CRM
output to get transport coefficients and source terms for the fluid equations. In the
second case this is not possible and an iterative procedure has to be constructed
in order to come to a proper and self-consistent description of the trinity: fluid,
chemistry and radiation. In the first category we find apart from the laboratory
plasma as based on noble gases (e.g., Ar and He), also the reactive plasmas for
which the local chemistry is extremely important. In the second category we meet
with plasmas for light generation. Since these plasmas are intended to generate
large radiative fluxes it is obvious that this implies a central role for radiation
transfer. In many cases it is insufficient to employ a simple method with a constant
escape factor. Instead a method is needed in which the light emitting species is
not treated as LC level but as being sensitive to transport.

It has been shown how the task package of the CRM has to be prepared for this
job and how the matrix representation can be employed to tackle the tedious alge-
bra associated to extra sources in excitation space. This mathematical procedure
can be used in the future to modify existing atomic CRMs such that molecular
processes can be treated as well. This will extend the present application domain
of atomic CRMs towards the plasmas found in many modern applications.

In case time dependency is included the solution procedure is quite different.
Time dependence can enter the system through level densities not being at their
equilibrium value or through the properties of the agents that change over time.
Since we are no longer dependent on a QSS solution (apart from possibly using

43

3. The tasks of collisional radiative models

it for the initial values) we have more freedom in processes that are taken into
consideration; i.e., non linear.

In the following chapters (chapters 4 and 5) an implementation of both ver-
sions will be presented. This entails the construction of the matrices and vectors
as presented in section 3.6. Additionally, the time dependent CRM will be applied
in two different types plasmas; in chapter 7 to EUV induced Ar plasmas, and in
chapter 8 to LIF experiments in Ar plasmas.

44

Chapter 4

Description of a general CRM code

4.1 Introduction

In chapter 2 we introduced the models that will be dealt with in this thesis: Col-
lisional Radiative Models (CRM) and Global Plasma Models (GPM). In chapter 3
the tasks of a CRM were described, and in this chapter the first step towards an
implementation will be taken. The goal is to create a general CRM code in the pla-
simo framework. Certain implementation specifics will be described in the next
chapter (5). Here we will outline a mathematical description of the calculations
the CRM should perform (section 4.2), and we will treat the construction of the
transition-matrix, which holds all interactions between the levels in the model
(section 4.3).

4.2 Model

The tasks of the CRM were described in detail in the previous chapter. For the
steady state model they are to calculate:

1. the atomic state distribution function (ASDF);

2. the effective conversion rates;

3. the source terms for the energy equation.

For the time dependent model the goal is to calculate the species densities as a
function of time. When these are known, other characteristics such as the spectral

45

4. Description of a general CRM code

emission, can easily be determined. In all cases the system is described by 0-th
moment of the Boltzmann transport equation, which for a single species reads:

∂

∂t
ns +∇ · (nsvs) = Ss (4.1)

where ns, vs, and Ss are the density, velocity, and source term of species s, respec-
tively. In chapter 2 it was shown how this leads to the treatment in species space
and reaction space; the first being relevant for CRMs, the second is the basis of
a GPM. In chapter 3 it was shown how the treatment in species space leads to
solutions for the task of a CRM. Here we will give a brief outline.

4.2.1 Quasi Steady State (QSS)

In the Quasi Steady State solution we distinguish between Transport Sensitive (TS)
and Local Chemistry (LC) species or levels. For the TS levels, which often have
a relatively high density, the chemical processes impacting that density compete
with transport mechanisms. In contrast, the chemical processes of LC levels are
so fast that transport can be neglected. The result is that in equation (4.1) the left-
hand side is zero for LC levels, meaning that S = 0. Furthermore, when we only
take linear processes into account we can write:

S = Fn, (4.2)

where S and n are vectors containing the sources and densities of the levels, while
F is a matrix composed of the frequencies describing the processes between the
levels. From the matrix F and the densities of the TS levels the three tasks of
the CRM can be determined, see section 3.6. Mathematically, the three tasks are
expressed by:

1. ASDF: n =

(

I

−(F ll)−1Ftl

)

nt ,

2. effective conversion rates: J = Ftt − F lt(F ll)−1Ftl ,

3. energy source terms: ε+f = −E · (f Fn) ,

where the frequency matrix split into four parts as defined in equation (3.61) is
used, n and nt are the density vector and the vector of TS densities, and E is a vec-
tor composed of the level energies. The prefix f attached to the transition matrix
in item 3 denotes the fact that only the radiative transitions (where the photons
are the agents) are included in this matrix.

These equations show, that when the matrix F is known, the desired informa-
tion can easily be obtained with simple matrix-vector calculations.

46

4.2. Model

4.2.2 Transient behavior

In the transient case, where the source vector S can be time dependent, the set of
level density balance equations is treated as an initial value problem. This implies,
of course, that the densities at the start of the simulation are known, which can
be achieved by first running a QSS case. As in the QSS case, the source vector
is written in linear form (4.2), and non-linear terms and transport terms can be
added to the source vector, see Eqn. (3.68).

In general, an initial value problem for a vector containing a set of time depen-
dent variables y(t) has the form:

dy(t)

dt
= f (t, y(t)), (4.3)

and the initial value can be denoted by y(t0) = y0. The simplest way to get a
solution for the time t = t0 + ∆t is:

y(t0 + ∆t)
.
= y(t0) + ∆t f (t0, y(t0)). (4.4)

This is the forward or explicit Euler method. When we apply this to our problem
of the time dependent CRM, we have to replace vector y with the density vector
n and the function f with the source vector S. If we also write the source vector
in linear form, as in equation (4.2), we get:

n(t0 + ∆t) = n(t0) + ∆t F(t0)n(t0). (4.5)

We use the general y instead of n since in chapter 6 dealing with a GPM imple-
mentation, we will also use this solution method. In the GPM vector y not only
contains the species densities but also the electron energy density.

Apart from the forward Euler method there are many more methods avail-
able offering increased accuracy, stability, and/or computational speed, such as
Runge-Kutta methods. To obtain flexibility and offer various possibilities a gen-
eral stepper scheme is implemented, so that different methods of taking a compu-
tational step can be used. In general the solution of a vector y after a time step ∆t
is determined by some function g:

y(t0 + ∆t) = y(t0) + g(t0, ∆t, y(t0), f). (4.6)

The function g determines for which t and vector y the function f is evaluated.
The function g can then be implemented for different solution methods, and in
the case of forward Euler it simply reads:

g(t0, ∆t, y(t0), f) = ∆t f (t0, y(t0)). (4.7)

Evidently, the QSS solution and the time dependent solutions share the usage
of the transition-matrix F, which in the latter case is time dependent. When this

47

4. Description of a general CRM code

matrix is known the solution procedures are rather straightforward. The bulk of
the implementation lies therefore in the construction of this matrix.

We will now continue with a description of the processes that can be included
in this matrix. When all the processes are described, we will show how they form
the transition matrix. The actual implementation details in the plasimo framework
are treated in chapter 5.

4.3 Transition-matrix

The transition-matrix F, that is defined by Eqn. (4.2), consists of frequencies de-
scribing the transitions between the different excited states. The current CRM
version contains the following types of processes:

• electron (de-)excitation;

• electron ionization;

• two-electron recombination;

• radiative transitions (bound-bound);

• radiative recombination (free-bound).

The plasimo CRM code constructs the transition-matrix from building blocks rep-
resenting these separate processes. We will now give a description of each in de-
tail.

4.3.1 Electron excitation

In this process a particle (X) with a certain energy level (p) collides with an elec-
tron, resulting in a higher excited state (q) of the particle:

Xp + e +
(
Epq

) K(p,q)→ Xq + e, (4.8)

where Epq is the energy difference between levels p and q, and K(p, q) is the rate
coefficient. The probability for this reaction is determined by the cross section
σpq(E), and the rate coefficient for this reaction is obtained by averaging the prod-
uct of the cross section and velocity over the electron energy distribution function
(EEDF):

K(p, q) = 〈σv〉 =
∞∫

Epq

σpq(E′) v(E′) f (E′) dE′, (4.9)

with E the electron energy, f (E) the EEDF, and v(E) =
√

2E/me the electron ve-
locity, with me the electron mass. In this integration the lower limit is the thresh-
old energy for the reaction. As we deal with excitation, that is endothermic, pro-
cesses the internal energy of level q will be higher than that of the initial level p, so

48

4.3. Transition-matrix

Eq > Ep, and the threshold energy is Epq = Eq − Ep > 0. In the reverse case of de-
excitation (exothermic) the energy of the initial level is higher and the threshold
energy is 0.

The cross sections σ(E) and EEDFs f (E) that are supported by the CRM are
merely functions of energy and can be described in two ways: as look-up tables
or as mathematical formulae with a certain set of parameters. The EEDFs that
can be used are either Maxwellian or non-Maxwellian. A Maxwellian EEDF can
be described by a single parameter: the electron temperature. The use of non-
Maxwellian EEDFs of any form is supported; they can be described by look-up ta-
bles, representing multi-temperature, Druyvesteyn, or extremely non-Maxwellian
(see chapter 7) EEDFs.

Cross sections are determined either by experiments or some form of calcu-
lations (Born-Bethe, Hartree-Fock). The results are published as look-up tables
or as parameters for fit functions. In this CRM code both options are supported.
Some common cross section fit functions are implemented in the CRM, such as a:

• step function;

• Pots fit;

• ion fit;

• Hartgers fit;

• Vriens-Smeets, for excitation and ionization;

• Drawin.

To use any one of these in a CRM only the appropriate fit parameters are required.
Additionally, cross sections can be defined by custom fit functions (with a variable
set of parameters) or, as stated before, by look-up tables.

Step function

The simplest function that can be used to describe a cross section is the step func-
tion (see Fig. 4.1a):

σpq(E) =

{

0 for E < Epq

σ0 for E ≥ Epq,
(4.10)

meaning that the cross section is simply σ0 when the energy exceeds the threshold
energy Epq.

49

4. Description of a general CRM code

σ0

σ
→

Epq

E →
(a) Step (4.10).

σ1

σ2

σ
→

Epq E1

E →
(b) Pots (4.11).

σ0

σ
→

Epq

E →
(c) Ion (4.12).

σ0

σ
→

Epq E1 E2

E →
(d) Hartgers (4.13).

Figure 4.1. Examples of cross section functions.

Pots fit

The simple step function can be given some more structure by using the following
function, that will be referred to as the Pots function (see Fig. 4.1b):

σpq(E) =

0 for E < Epq

σ1 + s1(E − Epq) for Epq ≤ E ≤ E1

σ2 + s2(E − E1) for E > E1,

(4.11)

which is defined by the values σ1, σ2, Epq, E1, s1, and s2. The first slope is deter-
mined by s1 = (σ2 − σ1)/(E1 − Epq). By selecting s2 = 0 and σ1 = σ2 (resulting in
s1 = 0) we get the step function where σ0 of Eqn. (4.10) is replaced with σ1 (= σ2).

50

4.3. Transition-matrix

Ion fit

The ion fit cross section is often used for describing ionization cross sections, but
can be used for excitation cross sections as well:

σpq(E) =

0 for E < Epq

σ0

(

1 − Epq

E

)n

for E ≥ Epq,
(4.12)

where σ0 and n are the adjustment parameters. It can be seen as a smooth form
of the step function as shown in Fig. 4.1c.

Hartgers fit

The following function is useful for fitting more complex shapes (see Fig. 4.1d),
and is referred to as the Hartgers function:

σpq(E) =

0 for E < Epq

σ0

(
E − Epq

E1 − Epq

)n

for Epq ≤ E < E1

σ0 for E1 ≤ E < E2

σ0
E2 − E3

E − E3
for E ≥ E2,

(4.13)

where σ0, n, E1, E2, and E3 are the adjustment parameters, with E3 < E2 deter-
mining the curvature for E > E2.

Vriens-Smeets

Vriens and Smeets [30] have combined experimental and theoretical results semi-
empirically into practical formulae. They give cross sections and rate coefficients
that are supposed to be applicable to electronic transitions between levels with
only one electron in the outer orbit, such as transitions between excited levels or
transitions from the ground state of alkali atoms. The following expression is
given for electron excitation:

σpq(E) = 4πa2
0

Ry

E + γpq

[

Apq ln

(
E

2Ry
+ δpq

)

+ Bpq

]

, (4.14)

where a0 is the Bohr radius, and Ry = 13.6 eV the Rydberg energy. The three
transition dependent constants are defined by∗:

Apq =
Ry

Epq
fpq, (4.15)

∗ Note that Apq and Bpq are not to be confused with the Einstein coefficients that are employed in
radiation transport, see Eqn. (4.45).

51

4. Description of a general CRM code

σ
→

Epq

E →
(a) Excitation (4.14).

σ
→

Ep+

E →
(b) Ionization (4.22).

Figure 4.2. Cross section functions by Vriens and Smeets.

with fpq the absorption oscillator strength,

Bpq =
gq

gsub

2Ry2

p
3
q

(

1

E2
pq

+
4

3

Ep+

E3
pq

+ bp

E2
p+

E4
pq

)

, (4.16)

with

bp =
1.4 ln pp

pp
− 0.7

pp
− 0.51

p2
p

+
1.16

p
3
p

− 0.55

p4
p

, (4.17)

δpq = exp

(

−Bpq

Apq

)

− 0.4
Epq

Ry
, (4.18)

and

γpq = Ry

[

8 + 23

(
pq − pp

pp

)2
]

×
(

8 + 1.1pq|pq − pp|+
0.8

(pq − pp)2
+ 0.4

p
3/2
q

√
pq − pp

|pq − pp − 1|
)−1

. (4.19)

In these equations pp and pq are the effective principal quantum numbers:

pp = Z

√

Ry

Ep+
, (4.20)

with Z the charge number of the core and Ep+ the ionization potential of level
p. The ion ground level is denoted by “+”. By incorporating Z it is possible, in
principle, to use the Vriens-Smeets expression for ionic systems, in which case
the “+” denotes the ground level of the subsequent ionic level with core charge
number Z + 1.

52

4.3. Transition-matrix

It should be noted that the extra weight factor gq/gsub in Eqn. (4.16) is not
present in the original version as given in [30]. It was added in Benoy [31] to
extend the applicability of the original formula to non-hydrogen atoms. In non-
hydrogen atoms the (principal) quantum levels are split up into multiple levels.
Because of this splitting the cross sections are weighted such that the sum of all
factors g/gsub for transitions from a certain level p to a certain higher level equals
unity. If levels p and q have the same principal quantum number then gsub is
equal to g, otherwise gsub equals the sum of the weights of all levels with the
same principal quantum number q, to which excitation from p is possible.

A cross section of this kind is defined by two parameters: the weight gsub and
the radiative transition probability A(q, p). The latter is required to calculate the
oscillator strength (used in Eqn. (4.15)), using:

fpq =
mec3ε0h2gq

2πe2E2
pqgp

A(q, p), (4.21)

with me the electron mass, c the speed of light in vacuum, ε0 the permittivity
of free space, h the Planck constant, and e the elementary charge. Optionally, a
hydrogen approximation by Johnson [32] can be used for the oscillator strength.

Additionally, Vriens and Smeets suggest a cross section for ionization from
excited atoms and ground state alkali atoms:

σp+(E) = 4πa2
0

Ry2

E + αEp+

(
5

3Ep+
− 1

E
− 2EP+

3E2

)

, (4.22)

with α = 3.25.
Plots of these two cross section functions are shown in Figure 4.2. Cross sec-

tions of this type were used by Benoy [33] for constructing a CRM of Ar, and by
Van der Heijden [34] for H cross sections in a CRM of a TALIF experiment in a
Ar-H plasma.

Drawin

Three types of semi-empirical cross sections (see Figure 4.3) were proposed by
Drawin [35]. These are based on extensions of the Bethe formulae [36], and con-
tain parameters for optically allowed, parity forbidden, and spin forbidden tran-
sitions between excited states. Parameters for Ar were calculated by Kimura et
al. [37], whose results are the basis of the model by Vlček [38]. They are also used
in this thesis in chapters 7 and 8, where time dependent CRMs of Ar plasmas will
be presented.

For optically allowed transitions (∆l = ±1, ∆J = 0,±1 but not J = 0 → J = 0)
the expression is:

σA
p1 = 4πa2

0

(
Ry

Epq

)2

fpq αpq

(

1 − Epq

E

)
Epq

E
ln

(

1.25βpq
E

Epq

)

, (4.23)

53

4. Description of a general CRM code

σ
→

Epq

E →
(a) Optically allowed (4.23).

σ
→

Epq

E →
(b) Parity forbidden (4.24).

σ
→

Epq

E →
(c) Spin forbidden (4.25).

Figure 4.3. Semi empirical cross section functions by Drawin.

where fpq is related to the radiation probability via Eqn. (4.21). For parity forbid-
den transitions (∆l 6= ±1, ∆s = 0) the cross section reads:

σP
pq(E) = 4πa2

0 QP
pq

(

1 − Epq

E

)
Epq

E
, (4.24)

and for spin forbidden transitions (∆s 6= 0):

σS
pq(E) = 4πa2

0 QS
pq

(

1 −
E2

pq

E2

)

E3
pq

E3
. (4.25)

The coefficients αpq, βpq, QP
pq, and QS

pq are dimensionless fit parameters.

Custom function

Apart from these fit functions many publications use some other type of fit func-
tion to represent a range of cross sections using a set of parameters. In order to
use these cross sections without much effort, cross sections can also be defined in
the form of custom functions with a parameter set of variable size.

54

4.3. Transition-matrix

In the input file a mathematical expression must be entered describing the
custom function. Use of these types of custom functions for cross sections does
not require any compilation of C++ code. The functions are evaluated at run time,
thereby offering a high degree of flexibility (see also section 5.4.3).

Look-up tables

The final option to define a cross section is by using a look-up table. In literature
many cross sections are available in this form, be it from experimental results or
from complex (quantum mechanical) calculations. The plasimo framework pro-
vides classes to parse and store this kind of data using simple text files. A high
degree of freedom is available in the use of units of measurement, preventing the
need for cumbersome conversion of data.

Rate coefficient

In principle, every rate coefficient has to be calculated using equation (4.9), where
virtually any cross section can be used in combination with any EEDF. However,
an important category is that of plasmas with a Maxwellian EEDF. In that case the
EEDF can be described by one parameter: the electron temperature Te. In liter-
ature many rate coefficients for electron excitation can be found written as some
(usually exponential) function of Te, for instance the rate coefficient for excitation
of Ar from ground state to 4s from Kannari et al. [39]:

K(3p6, 4s) = 5.0 × 10−15 T0.74
e exp(−11.56/Te), (4.26)

with the electron temperature Te in eV. Instead of defining a cross section for a col-
lisional transition, a rate coefficient function can be defined similar to the custom
function for the cross sections.

4.3.2 Electron de-excitation

Up to now we have dealt with the endothermic processes of excitation. The rate
coefficient for the reverse processes of de-excitation can be determined by starting
with the forward process and then employing the principle of detailed balanc-
ing [40]. When a collisional excitation transition is defined, an optional switch in
the code determines whether the reverse process is implicitly included through
detailed balancing. If it is not, the reverse process can be included by defining the
reverse process explicitly.

In case of thermodynamic equilibrium the number of transitions in forward
direction equals the number of transitions in backward direction:

nenB
p K(p, q) = nenB

q K(q, p), (4.27)

55

4. Description of a general CRM code

where ne denotes the electron density and nB
p , and nB

q denote the densities of ex-
cited levels p and q according to a Boltzmann distribution:

nB
q

gq
=

nB
p

gp
exp

(

− Epq

kBTe

)

, (4.28)

with kB the Boltzmann constant. The forward and backward rate coefficients are
then related through:

K(q, p) =
gp

gq
K(p, q) exp

(
Epq

kBTe

)

. (4.29)

This relation is used to calculate the rate coefficient of the reverse process when
an electron collisional excitation transition is not defined using a cross section,
but using a rate coefficient as function of the electron temperature (in the case of
a Maxwellian EEDF).

We can use the principle of detailed balancing on a more elementary level
to relate the cross section for the forward (σpq) and backward process (σqp). In
thermal equilibrium the EEDF is Maxwellian and is described by:

f M(E) =
2π

(πkBTe)3/2

√
E exp

(

− E

kBTe

)

. (4.30)

When we use this Maxwellian EEDF in the calculation of the rate coefficients
(equation (4.9)), but only for an energy between E and E + dE, and enter this
in (4.27) we get:

ne np σpq(E) ve(E) f M(E) dE =

ne nq σqp(E − Epq) ve(E − Epq) f M(E − Epq) dE. (4.31)

When we combine this with (4.28) the result is:

σqp(E) =
gp

gq

E + Epq

E
σpq(E + Epq). (4.32)

Since the cross sections do not depend on the presence of thermodynamic equilib-
rium, equation (4.32) is valid under all conditions. This result shows that when
the cross section for the forward process σpq(E) is known, the cross section for
the reverse process is also known. When the EEDF is not Maxwellian, the cross
section for the reverse process is used in Eqn. 4.9 to calculate the de-excitation
rate.

4.3.3 Ionization and recombination

If the energy of an electron is high enough, a collision with an atom in excited
level p can cause ionization:

Xp + e + (Ep+)
K(p,+)→ X+ + e + e. (4.33)

56

4.3. Transition-matrix

Identical to electron collisional excitation the rate coefficient is dependent on a
cross section, which is now called the ionization cross section. Its value is calcu-
lated using equation (4.9).

The opposite process of recombination can occur in two∗ ways: two-electron
recombination, the reverse of (4.33), or radiative recombination. In case of equilib-
rium between ionization and two-electron recombination, the Saha relation holds:

np

gp
=

nS
p

gp
=

ne

ge

n+

g+

(
h2

2πmekBTe

)3/2

exp

(
Ep+

kTe

)

, (4.34)

where nS
p is the Saha density of level p. The rate coefficient for two-electron re-

combination is then:

K(+, p) = K(p,+)
gp

2g+

(
h2

2πmekBTe

)3/2

exp

(
Ep+

kBTe

)

, (4.35)

where we have used ge = 2.
The second recombination mechanism, radiative recombination, does not re-

quire the extra “spectator” electron:

X+ + e
Krad(+,p)→ Xp + hνp+, (4.36)

where the excess energy produces a photon. The following expression taken from
Van der Mullen [22] is used for the rate coefficient:

Krad(+, p) =
nS

p

nen+
γ Z4 1

pp

∞∫

ǫp

exp(−ǫ)

ǫ
h(pp, ǫ/ǫp)dǫ, (4.37)

where h(p, y) is the Gaunt factor†, and

ǫp =
Ep+

kBTe
, (4.38)

and

γ =
8 α4 c

3π
√

3 a0

, (4.39)

with

α =
e2

4 π ε0 h̄ c
. (4.40)

∗ In the implementation described here, two-electron and radiative recombination are included.
Molecular Assisted Recombination, described in section 4.3.8, is a third mechanism, but it is not in-
cluded in this code.

† The Gaunt factor is approximately 1.

57

4. Description of a general CRM code

The CRM code provides two ways to include ionization in a model. It can be
explicitly defined for every relevant level, or a “default” ionization contribution
can be used in which case the ionization is included for every defined level using
the cross section for ionization by Vriens and Smeets (4.22). Whether two-electron
recombination and radiative recombination are included in the model, is also con-
trolled by global options. When either of them is enabled a frequency is added to
the relevant element of the transition-matrix for every level that is included in the
model.

4.3.4 Radiative transitions

Transitions between excited levels can also occur due to emission and absorp-
tion of radiation. Three processes can be distinguished between an upper (u) and
lower level (l):
spontaneous emission:

Xu
A(u,l)→ Xl + hνul , (4.41)

absorption:

Xl + hνul
ρνB(l,u)→ Xu, (4.42)

and stimulated emission:

Xu + hνul
ρνB(u,l)→ Xl + hνul + hνul , (4.43)

where νul = c/λul is the photon frequency, ρν the spectral energy density, whereas
A(u, l), B(l, u), and B(u, l) are the Einstein coefficients for spontaneous emission,
absorption, and stimulated emission, respectively.

In the framework of a CRM, and more in general of a zero-dimensional model,
absorption and stimulated emission are problematic because of their non-local na-
ture: one part of the plasma produces radiation which interacts with another part
of the plasma. This problem is tackled by the use of an escape factor θul , which is
used to replace the transition probability A(u, l) in equation (4.41) by (see Hol-
stein [41]):

A∗(u, l) = θul A(u, l). (4.44)

The aim of the escape factor is to approximate the influence of absorption and
stimulated emission, and is determined by integration over the line profile as pre-
viously shown in Eqn. (3.75):

θul = 1 − 1

nu A(u, l)
(nl B(l, u)− nuB(u, l)) ρν, (4.45)

Depending on the dominant radiative processes, five situations can be identi-
fied as shown in table 4.1.

58

4.3. Transition-matrix

θ > 1 Stimulated emission dominates.

θ = 1 Absorption and stimulated emission can be neglected.

0 < θ < 1 Partial absorption.

θ = 0 No net radiative transfer.

θ < 0 Absorption exceeds local emission.

Table 4.1. Relation between escape factor values and dominating radiative processes.

Since escape factors are so heavily dependent on the geometry of the plasma,
they can not be calculated by the CRM. Instead they are considered input data.
Therefore, in the CRMs a radiative transition is defined by the spontaneous emis-
sion probability and an escape factor. In section 3.8 a case was described where
the escape factors were dependent on the location in the plasma, requiring an
iterative solution procedure.

4.3.5 Cut-off procedure

The number of levels in an atom that have to be dealt with can be very large, but
is limited. In reasonable approximation, the radius of an atom excited to a level p
with principal quantum number pp and core charge number Z is:

ap =
a0p

2
p

Z
. (4.46)

When we compare this with the distance between electrons for a given density:

dei = n−1/3
e , (4.47)

we see that the maximum excited level has the principal quantum number [42]:

pmax =

√

Z

a0 n1/3
e

. (4.48)

For a density of ne = 1018 m−3 and Z = 1 it results in pmax ≈ 140.
Another approach is to equate the atom radius to the Debye length [43]:

pmax =

√
√
√
√ Z

a0

√

ε0kBTe

nee2
. (4.49)

For equal Z and ne, and Te = 1 eV this results in pmax ≈ 390.
For practical reasons it is necessary to somehow limit the amount of levels

that are taken into account. The obvious solution of simply neglecting higher

59

4. Description of a general CRM code

levels can, however, lead to inaccurate results, since the stepwise ionization along
those excluded higher levels can play a large role. A more elegant procedure was
introduced by Van der Mullen [22]. In this cut-off procedure a highest excited
level, the cut-off level, is chosen, so that the cut-off level and all levels above it
are collisionally dominated, and in the so-called hot region, which means that the
average electron energy is higher than the ionization energy of those levels. The
levels in this region obey the Excitation Saturation Balance (ESB), meaning that
the atoms are repetitively excited until the excited electrons reach the continuum
and the atom is ionized.

This process is taken into account by an additional ionization contribution to
the rate coefficients for excitations from levels below the cut-off level to levels
above the cut-off level:

K∗(p,+) = K(p, q)

(

1 −
p

6
p

p
6
q

)

. (4.50)

Since the levels above the cut-off level are no longer included in the model, this
rate coefficient is no longer attributed to the transition from p to q but from p to
+.

To determine the cut-off level, Eqn. (3.34) can be used.
Whether this procedure is used in the CRM is determined by a global option

that defines the cut-off level, by using the name of the intended level.

4.3.6 Optimization

The rate coefficient for collisional transitions is calculated by using equation (4.9).
This calculation is performed by numerical integration using the trapezoidal rule,
a “one size fits all” solution that can handle non-smooth cross sections and/or
EEDFs. The CRM supports any form of EEDF, which is demonstrated in chapter 7
where an EEDF that is strongly peaked around 76 eV is used.

Because the numerical integration is relatively computationally expensive, the
rate calculation is of special interest. In many plasmas the EEDF is, or can be
considered to be, Maxwellian, so by introducing the dimensionless parameter x =
E/kBTe equation (4.9) becomes:

K(p, q) =

√

8kBTe

πme

∞∫

Epq/kBTe

σ(xkBTe) x exp(−x) dx, (4.51)

After re-parameterization this leads to:

K(p, q) =

√

8kBTe

πme
exp(−x0)

∞∫

0

h(x′ + x0) exp(−x′) dx′, (4.52)

60

4.3. Transition-matrix

with:

h(x) = x σ(xkBTe), (4.53)

and

x0 =
Epq

kBTe
. (4.54)

The integral in (4.52) can efficiently be calculated using the n-point Gauss-Laguerre
quadrature [44, eq. 25.4.45]:

∞∫

0

h(x) exp(−x) dx
.
=

n

∑
i=1

wih(xi), (4.55)

with roots xi and corresponding weights wi. Since this method prevents the ex-
pensive evaluation of the exponential term∗ it is much more efficient.

Further optimization can be achieved in case an analytical solution is avail-
able for equation (4.51). For instance, when the cross section function is a step
function (4.10), the rate coefficient is:

K(p, q) =

√

8kBTe

πme
σpq (1 + x0) exp(−x0), (4.56)

so no form of numerical integration is necessary. Section 5.4.4 describes how these
optimizations are implemented in a transparent way.

4.3.7 Matrix composition

The processes described so far constitute the transition frequency matrix F with
elements:

Fqp =

−
[

∑
i 6=p

neK(p, i) + ∑
i<p

A∗(p, i)

]

for p = q

neK(p, q) + A∗(p, q) for p > q

neK(p, q) for p < q, q = +

n2
e K(p, q) + neKrad(p, q) for p = +

−
[

∑
i<+

n2
e K(p, i) + ∑

i<+

neKrad(p, i)

]

for p = q = +

(4.57)

Note that this means that the sum of every column equals 0.

The transition matrix will be built up in the following steps:

∗The cross section function must be sufficiently smooth to achieve accurate results.

61

4. Description of a general CRM code

1. We start with a zero matrix.

2. If default ionization is enabled, elements F+p for all p are filled with the de-
fault ionization frequency, using the cross section by Vriens and Smeets 4.22.

3. All collisional transitions are added, either from a cross section or a rate
coefficient. However, there are several options:

• If the cut-off procedure is employed and the upper level is above the
cut-off level, the frequency K∗(p,+), see equation 4.50, is added to el-
ement F+p.

• If the cut-off procedure is not relevant for the transition (i.e., both the
lower and upper levels are below the cutoff level) the transition fre-
quency can either replace or be added to the already present frequency
in element Fqp. This is dependent on an override switch, which is present
in the definition of every collisional transition. This can be useful when
certain default ionization rates are to be overruled by specific rates.

• A second switch determines whether detailed balancing is used, so whe-
ther the frequency for the reverse process is added to element Fpq. The
override switch will also be in effect for the reverse process.

4. At this stage the frequencies for ionization are present in F, so now (if it is
included) the two-electron recombination frequency can be set for Fp+, see
equation 4.35.

5. If radiative recombination is included, its frequency, see equation 4.37, is
added to Fp+.

6. All radiative transitions are added to the frequency matrix, by adding the
frequency A∗(p, q), see Eqn. (4.44), to Fqp.

7. In the last step the diagonal elements are calculated by summing every col-
umn: Fpp = −∑q 6=p Fqp.

4.3.8 Additional processes

In section 3.7 a method was described to extend the source vector of the system of
species density balances with an additional extra source vector (Eqn. (3.68)). This
extension enables the possibility to include certain heavy particle processes into
the CRM.

In chapter 8 this is used in a time dependent CRM for LIF experiments in Ar
plasmas to include (de-)excitation processes by the Ar ground state atoms. The
extra source vector is constructed from rate coefficients and added to the transition
matrix.

62

4.4. Conclusion

A process that must be mentioned, but is not implemented in the current ver-
sion of the CRM, is Molecular Assisted Recombination (MAR). In this process
ions recombine in two consecutive steps to an excited state, for instance in an Ar
plasma:

Ar+ + Ar + Ar
KMAR,1→ Ar+2 + Ar, (4.58)

followed by:

Ar+2 + e
KMAR,2→ Ar∗ + Ar + (E). (4.59)

The second process is so quick that the first process is the limiting step and the
process can be described by KMAR,1. Effectively, this is comparable to a radiative
recombination reaction:

Ar+ + e
KMAR→ Ar∗ + (E), (4.60)

with source term SMAR = nineKMAR .

4.4 Conclusion

Once the transition matrix is constructed the solution procedures as described at
the start of section 4.2 can be employed. Now that we know how the transition
matrix is assembled and solved, we can start with the treatment of the implemen-
tation details in the plasimo framework.

63

Chapter 5

Implementation of a CRM code in the
plasimo framework

5.1 Introduction

In the previous chapter the basic functionality of the CRM code was described.
The aim is to implement this functionality as a model plug-in for the plasimo
framework. In this chapter several specifics of this implementation will be treated.
We will start with a short overview of the history of plasimo (section 5.2). Since
plasimo is developed in C++, it is necessary to give some background about this
programming language, and how its facilities are used in plasimo. We will there-
fore continue with an introduction to C++ and some constructs as they are used
in plasimo (section 5.3). Once the relevant C++ aspects have been described, the
structure of the CRM model plug-in will be treated, along with the construction of
the transition-matrix (section 5.4). This will also give some insight into the struc-
ture of plasimo itself. Section 5.5 is devoted to the implementation of the solution
procedure.

5.2 History of plasimo

plasimo, an acronym that stands for PLAsma SImulation MOdel, is the name of
the plasma modeling framework that has been under continuous development in
the plasma groups at the faculty of applied physics of the Eindhoven University
of Technology since the 90’s of the previous century.

65

5. Implementation of a CRM code in the plasimo framework

Before plasimo came into existence, a lot of expertise was already present in the
field of CRMs, see for example Van der Sijden and Pots [45], Van der Mullen [25],
and Hartgers [46], on which the CRM implementation in this work is based. The
main goal of these models was the interpretation of spectroscopy.

The desire rose to construct more complex plasma models covering the three
plasma aspects configuration, transport and chemistry: a “Grand Model”. This un-
dertaking was started by Emile de Jong, Dany Benoy, and Frank Fey under guid-
ance of Joost van der Mullen. Originally, the Pascal programming language rather
than the more commonly used Fortran was chosen for this task, since Pascal sup-
ports a more modular approach. From the beginning, modularity has been a key
concern to the plasimo-team.

The original Pascal code was able to model two different plasmas: an atmo-
spheric Inductively Coupled Plasma (ICP) in Ar and a cascaded arc; a DC driven
plasma source. The code implemented generalized ortho-curvilinear coordinates
to support geometrically pinched configurations.

plasimo first came into existence in 1992 as a re-implementation of this code
in the C programming language by Dany Benoy. This first version, the basis of
Benoy’s thesis [31], was also used and extended by Ger Janssen (awarded with a
PhD degree in 2000) for his thesis [47]. In addition to Ar (atomic) chemistry, he
explored molecular chemistry in the form of H2 and O2 plasmas. Furthermore,
Janssen studied a Microwave Induced Plasma (MIP) system as used in the manu-
facturing of optical fibers.

To achieve an even greater degree of modularity than is practical in C, plasimo
was then re-implemented in the C++ programming language by Jan van Dijk in
close cooperation with Harm van der Heijden, Bart Hartgers, and Kurt Garloff.
The object-oriented approach of C++ makes it more easy to reuse and extend ex-
isting pieces of code. In an effort to make the control of plasimo models more
user friendly, thereby also increasing its usability in an industrial environment, a
Graphical User Interface (GUI) was added. This modeling platform that enables a
user to conveniently manipulate the hierarchical structure of the model, controls
the calculation, and provides facilities for monitoring the running calculation, is
the current form of plasimo.

The C++ version of plasimo was used by Van Dijk for his thesis (2001, [27])
to study a QL lamp manufactured by Philips. Van der Heijden (thesis 2003, [3])
used the platform for his study of radiation transport in a sulfur lamp and Hart-
gers (2003, [48]) for the time dependent modeling of the plasmas in fluorescence
lamps. Others who made extensive use of plasimo and extended its functionality,
were Colin Johnston for the study of sulfur lamps (thesis 2003, [4]), Bart Broks
for plasmas for laser wakefield acceleration (thesis 2006, [49]), Mark Beks for el-
emental diffusion in HID lamps (thesis 2008, [50]), Michiel van den Donker for
deposition using microwave plasmas (thesis 2008, [14]), and Manuel Jiménez for
microwave induced plasmas (thesis 2011, [13]).

66

5.2. History of plasimo

Starting in 1997, during the development of plasimo, another modeling code
was being developed in the EPG (Elementary Processes in Gas discharges) group
of the applied physics department of the TU/e by Gerjan Hagelaar under supervi-
sion of Frits de Hoog. This code, called md2d for Micro-Discharge 2-Dimensional
and the subject of his thesis (2000, [2]), was specifically aimed at modeling plasma-
electrode interactions. In contrast to plasimo this code does not include flow and
only supports rectangular grids. Furthermore, because md2d has to deal with
space charges it is equipped with a Poisson equation solver.

When Van der Mullen moved from the ETP (Equilibrium and Transport in
Plasmas) group to the EPG group, elements of the plasimo platform were intro-
duced in md2d. md2d was rewritten in C++ by Van Dijk (Post Doc at the time) and
PhD student Wouter Brok, and equipped with the same GUI as plasimo. One of
the topics in Brok’s thesis (2005, [51]) dealt with the modeling of plasma ignition.
The md2d code (in C++) was extended and used by Diana Mihailova (thesis 2010,
[52]) for her research on sputtering hollow cathode discharges.

In addition to fluid modeling, Brok and Van Dijk constructed the basis for the
Monte Carlo module in plasimo. This Monte Carlo code was used by Marc van der
Velden (thesis 2008, [53]) in his study of radiation generated plasmas. The results
of this modeling study, with some adjustments, are also used in this thesis. In
chapter 7 a CRM of Extreme UltraViolet (EUV) driven plasmas will be presented.
The goal of the CRM is the interpretation of time resolved spectroscopical mea-
surements, and uses plasma parameters (electron density and energy distribution
function) provided by the Monte Carlo code. Thus, from the roots of plasimo, ly-
ing in the field of CRMs, we have come full circle.

Since the translation of md2d in C++, it has been gradually merged with plasi-
mo, thereby creating a platform for constructing a wide range of models of many
different types of plasmas: LTE or non-LTE, steady-state or transient, flowing or
non-flowing, with or without space charges. Different transport mechanisms can
be applied, be it in the form of particle driven (Monte Carlo), fluid, or ruled by
ray-tracing. The platform offers a user friendly interface through the GUI, but
also through the use of structured, descriptive input files. Chemistry, geometrical
configuration and input power can easily be defined and manipulated.

One of the key features of the plasimo framework is its modularity: a complex
model is constructed from building blocks, some of which are also used in other
models. In this work a general CRM code is presented that makes use of several
of these building blocks. The code is based on a previous CRM code by Hart-
gers [46] that was suitable for Quasi Steady State (QSS) calculations. Apart from
an implementation of this code in the plasimo framework, it is extended to per-
form transient simulations through the use of time dependent electron densities
and electron energy distribution functions (EEDF). This also enables the simula-
tion of laser induced fluorescence experiments [54], similar to TALIF simulations
by Van der Heijden [34], which will be the subject of chapter 8). Details of this

67

5. Implementation of a CRM code in the plasimo framework

implementation will be described in the following sections.

In chapter 6 a more general zero dimensional modeling code will be presented
that is also implemented in the plasimo framework. This code does not focus on
the radiative and collisional processes within an atomic system as does the CRM
code, but on time dependent complex chemistry combined with external power
input. This code for constructing Global Plasma Models (see chapter 2) is based
on the RateLab model by Jiménez [13], which in turn was based on PyRate by Van
den Donker [14].

5.3 C++: C with classes

The CRM is implemented as a model plug-in using the plasimo framework, writ-
ten in the C++ programming language. C++ was developed by Bjarne Stroustrup
starting in 1979 as an enhancement of the C programming language. The lan-
guage was originally called C with classes, demonstrating the fact that the enhance-
ments are in the form of classes, allowing for object oriented programming (OOP). The
object oriented approach allows for a strong modular design, which has since its
incarnation been one of the main concerns of plasimo; classes are used on all levels
in plasimo, from the most basic level, i.e., the models themselves, to elements like
solvers, species, and many more. The flexibility of plasimo is further increased by
the use of a plug-in system, i.e., executable code that is dynamically loaded when
necessary.

To demonstrate the benefits of classes we will show an implementation of a
code for dealing with cross sections. In the examples only a simple step cross sec-
tion (see Eqn. (4.10))∗ will be treated so we can focus on C++ specifics. In gradual
steps we will introduce concepts that are used throughout plasimo, most notably
classes, polymorphism, and plug-ins. Most C++ specific elements will be explained
in the text, for some more background information the reader is referred to ap-
pendix A.

5.3.1 A simple cross section code

The most straightforward way of applying a cross section somewhere in a pro-
gram is by simply placing the code at the required position as shown in listing 5.1.
While this code is certainly valid and does what it is intended to do, it is far from
practical. In a larger program the cross section might be needed at multiple differ-
ent locations in the program. In this simple example the cross section is calculated
in lines 15 through 20 using an if-else construct, and in line 24 using a ternary

∗ All step function cross sections in this chapter will have a threshold of 10 eV and step height of
10−20 m2.

68

5.3. C++: C with classes

1 // reserve variable for threshold and initialize to 10 eV

2 double threshold = 10;

3

4 // reserve variable for step function height and

5 // initialize to 1e-20 m^2

6 double stepheight = 1e-20;

7

8 // reserve variable for cross section

9 double cs_value;

10

11 // reserve variable for energy and initialize to 20 eV

12 double energy = 20;

13

14 // get the cross for the energy of 20 eV

15 if (energy > threshold) {

16 cs_value = stepheight;

17 }

18 else {

19 cs_value = 0.0;

20 }

21

22 // reserve another variable for a cross section and

23 // use ternary operator for initialization

24 double cs_value_other = (energy > threshold) ? stepheight : 0.0;

Listing 5.1. Code snippet showing the calculation of two cross section values when the cross
section is described by a step function (see Eqn. (4.10)), with the threshold at 10 eV and a
height of 10−20 m2. Note, that no physical units are used. In this case the energy is given
in electronvolt and the cross section in square meter. Two consecutive forward slashes “//”
denote a comment. Everything starting from the slashes till the end of the line is ignored by the
compiler. As a convention comments are either on the same line as a statement or the line(s)
preceding a statement. More information about the definition and initialization of variables
can be found in appendix A.

operator∗. Anywhere, where this cross section would be needed this code would
have to be copied, making extension and maintenance of the code rather labori-
ous.

An improvement can be made by implementing the step cross section as a func-
tion†, as shown in listing 5.2. This implementation of a cross section as a function

∗ A ternary operator is a compact form of an if-else construct. The statement between equal-
sign and question mark is evaluated and if it is true (so it must represent a boolean value) the value
between question mark and colon is returned, otherwise the statement (here, a value) following the
colon.

† More information about functions can be found in appendix A. The most important features of a
function are that it can be recognized by the parentheses (both in definition and call sequence) to hold

69

5. Implementation of a CRM code in the plasimo framework

1 // definition of the cross section function

2 double CrossSectionStep(double e) {

3 double threshold(10.0);

4 double stepheight(1e-20);

5 double cs_result = 0.0;

6 if (e > threshold) {

7 cs_result = stepheight;

8 }

9 return cs_result;

10 }

11

12 ...

13

14 // section of code where the function is called returning

15 // the cross section value

16

17 // energy for which we want the cross section

18 double energy = 20; // at 20 eV

19 double cs_value = CrossSectionStep(energy);

Listing 5.2. Code snippet with the same functionality as listing 5.1, but here the cross section
calculation is moved to a separate function. More information about functions can be found
in appendix A.

is already much more convenient; whenever the cross section is needed only the
function has to be called. Maintenance is also simplified since only the code in one
location (the cross section function) is affected. For cross sections more complex
than this simple step function the benefits can be quite substantial.

In general, though, different cross sections will be needed; cross sections with
different thresholds and different heights. It is possible to define a different func-
tion for each of these cross sections, or to extend the cross section function with
additional parameters; one for the threshold and one for the height. A better way
is to utilize the main feature of C++: classes.

5.3.2 A simple class

A class is a construct used in object-oriented programming that offers a combi-
nation of data storage and functionality. Data can be stored in so called member
variables (or simply members) and the functionality is provided by methods or mem-
ber functions. Classes are variable types just like the built-in types of C++, such as
int and double∗. A class is only the description of the construct, an actual instantia-

the arguments, and that it returns a value (if the return type is void it effectively does not return a
value).

∗ Since classes are types they can also be used as arguments and return value of functions.

70

5.3. C++: C with classes

tion of a class is called an object. The data members of a class can be any data type
including other classes. The member functions are subroutines that offer some
kind of functionality, usually involving manipulation of its data members. Just
like normal functions in C++, member functions can have arguments (between
parentheses) and always have a return value.

Access to the members (data and functions) of a class can be regulated by the
use of access specifiers. The access specifier public means that whenever access to
the object is available, access to its members is also available. Members can also
be private, meaning that they are only accessible to other members of the same
class.

Listing 5.3 shows a simple class for the step function cross section. The thresh-
old and height are both stored as private data members∗ in lines 30 and 31. The
class holds several methods (recognizable by the parentheses), three of which re-
quire more explanation:

• CrossSectionStep(...)

• ~CrossSectionStep()

• operator()(...)

Every class has two special member functions: the constructor and the destruc-
tor. As their names imply, they are called when an instance of the class is con-
structed and destructed. They can be recognized by the fact that they have the
same name as the class itself, and that they do not have a return type. The de-
structor carries the additional prefix “~”.

In the case of the step cross section, the constructor (line 7) requires two input
values: the threshold and the height (or value) of the cross section. The construc-
tor stores these values in its appropriate members so that they can be accessed at
a later time by other member functions. The task of the destructor (line 12) is to
make sure that no “loose ends” will remain when an instance is destroyed. This
usually means that dynamically allocated memory, allocated by the constructor
or other member functions, is released.

The third special function is in line 15. This is an example of operator overload-
ing: the ability to define the behavior of operators on classes. Since classes are
types just like the built-in types, we can use operators on them. The behavior of
operators on built-in types is defined in the language definition. For example,
when the addition operator “+” is applied to two variables of type double the re-
sult is a double holding the sum of the two initial doubles. However, it is up to
the programmer to define what the behavior is of an operator when it is applied
to a class. Every combination of operator and class that is used in a program must

∗Commonly, the names of the variables containing member data are prefixed with “m_” to em-
phasize that they are member variables.

71

5. Implementation of a CRM code in the plasimo framework

1 // name of the class, this defines a new type

2 class CrossSectionStep {

3 // members that are publicly accessible

4 public:

5 // the constructor, accepting two values,

6 // that define the step function

7 CrossSectionStep(double threshold, double cs) {

8 m_threshold = threshold;

9 m_cs = cs;

10 }

11 // the destructor, that does not have to do anything

12 ~CrossSectionStep() { }

13 // function call operator, that accepts an energy as input

14 // and returns a double value (the cross section)

15 double operator()(double eps) {

16 // ternary operator

17 return (eps < threshold()) ? 0.0 : sigma_above_th(eps);

18 }

19 // function returning the threshold level

20 double threshold() {

21 return m_threshold;

22 }

23 // function returning the cross section above

24 // the threshold level

25 double sigma_above_th(double eps) {

26 return m_cs;

27 }

28 // members that are not publicly accessible

29 private:

30 double m_threshold;

31 double m_cs;

32 };

Listing 5.3. Code snippet showing a class for a step function cross section. The private
member variables are initialized in the body of the constructor, lines 8 and 9.

72

5.3. C++: C with classes

1 double step_thresh = 10.0; // in eV

2 double step_height = 1e-20; // in m^2

3 // definition of a CrossSectionStep object, given the two

4 // previously defined values

5 CrossSectionStep my_cs_step(step_thresh, step_height);

6 // call the function operator, returning the cross section value,

7 // i.e., 1e-20 m^2 at 20 eV

8 double cs_val = my_cs_step(20);

Listing 5.4. Code snippet showing an example of the use of the CrossSectionStep class
as defined in listing 5.3.

be defined∗. In the step cross section class the behavior of the function call operator
is defined, this means that an object can be used as if it is a function, see line 8 in
listing 5.4.

The other two member functions of the CrossSectionStep class (lines 20 and
25) behave like normal functions. The threshold() function returns the value
of the private variable†, and the sigma_above_th() function returns the cross
section value for energies exceeding the threshold energy; in this case simply re-
turning the height of the step function.

Listing 5.4 shows how the class can be used. First, an instance of a step cross
section of height 10−20 m2 at a threshold of 10 eV is declared. Then the cross
section at 20 eV is requested from the cross section object. When the function
operator() is called the code first checks whether the input energy is above the
threshold energy. If it is above threshold the function for returning the actual
cross section value is called, otherwise 0.0 is returned (line 17).

The advantage of using a class for providing the functionality of calculating
a cross section over a normal function is that a class maintains state, i.e., a class
can store data that can be used to influence its behavior. Here, the threshold and
height of the cross section are stored in the object upon declaration, and determine
the returned cross section value when it is called.

To implement all the cross section types that have been discussed in section 4.3,
one could follow the procedure in which for each type a different class is defined.
Only the constructor and the implementation of the sigma_above_th() function
would have to be changed. The downside of this approach is that it is very imprac-
tical to use a collection of these cross sections: since every class of a cross section
is of a different type, they can not be accessed through a common interface, even
though they look so much alike. This can be solved by using class hierarchy, a
combination of base and derived classes, and the concept of polymorphism.

∗ More information about operator overloading can be found in appendix A.
†In this way public access is available to a private variable.

73

5. Implementation of a CRM code in the plasimo framework

5.3.3 Class derivation and polymorphism

OOP offers the possibility to derive a class from another; a so called parent class.
The result is that the derived class inherits nearly all members and methods∗ of the
parent class. Thus the members and methods of the parent class are added to the
specific members and methods of the derived class. The result is that all classes,
derived from the same parent class share the parent’s class interface. A derived
class can override member functions of the parent class upon implementation.
This is called polymorphism.

In listing 5.5 an example is given of class derivation. It is used to define the
step function cross section as a derivative of a general parent cross section class.
The first part of the listing describes the base class CrossSectionBase, the sec-
ond gives the derived class CrossSectionStep. The class CrossSectionBase

provides the basic functionality a cross section class should have: to return the
threshold energy and the cross section for the desired energy. Whereas previ-
ously in listing 5.3 the method sigma_above_th() implemented the calculation
of the cross section; in case of a step function simply returning the height. Here,
another function is called: do_sigma_above_th().

The first notable thing of the declaration of the do_sigma_above_th() func-
tion is the keyword virtual, meaning that this function can be overridden by a
function of a derived class. The second thing is that the function is appended
with “= 0”. This means that the function is pure virtual so derived classes must
contain an implementation of this specific function†. The pure virtual function
is defined in a protected section, which is similar to private with the addition
that derived classes also have access to members defined in this domain.

The CrossSectionStep class is derived from the base class as is shown by its
declaration in line 29‡. The derived class also has a constructor (like any class)
and implements the do_sigma_above_th() function.

Before the body of its constructor is executed, the constructor of the base class
is invoked. In contrast to the previous implementation of the step cross section
(listing 5.3), a single variable is used for the input parameter of the constructors.
Rather than a threshold and step height value, a single variable of type plNode

is passed to the constructor, that can be seen as a data container. The threshold
and step height value are extracted from this single variable; the step height in
the derived class (line 36), the threshold in the base class (line 7). The reason
behind using a plNode data structure is that the base class is used by different
derived cross section classes, that each require a different set of parameters for
their initialization. In plasimo the plNode class is used for storage of, and access

∗Except the constructor, destructor, and operator=() member function.
†It also means that the base class is abstract; i.e. there can be no instance of the class. If an instance

would be allowed this would pose a problem since it is not known what should be done by a call to
the pure virtual function.

‡Parent classes are denoted by a colon (“:”).

74

5.3. C++: C with classes

1 // the base class

2 class CrossSectionBase {

3 public:

4 // the base class constructor, loading a plNode object from

5 // which the threshold is extracted and stored

6 CrossSectionBase(plNode node) {

7 m_threshold = node("threshold");

8 }

9 ~CrossSectionBase() { }

10 double operator()(double eps) {

11 return (eps < threshold()) ? 0.0 : sigma_above_th(eps);

12 }

13 double threshold() {

14 return m_threshold;

15 }

16 double sigma_above_th(double eps) {

17 return do_sigma_above_th(eps);

18 }

19 // members only accessible by derived classes

20 protected:

21 // function returning cross section value is pure virtual

22 // must be implemented in derived class

23 virtual double do_sigma_above_th(double eps) = 0;

24 private:

25 double m_threshold;

26 };

27

28 // the derived class, colon indicates the parent class

29 class CrossSectionStep : CrossSectionBase {

30 public:

31 // constructor first calls constructor of base class...

32 CrossSectionStep(plNode node)

33 : CrossSectionBase(node) {

34 // ...and then extracts the step function height from

35 // the plNode object and stores it

36 m_cs = node("cs");

37 }

38 // the virtual function must be implemented as protected

39 protected:

40 // implementation of the pure virtual function

41 virtual double do_sigma_above_th(double eps) {

42 return m_cs;

43 }

44 private:

45 double m_cs;

46 };

Listing 5.5. Code snippet showing a cross section base class and a derived class implementing
a step function.

75

5. Implementation of a CRM code in the plasimo framework

1 // create step cross section object

2 CrossSectionStep my_cs_step(cs_node);

3 // create pointer of base type pointing to object of derived type

4 CrossSectionBase* p_cs = &my_cs_step;

5 // call function operator via pointer to base class

6 // cs_val = 1e-20 m^2 at 20 eV

7 double cs_val = (*p_cs)(20);

Listing 5.6. Code snippet showing an example usage of the CrossSectionStep class and
its base class as defined in listing 5.5. Previous to the code shown here a variable cs_node
of type plNode must have been defined and provided with the data for the threshold (10) and
step height (10−20).

to the model configuration. In depth treatment of this class is beyond the scope
of this text∗, but what is important here is that it is a flexible system that can deal
with hierarchical data. Here, it is used to store and access the threshold and height
of the cross section step function. Other derived classes would retrieve other data
from a plNode object, but what they have in common is that they only require one,
identically typed variable as input: a plNode object. Note, that all derived cross
section classes have in common that they have a threshold. Logically, extracting
the threshold value from the node-object, saving its value in a private member,
and returning its value on request, is implemented in the base class.

Listing 5.6 shows how the set of classes can be used. Just as previously in list-
ing 5.3 a CrossSectionStep object is defined in line 2, only now the initialization
data is provided through a plNode object. Then a pointer† to the step cross section
object is declared and initialized. Note, that the pointer is of the type of the base
class. The only members of the CrossSectionStep object that can be accessed
through the pointer are the ones defined in the base class, but that is sufficient,
since only the function call operator is required. The function call operator of the
base class is called in line 7. In listing 5.5 we can see that when the energy (given
as argument) is above the threshold, the function sigma_above_th() is called
which in turn calls do_sigma_above_th(). Automatically, the implementation of
this function in the derived class CrossSectionStep is called, returning the cross
section value.

As previously stated, the advantage of using class hierarchy (the base–derived
classes construction) is that the derived classes can be accessed through a common
interface. For a computer program that uses cross section objects it is only impor-
tant that the threshold and cross section value can be retrieved (available through

∗Documentation of the plNode class is available in the plasimo documentation. Additionally,
many samples highlighting usage specifics are included in the source code distribution.

†A pointer is a data type that holds the address of another variable. It can be used as an alternative
way to access a variable. More information can be found in appendix A.

76

5.3. C++: C with classes

the base class). How the cross section value is determined in the derived class is
irrelevant.

Another advantage of inheritance is that it enables code reuse. For instance,
every cross section class should have some functionality to return the threshold
value. Here, the relevant code is only present in the base class, but therefore im-
plicitly available in all derived classes. Whenever a change is required only one
piece of code needs modification.

5.3.4 Self registering objects

As stated before, modularity is an important aspect of plasimo. One of the ways
this is achieved is by the use of plug-ins. A plug-in is a set of software components
that add certain abilities to another application∗. In practice, a set of routines is
combined into a library that can be loaded by the main plasimo application (or
existing plug-in) when any of those routines is required. This concept is used
extensively in plasimo; there are modules for grid generation, chemistry, solving
electromagnetic problems, and many more. These modules can be combined to
construct grand plasma models.

The problem of using basic inheritance is that when the object is created knowl-
edge of the specific object must be available. This means that at compile time any
derived class that can possibly be created must be known. It is not possible to
create and load a new library with a different derived class; this would require
maintenance and recompilation of the main application. This problem is dealt
with through the use of self registering objects (SRO). This concept is heavily used
in plasimo and described in the thesis by Van Dijk [27] and in detail in [55]. Here,
we will give a short treatment.

Self registering objects are realized by extending the base and derived classes
with a combination of an intermediate factory class and a set of provider classes: a
base provider class and a set of derived provider classes; one for each derived model
class (in our examples: cross sections). The task of the base and derived provider
classes is that they can provide an object of the accompanying derived class type.
The factory class has the task of tracking which provider classes are available and
handing the correct derived provider object on request. In order to do so, provider
classes first have to be registered by the factory class. As their name implies, self
registering classes take care of this registration by themselves: the constructor of
the derived provider object registers itself with the factory.

In view of the cross section class this means that a factory must be defined, as
well as a base provider class for the cross section base class and derived provider

∗ Plug-ins are used in many software applications. An example is the use of plug-ins in web
browsers. Web browsers are standalone applications, but their functionality can (often) be extended
by plug-ins. Plug-ins can for instance enable the viewing of PDF files or various video formats inside
the browser.

77

5. Implementation of a CRM code in the plasimo framework

classes for derived cross section classes. Additionally, the cross section provider
classes must register themselves at the factory. Derived cross section objects can
then be created by requesting a cross section object from the factory by simply
passing a string identifying the particular derived cross section type.

The complex process of defining the factory and provider classes can be cum-
bersome and error-prone. In plasimo most problems are avoided by a convenient
set of macros∗. The definition of the cross section classes is shown in listing 5.7 and
an example of how to use the factory in listing 5.8. Only a few adjustments of the
previous code (listing 5.5) are required to use the mechanism of self registering
objects. Lines 7 and 8 contain the declaration (by use of a macro) of the base class
provider, giving it a name, and describing the format† of the constructor. In line 39
the derived step function cross section class is registered using a unique name
(“Step”). In listing 5.8 this name is used to create an object of the specific type,
in line 4. No knowledge of the specifics of the step cross section class is required;
the interface of the cross section base class is sufficient for operation.

If another type of cross section is added, only a derived class with an accompa-
nying “REGISTER_PROVIDER” line is required to register the derived class with the
base provider, and to subsequently be able to create objects of that class. This code
can reside in a separate library, and if dynamic linking is enabled, this code can
be loaded whenever it is needed, for instance, as dictated by a configuration file
(here, represented by the node object, in line 4 in listing 5.8), in practice a plasimo
input file.

As previously mentioned, this plug-in mechanism is used throughout plasimo
on all levels. At the most basic level it is used to create model plug-ins, of which
the CRM is one.

5.4 The CRM as a plasimo model

In the previous section we showed how classes and plug-ins can be used to deal
with cross sections in a modular way. Apart from cross sections there are many
more aspects of a CRM, or any model in general, where modularity can be em-
ployed. In the CRM we can identify for instance:

• transitions: all transitions involve an originating and target level, they differ
in for example the agent (electron, photon), and definition (rate coefficient,
cross section).

• EEDFs: all EEDFs define the distribution function as function of energy, but
some have distinct features such as Maxwellian EEDFs.

∗A macro is a pattern that defines how a set of input values is mapped to an output value. Here
it is used to define a set of classes from only a few strings, describing the name of the class and input
for the constructor.

† The format of the constructor is the combination of types the constructor requires as arguments.

78

5.4. The CRM as a plasimo model

1 class CrossSectionBase {

2 public:

3 CrossSectionBase(plNode node) {

4 m_threshold = node("threshold");

5 }

6 // macro for declaring the provider

7 DECLARE_PROVIDER (CrossSectionBase, "CrossSection",

8 (plNode node), (node))

9 ~CrossSectionBase() { }

10 double operator()(double eps) {

11 return (eps < threshold()) ? 0.0 : sigma_above_th(eps);

12 }

13 double threshold() {

14 return m_threshold;

15 }

16 double sigma_above_th(double eps) {

17 return do_sigma_above_th(eps);

18 }

19 protected:

20 virtual double do_sigma_above_th(double eps) = 0;

21 private:

22 double m_threshold;

23 };

24

25 class CrossSectionStep : CrossSectionBase {

26 public:

27 CrossSectionStep(plNode node)

28 : CrossSectionBase(node) {

29 m_cs = node("cs");

30 }

31 protected:

32 virtual double do_sigma_above_th(double eps) {

33 return m_cs;

34 }

35 private:

36 double m_cs;

37 };

38 // macro for registering this class with the provider

39 REGISTER_PROVIDER(CrossSectionBase, CrossSectionStep, "Step");

Listing 5.7. Code snippet showing the use of macros provided by plasimo for using self
registering objects for the cross section class. Note, only three lines have been added, compared
to listing 5.5: line 7 and 8 where the base provider is defined (this also creates the factory), and
line 39 where the derived provider class is registered.

79

5. Implementation of a CRM code in the plasimo framework

1 // create a CrossSectionStep object, and

2 // store the pointer to that object

3 CrossSectionBase* my_cs =

4 CrossSectionBase::factory().get(node("Type")).create(node);

5 // call the function operator through the base class pointer

6 double cs_val = (*my_cs)(20); // sets cs_val to 1e-20;

Listing 5.8. Code snippet showing how the factory can be used to request a cross section of a
certain type. In order for this code to work with the definitions in listing 5.7, the node object
must have the values for the cross section (threshold at 10 eV and height at 10−20 m2), and
the “Type” must be of “Step”, see listing 5.11. The double colon (“::”) on line 4 means
that the factory() function is defined in the scope of the CrossSectionBase class. The
factory() function gives access to the factory that implements a get() function. The get
() function is provided with the specific type of derived class that is requested (the “Type”
key in the node object which equals “Step”). The get() function then returns an object
with the create() function that creates an object of the desired class, and returns a pointer
to that object. The create() function requires the node object to pass it to the constructor
of CrossSectionStep.

In these two cases it is logical to implement a class for transitions and EEDFs and
derive specialized classes from those.

In general any model can be designed to employ some form of modularity. In
plasimo this is taken one step further; the models themselves are plug-ins. There
are model plug-ins for heat balances, flows, LTE plasma, non-LTE plasmas, etc.
The CRM is also implemented as a model plug-in.

5.4.1 The basic model

Model plug-ins are the most basic level of plasimo. All model plug-ins are in-
stances of classes derived from the plModelBase class, see listing 5.9. This class
has several virtual members that must be implemented in derived classes. The
implementation of the update() and Run() members is shown in listing 5.10.

plasimo uses the plModelBase class in the following way:

1. the plasimo application loads an input file∗ into a plNode object;

2. plasimo creates an object of a plModelBase derived class passing the plNode
object containing the input file to the relevant constructor;

∗ There are different plasimo applications: a console application, an application with a Graphical
User Interface (GUI), and an experimental web interface. The console application is the simplest: it
loads an input file given as argument on the command line and runs the model. There is no user
interaction and the program quits when the model is finished. The GUI application is equipped with
an editor for plasimo input files. In addition models can be loaded and run by use of control buttons,
and graphs of calculated data can be shown real-time. The web interface version aims to provide the
same functionality as the GUI through the use of a web browser.

80

5.4. The CRM as a plasimo model

1 class plModelBase {

2 public:

3 // constructor requires a plNode object passed as reference

4 plModelBase(plNode & tree);

5 // macro for declaring the provider

6 DECLARE_PROVIDER(plModelBase, "Model",

7 (plNode& node), (node))

8 virtual ~plModelBase();

9 virtual void Prepare() = 0;

10 virtual bool CanGo() = 0;

11 virtual bool Finished() = 0;

12 virtual bool OutputNeedsUpdate() = 0;

13 virtual void UpdateOutput();

14 void update();

15 void Run();

16 protected:

17 virtual void do_update();

18 };

Listing 5.9. Snippet showing the most important functions of the plModelBase class.
In lines 6 and 7 the DECLARE_PROVIDER() macro is used so that derived classes can
register themselves. Note, several member functions are declared pure virtual, i.e. they are
not implemented in this base class, this is denoted by “=0”. The functions update() and
Run() on lines 14 and 15 are not implemented in this listing but in listing 5.10.

3. plasimo calls the Run() member of plModelBase.

Listing 5.10 shows how the Run() member calls the members of the class
plModelBase. It is a simple loop that starts when CanGo() returns true and calls
update() until Finished() returns true. The other members UpdateViews(),
OutputNeedsUpdate(), and UpdateOutput() are intended to deal with output
and presentation of calculation results at the end of every call to update().

A model plug-in is derived from plModelBase and must therefore implement
its pure virtual members. Additionally, a model plug-in can override the member
do_update() if the model involves some form of iteration; as shown in listing 5.10,
the update() member only logs and performs a call to the do_update() member.

5.4.2 The CRM model plug-in

The CRM model plug-in should perform the following steps:

1. read an input file describing the model;

2. create the transition-matrix representing the processes described by the in-
put file;

81

5. Implementation of a CRM code in the plasimo framework

1 void plModelBase::Run() {

2 // start the model loop, while CanGo is true and

3 // Finished is not true

4 while (CanGo() && !Finished()) {

5 // update the model

6 update();

7 // when we are done or when update of output is needed...

8 if (Finished() || OutputNeedsUpdate()) {

9 // ...update the output and...

10 UpdateOutput();

11 // ...update the views

12 UpdateViews(true);

13 }

14 }

15 // update the views

16 UpdateViews(true);

17 // if everything went correctly Finished should be true...

18 if(!Finished()) {

19 // ...otherwise report

20 Log(3) << "Simulation ended prematurely." << std::endl;

21 }

22 }

23

24 void plModelBase::update() {

25 // report new iteration

26 Log(1) << "plModelBase: Updating model." << std::endl;

27 // call member function of derived class

28 do_update();

29 }

Listing 5.10. Implementation of the Run() and update() member of the plModelBase
class. Note the scope operator “::” in lines 1 and 24. This refer to the fact that the definition
of the functions are found in the namespace of the plModelBase class. This is to avoid
confusion with possible other functions with the same name. In lines 20 and 26 messages
are sent to the Log-object. The number is the log-level, which denotes the “urgency” of the
message, a higher number being more urgent.

82

5.4. The CRM as a plasimo model

Figure 5.1. Diagram of the basis of the CRM model plug-in C++ class structure. Grey boxes
give the name of the classes and the attached white boxes (some of) their members. The solid
black line denotes a pointer, the dotted lines indicate the base class of derived classes, and the
thick gray lines show the call sequence. The member do_update() of class plModelBase
is the member function on line 14 in listing 5.9. It is called on line 28 in listing 5.10. A
call to this function will eventually end up at the doUpdate() member function of either
crTaskQSS or crTaskddt.

3. use the transition-matrix to calculate a solution, guided by parameters in
the input file;

4. save and/or present the results.

Reading the input file in step 1 means that a file describing the levels, transitions
(radiative and collisional), plasma parameters (electron density, EEDF, etc.), and
other settings (solver, start and end time for the transient model, etc.) is read. The
combination of steps 2, 3, and to some extent 4, form a single iteration and can be
performed multiple times when the CRM describes a transient model. Comparing
these to the main loop of plasimo (lines 4 through 14 in listing 5.10) it is clear that
steps 2, 3, and 4 are implemented in the do_update() member function (line 28).
Logically, reading the input file (step 1) is implemented in the constructor of the
CRM model plug-in∗.

As stated before, the CRM supports two kinds of calculations (steady state
and transient) that share the creation of the transition-matrix. The difference lies
in how this matrix is applied to achieve a solution. This is reflected in the way
the CRM is implemented as a plasimo model plug-in, see Fig. 5.1. A CRM class is
derived from plModelBase, and an extra class plcrTask is defined. CRM contains
a pointer to a plcrTask object, and all pure virtual functions of plModelBase
overridden by CRM call appropriate members of the plcrTask class. Classes can
be derived from plcrTask for different purposes; here, a quasi steady state task
(crTaskQSS) and transient task (crTaskddt).

The plcrTask class contains a pointer to a crModel and a crPlasma object (the
corresponding classes are not depicted in Fig. 5.1). The crPlasma object holds all
relevant plasma parameters, most notably the electron density and EEDF. The

∗ The term reading is not quite correct. The input file is read by the plasimo application and con-
verted into a plNode data structure. This data structure is read by the constructor.

83

5. Implementation of a CRM code in the plasimo framework

crModel object is the core of the model plug-in. It holds all the information about
the levels and transitions, and provides accessor functions for retrieval of this in-
formation and for obtaining the transition-matrix. The crModel class also has a
pointer to the crPlasma object to access any parameter it might need to calculate
transition frequencies (see also Fig. 5.3). Manipulation of the transition-matrix is
done through the crPlasma object. In the standard transient model the transition-
matrix is time dependent because of the time dependency of the electron density
and EEDF. Whenever the transition-matrix is requested of the crModel object, it
uses the actual settings as they are present in the crPlasma object.

The first thing the constructor of plcrTask does is to create a crModel object.
Upon calling the constructor the position in the input file that contains the descrip-
tion of the levels and transitions is passed. This is achieved using a reference∗ to
a plNode object.

5.4.3 Input file

Listing 5.11 shows a part of an input file for a simple Ar CRM, shown schemat-
ically in Fig. 5.2. It consists only of the Ar atom and ion ground level and one
excited level. The listing shows the format that is used for plasimo input files. It
is a combination of sections demarcated by curly brackets, and key–value pairs.
The key–value pairs are called leafs†, and both the leafs and sections are called
nodes; the sections being nodes with subnodes. Lines 5, 10, and 15 are examples
of the start of a section; a Level-section. Each Level-section contains three nodes,
which are in this case leafs, because they do not contain subnodes: the name, en-
ergy distance to the ground level, and statistical weight. In these leafs the first
part is the key (Name, Energy, and Weight), the second part the value. The two col-
lisional transitions included in this model show the two ways in which the rate for
a collisional transition can be described: by a cross section or by a rate coefficient.
When a cross section is used to define a collisional transition, Eqn. 4.9 is used to
calculate the rate coefficient. Otherwise, the defined expression (line 30).

The Type leaf in line 38 is the key that is used in line 4 of listing 5.8 to ob-
tain the CrossSectionStep class from the CrossSectionBase factory. All lines
in listing 5.11 containing a Type leaf are used for the purpose of obtaining the
appropriate class from a factory. Lines 28 and 36 are passed to the crTransCol

factory (see Fig. 5.3) that will return a TransColRate and TransColCS object re-
spectively. The Type leaf in line 1 is used to request the appropriate plModelbase
derived object from the factory.

∗A reference is similar to a pointer in that they are both used to refer to another variable. The
difference is that a pointer is a variable on its own, and can therefore be uninitialized, it then simply
points to nothing. A reference can be seen as another name for an object. This means that whenever a
reference is created that the object it refers to must exist. More information on references can be found
in appendix A.

†A leaf can have multiple values.

84

5.4. The CRM as a plasimo model

level: Ion, 15.76 eV

level: Ground, 0 eV

level: Excited, 11.5 eV

Figure 5.2. Diagram depicting the model described in listing 5.11. Only three levels are
included, two collisional transitions, and one radiative transition.

As is evident from the listing, the file format is very descriptive and offers great
flexibility through its hierarchical structure, which is similar to for instance XML.

The plasimo framework offers the plParser module, which is a library of classes
that can be used to process and manipulate these kind of input files. At the heart
of the plParser module lies the plNode class. When plasimo loads an input file, the
data in the input file is stored in a nested structure of plNode objects, that reflects
the structure of the input file. The plNode class is equipped with iterators and ac-
cessor functions to traverse the structure. Furthermore, it offers a very convenient
feature that deals in a transparent manner with physical units. In listing 5.11 sev-
eral variables are defined in a certain unit. When the value of a leaf is requested
from the relevant plNode object, a string containing the desired physical unit can
be passed. The unit is then automatically converted from the unit as defined in the
input file to the desired unit∗. For instance, when a variable called node refers to
one of the Level sections in the input file, the energy value of the level expressed
in Joule can be retrieved by the simple code:

double energy = node("Energy")["J"];

The levels and transitions defined in the input file determine what the transi-
tion-matrix looks like. The crModel constructor stores the levels, radiative transi-
tions, and collisional transitions in STL† containers. The class structure is shown
in figure 5.3. The radiative (crTransRad) and collisional (crTransCol) class are
both derived from the general transition class crTrans. The originating and target
level of a transition are indices into the list of levels the model contains.

The frequency() member of a radiative transition simply returns the prob-
ability‡. In case of a collisional transition it calls the do_frequency() member,
which either calculates the frequency from a cross section and EEDF, as in equa-
tion (4.9), or it is calculated by evaluating a mathematical expression, such as
line 30 in listing 5.11. The plMathFunction class is provided by plasimo. It is

∗An error is generated when conversion is not possible
†Standard Template Library, a collection of generic algorithms, containers, functors, and iterators.
‡The probability is actually multiplied by an escape factor, which is also a member of a

crTransRad class, but this is not shown in the diagrams.

85

5. Implementation of a CRM code in the plasimo framework

1 Type CRM

2

3 Atom {

4 Name Argon

5 Level {

6 Name Ground

7 Energy 0*eV

8 Weight 1

9 }

10 Level {

11 Name Excited

12 Energy 11.5*eV

13 Weight 12

14 }

15 Level {

16 Name Ion

17 Energy 15.76*eV

18 Weight 6

19 }

20 RadiativeTransition {

21 From Excited

22 To Ground

23 Probability 1e8*s^-1

24 }

25 CollisionalTransition {

26 From Ground

27 To Excited

28 Type Rate

29 Rate {

30 Expression 5e-15*Te^(0.74)*exp(-1.34e5/Te)

31 }

32 }

33 CollisionalTransition {

34 From Excited

35 To Ion

36 Type CrossSection

37 CrossSection {

38 Type Step

39 Sigma 1e-20*m^2

40 }

41 }

42 }

Listing 5.11. Part of a plasimo input file describing the atomic system for a simple CRM.

86

5.4. The CRM as a plasimo model

Figure 5.3. Diagram of C++ class structure of the crModel class. The gray boxes give the
name of the class, (some of) the members and member functions are listed in the corresponding
white boxes. The solid lines denote a pointer to an object, the dotted lines show the base–derived
class hierarchy. For some class members not only the type but also the name of the variable
(starting with “m_”) is shown.

a class that can parse general mathematical expressions which can be evaluated
at run time. The same class is used for custom cross section functions.

The crModel class contains a member of type TBCI::Matrix<double>. This
is a matrix class (double refers to the data type of the matrix elements) that is pro-
vided by the TBCI library [56]. TBCI stands for Temporary Base Class Idiom, it is a
C++ library of numerical base classes which implement basic data structures such
as complex numbers, vectors, and various types of matrices (full, band, sparse,
etc.). Additionally, some matrix solvers (e.g. LU-decomposition) and interfaces
to netlib libraries such as CLAPACK and SUPERLU are included. The library
achieves very high performance and enables the use of easily readable code. For
example, when A is a matrix and x, y, and z are vectors, the following valid code
can be used:

z = A * x - y;

TBCI matrices and vectors are used in the CRM model plug-in for all calculations
involving the transition frequency matrix.

5.4.4 Optimization

In section 4.3.6 we already discussed a way to optimize the calculation of the rate
coefficients for collisional transitions. Here, we will elaborate on its implementa-
tion.

87

5. Implementation of a CRM code in the plasimo framework

Figure 5.4. Diagram of C++ class structure for calculating the collisional transition fre-
quency. Grey boxes give the names of the classes and the attached white boxes their members.
The solid lines denote a pointer to an object, the dotted lines show the base class of a derived
class.

The naive approach is shown in a diagram in figure 5.4; the rate coefficient is
calculated by numerical integration∗. To determine the integrand a cross section
and an energy distribution function are required. The cross section is acquired
through a pointer to a crCrossSection object that provides the value of the cross
section as function of energy through its operator() member. For every cross
section described in section 4.3.1 a derived class is available (only two are shown
in the diagram for clarity). The EEDF is present in a crPlasma object, which is
also accessible by means of a pointer. The calculation of the integral is imple-
mented using the trapezoidal rule, a “one size fits all” solution, that can handle
non-smooth cross sections and/or EEDFs.

The key of the optimization strategy is that rate coefficients involving certain
combinations of EEDF and cross section can be calculated efficiently; i.e., instead
of a general numerical integration scheme, a more efficient scheme can be used,
or even an analytical solution is available. The implementation is realized by the
use of polymorphism and is outlined in the diagram in Fig. 5.5. The benefit of the
optimization is that it does not require a lot of code, however, the cost is increased
complexity.

Instead of the single EDF class a derived class EDFMaxwellian is available in
case the EEDF of the plasma is Maxwellian. An additional class RateCoef is
introduced that handles the calculation of the rate coefficient. By using over-
loading, the RateCoef class contains a specialized member for calculating the
rate coefficient for every possible type of EEDF (here, only Maxwellian and non-
Maxwellian). Furthermore, the crCrossSection class is extended with a member
called CalcRateMaxwellian(), that performs the calculation in case the EEDF is
Maxwellian, using the Gauss-Laguerre quadrature rule. When the rate coefficient
can be calculated analytically (as for the step function cross section), the member
function is overloaded by the derived cross section class, that implements the cal-
culation. The flow of the calculation is now as follows:

∗The plasimo framework includes classes for calculating integrals using a number of different
algorithms.

88

5.4. The CRM as a plasimo model

Figure 5.5. Diagram of C++ class structure for optimized calculation of the collisional tran-
sition frequency. Grey boxes denote classes and the attached white boxes their members. The
black solid lines denote a pointer to an object, the black dotted lines show the base class of a
derived class, the thick gray lines show the flow of execution in case of a Maxwellian EDF
(solid) and any other EDF (dotted).

1. do_frequency() calls the CalcRateCoef() member of the EDF object in the
crPlasma object. A pointer to the RateCoef object is passed when calling
the member.

2. The CalcRateCoef function then calls the Calculate() member of the
RateCoef object it was passed. In calling it passes the this pointer.

3. Depending on the type of the thispointer, which in this case points to either
an object of type EDF or EDFMaxwellian, the Calculate() member with the
appropriate signature is called.

a) If the EEDF is not Maxwellian RateCoef.Calculate() calculates the
rate coefficient using the trapezoidal rule.

b) If the EEDF is Maxwellian the CalcRateMaxwellian() member of the
cross section object is called. The CalcRateMaxwellian() member of
the base class calculates the rate coefficient using the Gauss-Laguerre
quadrature.

89

5. Implementation of a CRM code in the plasimo framework

1 TBCI::Matrix<double> F_ll_inv = TBCI::lu_invert(F_ll);

2 TBCI::Matrix<double> J = F_tt - F_lt * F_ll_inv * F_tl;

Listing 5.12. Code fragment showing the calculation of matrix J equation (3.64). The
matrices F_tt, F_tl, F_lt, and F_ll have already been created.

c) However, if this member is overridden, the implementation in the de-
rived class is executed, thus enabling calculation of an analytical solu-
tion (as for the step function cross section).

This structure can easily be extended to support more types of energy distri-
bution functions. All that is needed is an EDF derived class and an overloaded
RateCoef.Calculate() member. If for certain cross sections an additional opti-
mization can be achieved, the CrossSection class can be expanded with an ap-
propriate member function.

5.5 Solution procedure

The code described so far is used to load the input file and create a transition
frequency matrix from it. The matrix can now be used to either calculate a Quasi
Steady State solution or start an iterative solution of a transient model. For each
case a different class derived from plcrTask is available, see figure 5.3.

5.5.1 Quasi Steady State

In the QSS solution the ASDF, effective conversion rates, and source terms for the
energy equation are calculated from the simple expressions listed in section 4.2.1.
Because the TBCI library is used for matrix and vector types this can be accom-
plished using short, readable code. In listing 5.12 the calculation of matrix J is
shown. On the first line the inverse of F ll is calculated using a function provided
by the TBCI library. In the second line J is calculated by a simple expression,
which exactly matches equation (3.64).

The calculation of the QSS solutions is implemented in the crModel class. The
reason for this is that the results can be used in different plcrTask classes. In
the QSS task this is used to calculate the QSS solutions of an atom for a range of
plasma parameters (ne, Te). The results can be saved in the form of a look-up table.
For instance, a look-up table of effective conversion rates can be used in a plasimo
fluid model that only takes into account the TS levels. The transient task class can
use the QSS solution provided by crModel for calculating the initial densities.

The crTaskQSS class can calculate solutions for different electron density, elec-
tron temperature, and TS level densities by manipulating the crPlasma class.

90

5.5. Solution procedure

5.5.2 Transient

The time dependent solution is implemented in the crTaskddt class. The type of
problem that has to be solved is an initial value problem. For this type of prob-
lem many solution strategies are known. To accommodate a variety of solution
schemes the solver is implemented as a plug-in: the stepper. In general, a stepper
(g) should give the solution of a set of ordinary differential equations after a cer-
tain time step (∆t) given a set of initial values (y(t0)) and a function that provides
the source terms of the differential equations (f) as in equation (4.6):

y(t0 + ∆t) = y(t0) + g(t0, ∆t, y(t0), f(t′, y(t′))), (5.1)

where the stepper determines at which time t′ the source function is evaluated. In
case of the CRM, vector y is the vector of level densities n, and the vector contain-
ing the source terms of the differential equation is the product of the transition
frequency matrix and density vector f(t′) = F(t′)n(t′), so

n(t0 + ∆t) = n(t0) + g(t0, ∆t, n(t0), F(t′)n(t′)). (5.2)

The stepper should be implemented in a general way so it can be used as a
module in other plasimo models∗. The actual implementation is achieved in a
slightly different way: instead of calculating and returning the step vector g, the
stepper also takes care of the addition, so it immediately returns n(t0 + ∆t).

From equations (5.1) and (5.2) it is evident that the stepper class should have
an interface accepting a time, a time step, a data vector, and a function that accepts
a time and data vector, and that the class should somehow return a data vector.

5.5.3 Callback using a functor

Passing a function as an argument can be realized using a callback. In C++ (and
in C) a reference to a function (or member function) can be passed in a function
call. We will demonstrate this mechanism with two simple programs shown in
listings 5.13 and 5.14†.

The code in listing 5.13 demonstrates a callback for a member function. The
call() member function of the Caller class can be used to call any function in
the Printer class as long as the signature (input and output types) fits.

However, listing 5.13 also shows an important shortcoming. In order to call a
member function of a certain class the caller must have knowledge of the class the
function is a member of. When applied to the stepper, it means that the stepper
must know about any class that might provide a function that is to be called by

∗The stepper will also be used in the more general zero dimensional plasimo model described in
chapter 6.

† Note that the examples are general pieces of code intended to demonstrate the mechanism and
are separate from the CRM implementation.

91

5. Implementation of a CRM code in the plasimo framework

1 #include <iostream>

2

3 class Printer {

4 public:

5 void print_a(int val) {

6 std::cout << "Printer A: " << val << std::endl;

7 }

8

9 void print_b(int val) {

10 std::cout << "Printer B: " << val << std::endl;

11 }

12 };

13

14 class Caller {

15 public:

16 void call(Printer prn,

17 void (Printer::*p_print)(int), int val) {

18 (prn.*p_print)(val);

19 }

20 };

21

22 int main() {

23 Printer myprn;

24 void (Printer::*p_print_a)(int) =

25 &Printer::print_a; // p_print_a points to print_a

26 void (Printer::*p_print_b)(int) =

27 &Printer::print_b; // p_print_b points to print_b

28

29 (myprn.*p_print_a)(1); // result: Printer A: 1

30 (myprn.*p_print_b)(2); // result: Printer B: 2

31

32 Caller mycall;

33 mycall.call(myprn, p_print_a, 2); // result: Printer A: 2

34 mycall.call(myprn, p_print_b, 1); // result: Printer B: 1

35 }

Listing 5.13. Small program showing the use of a callback in combination with classes.

92

5.5. Solution procedure

the stepper (function f in equation (5.1)). To allow for the stepper to be able to
call any function in any class without prior knowledge a special class is used: a
functor.

A functor is a class that is used as a function. It must therefore have an im-
plementation of the function call operator. The most important benefit of using
a functor is that it can contain state, see section 5.3. This means that the functor
can store the class and member function it has to call. The caller (here the step-
per) only needs access to the general functor object, which in turn knows which
member function of which class it has to call.

Listing 5.14 demonstrates the usage of a functor. The constructor of the class
Functor stores the class and member function that have to be called. The function
call operator simply calls the stored member function of the stored class. The
Caller class does not need to know about the Printer class, but only about the
general Functor class.

Although the functor in listing 5.14 already shows some generalization, it can
be improved upon by using templates, see also appendix A. In listing 5.14 the func-
tor only works for a specific class type with a specific member function signature.
Templates allow for a general functor class, that can access any member function
in any class, with any type as input and output. When the type of the functor is
defined (as input type for the stepper and type of the functor object in the class
calling the stepper) the input and output types are defined. When the functor ob-
ject is created, the member function the functor has to call and the class it belongs
to are passed to the constructor.

Listing 5.15 shows the stepper base class. Through the macro in line 5 it sup-
ports self registration of derived objects. The input parameters reflect those of
function g in equation (5.1) (though in different order) with h representing the
time step. In the implementation a reference to the output vector is also an in-
put parameter. To support algorithms that can adjust the time step, the requested
time step is passed as a reference. On return it contains the time step that was
actually taken, and the return value of the stepper itself is the (suggested) time
step for the next iteration.

5.5.4 Implemented steppers

By implementing a class derived from plStepper a specific stepper, or solver,
algorithm can be implemented. This has been done for a few algorithms which
we will shortly discuss.

93

5. Implementation of a CRM code in the plasimo framework

1 #include <iostream>

2

3 class Printer {

4 public:

5 void print_a(int val) {

6 std::cout << "Printer A: " << val << std::endl;

7 }

8 void print_b(int val) {

9 std::cout << "Printer B: " << val << std::endl;

10 }

11 };

12

13 class Functor {

14 public:

15 Functor(Printer* prn, void(Printer::p_print)(int))

16 : m_prn(prn)

17 , m_p_print(p_print)

18 { }

19 void operator()(int val) {

20 (*m_prn.*m_p_print)(val);

21 }

22 private:

23 Printer* m_prn;

24 void (Printer::*m_p_print)(int);

25 };

26

27 class Caller {

28 public:

29 void call(Functor* func, double val) {

30 (*func)(val);

31 }

32 };

33

34 int main() {

35 Printer myprn;

36 Functor myfunc_a(&myprn, &Printer::print_a);

37 Functor myfunc_b(&myprn, &Printer::print_b);

38 Caller mycall;

39 mycall.call(&myfunc_a, 1); // result: Printer A: 1

40 mycall.call(&myfunc_b, 2); // result: Printer B: 2

41 }

Listing 5.14. Small program showing the use of a functor for a callback mechanism.

94

5.5. Solution procedure

1 class plStepper

2 {

3 public:

4 plStepper(){}

5 DECLARE_PROVIDER (plStepper, "plStepper",

6 (const plNode& node), (node))

7 virtual ~plStepper(){}

8 double operator()(

9 TFunctor<TBCI::Vector<double>&, double,

10 TBCI::Vector<double>& >* f, // the function that is

called

11 TBCI::Vector<double>& y_in, // input vector

12 TBCI::Vector<double>& y_out, // output vector

13 double t, // time of input vector

14 double& h) // requested time step

15 {

16 return doStep(f,

17 y_in,

18 y_out,

19 t,

20 h);

21 }

22 protected:

23 virtual double doStep(

24 TFunctor<TBCI::Vector<double>&, double,

25 TBCI::Vector<double>& >* f,

26 TBCI::Vector<double>& y_in,

27 TBCI::Vector<double>& y_out,

28 double t,

29 double& h) = 0;

30 };

Listing 5.15. The stepper base class. Derived classes only need to implement the function
doStep. Line 5 shows that the class is implemented as a plug-in. Parameters are passed
to the different implementations through a node object, that can contain the initial step size,
tolerances, etc. In this case the functor has a double and a TBCI vector of doubles as input and
also a TBCI vector of doubles as output. They represent the time and input vector and output
vector of function f in equation (5.1). The stepper takes the function that is called as input, as
well as a reference to a vector for the input and output values, the time of the input vector, and
a request for the time step. The return value is the step size for the next iteration.

95

5. Implementation of a CRM code in the plasimo framework

1 class StepperForwardEuler : public plStepper

2 {

3 public:

4 StepperForwardEuler(const plNode& node)

5 : plStepper()

6 , m_h(node("TimeStep")["s"])

7 { }

8 protected:

9 virtual double doStep(

10 TFunctor2<TBCI::Vector<double>&, double,

11 TBCI::Vector<double>& >* f,

12 TBCI::Vector<double>& y_in,

13 TBCI::Vector<double>& y_out,

14 double t,

15 double& h) {

16 y_out = y_in + (*f)(y_in, t) * m_h;

17 return m_h;

18 }

19 private:

20 double m_h;

21 };

22

23 REGISTER_PROVIDER(plStepper,

24 StepperForwardEuler, "ForwardEuler");

Listing 5.16. Implementation of a forward Euler stepper. The time step is fixed and passed to
the constructor via a plNode object.

Forward Euler

Listing 5.16 shows the implementation of the simplest algorithm: the forward
or explicit Euler scheme:

y(t + ∆t) = y(t) + f (t, y(t)) ∆t (5.3)

In the case of the CRM the source term is linear S(t) = F(t)n(t) so this will result
in:

n(t + ∆t) = n(t) + F(t)n(t)∆t. (5.4)

Note, that care must be taken when choosing the time step. Typically, the time step
must be smaller than twice the reciprocal of the highest destructive frequency in
matrix F.

96

5.5. Solution procedure

Runge-Kutta

In addition to forward Euler, several other methods have been implemented. The
fourth order Runge-Kutta method [57], also known as simply RK4, is given by:

y(t + ∆t) = y(t) +
1

6
(k1 + 2k2 + 2k3 + k4) , (5.5)

with

k1 = ∆t f(t, y(t)) (5.6a)

k2 = ∆t f(t +
1

2
∆t, y(t) +

1

2
k1) (5.6b)

k3 = ∆t f(t +
1

2
∆t, y(t) +

1

2
k2) (5.6c)

k4 = ∆t f(t + ∆t, y(t) + k3). (5.6d)

This method is implemented with an adaptive step size ∆t. By evaluating (see [58]):

κ = 2

∣
∣
∣
∣

k3 − k2

k2 − k1

∣
∣
∣
∣

(5.7)

the step is adjusted. When the minimum value of κ falls below 0.01 the step size is
halved, when the maximum value exceeds 0.05 the step size is doubled, otherwise
it is left unchanged.

Dormand-Prince

The third algorithm that has been implemented is an embedded Runge-Kutta
method, named Dormand-Prince [59]. In embedded methods two solutions are
calculated with different order. The difference of these two results is considered as
an error that is used to optimize the next step size. The Dormand-Prince method
gives fifth order accuracy.

LSODA

The methods described so far are applicable to non-stiff problems. A more ad-
vanced stepper that also support stiff problems is the so called LSODA solver.
This solver by Hindmarsh and Petzold [60, 61] holds an implementation of two
methods: Adams-Moulton for non-stiff problems and Backward Differentiation
Formula (BDF) for stiff problems. Both methods are multistep methods, mean-
ing that results from multiple previous time steps are used. Since classes retain
state between calls this does not pose a problem for the implementation. The
derived stepper class can keep track of previous steps. The solver automatically
switches between methods to select the optimal algorithm. Originally the solver
was available in a Fortran implementation, for plasimo a translated version into C
was implemented in a plStepper derived class.

97

5. Implementation of a CRM code in the plasimo framework

5.5.5 Transient results

By using the stepper the evolution of the level densities is calculated over time. By
extracting certain elements from the transition frequency matrix the rates for spe-
cific processes can be calculated. For instance, the radiative transitions in the tran-
sition matrix are represented by their transition probabilities A∗, see Eqn. (4.44).
To calculate all the isolated radiative transition rates we create a matrix R with
elements:

Rrp = A∗(p, q), (5.8)

where p and q represent the upper and lower levels of the radiative transition, and
r represents an index for the specific radiative transition. If there are M radiative
transition in the model and N levels, matrix R has dimensions M × N. Simply
multiplying matrix R with the level density vector gives a vector of radiative tran-
sition rates. The same can be done for electron (de-)excitation collisions so relative
(de)population mechanisms per level can be studied. In the GUI all level densi-
ties and individual collisional and radiative rates are plotted as a function of time.
These results are also saved to file.

5.6 Conclusion

In this chapter the implementation of the plasimo CRM plug-in has been de-
scribed. The process from a mathematical description of the transition frequency
matrix and solution strategies to the way this has been realized using several tools
present in the plasimo framework has been treated. The result is a general CRM
code that can be applied to a wide range of atomic plasmas. Because of the graph-
ical user interface that plasimo provides, it allows for user friendly manipulation
of input parameters and convenient examination of results.

98

Chapter 6

Implementation of a GPM code in the
plasimo framework

6.1 Introduction

In chapter 2 a classification of models for plasma chemistry was given. Collisional
Radiative Models (CRM) were the subject of chapters 3, 4 and 5, where the tasks
and a detailed description of the implementation was given. In this chapter we
will focus on the implementation of a Global Plasma Model (GPM) code.

In a GPM volume averaged plasma parameters are calculated as a function of
external control parameters, such as pressure, geometry, and input power. The
GPM described in this chapter possesses characteristics of a Reaction Exploration
Model (REM) meaning that the source terms are constructed directly from the
rates of the reactions in the model. This in contrast to the CRM where the source
terms are written as the product of a frequency and species density. In the GPM,
the reactions can be initiated by any species included in the model, whereas in
the CRM this is restricted to external agents (electrons and photons).

The GPM is based on the model RateLab by Jiménez [13], which in turn is based
on the PyRate model by Van den Donker [14]. The goal is to model the species
densities as a function of time, depending on external control parameters, mainly
input power. In addition to the species densities, the electron energy balance is
solved. As previously with the CRM, the implementation is realized using the
plasimo framework.

We will continue this chapter with the construction of the balance equations
that constitute the model in section 6.2. In section 6.3 some special cases for the

99

6. Implementation of a GPM code in the plasimo framework

source terms will be treated, such as wall reactions. Section 6.4 contains specifics
of the implementation of this model as a plasimo plug-in.

6.2 General equations

In a GPM the plasma volume is averaged resulting in a zero-dimensional model
describing the chemistry. This means that there is no transport (in configuration
space) within the model. We are solely investigating species densities, and how
the rates of various chemical reactions affect them. Transport and configuration
are reduced to rates (i.e. frequencies) that are applied to the relevant species.

6.2.1 Species balance

As with the CRM we start with the zeroth moment of the Boltzmann transport
equation:

∂ns

∂t
+∇ · (nsvs) = Ss, (6.1)

where ns, vs, and Ss are respectively the density, mean velocity, and source term
of species s. The transport term can be written using a transport frequency:

Fs =
1

ns
∇ · (nsvs), (6.2)

so that Eqn. 6.1 becomes:
∂ns

∂t
+Fsns = Ss. (6.3)

For a system of species we can write this in vector notation:

∂n

∂t
+Fn = S, (6.4)

where F is a diagonal matrix with elements (6.2), or when we neglect transport:

∂n

∂t
= S. (6.5)

In the CRM the source term was written as the product of a transition matrix
and the density vector. This was possible, because the transitions were the result
of external agents (electrons, photons), so only linear reactions were included. In
the GPM we will deal with generic reactions such as:

αA + βB → γC + δD, (6.6)

or in general:

∑
s

νd
s,rXs

kr(T)→ ∑
s

ν
p
s,rXs, (6.7)

100

6.2. General equations

which describes the destruction of species Xd
s and the production of species X

p
s , with

νd
s and ν

p
s the stoichiometric coefficients, and kr(T) the temperature dependent

rate coefficient of this reaction. The rate at which this reaction occurs is then:

Rr(n, T) = kr(T)∏
s

n
νd

s,r
s , (6.8)

where the product runs over all species s, with densities ns. The sum in Eqn. (6.7)
and product in Eqn. 6.8 can run over all species included in the model. In case the
species are not involved in the reaction the stoichiometric coefficient νs,r equals 0,
so the species is not included in the sum and its element in the product equals 1.
This will be convenient in the general implementation.

The rate of a reaction is always expressed in m−3 s−1, so the unit of the rate
coefficient depends on the number of species on the left-hand side in Eqn. (6.7)
and their stoichiometric coefficient. The unit of kr is m3Nr−1/s, with Nr = ∑s νd

s,r.
The balance equation (Eqn. (6.3)) of every species involved in a reaction will

receive a source term from that reaction, defined by the net stoichiometric coeffi-
cient multiplied by the rate:

Ss,r =
(

ν
p
s,r − νd

s,r

)

Rr. (6.9)

The cumulative source of all reactions for a species can be written as:

Ss = ∑
r

(

ν
p
s,r − νd

s,r

)

Rr = Ws · R, (6.10)

where Ws is a vector of net stoichiometric coefficients, one per reaction, and R

is a vector of rates, again one per reaction. The vectors Ws of all species can be
combined in a matrix W , one on every row, so that the balance equation of the
system, Eqn. (6.5), can be written as:

∂n

∂t
= S = WR. (6.11)

In the implementation described in this chapter, the definition of the species
balance will take place in two steps:

1. Define all required species. For every species the name, chemical composi-
tion, and energy level must be defined.

2. Define all reactions. A reaction is defined by a chemical equation, in which
only species defined in step 1 can be included, and a rate coefficient.

Reactions that do not involve transport and can be described as outlined above
will be called volume reactions. Reactions in which special care has to be taken, for
instance due to transport, will be treated in section 6.3. In addition to the species
density balances the model includes the electron energy balance.

101

6. Implementation of a GPM code in the plasimo framework

6.2.2 Energy balance

The electron energy balance is defined as:

∂

∂t

(
3
2 nekBTe

)
= Pinput(t)− Qinelas − Qelas + Qextra, (6.12)

with ne the electron density, kB the Boltzmann constant, Te the electron tempera-
ture, Pinput the input power density∗, Qextra extra energy source terms, and Qinelas

and Qelas the energy losses from inelastic and elastic processes between electrons
and heavy particles. The input power density Pinput is a parameter of the model,
and can take any form as function of time.

In processes involving an electron, the energy difference between left and right-
hand side is attributed to the electrons. For instance when we have an ionization
reaction of species X, where ion X+ has an energy of 15 eV:

X + e + (Eion)
kion→ X+ + e + e, (6.13)

the electrons lose Eion = 15 eV per reaction. For this ionization reaction the in-
elastic source term will be:

Qinelas,ion = Eion Rion = Eion nXne kion. (6.14)

The total inelastic source term can be written as:

Qinelas = ∑
r

Ee,rRr = Ee · R, (6.15)

where Ee is a vector of electron energy transfers, one per reaction.
The extra source term Qextra can be used to add any reaction that does not

fit into the general description of Eqn. (6.15) to the electron energy balance. An
example of this is energy exchange by elastic collisions (Qelas), which will be im-
plemented as an extra source term (thereby essentially removing it as a separate
term). This will be described in section 6.3.2.

6.2.3 Solution procedure

The goal of the model is to simultaneously solve the species density balances
(Eqn. (6.11)) and electron energy density balance (Eqn. (6.12)) as a function of
time. The power input density is a function of time and additional source terms,
see next section, can also be time dependent. The result of this calculation will be
the species densities and the electron energy density as a function of time. Addi-
tionally, the rates vector R is calculated for the same time steps as the densities,
which allows for time dependent analysis of reaction paths.

∗ It is assumed all input power is directly coupled into the electron energy balance.

102

6.3. Special cases

The set of balances is an initial value problem similar to the time dependent
CRM in section 4.2.2. Consequently, the same solution procedure can be em-
ployed, where now the the vector Y consists of the species densities and electron
energy density.

6.3 Special cases

When a reaction is defined as described in section 6.2, it implies three things:

1. every species defined in a balance equation must be defined, and for that
species a density balance will be created;

2. every reaction will result in a source term for all species, which through the
mechanism of Eqns. (6.10) and (6.11) will be limited to the species with a
non-zero stoichiometric coefficient;

3. every reaction will result in an inelastic source term for the electron energy
balance, limited to relevant reactions by vector Ee in Eqn. (6.15).

So defining only the reactions (and the required species) results in a set of balance
equations (species density and electron energy density) with appropriate source
terms. However, it is possible that reactions, especially when interaction with the
surroundings is involved, will require some adjustments to fit into this general
description. An example of this are simple wall reactions.

6.3.1 Wall reactions

The most basic form of a wall reaction is a particle diffusing to the wall. Trans-
lated to the zero-dimensional paradigm, it means that the density of the relevant
species, say X, disappears at a certain frequency:

X
kdiff→ , (6.16)

which violates the law of conservation of mass. A workaround for this problem is
the introduction of a specialized wall species, Xwall that is identical to the original
species, X. We can then write:

X
kdiff→ Xwall. (6.17)

Although this introduces another species and therefore a balance equation, this
will not influence the system, since this wall species only appears on the right-
hand side of this reaction.

103

6. Implementation of a GPM code in the plasimo framework

The rate coefficient describing the diffusion will in general be of the form (see
Eqn. (2.6)):

kdiff =
D

Λ2
, (6.18)

with Λ the size of the plasma, and D the diffusion coefficient. The diffusion coef-
ficient of species X is described by Eqn. (2.7):

DX =
2

3Nσ

√

kBTX

πMX
, (6.19)

where N is the density of the buffer gas, σ the collision cross section, and TX and
mX the temperature and mass of species X. In case species X has a charge the
diffusion changes to the ambipolar diffusion (see Eqn. (2.9)):

Dambi
X = (1 +

Te

Th
)DX , (6.20)

with Te and Th the electron and heavy particle temperature.
A more complex wall interaction can occur when some mechanism introduces

new particles into the plasma. An example of this is the sputtering of the wall.
When ions reach the wall and are energetic enough they can sputter the surface

which releases new particles into the plasma. For instance, the ions from an Ar
plasma sputter a Cu surface∗:

Ar+ + Cuwall

ksputter→ Ar+ + Cu. (6.21)

However, defining this reaction will result in a balance for Cuwall and computation
of the rate requires its density by definition, Eqn. (6.8), but the rate should be
independent of the “makeshift” species Cuwall. There are several ways to deal
with this issue, here we have opted for extra source terms.

6.3.2 Extra sources

The source terms for the particle balances are constructed from the reactions de-
fined in the models. To these sources we can add extra source terms “by hand”,
i.e., by circumventing the automatic source term creation from the defined reac-
tions. The calculation of the source term remains the same, as defined in Eqns. (6.8)
and (6.9). But now, we can define the relevant species, i.e., the non-zero left-hand
side, right-hand side, and net stoichiometric coefficients separately, so we do not
have to worry about mass conservation of the individual reaction.

With respect to the sputtering example, we can define target species, in this
case Cu, source species, here Ar+, and the net stoichiometric coefficient for the

∗ Note that in this case the Ar ions return into the plasma after the sputter process.

104

6.4. Implementation

target species Wnet = 1. The declaration of the extra source term is completed
with the definition of the rate coefficient. Effectively, we have then defined:

Ar+
ksputter→ Ar+ + Cu. (6.22)

The source term is calculated from:

Sextra
sputter = Wnetksputter ∏

sources

nsource, (6.23)

which is added to the balance equation of the target species, Cu. This will be used
in chapter 9, where we describe a model of a sputtering plasma.

Another, more common, case in which extra source terms are useful is the
electron energy loss term for inelastic collisions:

X + e
kinelas→ X + e. (6.24)

Following the general description of generating source terms for the balance equa-
tions, this reaction has no effect: all net stoichiometric coefficients are zero, and
since the left-hand and right-hand side energies are equal there is no energy ex-
change.

Since this process only affects the electron energy balance, extra source terms
can also have the electron energy as target. For this process the sources of the extra
source term are X and e, the target is the electron energy, and the stoichiometric
coefficient is 1.

6.4 Implementation

The GPM must perform the following steps:

1. load an input file, describing the species, reactions, and any control param-
eters required by the model, such as input power density;

2. prepare data structures for the iterative solution procedure;

3. perform the iterative solution procedure;

4. save and/or present results.

The GPM is implemented as a model plug-in in the plasimo framework using
the C++ programming language. Plug-ins in plasimo and more specifically model
plug-ins are treated in chapter 5, so we refer to that chapter for details. Chapter 5
also contains a description of C++ classes, and how they are used in plasimo and
the CRM. Here we will limit ourselves to the elements of the implementation that
are directly linked to the steps the GPM should perform.

105

6. Implementation of a GPM code in the plasimo framework

The GPM is implemented in a class derived from the plModelBase class. This
class contains a number of data structures to store the species, reactions including
the extra source terms, and variables required for the calculation. The class also
implements a number of functions (as any plModelBase derived class should) the
most important of which are the constructor and do_update() member function.

Steps 1 and 2 are performed by the constructor, which is automatically exe-
cuted when an object of the GPM is created. Steps 3 and 4 are implemented in the
do_update() member function. The main plasimo application is responsible for
creating the GPM model object (and thereby calling the constructor so that all data
structures are initialized), and for iteratively calling the do_update() function.

6.4.1 Model construction

The first two steps of the GPM are to construct the model and all required data
structures as described in an input file. Essentially, the model is the set of balance
equations for the species density and electron energy density. Listing 6.1 shows
part of an input file, describing a simple system of three species (electrons, molec-
ular and atomic oxygen) and a single reaction (molecular oxygen dissociation).

Since it is a plasimo input file, the same form of key-value pairs ordered in sec-
tions is used here as in the input file for the CRM (see listing 5.11). The first thing
the main plasimo application does is to look for the Type key (see section 5.4.1),
which can be found on line 1. plasimo then creates an instance of the model plug-
in that is available from the model plug-in factory under the name ZDM which
stands for “Zero Dimensional Model” (the current name of the GPM plug-in).
The rest of the input file is then loaded by the constructor of the GPM plug-in.

Species and reactions are defined in separate sections: section Species (line 3)
and VolumeRelations (line 32). Each species is defined in its own Particle sec-
tion (lines 4, 13, and 22). Every species has a Name (e.g. line 5), under which it can
be used in the definition of a reaction, a Constitution (e.g. line 6), describing
the chemical composition, and a State section (e.g. line 7), to further describe
the species (statistical weight, energy level). The constitution of a species is used
for checking mass conservation in reactions.

Reactions are defined in Relation sections that contain a Format (line 35) and
a Rate section (line 36), defining the rate coefficient. Rate coefficients can be de-
fined in different forms or Type’s (line 37). Here we show a custom function that
must be completely defined (other possibilities are a file containing a look-up table
or an Arrhenius function in combination with a few parameters), and therefore
also contains the expression (line 38). In addition the unit of the resulting rate co-
efficient is defined (line 39) as well as the constants used in the expression (lines 40
and 41). In any custom function certain predefined functions can be used to ac-
cess species properties. In the rate on line 38 this is used to obtain the electron
temperature. Other built-in functions are available for the energy, mass and den-

106

6.4. Implementation

1 Type ZDM

2

3 Species {

4 Particle {

5 Name O2

6 Constitution O2

7 State {

8 Type Atom

9 Weight 7

10 Energy -5.16514*eV

11 }

12 }

13 Particle {

14 Name O

15 Constitution O

16 State {

17 Type Atom

18 Weight 9

19 Energy 0*eV

20 }

21 }

22 Particle {

23 Name e

24 State {

25 Type Atom

26 Weight 2

27 Energy 0*eV

28 }

29 }

30 }

31

32 VolumeRelations {

33 Relation {

34 Name O2_dissociation

35 Format "O2 + e <=> 2 O + e"

36 Rate {

37 Type CustomRate

38 Function "C*exp(-E/(kB*Temperature(e)))"

39 Unit m^3/s

40 Declare C 7.1e-15

41 Declare E 1.3e-18*J

42 }

43 }

44 }

Listing 6.1. Part of a plasimo input file for a Global Model. A rudimentary system is
described consisting only of an atomic and molecular oxygen species, and an electron species.
In this listing only one reaction is included (dissociation).

107

6. Implementation of a GPM code in the plasimo framework

sity. In case of the density and temperature the values are for the current time of
the model∗.

As outlined in chapter 5, one of the key features of plasimo is its modular de-
sign. Some of the available functionality of plasimo is in the area of chemistry,
for which plasimo provides classes to store species and reactions. Those classes
are also used in this model plug-in; only the sections containing the species and
reactions need to be passed to the constructors of these classes, after which all
information contained in the definitions of the species and reactions is available
through member functions. The species information is stored in a class called
plParticleMap and the reactions in classes called plParticleRelation. Apart
from simply storing the reaction specifics, the plParticleRelation class also
provides member functions to calculate the rates. This demonstrates the benefit
of plasimo’s modular design; through the use of classes and Self Registering Ob-
jects†(SRO) code used in (and often designed for) certain plasimo modules can
easily be used in other modules. This modular design even transcends the pro-
gramming level; the sections of an input file describing the chemistry (species
and reactions) can, without alteration, directly be used in other plasimo models,
for instance in fluid models that also contain a certain chemistry.

For dealing with the extra source terms (see section 6.3.2) a dedicated class is
defined. Similar to the plParticleRelation class it provides a member function
to calculate the rate. We will not elaborate on the specifics in this text.

Apart from the structures for the species and relations, the constructor of the
GPM plug-in prepares matrix W (see Eqn. (6.11)), and vector E (see Eqn. (6.15)).

Now that all functionality is in place to construct the balance equations we can
continue with the solution procedure.

6.4.2 Solution procedure

We need to solve the combination of Eqns. (6.11) and (6.15), which is an initial
value problem. To this end we employ the exact same solution procedure as was
used for the time dependent version of the CRM (see section 5.5.2): the plStepper
class. The solution procedure is iterative, and performed by the do_update()

member function of the GPM model plug-in, mentioned at the start of this sec-
tion. Every time the do_update() function is called one time step is taken by the
stepper, until the desired end time of the solution is reached.

The stepper only requires access to a function f, see Eqn. (5.1), that provides
the source vector. This function is implemented as a member function of the GPM
model plug-in. In the CRM the source vector was simply calculated by multiply-

∗ Since only the energy balance for the electrons is included in the model, only the temperature
of the electron species is time dependent. Furthermore, all non-electron species are assumed to have
the same constant (heavy particle) temperature.

† See section 5.3.4 for a short explanation of this mechanism.

108

6.5. Conclusion

ing the transition matrix by the density vector: S = Fn. Here we require a few
more steps:

1. calculate the rate vector R;

2. calculate the source vector for the density balances by multiplying the stoi-
chiometry matrix by the rate vector: S = WR;

3. calculate the source vector for the electron energy density balance by sum-
ming the input power density and inelastic energy density transfer: Qinelas =
Ee · R;

4. add any extra source terms to the source vector.

The resulting vector is provided to the stepper so it can calculate the results for
the next time step.

Just as the densities and electron energy density, the rates that are calculated
every time step are stored. The rates as function of time can then be used to ana-
lyze the dominant reactions in a system.

6.5 Conclusion

The GPM module is very similar to the time dependent CRM of chapter 5, though
it is aimed at accommodating more general models. Whereas the CRM only dealt
with atoms and linear processes effectuated by external agents, the GPM allows
for any defined species to react with each other in any way, so we are not restricted
to linear processes∗. In addition, the electron energy density is solved, though, in
contrast to the CRM, the GPM can only handle Maxwellian EEDFs. Great flex-
ibility is achieved by allowing for many parameters to have a predefined time
dependence and by the use of freely definable extra source terms.

Since many building blocks provided by plasimo can be used in the construc-
tion of the module, its implementation is relatively straightforward. The most
notable of these building blocks are tools for dealing with the chemistry, but also
the stepwise solver.

In chapter 9 the GPM will be used to investigate the ionization mechanisms in
a High Power Impulse Magnetron Sputtering (HiPIMS) plasma.

∗ Note that in a limited way the CRM does allow for non-linear processes to be included.

109

Part II

Applications

111

Chapter 7

A CRM of EUV induced plasmas

7.1 Introduction

In the future Extreme UltraViolet (EUV) radiation will be used in the manufac-
turing process of Integrated Circuits (ICs). A consequence of this is that reflective
optics must be used in the imaging mechanism in lithography machines. In these
machines the EUV radiation will interact with the background gas and form a
plasma. In the vicinity of a surface, and thus a mirror, energetic ions will acceler-
ate to the wall and potentially sputter the surface. Since this can be detrimental to
the reflectivity of the mirror it is of vital importance to mitigate this process. Pre-
vious research showed that the energy of the electrons (i.e., the Electron Energy
Distribution Function or EEDF) in the EUV induced plasma is responsible for the
energy the ions can reach, and that this energy can be lowered by increasing the
pressure of the background gas. The aim of this chapter is to corroborate the faster
decay of the EEDF by increased background pressure by the use of time resolved
Optical Emission Spectroscopy (OES). However, to interpret the measurements it
is necessary to construct a Collisional Radiative Model (CRM).

In section 7.2 we will start with some background information about the issue
at hand and the EUV induced plasma. We will then continue (section 7.3) with
the CRM describing the considerations in its construction. It will turn out that the
CRM requires the EEDF from an external source and that this EEDF will be far
from Maxwellian. In section 7.4 a Particle In Cell Monte Carlo (PIC-MC) model
is described that can provide the EEDF, but also a simple analytical model will
be brought into play. The results, also comparing the PIC-MC model and analyt-
ical model, are given in section 7.5. Finally, time resolved OES measurements are

113

7. A CRM of EUV induced plasmas

described in section 7.6, where they are also compared to the results of the CRM.

7.2 Background

7.2.1 Lithography

An important step in the manufacturing of ICs is the imaging of a mask onto a
substrate by means of a complex set of lenses. The mask is a geometric pattern
that determines whether or not a photoresist layer on the substrate is removed by
the light it is exposed to. When the substrate is subsequently etched, only parts on
the substrate that are still covered by the photoresist will be (partially) removed.
By repeating this process a number of times structures are formed that make up
electronic circuits: the IC.

To create faster and more energy efficient computer chips the structures have
to be made smaller. The past five decades this has, among others, been achieved
by using light with shorter wavelengths for imaging the mask. Presently, a wave-
length of λ = 193 nm is the state of the art, but driven by the urge to go to even
smaller structures one has to look for sources producing radiation with a much
lower wavelength.

The company ASML, being the world’s leading developer and supplier of
lithography systems, aims to use EUV radiation in its next generation of machines.
EUV lithography (EUVL) will use radiation in a 2% bandwidth around a central
wavelength of 13.5 nm. Using radiation at this wavelength has two important
consequences:

1. Due to its short attenuation length (100 nm) it is no longer possible to use
lenses for the optical system.

2. To prevent background gas from absorbing the radiation, the whole system
must be kept in vacuum at a pressure of 0.1 Pa to 1 Pa.

Most mirrors in a EUVL tool are (near) normal incidence multilayer mirrors.
They are made up of multiple Mo-Si bi-layers, and by selecting the right thick-
nesses a reflectivity of up to 70% can be reached. However, the projection path
inside a commercial lithography machine can require up to 10 mirrors, resulting
in a total transmission of only (0.7)10 ≈ 2.8%. This means that a small decrease
in reflectivity of each mirror will add up to a significant transmission loss. It is
therefore essential to prevent anything from adversely affecting the reflectivity of
the multilayer mirrors.

The EUV photons have enough energy (92 eV) to photoionize the background
Ar gas. This will create free electrons and positive Ar ions, i.e., a plasma. The
electrons are much more volatile than the ions due to their lower mass. Near a
wall (or mirror) the electrons will hit the wall and remain there, whereas the ions

114

7.2. Background

will hardly move (on very short timescales). However, the charge imbalance will
result in a potential drop towards the wall, which in turn accelerates the positive
ions in the direction of the wall. If the ions gain enough kinetic energy before
they hit the wall it is possible that they can “knock” away atoms from the mirror
surface, a process called sputtering. If enough atoms are sputtered the mirror will
be damaged and its reflectivity will drop.

7.2.2 Previous research

Sputtering of the mirror surface was the subject of previous research by Van der
Velden [53]. In that research a numerical model was used to simulate the creation
of a plasma by EUV radiation, and the interaction of that plasma with a (mirror)
surface. Also, experiments at the EUV-lab of ASML were performed to measure
the sputter rate using a pulsed EUV source. Some of the conclusions of that re-
search are:

• The simulations show that indeed a potential drop towards the mirror sur-
face is created. This potential drop accelerates Ar ions towards the surface,
so that sputtering may occur. The potential drop is determined by the mean
energy of the electrons in the plasma.

• Sputtering is mainly caused by the Ar2+ ions that are accelerated towards
the wall and to a lesser extent by the Ar+ ions. This is because the double
charged ions gain twice the energy of single charged ions.

• When the pressure of the background gas is increased, the sputter rate also
increases because more plasma is produced, which leads to more ions im-
pacting on the mirror surface. However, because the inelastic collision fre-
quency of the plasma electrons with the background gas also increases with
pressure, the plasma electrons are cooled. The result of this is that the poten-
tial drop towards the mirror is reduced. The ions hitting the wall will have
less energy so that less sputtering will occur. Between these two opposing
effects there is an optimum.

• The performed experiments did not show any sputtering. This does not,
however, contradict the model, since the model predicts that the sputtering
would be too low to be detected (∼ 1 nm per 109 EUV pulses) given the
experimental parameters.

The key to controlling the sputtering is the mean electron energy of the elec-
trons in the EUV induced plasma. If the mean electron energy can be kept low
enough the potential drop towards the wall can be controlled, so the ions in the
plasma will not cause sputtering of the mirror surface. This can be accomplished
by increasing the background Ar pressure.

115

7. A CRM of EUV induced plasmas

It is desirable to somehow monitor the effect these measures have on the EUV
driven plasma, more specifically on the energy of the plasma electrons. The nu-
merical model by Van der Velden was designed to model the sputtering of a sur-
face near an EUV induced plasma. The aim of this chapter is to experimentally
validate that model, more specifically the part of the model that describes the
creation and evolution in time of the EUV produced plasma. The diagnostic tech-
nique that is used on the plasma is optical emission spectroscopy. In order to
validate the model by Van der Velden with these measurements, we must first
construct a collisional radiative model of the EUV driven plasma.

7.2.3 The EUV induced plasma

The plasma created by photoionization of the Ar background gas by EUV photons
was extensively described by Van der Velden in his thesis [53]. Here we will only
give a summary highlighting the most relevant aspects.

The EUV source (extensively studied by Kieft [26]) produces EUV radiation in
100 ns pulses at a rate of up to 1 kHz. The radiant energy∗ per square meter per

pulse is called the radiant exposure, which is assumed to be H
pulse
e = 0.6 J m−2†.

For an Ar background pressure of 1 Pa the density is na ≈ 2.4 × 1020 m−3 at
room temperature. The electron density due to photoionization can be approxi-
mated using the expression:

ne =
H

pulse
e

[

1 − exp(−Lnaσphoto)
]

hνL
≈

H
pulse
e naσphoto

hν
≈ 1015 m−3, (7.1)

where the photoionization cross section is σphoto = 10−22 m2 [62], and the energy
of a photon is hν = 92 eV, and where we have used the fact that the plasma is
optically thin (Lnaσphoto ≪ 1, for a typical length of L = 10 cm).

Double and triple photoionization are also possible, but since the cross sec-
tions for these processes are much smaller, they are not of influence.

Every EUV pulse will create a plasma. The 100 ns pulses lie 10−1 s to 10−3 s
apart, and in between pulses the plasma will decay. Electrons and ions can be
removed by two-electron recombination:

Ar+ + e + e
Krec→ Ar + e, (7.2)

which using for the rate [63]:

Krec = 3.3 × 10−21(Te)
−9/2, (7.3)

∗ Within a 2% bandwidth around the center wavelength of 13.5 nm.
† This is a realistic value for the EUV source that was used for the experiments performed by Van

der Velden and the experiments in section 7.6.

116

7.2. Background

results in a recombination frequency of νrec = Krecn2
e ≈ 2 × 10−7 Hz at T̂e =

10 eV∗†. Compared to the EUV pulse frequency this is clearly negligible.
The electrons and ions will spread by diffusion. The ambipolar diffusion is

(see Eqn. (2.9)):

Da =
2

3nArσelas
ia

√

kBTh

πmAr

(

1 +
Te

Th

)

≈ 130 m2 s−1, (7.4)

where we have used σelas
ia ≈ 10−18 m2 taken from [64]. For a diffusion distance of

L = 5 cm this results in a decay time of:

τa =
L2

Da
= 2 × 10−5 s. (7.5)

So, realizing that the repetition frequency of the pulsed EUV source is 1 kHz, the
diffusion is fast enough to let the plasma decay in the period between two subse-
quent pulses.

Strictly speaking, the formulae using the electron temperature Te only apply to
plasmas with a Maxwellian electron energy distribution function (EEDF) (see also
footnote †). The EEDF will initially be mono-energetic with a peak at 76 eV (the
energy with which the free electrons are introduced in the plasma by photoion-
ization). Due to collisions between electrons, the EEDF will then relax towards a
Maxwell distribution. The collision time for electrons with electrons can be esti-
mated by [65]:

τee =
6
√

2π
3
2 ε2

0

√
me(kBTe)

3
2

e4ne ln Λ
, (7.6)

with the Coulomb parameter:

Λ =
12πε0(kBTe)

3
2

√
nee3

. (7.7)

Using T̂e = 10 eV again, we find for this time approximately τee ≈ 4 × 10−4 s. This
is much longer than the diffusion time of the plasma, so before the energy of the
electrons can be redistributed the plasma has already recombined at the wall.

7.2.4 Optical emission spectroscopy

The EUV driven plasma has a low electron density, is short-lived, relatively small,
and only present where there is EUV radiation. This makes it very difficult to ap-
ply diagnostic methods. A study was performed by Van der Velden [53] to assess

∗ Temperatures with a “hat” denote that the temperature is expressed in electronvolts (1 eV ≈
11 604.5 K).

† Use of the electron temperature implies that the EEDF is Maxwellian, which it certainly is not.
Here it is used to represent the mean energy of the electrons.

117

7. A CRM of EUV induced plasmas

the feasibility of several techniques, such as Langmuir probing, Thomson Scatter-
ing (TS), Microwave Interferometry (MI), Laser Induced Fluorescence (LIF), and
Optical Emission Spectroscopy (OES). All but the last method were deemed un-
suitable (TS, MI, and LIF) or turned out to be impossible (Langmuir probing).

In this study OES is applied. In the EUV driven plasma, excited atom levels
will mostly be populated by ground state electron excitation, and depopulated by
radiative decay. This production–destruction mechanism is the so called corona
balance.

For an atomic level the density Eqn. (3.17) will then reduce to:

∂n(p)

∂t
= nen(1)K(1, p)(t)

︸ ︷︷ ︸

electron excitation from ground state

+ ∑
q>p

n(q)A(q, p)

︸ ︷︷ ︸

cascade

− ∑
p>q

n(p)A(p, q)

︸ ︷︷ ︸

spontaneous emission

, (7.8)

with n(p) and n(q) the densities of (two separate) excited levels, n(1) the ground
level density, K(1, p) the electron induced ground state excitation rate coefficient,
and A(p, q) the Einstein coefficient for spontaneous emission from level p to q.
Note that levels are not only populated by electron collisions from the ground
level, but also by radiative decay from higher levels; the cascade contribution.

To interpret the results of OES measurements, knowledge of the collisional
excitation rates is required. The rate coefficient is the time dependent version of
Eqn. (4.9):

K(1, p)(t) =
∫ ∞

Eth

σexc
1,p (E′) f (E′, t)ve(E′)dE, (7.9)

with f (E, t) the time dependent EEDF, σexc
1,p (E) the cross section for the ground

state excitation of level p by electron impact, and ve(E) the electron velocity. Note
that the electrons need at least a threshold energy Eth = E(p) to excite the atom
to level p. Many cross sections are available from literature. These can be divided
into experimental, theoretical, and semi-empirical data. Apart from cross section
data we need a time dependent EEDF which must be provided by a model.

Van der Velden [53] has modeled the EUV driven plasma using a Particle In
Cell Monte Carlo (PIC-MC) method, which will be treated in section 7.4.1. Among
other things this model calculates the electron densities ne(t) and distribution
functions f (E, t) during the evolution of the plasma. To gain insight into the cre-
ation of the EEDF we will investigate them separately in section 7.4.

Using these EEDFs as input, a CRM can be constructed to model the radiation
from the plasma. The model, that will be introduced in the next section, will
solve a coupled set of equations in the form of (7.8). When the (time dependent)

118

7.3. CRM

densities and transition probabilities are known, the radiation from the plasma
can be calculated and compared to experimental results.

OES measurements can be performed using standard spectrometers. Because
the EUV driven plasma is highly transient in nature it is desirable to perform time
resolved measurements. An added difficulty is the low photon yield per pulse.
The time resolved measurements, described in section 7.6, were performed using
a fast photo multiplier tube attached to a monochromator.

For spectroscopic measurements it is important to know to what extent the
radiation from the plasma is absorbed before it reaches the detector.

The absorption cross section is defined by:

σ(ν) =
1

8π
λ2 A(u, l)φν(ν)

gu

gl
, (7.10)

with λ the wavelength of the light being absorbed, A(u, l) the Einstein coefficient
for spontaneous emission from level u to level l, gu and gl the degeneracies of
levels u and l, and φν(ν) the line form function. This function is normalized so
that: ∫

φν(ν)dν = 1, (7.11)

where the integration is performed over the whole transition. For φν(ν) we will
use a block form function with a width of (Doppler broadening):

δν = ν0

√

kBT

mArc2
, (7.12)

so that φν(ν) = 1/δν.
We are interested in radiation in the optical range and in Ar the most intense

lines will be those of the 4p-4s transitions. As an example we will use the line at
811.8 nm, with A = 3.3 × 107 s−1 and g(u)/g(l) = 7/5. The Doppler broadening
is δν ≈ 3.1 × 108 s−1 so φν(ν) ≈ 3.2 × 10−9 s. The cross section will then be σ(ν) ≈
4 × 10−15 m2. Since we can expect densities of the excited levels in the order of
1014 m−3, the absorbed fraction over a length of L = 1 cm is nLσ ≈ 4 × 10−3, so
we can conclude that absorption is not an issue∗.

7.3 CRM

7.3.1 Non-equilibrium

In general we may state that any plasma has (several) equilibrium and non-equi-
librium aspects. The degree of equilibrium departure is expressed by the ratio

∗ For transitions from the resonant 4s levels to the ground state absorption can be significant,
due to the high transition probability and high lower level (ground) density. But that will not be of
influence.

119

7. A CRM of EUV induced plasmas

between the equilibrium and non-equilibrium parts. It can be described by di-
viding the plasma kinetics in forward and corresponding backward processes; so-
called proper balances. Equilibrium is present on a detailed plasma aspect when
the number of forward processes equals that of the corresponding backward pro-
cesses. Thus when the proper balances in question equilibrate. Since electrons
are, in many situations, the main agents in performing (de-)excitation kinetics
we can expect that for increasing ne more proper balances will reach a state of
equilibrium. The underlying aspects of the partial equilibrium features can eas-
ily be described with a few parameters using the well-known laws of statistical
mechanics. In our case, however, due to the low electron density (ne ≈ 1015 m−3)
and strong transient nature with a decay time of typically 10−7 s, corresponding
to 107 Hz, the plasma is far from equilibrium. We can examine some (disturbed)
equilibria in more detail:

• Planck:
The underlying proper balance is in this case given by absorption and (stim-
ulated) emission. As is shown in the previous section, the attenuation length
for radiation generated by the plasma in the visible and UV-range exceeds
the dimensions of the plasma by far. The plasma is therefore optically thin,
which implies that the radiation generated by the plasma can not be charac-
terized by Planck’s radiation law.

• Maxwell:
Here the proper balance is formed by the kinetic energy exchange between
electrons in e-e collisions. The photon beam creating the plasma has a very
distinct energy (2% bandwidth around 13.5 nm) so initially the EEDF will
be sharply peaked at 76 eV. By e-e collisions the plasma might thermalize
reaching a Maxwellian EEDF. However, from Eqn. (7.6) we know that the av-
erage time between collisions is longer than the diffusion time, so the plasma
will have recombined at the wall before Maxwellization can take place.

• Boltzmann:
It is possible to describe the densities of the excited states using the Boltz-
mann distribution law, if at least two conditions are fulfilled. First, the en-
ergy of the agents performing the excitation and de-excitation are distributed
according to a Maxwell distribution. Second, the relevant excitation and de-
excitation processes are in equilibrium with each other. Since, in our case,
there is no Maxwell distribution, Boltzmann can not be used to describe the
excited state populations.

• Saha:
In order for the Saha distribution law to be applicable, the balance of ioniza-
tion and the corresponding reverse process of two-electron recombination

120

7.3. CRM

must be in equilibrium:

Ar + e ↔ Ar+ + e + e

In section 7.2.3 the two-electron recombination frequency was estimated to
be νrec ≈ 2 × 10−7 Hz. This is much lower than the diffusion frequency
of νa = 1/τa ≈ 5 × 104 Hz (see Eqn. (7.5)). This means that the ions will
have drifted away before an equilibrium can be established, so also Saha
equilibrium is out of the question.

The foregoing considerations show that the well known equilibrium laws, as
given by statistical mechanics, can not be used to describe our plasma, so we are
dealing with a very unusual plasma. This means, that in order to find the light
emission as a function of time, we have to describe the non-equilibrium reactions
in detail. To that end we construct a collisional radiative model (CRM), consisting
of relevant balance equations.

7.3.2 Classification of excitation balances

To model the plasma it is necessary to construct a set of balance equations that
describe the relevant mechanisms in the plasma. In our case the plasma is ioniz-
ing, meaning that the excited levels are populated by excitation from the ground
level and not by the continuum. The electron density is relatively low, so it is to be
expected that lower excited levels can be described with the Corona Balance (CB)
and higher levels using the Excitation Saturation Balance (ESB). The principles of
both balances are shown in Fig. 7.1.

Levels with a lower principal quantum number (p < pcr) are in the CB and
states with a higher number (p > pcr) in the ESB. The boundary level pcr is calcu-
lated using Eqn. (3.34):

pcr ≈
(

9 × 1023 Z7

ne

)1/9

≈ 8, (7.13)

which is higher than any of the observable lines (spectroscopy measurements are
treated in section 7.6). We can therefore conclude that the system is dominated
by the CB.

The system is described by a set of coupled balance equations each having the
form of Eqn. (7.8), i.e. population by electron excitation of the ground state and
radiative decay from higher levels (cascade contribution), and depopulation by
radiative decay.

The dominant lines observed in the spectroscopic measurements are those of
the 4p-4s transitions. These transitions have a typical decay time of τ = 10−7 s,
meaning that we can not speak of a usual CB; the CB we deal with is highly tran-
sient.

121

7. A CRM of EUV induced plasmas

Figure 7.1. Schematic depiction of the Corona Balance (CB) and Excitation Saturation Bal-
ance (ESB). In CB atomic levels are populated by means of electron excitation of the ground
state, whereas depopulation is realized by means of spontaneous radiative decay to lower lying
levels. In ESB the atoms are repetitively excited until the excited electron reaches the contin-
uum and the atom is ionized. The critical principal quantum number for the boundary between
the two balance domains, is designated by pcr.

7.3.3 CRM construction

The model is implemented using the time dependent CRM plug-in for the pla-
simo framework that was extensively described in chapters 4 and 5. Although it
was shown by Van der Velden that Ar2+ ions are the main source of sputtering,
only ArI and ArII lines could be identified in the measured spectra. Therefore
only atomic and single ionized Ar are included in the model.

For constructing the CRM several data are required:

• electron cross sections for ground state excitation;

• transition probabilities;

• electron density as function of time;

• EEDF as function of time.

The last two items have to be taken from an external model, and will be described
in detail in section 7.4. Cross sections and transition probabilities are taken from
literature. Due to the highly transient nature of the plasma, with timescales in the
order of 10−7 s, a selection of levels has been made: only levels that decay with
a transition probability of more than 2 × 106 s−1 are included. This implies that
only for these levels radiative transition probabilities and cross sections are taken
into account.

The database of the National Institute of Standards and Technology [66] was
used for the radiative transition probabilities. The excited neutral Ar levels that

122

7.3. CRM

4s (4)

4p (10)

3d (12)

4f (12)5s (4)

6s (4)

5p (2)
4d (2)

5d (3)

6d (1)

ground

19

2

2
14

21

2

3

2

14

2

4

1

Figure 7.2. Diagram of the levels of the atomic Ar system, ArI, that are included in the CRM.
The rectangles represent blocks of levels. The number between parentheses is the number of
levels the block consists of, the numbers in italics denote the number of separate radiative tran-
sitions between blocks.

are included are listed in table 7.1∗, and the diagram in Fig. 7.2 shows how the lev-
els decay. Table 7.2 lists at which wavelengths these levels radiate and the corre-
sponding transition probabilities. The levels to which the other levels radiate and
the accompanying transition probabilities are listed in tables 7.3, 7.4, 7.5, and 7.6.

For every level that radiates, and is included in the CRM, we also need an elec-
tron excitation cross section from the ground state. For this we use a compilation
of Ar cross section made by Yanguas-Gil et al. [67]. They list cross sections for the
4s, 4p, 3d, 5s, 5p, and 4d levels that are included here. The sources of these cross
sections are Khakoo et al. [68] (4s), Chilton et al. [69] (4p), Hayashi [70] (3d, 5s),
Weber et al. [71] (5p), and Drawin [35] (4d, 6s). Additional cross sections for 6s,

∗In this text both Paschen and Racah notation will be used. To distinguish the two, Paschen nota-
tion is in italic font and Racah in normal font. See also appendix B for translation tables.

123

7. A CRM of EUV induced plasmas

Paschen Racah energy [eV] Paschen Racah energy [eV]

1s5 4s[3/2]2 11.548 1s3 4s’[1/2]0 11.723

1s4 4s[3/2]1 11.624 1s2 4s’[1/2]1 11.828

2p10 4p[1/2]1 12.907 2p5 4p[1/2]0 13.273

2p9 4p[5/2]3 13.076 2p4 4p’[3/2]1 13.283

2p8 4p[5/2]2 13.095 2p3 4p’[3/2]2 13.302

2p7 4p[3/2]1 13.153 2p2 4p’[1/2]1 13.328

2p6 4p[3/2]2 13.172 2p1 4p’[1/2]0 13.480

3d6 3d[1/2]0 13.845 3d′1 3d[5/2]3 14.099

3d5 3d[1/2]1 13.864 3d′′1 3d[3/2]1 14.153

3d′4 3d[3/2]2 13.903 3s′′′′1 3d’[5/2]2 14.214

3d4 3d[7/2]4 13.979 3s′′′1 3d’[3/2]2 14.234

3d3 3d[7/2]3 14.013 3s′′1 3d’[5/2]3 14.236

3d2 3d[5/2]2 14.063 3s′1 3d’[3/2]1 14.304

2s5 5s[3/2]2 14.068 2s3 5s’[1/2]0 14.241

2s4 5s[3/2]1 14.090 2s2 5s’[1/2]1 14.255

3p5 5p[1/2]0 14.576 3p1 5p’[1/2]0 14.738

4d6 4d[1/2]0 14.694 4d5 4d[1/2]1 14.711

3s5 6s[3/2]2 14.839 3s3 6s’[1/2]0 15.014

3s4 6s[3/2]1 14.848 3s2 6s’[1/2]1 15.022

4X
4f[3/2]1 14.901 4U

4f[7/2]3 14.909
4f[3/2]2 4f[7/2]4

4V
4f[9/2]5 14.904 4W

4f’[7/2]3 15.083
4f[9/2]4 4f’[7/2]4

4Y
4f[5/2]3 14.907 4Z

4f’[5/2]3 15.083
4f[5/2]2 4f’[5/2]2

5d6 5d[1/2]0 15.101 5d′4 5d[7/2]4 15.131

5d5 5d[1/2]1 15.118

6d6 6d[1/2]0 15.313

Table 7.1. The levels included in the CRM, listed in both Paschen and Racah notation, and
the level energy in eV.

124

7.3. CRM

level wavelength [nm] (A [106 s−1])

2p1 750.6 (44.5)

2p2 696.7 (6.4) 772.6 (11.7) 826.7 (15.3)

2p3 706.9 (3.8) 738.6 (8.5) 841.1 (22.3)

2p4 795.0 (18.6) 852.4 (13.9)

2p5 751.7 (40.2)

2p6 763.7 (24.5) 800.8 (4.9) 922.7 (5.0)

2p7 772.6 (5.2) 810.6 (25.0) 867.0 (2.4)

2p8 801.7 (9.3) 842.7 (21.5)

2p9 811.8 (33.1)

2p10 912.5 (18.9) 966.0 (5.4)

Table 7.2. The wavelengths at which the 4p levels radiate and in parentheses the transition
probabilities.

upper level lower levels (A [106 s−1])

2s2 0 (35.0) 2p2 (3.4) 2p3 (8.9) 2p4 (2.0)

2s3 2p2 (5.1) 2p4 (10.0) 2p7 (2.2) 2p10 (3.3)

2s4 0 (77.0) 2p6 (2.7) 2p7 (4.6) 2p8 (8.9) 2p10 (2.4)

2s5 2p6 (3.3) 2p9 (11.0) 2p10 (4.9)

Table 7.3. The levels to which the 5s levels radiate (0 denotes the ground level) and in paren-
theses the transition probabilities.

5d, and 6d are taken from Vlček [38] in the form of Drawin cross section parame-
ters. The cross sections for the 4f levels are taken from another article by Chilton et
al. [72]. The cross sections in that article are apparent cross sections, meaning that
they include the cascade contribution from higher levels. Since the NIST database
does not list any probabilities for transitions into the 4f levels, we assume that the
cascade is negligible and use the apparent cross sections without correction. The
relation between direct, apparent, and optical cross sections is explained in Fig. 7.3.

Several of the cross sections in the literature sources are for combined levels
or level blocks, such as the 3d and 5s levels, the 4f levels, and all levels described
by Drawin cross sections. The cross sections for the separate levels are obtained
by splitting the cross section according to their degeneracy:

σi =
gi

∑
n∈B

gn
σB, (7.14)

125

7. A CRM of EUV induced plasmas

upper level lower levels (A [106 s−1])

3s′1 0 (313) 2p1 (5.2) 2p2 (7.1) 2p4 (4.5)

3s′′′1 2p2 (6.2) 2p6(3.8)

3s′′′1 2p6 (15.0)

3s′′′′1 2p6 (2.2) 2p7 (13.0)

3d′1 2p8 (2.0) 2p9 (3.1)

3d′′1 2p7 (7.3) 2p8 (5.7)

3d2 0 (270) 2p5 (4.3) 2p7 (11.0)

3d3 2p6 (2.5) 2p10 (4.9)

3d4 2p8 (11.0)

3d5 2p10 (7.4)

3d6 2p10 (8.1)

Table 7.4. The levels to which the 3d levels radiate (0 denotes the ground level) and in paren-
theses the transition probabilities.

upper lower level upper lower levels

level (A [106 s−1]) level (A [106 s−1])

4U 3d′4 (6.5) 4X 3d5 (4.6)

4V 3d′1 (5.4) 4Y 3d2 (5.9) 3d3 (3.5)

4W 3s′′′1 (9.0) 4Z 3s′′1 (5.3) 3s′1 (7.7)

Table 7.5. The levels to which the 4f levels radiate, and in parentheses the transition proba-
bilities. Note that every level shown here actually consists of two separate levels that lie very
close to each other.

where g is the weight of a level, while the sum is taken over the weights of all
levels included in block B.

The simple corona-balance model (i.e., excitation solely from the ground state)
is extended to the ion system of Ar (ArII). For the excited ions, however, there are
two possible population routes:

• excitation from the ion ground state, or

• simultaneous ionization and excitation from the neutral ground state.

Since the EUV-pulse creates electrons with an energy of up to 76 eV, the second
process, requiring 32 eV to 38 eV, is certainly possible. Which of the two processes
is most important can be determined by comparing the cross sections. Excitation

126

7.3. CRM

upper lower level upper lower level

level (A [106 s−1] level (A [106 s−1]

3s5 2p3 (6.5) 4d6 2p10 (3.1)

3s4 2p8 (5.4) 4d5 2p10 (2.8)

3s3 2p4 (9.0) 5d6 2p10 (3.2)

3s2 2p3 (4.6) 5d5 2p10 (2.2)

3p5 1s4 (5.9) 5d′4 2p3 (2.5)

3p1 1s2 (5.3) 6d6 2p10 (2.4)

Table 7.6. The levels to which the included 6s, 5p, 4d, 5d, and 6d levels radiate, and in
parentheses the transition probabilities.

cross sections from the ion ground state for four 4p levels were measured by Imre
et al. [73], where it is also mentioned that the maximum values of these cross
sections are 15 to 30 times higher than those for ionization and excitation from the
neutral ground level. This fact is also mentioned in an article by Boffard et al. [74]
though they indicate a factor of 5 to 30. Since the ion density is estimated to be at
least four orders of magnitude lower than the atom ground state, simultaneous
ionization and excitation is clearly the dominant mechanism and therefore cross
sections out of the atomic ground state are needed.

Direct cross sections could not be found in literature, though optical cross sec-
tions for several ion lines are listed by Boffard et al. [75]. Measurements of the
EUV driven plasma, that will be presented in section 7.6, show that the dominant
ion lines in the spectrum belong to 4p-4s transitions. Furthermore, investigation
of the cascade for the ionic 4p levels shows that higher ionic levels radiate very
rapidly into the 4p levels. Transition probabilities are mostly in the order of 107 s−1

and many are over 108 s−1. Because the cascade from higher levels is so fast it
is assumed that the optical cross sections can be applied to this highly transient
plasma. The optical cross sections are used in the model and no separate cascade
for the ion lines is included.

To convert the optical cross sections into apparent cross sections, the branching
ratios of the excited levels are required (see also Fig. 7.3). These are calculated by
taking all the transition probabilities of the desired levels from the NIST database.
The resulting apparent cross sections are used in the model. Only the upper levels
of the eight strongest lines in the measurements are included. The levels and the
main wavelengths at which they radiate, including the transition probabilities are
listed in table 7.7.

127

7. A CRM of EUV induced plasmas

Figure 7.3. Diagram of the radiative processes concerning a certain level Lcs of which the cross
section is to be determined. In general a cross section is determined by exposing a gas to a mono-
energetic electron beam, so all excited levels are populated from the ground state (here only
shown for the upper three levels). The strength of the fluorescence signal gives the magnitude
of the cross section. By performing this measurement for many different electron energies
the cross section as function of energy can be determined. To determine the cross section for
level Lcs, the fluorescence to the two lower levels Ll,1 and Ll,2 is measured. However, Lcs is
also populated by radiative decay from the upper levels Lu,1 and Lu,2, the cascade. When these
signals are also measured, it is possible to correct for the cascade. When the cross section is only
determined by measuring a single radiative transition (e.g., to Ll,1) this is called an optical
cross section. When the cross section is corrected for radiative transitions to other lower levels
it is called an apparent cross section. This correction can be accomplished by either measuring
all possible radiative transitions from Lcs, or, when all coefficients for radiative decay are known
(here, Al,1 and Al,2), by using a correcting factor: the branching ratio. When only Al,1

is measured this is for the simple case shown here: csapparent =
Al,1+Al,2

Al,1
csoptical When the

apparent cross section is also corrected for cascade (by simultaneously measuring Au,1 and
Au,2) it is called a direct cross section.

7.4 EEDF modeling

To complete the CRM the electron density and EEDF are needed, both as a func-
tion of time. These are found using a Particle-In-Cell Monte-Carlo (PIC-MC) mod-
el initially developed by Van der Velden [53]. In this model the creation and tra-
jectories of electrons and ions are modeled. Since the PIC-MC model is very com-
putationally intensive, we will also derive a much simpler analytical model for
the EEDF. We will first give a short description of the PIC-MC model.

7.4.1 Particle-in-Cell Monte-Carlo model

In Particle-in-Cell modeling we tackle the overabundance of particles by intro-
ducing super-particles. These are particles that represent a certain amount of real

128

7.4. EEDF modeling

level wavelength [nm] (A [106 s−1])

4p′ 2P◦
1/2 413.3 (85) 447.6 (29)

4p′ 2P◦
3/2 427.8 (80)

4p 2P◦
3/2 454.6 (47) 476.6 (64)

4p′ 2F◦
7/2 461.1 (79)

4p 4P◦
3/2 473.7 (58)

4p 2D◦
5/2 488.1 (82)

Table 7.7. The wavelengths at which the ArII 4p levels radiate and in parentheses the transi-
tion probabilities of the radiative transitions.

d1 d2

n n+1C

d2
d1+d2

.C
d1

d1+d2
.C

Figure 7.4. Linear interpolation scheme as used in the PIC-MC model. Charge C is located
between two nodes of the grid (n and n + 1). The charge is linearly divided between those two
(closest) nodes according to the distance to the node.

particles∗ (in the order of 109).

Even though the super-particle technique significantly reduces the number of
particles involved in the calculation, there is still an enormous amount of possible
interactions between particles. However, the electric (and magnetic) field at the
position of every particle is required to determine its trajectory. This problem is
dealt with by introducing a grid of nodes or particle mesh. Every node in this grid
is assigned a density according to an interpolation scheme, as shown in Fig. 7.4.
According to this scheme, the charge of the particles is distributed over the nodes,
followed by solving the Poisson equation at the nodes. The field at the positions
of the super-particles is then derived by linear interpolation.

In the Particle-In-Cell scheme the interpolation of the charges is determined
with a first order scheme. Since our model is one dimensional in coordinate space,
we have to divide the charge of a particle over the two closest nodes according to
the distance to each node. The downside of the PIC scheme is that charge fluctu-
ations at a scale smaller than the size of one grid cell are not resolved. This means

∗The mass and charge are adjusted according to the weight.

129

7. A CRM of EUV induced plasmas

that the grid cells must be smaller than the smallest length scale of the plasma, i.e.
the Debye length. Furthermore, the time step must be smaller than the smallest
time scale in the plasma, which is the inverse of the plasma frequency. An addi-
tional requirement is that the time step and size of a grid cell must be chosen such
that a particle can not move more than one grid cell per time step.

The Monte-Carlo method is a generic term used for any method that uses
stochastic techniques. In the PIC-MC model, these techniques are used for de-
termining the collisions between particles:

• when a collision occurs;

• the type of collision (elastic, excitational or ionizing);

• the outcome of the collision.

These three aspects are determined by random numbers. The outcome of a pho-
toionization process (by an EUV-photon) is also determined by a random number.

7.4.2 PIC-MC model of EUV driven plasma

Initially the purpose of our PIC-MC model was to model the sputtering of a sur-
face near an EUV driven plasma. The model is one-dimensional in coordinate
space and three-dimensional in velocity space. The computational domain is di-
vided onto a grid, where initially no super-particles are present. Only ions and
electrons are modeled, the Ar background gas (denoted by neutrals) is assumed
to be uniformly distributed at all times.

The simulation starts when the Ar gas is exposed to an EUV-beam. The EUV
photons can ionize (and double ionize) the Ar gas, so electrons and ions (in the
form of test-particles) are added to the plasma while the model is running. Elec-
trons that have enough energy can cause excitation and ionization. The latter ac-
tion adds another electron-ion pair (as a couple of super-particles) to the plasma.
The super-particles created by photoionization processes are placed at a random
position on the grid, with a velocity in a random direction.

The model works with discrete time steps. Every time step the program per-
forms the following procedure (also shown in Fig. 7.5):

1. At every node the charge is calculated by linear weighing;

2. The Poisson equation is solved to determine the field at the nodes;

3. The field is calculated at the position of each test-particle using linear inter-
polation;

4. The new position and velocity of each test-particle is determined;

130

7.4. EEDF modeling

Interpolate E-field
to particle position

Solve Poisson
equation

Interpolate
charges to grid

Generate
particles

Collisions
with neutrals

Collisions
at wall

Move
particles

Figure 7.5. Particle In Cell scheme. The loop is executed every time step.

5. Test-particles that move beyond the boundaries of the grid are removed
from the plasma (and the computation);

6. A Monte-Carlo routine determines whether a collision has occurred, and if
so, it determines the outcome of that collision (new velocity, possibly also
of the new particle).

Because it is assumed that the background density is approximately four orders
of magnitude higher only collisions with Ar atoms in the ground state (neutrals)
are considered:

1. elastic electron–neutral:
Ar + e → Ar + e ;

2. electron excitation∗ of neutral:
Ar + e → Ar∗ + e;

3. electron ionization of neutral:
Ar + e → Ar+ + e + e ;

4. elastic ion–neutral:
Ar+ + Ar → Ar+ + Ar ;

5. ion–neutral charge exchange:
Ar+ + Ar → Ar + Ar+.

∗With Ar∗ we refer to the excited states, that are in this model combined into a single level with
an energy of 11.5 eV.

131

7. A CRM of EUV induced plasmas

During the EUV pulse (the first 100 ns) low energy electrons are also liberated
from the wall material by secondary emission. Particles that reach the wall (end
of the grid) are removed from the plasma (item 5 in the procedure list). Because
electrons are much faster than the heavy particles, this will result in a region with
lower electron density near the wall: the sheath. Because the plasma in this region
is not quasi-neutral, the ions in this region will be accelerated towards the wall.
When the ions hit the wall, they can cause sputtering.

Since in this model the position and velocity of all super-particles (each rep-
resenting a number of “real” particles) is known the sputtering of the wall can
be studied. Whenever an ion reaches the wall, this event is recorded. Combined
with empirical sputter yield data, the sputter rate of the surface can be calculated.

Modifications

Just as it is possible to follow the ions in the plasma, it is also possible to track
the electrons. Not only the electron density as a function of time and position can
be recorded, but also the EEDF. The measurements on the EUV driven plasma
presented in section 7.6 are however not performed near a wall, but in the inter-
mediate focus.

Analysis of the results of the PIC-MC model show that the sheath is smaller
than one fifth of the plasma dimensions. It is therefore assumed that the central
third of the plasma is a good representation of the plasma if no wall would be
present. The data for the electron density and EEDF are taken from this region.

To speed up the simulation somewhat, processes that are not relevant for the
center of the plasma can be excluded from the model. Additionally, the original
model included apart from Ar also H, which was also removed.

Thus the following modifications were made to the original PIC-MC model:

• H was removed;

• secondary emission was removed;

• impact calculation of ions on the wall was removed;

• the EEDF is calculated from the electrons in the central third of the compu-
tational domain.

7.4.3 EEDF analysis

As stated before, the PIC-MC model can be used to provide the EEDF for the CRM.
How the mechanisms in the PIC-MC model will result in an EEDF, and what the
EEDF will look like is not evident. To understand the dynamics of the PIC-MC
model a simplified analytical ladder-model for the EEDF is constructed.

132

7.4. EEDF modeling

The initial electrons in the plasma are the result of photoionization of the back-
ground Ar gas by the EUV pulse. This will result in electrons of 76.2 eV, so the
EEDF will be non-Maxwellian from the start. The electrons will then lose energy
by collisions with the background gas: elastic, exciting, and ionizing collisions.
The electrons will lose their energy in steps, hence the name ladder-model.

The evolution of the EEDF caused by the collisions will be modeled analyti-
cally for every separate mechanism. For comparison, each of these mechanisms is
also modeled separately using the PIC-MC model. Finally the EEDFs of the PIC-
MC model incorporating all the mechanisms will be presented. These EEDFs (at
different pressure) will be used for the CRM.

7.4.4 Elastic collisions

To justify that electrons will mainly lose their energy in (more or less) discrete
steps, we will first prove that the mechanism of gradual energy loss due to elastic
processes can be neglected. We therefore solve a simplified form of the electron
energy equation. This equation reads:

ne
3

2
kB

∂Te

∂t
= −nenakm · 3me

M
[kB (Te − Ta)] , (7.15)

with me the electron mass, M the mass of the Ar atom, and km the rate coefficient
for momentum transfer. This equation can be written as:

1

Te

∂Te

∂t
= −nakm 2me

M
= −νelas, (7.16)

where the approximation Te − Ta ≈ Te has been used. This gives for the electron
temperature as a function of time:

Te(t) = Te(0) · exp (−νelast) (7.17)

The cross sections that are used in the PIC-MC model are shown in Fig. 7.6.
At 76.2 eV we find:

km = σelasv ≈ 2.5 × 10−20 · 6.3 × 106 = 1.6 × 10−13 m3 s−1. (7.18)

Taking na = 2.4 × 1020 m−3, this gives for the frequency of elastic decay the value
νelas ≈ 103 s−1. Compared to the time of an EUV-pulse (100 ns) it is clear that
elastic processes can not be held responsible for the cooling of electrons.

Note, that Eqn. 7.15 is based on the assumption that a certain temperature can
be assigned to the electrons. This is of course not the case in view of the deviation
from a Maxwellian energy distribution function (see discussion in section 7.3.1).
However, the conclusion that the loss of energy during the EUV pulse due to
elastic collisions can be neglected, will remain unaltered.

133

7. A CRM of EUV induced plasmas

0

5 · 10
−20

1 · 10
−19

1.5 · 10
−19

C
ro

ss
-s

ec
ti

o
n
[m

2
]

0 20 40 60 80 100

Energy [eV]

Ionization

Excitation

Elastic

Figure 7.6. Cross sections used in the PIC-MC model as function of the electron energy.

7.4.5 Excitation

The second mechanism by which electrons can lose energy is the inelastic process
of collisional excitation. It will be demonstrated that in contrast to elastic colli-
sions, excitation is indeed an effective energy loss process. Moreover, it leads to
a more or less stepwise decrease in energy. To understand the impact of these
excitation processes on the temporal behavior of the EEDF we construct a ladder-
model. It is based on the same assumption as the PIC-MC model in the sense that
all excited atomic Ar levels are combined into a single level at 11.5 eV above the
Ar ground state. This means that after being created by a photon (of 92 eV) the
electrons (initially all with an energy of 92 − 15.8 = 76.2 eV) will decay in fixed
steps of 11.5 eV, as shown in Fig. 7.7.

The electrons are “cooled” in a chain-reaction until they reach the energy of
7.2 eV, where they are no longer able to excite Ar atoms. The result is that we
have seven quasi discrete energy levels of free electrons. So the EEDF can be seen
as composed by the population of these quasi discrete levels. When the density of
every quasi level is identified by a number as in Fig. 7.7, the seven steps can each
be described by the following equation:

∂ni

∂t
= Pi − Dini, (7.19)

with ni the electron density of a certain level i, Pi the population term for that level,
and Di the depopulation frequency of level i to level i − 1. The next level (i − 1) is
populated by the depopulation of the adjacent upper level (i), so the population
term of i − 1 equals the depopulation term of i: Pi−1 = niDi.

The depopulation frequency can be written as:

Di = naviσi, (7.20)

with vi the speed of those electrons, and σi the excitation cross section of Ar by
those electrons (see Fig. 7.6).

134

7.4. EEDF modeling

0 eV

76.2 eVlevel 7:

64.7 eVlevel 6:

53.2 eVlevel 5:

41.7 eVlevel 4:

30.2 eVlevel 3:

18.7 eVlevel 2:

7.2 eVlevel 1:

Free electron

EUV photon: 92 eV

Ar atom

ion level: 15.8 eV

free electron: 76.2 eV

groundstate

photoionization

Figure 7.7. Schematic depiction of the initial creation of free electrons by the EUV pulse (left)
and stepwise cooling of the free electrons (right). The free electron loses 11.5 eV in every step
of the ladder, which is every time it excites an Ar atom in the ground level.

In the first step the electrons are populated by photoionization, so:

P7 ≡ P =
E

pulse
e naσph

hν
, (7.21)

with σph the photoionization cross section, and E
pulse
e the irradiance (power per

square meter) of one EUV pulse. We assume that E
pulse
e is constant during an EUV

pulse. P is used for this term since it is the initial source of electrons. The radiant

energy per square meter of a single 100 ns EUV pulse is H
pulse
e = 0.6 J m−2 so:

E
pulse
e =

H
pulse
e

10−7
= 6 × 106 W m−2. (7.22)

The photoionization cross section is σph = 1.37 × 10−22 m2, so the population is

P = 6.7 × 1022 m−3 s−1 at 5 Pa and P = 2.7 × 1021 m−3 s−1 at 0.2 Pa. For the first
step (level 7), Eqn. (7.19) can now be written as:

∂n7(t)

∂t
= P − D7n7(t) (7.23)

so, with n7(0) = 0, the solution reads:

n7(t) =
P

D7

(

1 − e−D7t
)

. (7.24)

135

7. A CRM of EUV induced plasmas

level (i) 7 6 5 4 3 2

energy [eV] 76.2 64.7 53.2 41.7 30.2 18.7

Di [106 s−1] (5 Pa) 76 74 72 70 64 25

Di [106 s−1] (0.2 Pa) 3.0 2.9 2.9 2.8 2.6 0.99

Table 7.8. Pressure dependent destruction frequencies of all excitation steps in Eqn. (7.20).
Note that no value is included for level 1, since electrons at that level are not energetic enough
to excite atoms.

The occupations of the subsequent lower steps (levels) are ruled by the differential
equations:

∂ni(t)

∂t
= Di+1ni+1(t)− Dini(t), (7.25)

for i is 6 through 2, with initial condition ni(0) = 0. As an example, the solution
for the next highest level (i = 6) is:

n6(t) =
P

D6

(

1 +
1

D7 − D6

(

D6e−D7t − D7e−D6t
))

.

The last level, at 7.2 eV, does not have enough energy to excite atoms so it does
not have a depopulation term:

∂n1(t)

∂t
= D2n2(t), (7.26)

with, again, n1(0) = 0.

The EUV pulse ends after 100 ns, so from that moment on there is no more
initial population term (P7 ≡ P = 0). The same equations need to be solved,
except that now the boundary conditions are the values at t = 10−7 s.

Table 7.8 shows the quasi levels and their depopulation frequencies Di.

Solving the equations for all seven levels, and employing the frequencies in
table 7.8, leads to the results shown in Fig. 7.8. Comparing the results obtained for
5 Pa to those for 0.2 Pa, it is clear that at high pressure the energetic levels are able
to reach a quasi steady state due to the high depopulation frequency. Electrons
with high energy are swiftly channeled to the lowest level. Level 2 has the lowest
frequency, so the density builds up much higher than the higher levels. Because
the electrons can not go below level 1, all electrons are eventually accumulated
in that level. At low pressure the electrons lose their energy more slowly (less
collisions), so the separate steps in the cooling of the high energy electrons are
clearly visible. At low pressure it takes much longer for all higher levels to be
depleted and all electrons to end up at level 1.

136

7.4. EEDF modeling

0

5 · 10
14

1 · 10
15

D
en

si
ty

[m
−

3
]

0 100 200 300

Time [ns]

0

2.5 · 10
15

5 · 10
15

D
en

si
ty

[m
−

3
]

level 7

level 6

level 5

level 4

level 3

level 2

level 1

5.0 Pa

0.2 Pa level 7

level 6

level 5

level 4

level 3

level 2

level 1

0

1 · 1014

2 · 10
14

D
en

si
ty

[m
−

3
]

0 500 1000 1500 2000 2500 3000

Time [ns]

Figure 7.8. Analytically determined evolution for two pressures of the quasi levels as a func-
tion of time. The two top graphs are the same except for the scale of the y-axis, this makes the
evolution of levels 7 through 3 more clear. Note that the scale of the x-axis is 10 times as long
for the low pressure case.

In Fig. 7.9 the evolution of the same energy levels as Fig. 7.8 is shown, but
here the values are obtained from the PIC-MC model in which only the excitation
collision is enabled, just as in the ladder model.

When the electrons are created they all have the same energy (76.2 eV), but the
EEDF from the PIC-MC model shows broadening. The EEDF at the end of the
EUV pulse (t = 100 ns) is shown in Fig. 7.10.

The lines representing the quasi levels in Fig. 7.9 were obtained by integrating
the EEDF over a range of 11.5 eV around each level. The broadening of the peaks
shown in Fig. 7.10 is unexpected, since only exciting collisions are included that
decrease the energy of the electron by exactly 11.5 eV. Further investigation into
this issue showed that there are small fluctuations in the electric field caused by

137

7. A CRM of EUV induced plasmas

0

5 · 10
14

1 · 10
15

D
en

si
ty

[m
−

3
]

0 100 200 300

Time [ns]

0

2.5 · 10
15

5 · 10
15

D
en

si
ty

[m
−

3
]

level 7

level 6

level 5

level 4

level 3

level 2

level 1

5.0 Pa

0.2 Pa level 7

level 6

level 5

level 4

level 3

level 2

level 1

0

1 · 10
14

2 · 10
14

D
en

si
ty

[m
−

3
]

0 500 1000 1500 2000 2500 3000

Time [ns]

Figure 7.9. Evolution of the EEDF at the quasi levels as a function of time, calculated by the
PIC-MC model. The top graph shows the results for a background pressure of 5 Pa, the bottom
graph for 0.2 Pa. Note the difference in scales as in Fig. 7.8.

the moving charges. This leads to small fluctuations in electron energy and thus
to a broadening of the peaks.

At high pressure (5 Pa) the analytical model shows good agreement with the
PIC-MC model, both in the densities that are reached as in the behavior in time. At
lower pressure the densities that are reached with the PIC-MC model are lower
and the levels evolve faster, though the shapes show good agreement. Because
the peaks are broadened the electrons lose their energy faster. This increases the
effective depopulation frequencies, which results in lower level densities, and a
faster evolution.

138

7.4. EEDF modeling

0

0.025

0.05

f E
E

D
F
(E

)
[e

V
−

1
]

0 20 40 60 80 100

Energy [eV]

Figure 7.10. The EEDF at t = 100 ns (the end of the EUV pulse) as calculated by the PIC-
MC model using only excitational collisions at 5 Pa. The dashed lines represent the levels 1
through 7 that were used in the analytical model, as defined in Fig. 7.7. Note the broadening
of the peaks.

7.4.6 Ionization

Another possibility for energetic electrons to lose their energy is by ionizing the
background gas. This process is similar to excitation with the important difference
that there is not a well defined drop in energy. An essential feature of ionization is
that a new free electron is created and that the excess energy of the incident elec-
tron (electron energy minus the ionization energy) is divided over both electrons.
This division is however not equal, but subject to a certain distribution function.
A semi-empirical function by Opal et al. [76] is used in the PIC-MC model, and
is illustrated in Fig. 7.11. Because of this random distribution, the electrons will
not lose their energy in well defined steps, but the electrons will be spread over a
range of energies.

Fig. 7.11 shows that the excess energy after ionization is mostly divided un-
evenly. For an incident electron energy of 76.2 eV (60.4 eV remaining), in approxi-
mately 50% of the cases less than 10 eV is transferred to the new electron, so that
the incident electron keeps more than 50 eV. From Fig. 7.11 it is clear that the step
down in energy of the incident electron is in most cases between 15.8 and 35 eV.
Most electrons will therefore cool down to under 10 eV after just two ionizing col-
lisions.

To circumvent the fact that in the PIC-MC model the remaining kinetic energy
after ionization is randomly divided over the two resulting electrons, it is assumed
that the division of the remaining energy is fixed. For convenience we will assume
that in all cases 9.6 eV will be transferred to the liberated electron. This will result
in the scheme shown in Fig. 7.12.

139

7. A CRM of EUV induced plasmas

60.4 eV

35.0 eV

0

20

40

60

E
je

ct
ed

el
ec

tr
o

n
en

er
g

y
[e

V
]

0 0.2 0.4 0.6 0.8 1

Randomizer value

Figure 7.11. Opal function [76] giving the distribution, according to a random number, of
the energy of the ejected electron after ionization by an electron with 76.2 eV, and 50.8 eV
(remaining kinetic energy 60.4 eV and 35 eV respectively), as used in the PIC-MC model. An
incident electron of 76.2 eV ionizes an Ar atom and loses 15.8 eV in the process. The remaining
60.4 eV is then divided between the incident electron and the electron liberated in the ionization
process. The division is determined as follows: a random number between 0 and 1 is chosen
and the Opal function (in the 60.4 eV case the solid line) gives the amount of energy that is
transferred to the new electron. Whatever energy is left will be the new energy of the incident
electron (see also Fig. 7.12).

The equations describing the densities of the four levels are now:

∂n4(t)

∂t
= P − D4n4(t) (7.27a)

∂n3(t)

∂t
= D4n4(t)− D3n3(t) (7.27b)

∂n2(t)

∂t
= D3n3(t)− D2n2(t) (7.27c)

∂n1(t)

∂t
= D4n4(t) + D3n3(t) + D2n2(t) (7.27d)

Note that the electrons liberated by the ionization step from level 2 will end up
with no energy. There is no level with energy zero included in the model, so these
electrons are not added to the density of level 1. This will not be of much influence.
The production term is identical to the excitation case (7.21). For the depopulation
terms Di Eqn. (7.20) is used, only now with the ionization cross section (shown in
Fig. 7.6). The values of the depopulation frequencies are listed in table 7.9. Note
that these frequencies are roughly twice as high as those in table 7.8, since the
cross section for ionization is roughly twice as high as the excitation cross section.

The results of this analytical model are shown in Fig. 7.13. Similar as in the
previous subsection, where the excitational cooling mechanism was studied, the
PIC-MC model was modified to include only the ionization process. The results

140

7.4. EEDF modeling

level 4: 76.2 eV

level 3: 50.8 eV

level 2: 25.4 eV

level 1: 9.6 eV

0 eV

: ionization (15.8 eV)

: kinetic energy transfer

60.4 eV

35 eV

9.6 eV

50.8 eV

9.6 eV

25.4 eV

9.6 eV

Figure 7.12. Schematic depiction of the levels used in the analytical model for the quasi elec-
tron levels relevant for the ionization process. All electrons start at level 4. When they ionize an
Ar atom they lose 15.8 eV (dashed arrow). Of the remaining 60.4 eV, 9.6 eV is transferred (solid
arrow) to the liberated electron (level 1), leaving the incident electron with 50.8 eV (level 3).
For electrons at level 3 and 2 the process repeats itself, populating level 1 and 2.

level (i) 4 3 2

energy [eV] 76.2 50.8 25.4

Di [×106s−1] (5 Pa) 173 131 48.3

Di [×106s−1] (0.2 Pa) 6.9 5.3 1.9

Table 7.9. Pressure dependent depopulation frequencies in Eqn. (7.27). Note that no constant
is included for level 1, since electrons at that level are not energetic enough to ionize atoms.

of the PIC-MC model are shown in Fig. 7.14.

The graphs in 7.13 and 7.14 are quite similar. Only level 2 and 3 have a higher
density in the analytical model compared to the PIC-MC model.

The EEDF after 50 ns (halfway through the EUV pulse) is show in Fig. 7.15.
Level 4 at 76.2 eV (Fig. 7.12) is clearly recognizable, but in the PIC-MC model the
analytical level at 50.8 eV (level 3) is absent. Instead we see a broad local EEDF
peak around 40 eV. Because of the spreading of the excess energy over the elec-
trons, lower levels are not recognizable. Apparently the excess energy is divided
more evenly over the electrons in the PIC-MC model, so the step to level 3 is larger.
Naturally this means that the density at the energy used in the analytical model
is lower. This effect is repeated in the step to level 2.

When the results of excitation and ionization cooling are compared, it is clear

141

7. A CRM of EUV induced plasmas

0

5 · 10
14

1 · 10
15

D
en

si
ty

[m
−

3
]

0 100 200

Time [ns]

0

1 · 10
16

2 · 10
16

D
en

si
ty

[m
−

3
]

level 4

level 3

level 2

level 1

5.0 Pa

0

1 · 10
14

2 · 10
14

D
en

si
ty

[m
−

3
]

0 500 1000 1500

Time [ns]

0

2.5 · 10
14

5 · 10
14

7.5 · 10
14

D
en

si
ty

[m
−

3
]

level 4

level 3

level 2

level 1

0.2 Pa

Figure 7.13. Analytically determined evolution of the EEDF for two pressures of the quasi
levels as shown in Fig. 7.12, as a function of time. The top pair and bottom pair graphs are the
same except for the scale of the y-axis. Note also the difference in time scale (x-axis).

that ionization will be the dominant cooling mechanism. It is faster because of the
higher frequency (due to the higher cross section), and because it involves larger
and therefore fewer steps.

Comparison of the various models shows that it is quite possible to use sim-
ple analytical models to generate usable EEDFs instead of the computationally
expensive PIC-MC model.

142

7.4. EEDF modeling

0

5 · 10
14

1 · 10
15

D
en

si
ty

[m
−

3
]

0 100 200

Time [ns]

0

1 · 10
16

2 · 10
16

D
en

si
ty

[m
−

3
]

level 4

level 3

level 2

level 1

5.0 Pa

0

1 · 10
14

2 · 10
14

D
en

si
ty

[m
−

3
]

0 500 1000 1500

Time [ns]

0

2.5 · 10
14

5 · 10
14

7.5 · 10
14

D
en

si
ty

[m
−

3
]

level 4

level 3

level 2

level 1

0.2 Pa

Figure 7.14. Evolution of the EEDF of the quasi levels as a function of time, calculated with
the PIC-MC model with only ionizing collisions enabled. Note the difference in scale of both
axes.

7.4.7 Complete PIC-MC model

The EEDFs computed by the PIC-MC model with all processes included, as listed
in subsection 7.4.2, are shown in Fig. 7.16 for 5 Pa, and 7.17 for 0.2 Pa. The EEDFs
at three different time steps are shown in Fig. 7.18.

Several striking features are found:

143

7. A CRM of EUV induced plasmas

0

0.01

0.02

f E
E

D
F
(E

)
[e

V
−

1
]

0 20 40 60 80 100

Energy [eV]

Figure 7.15. The EEDF at t = 50 ns as calculated by the PIC-MC model using only ionizing
collisions at 5 Pa. The dashed lines represent the locations of the levels as defined in Fig. 7.12.

0

20

40

60

80

100

E
n

er
g
y

[e
V

]

0 100 200

Time [ns]

Figure 7.16. Color map of the EEDF as computed by the complete PIC-MC model at 5 Pa.
Blue represents zero density, and red maximum density of the peak at 76 eV. The gray line at
100 ns marks the end of the EUV pulse.

• At high pressure (5 Pa), the electrons lose their energy very rapidly. Almost
instantly after the EUV pulse has ended (at 100 ns) there are no high energy
electrons left.

• Fast decreasing density of high energy electrons means fast increasing den-
sity of low energy electrons. Already during the EUV pulse a high density
of low energy electrons is reached in the 5 Pa case.

144

7.4. EEDF modeling

0

20

40

60

80

100

E
n

er
g
y

[e
V

]

0 200 400 600 800

Time [ns]

Figure 7.17. Color map of the EEDF as computed by the complete PIC-MC model at 0.2 Pa.
Blue represents zero density, and red maximum density of the peak at 76 eV. The gray line at
100 ns marks the end of the EUV pulse.

• At high pressure, there are four peaks visible:

– At 76 eV: the peak of the electrons initially introduced by photoioniza-
tion.

– At 65 eV and 53 eV: after exciting one Ar atom and two Ar atoms re-
spectively (see also Fig. 7.7).

– At 40 eV: the energy left after ionization (see also Fig. 7.15;

• At low pressure the peak representing the initial electrons is still intact at
the end of the EUV pulse. About 150 ns later the peak has collapsed, but a
large fraction of the electrons still has a high energy;

• The density of low energy electrons increases slowly. Even 400 ns after the
EUV pulse that density is still increasing.

• At low pressure only the peak at 76 eV can easily be recognized. Broad peaks
of higher densities can be seen at 65 eV and 40 eV.

The effect of both excitation and ionization processes can be seen in the EEDFs.
Especially at high pressure different steps are recognizable. At high pressure the
electrons lose their energy very rapidly. There will only be electrons with a high

145

7. A CRM of EUV induced plasmas

0

0.025

0.05

0.075

0 20 40 60 80 100

Energy [eV]

100 ns

200 ns

300 ns

0

0.01

0.02

f E
E

D
F
(E

)
[e

V
−

1
]

50 ns

100 ns

150 ns

0.2 Pa

5 Pa

Figure 7.18. EEDFs as calculated by the PIC-MC model at 5 Pa and 0.2 Pa at different mo-
ments in time.

energy during the EUV pulse. At low pressure, even 200 ns after the EUV pulse
has ended, there is still a considerable fraction of high energy electrons in the
plasma. Low energy electrons appear very fast at high pressure, but only after
the EUV pulse at low pressure.

From these EEDFs we can expect the following results for the CRM:

• At high pressure, ArI lines will rise quickly and start their decay immedi-
ately after the EUV pulse;

• At low pressure, ArI lines will rise more slowly, reaching their maximum
well after the end of the EUV pulse;

• At high pressure, ArII lines will only be visible during the EUV pulse be-
cause they decay very rapidly (A ≈ 5 × 107 s−1);

• At low pressure, ArII lines will only appear at the end of the EUV pulse, and
decay more slowly.

7.5 CRM results

In the previous sections we have shown that the EUV induced plasma can not be
described using equilibrium laws and that in order to interpret the results of OES
measurements we require a CRM, which in turn requires an EEDF and electron

146

7.5. CRM results

level wavelength [nm] (A [106 s−1])

2p1 750.6 (22)

2p2 696.7 (156)

2p3 706.9 (263) 738.6 (118)

2p5 751.6 (25)

2p6 763.7 (41)

2p7 810.6 (40)

2p9 811.8 (30)

Table 7.10. The eight strongest lines in the ArI spectrum, the levels from which they radiate,
and between parentheses the transition probabilities of the radiative transitions in 106 s−1.

density from a model. In section 7.4.5 and 7.4.6 a comparison was made between
an analytical (ladder model) and numerical (PIC-MC) EEDF. We will now use
both forms of EEDF in the CRM. The numerical EEDFs that are used (as look-up
tables) are those discussed in section 7.4.7. For the analytical EEDFs we will use
the EEDFs resulting from the ladder model in which only ionization was enabled
as a basis. To account for the additional energy losses of the electrons due to
excitation, we use the sum of the ionization and excitation curves in Fig. 7.6. The
EEDF is formed by four rectangular functions of 2 eV width, each centered around
one of the energy levels as shown in Fig. 7.12. The height of the four rectangular
functions is determined by Eqn. (7.27), and thus time dependent. For both EEDFs
the EUV pulse is considered to be a rectangular function with a width of 100 ns.

The results for 5 Pa are shown in Fig. 7.19 for atomic spectral lines, and Fig. 7.20
for ionic spectral lines. The results for 0.2 Pa are shown in Figs. 7.21 and 7.22.
Only the eight strongest atomic lines in the measured spectra (see section 7.6) are
plotted. They are listed in table 7.10. The figures showing plots for the ionic lines
include all eight ionic 4p → 4s lines that are included in the CRM, see table 7.7.

At 0.2 Pa both the atomic and ionic lines produced by the analytical EEDF are
in reasonable agreement with those obtained by the numerical EEDF. At 5 Pa there
are some differences. The shapes are quite similar, though the ionic lines for the
analytical EEDF reach an equilibrium state after approximately 50 ns, whereas
for the numerical EEDF the lines keep increasing until the end of the EUV pulse.
Both the atomic and ionic lines show lower intensity for the analytic EEDF; for the
atomic lines the difference is quite substantial. This can be attributed to the fact
that in the analytical model the electrons are cooled by overestimated ionization;
i.e., it includes a contribution representing excitation. By excitation the electrons
would cool much slower, so due to the overestimation there are less electrons left
to excite atoms. At low pressure this effect is compensated by the fact that the

147

7. A CRM of EUV induced plasmas

0

1 · 10
21

2 · 10
21

3 · 10
21

0 100 200 300 400 500 600

Time [ns]

0

1 · 10
21

2 · 10
21

3 · 10
21

T
ra

n
si

ti
o
n

s
p

er
se

co
n

d

696.7

706.9

738.6

750.6

751.7

763.7

810.6

811.8
analytic, 5 Pa

PIC-MC, 5 Pa

Figure 7.19. Atomic spectral lines as calculated by the CRM using a numerical (top) and
analytical (bottom) EEDF. The pressure is 5 Pa, the end of the EUV pulse is at 100 ns (vertical,
gray line).

0

5 · 10
19

1 · 10
20

1.5 · 10
20

0 100 200 300 400 500 600

Time [ns]

0

5 · 10
19

1 · 10
20

1.5 · 10
20

T
ra

n
si

ti
o
n

s
p

er
se

co
n

d

413.3

427.8

447.6

454.6

461.1

473.7

476.6

488.1
analytic, 5 Pa

PIC-MC, 5 Pa

Figure 7.20. Ionic spectral lines as calculated by the CRM using a numerical (top) and an-
alytical (bottom) EEDF. The pressure is 5 Pa, the end of the EUV pulse is at 100 ns (vertical,
gray line).

148

7.5. CRM results

0

1 · 10
19

2 · 10
19

0 100 200 300 400 500 600

Time [ns]

0

1 · 10
19

2 · 10
19

T
ra

n
si

ti
o
n

s
p

er
se

co
n

d

696.7

706.9

738.6

750.6

751.7

763.7

810.6

811.8
analytic, 0.2 Pa

PIC-MC, 0.2 Pa

Figure 7.21. Atomic spectral lines as calculated by the CRM using a numerical (top) and an-
alytical (bottom) EEDF. The pressure is 0.2 Pa, the end of the EUV pulse is at 100 ns (vertical,
gray line).

0

1 · 10
18

2 · 10
18

0 100 200 300 400 500 600

Time [ns]

0

1 · 10
18

2 · 10
18

T
ra

n
si

ti
o
n

s
p

er
se

co
n

d

413.3

427.8

447.6

454.6

461.1

473.7

476.6

488.1
analytic, 0.2 Pa

PIC-MC, 0.2 Pa

Figure 7.22. Ionic spectral lines as calculated by the CRM using a numerical (top) and ana-
lytical (bottom) EEDF. The pressure is 0.2 Pa, the end of the EUV pulse is at 100 ns (vertical,
gray line).

149

7. A CRM of EUV induced plasmas

energy of the electrons is spread over a larger energy range, due to the slower
cooling. In the analytical EEDF the electrons at the lowest rung of the cooling lad-
der can not excite an atom, but in the numerical EEDF, the lowest rung is spread
over a larger energy range, so part of these low energy electrons can still excite
atoms.

The plots of the spectral lines show that with a rudimentary analytic ladder
model the EEDF can be modeled rather accurately. Both forms of the EEDF show
that the spectral lines give insight into the evolution in time of the EEDF. At 5 Pa
the atomic lines reach their maximum at the end of the EUV pulse, and decay
rapidly afterwards, in approximately 200 ns. At 0.2 Pa the atomic lines rise more
slowly, only reaching their maximum after the EUV pulse. Most notably, the
811 nm line reaches its maximum 300 ns after the end of the EUV pulse. The rea-
son for this is the cascade contribution.

In Fig. 7.23 the population mechanisms for two 4p levels are shown: 2p1, which
radiates at 750.6 nm, and 2p9, which radiates at 811.8 nm. Both levels are pop-
ulated by collisional excitation from the ground state and radiative decay from
higher lying levels; the cascade contribution. For the 2p1 level the cascade contri-
bution is negligible at both pressures. However, the population of the 2p9 level
does have a significant cascade contribution, at 0.2 Pa this is even comparable to
the collisional contribution. This means that this level is to a large extent indi-
rectly populated via higher lying levels, and thus, that the level density will reach
its maximum with a certain delay. The direct result is that the radiative decay will
have a similar delay in its maximum.

The delay in the maximum of level 2p9 is also caused by a second effect. In
Fig. 7.24 the cross sections of level 2p1 and 2p9 are plotted. While the cross sec-
tions have a comparable maximum value near threshold, the cross section of 2p9
quickly drops after the maximum. This means that this cross section acts as a
“probe” for the EEDF at the energy at which the cross section has a maximum,
which is at approximately 25 eV. When we examine Fig. 7.17 we observe that
the EEDF occupation at 25 eV rises until around 300 ns, after which it slowly de-
creases. This behavior is exactly what we see in Fig. 7.23d.

For level 2p1 the behavior is different because due to the broad cross section
the collisional population is also determined by a broad energy range. In the
broad energy range (above the threshold of 13 eV) the EEDF rises until the end of
the EUV pulse, and then slowly and steadily drops. This can also be seen in the
population rate, see Fig. 7.23c.

Overall, the results of the CRM show that the spectral lines directly provide
information about the EEDF. The ionic lines reflect the time evolution of the EEDF
between 40 eV and 80 eV, while the atomic lines reflect the EEDF between 20 eV
and 40 eV. Furthermore, the ion lines closely follow the shape of the EUV pulse,
with a delay of up to 50 ns, while the atomic spectral line at 750.6 nm is a good
“probe” for the EEDF since it is not influenced by cascade contribution and has a

150

7.5. CRM results

0

1 · 10
21

2 · 10
21

3 · 10
21

T
ra

n
si

ti
o
n

s
p

er
se

co
n

d

0 200 400 600

Time [ns]

(a) 2p1 at 5 Pa

0

1 · 10
21

2 · 10
21

0 200 400 600

Time [ns]

(b) 2p9 at 5 Pa

0

1 · 10
19

2 · 10
19

T
ra

n
si

ti
o
n

s
p

er
se

co
n

d

0 200 400 600

Time [ns]

(c) 2p1 at 0.2 Pa

0

2.5 · 10
18

5 · 10
18

7.5 · 10
18

0 200 400 600

Time [ns]

(d) 2p9 at 0.2 Pa

Figure 7.23. Collisional and cascade population rates: (a) for level 2p1 at 5 Pa, radiating at
750.6 nm; (b) for level 2p9 at 5 Pa, radiating at 811.8 nm; (c) for level 2p1 at 0.2 Pa; (d) for
level 2p9 at 0.2 Pa. The solid lines show the collisional rate (from the ground level), the dashed
line the cascade contribution from higher levels. The vertical, gray line at 100 ns shows the
end of the EUV pulse.

0

2 · 10
−22

4 · 10
−22

6 · 10
−22

C
ro

ss
-s

ec
ti

o
n

[m
2
]

0 50 100 150 200 250 300

Energy [eV]

2p1

2p9

Figure 7.24. The cross sections for electron excitation from the ground state for Ar levels 2p1
and 2p9.

151

7. A CRM of EUV induced plasmas

Collector mirror

Foiltrap

EUV
source

Vacuum pumps

Focus

Collector chamber Measurement
chamber

Zr filter

Gas inlet

Source
chamber

Source
gas feed

Lens

Optical
fibre

Figure 7.25. Schematic drawing of the experimental setup.

large cross section. The difference between the time dependent spectra at the two
different pressures is clearly shown by the spectral lines.

7.6 Experimental results and discussion

Apart from the model, time resolved spectral lines have been determined exper-
imentally. We will first give a description of the experimental setup, followed by
a discussion of the results in comparison to the results of the model.

7.6.1 Experimental setup

The experiments were performed in the EUV laboratory at ASML, where a Hol-
low Cathode Triggered (HCT) Xe Discharge Produced Plasma source (DPP) was
used (see Kieft [26]). A schematic depiction of the setup is shown in Fig. 7.25.

The setup consists of three parts: the source chamber, the collector chamber,
and the measurement chamber. In the source chamber a small (∼ 1 mm) pulsed
(up to ∼ 1 kHz), plasma is created, which needs a mixture of He, Ar, and Xe with
a total filling pressure of 10 Pa to 30 Pa. This plasma produces radiation in a wide
wavelength range, among which the desired EUV radiation.

The source chamber is directly connected to the collector chamber. It contains
an ellipsoidal mirror (the collector) with the function to collect the light originat-
ing from the source. The inside of the collector is coated with a gold layer to act as
a grazing incidence mirror. To prevent debris originating from the plasma from
entering the collector chamber and possibly damaging the optics, a foiltrap [77]
is placed between the source and collector chamber. The collector mirror images
the collected radiation at a focus point in the measurement chamber, the so-called
intermediate focus.

152

7.6. Experimental results and discussion

Monochromator

Batteries

Metal casing

Optical
fibre

Photo-
multiplier

tube

Amplifier

Oscilloscope

Figure 7.26. Schematic drawing of the measurement setup. Batteries were used as power
supply in order to suppress EM-interference from the EUV source.

The collector chamber is separated from the measurement chamber by a filter
to prevent all but EUV radiation from entering the measurement chamber. The
filter consists of a 150 nm thick Zr foil reinforced by a wire mesh so that it can
withstand larger pressure differences between the chambers. The filter therefore
enables control of the gas mixture and pressure in the measurement chamber in-
dependent of the conditions in the source and collector chamber. Normally, this
setup is not equipped with a separate measurement chamber. It was specifically
added to the setup to accommodate the spectroscopical experiment, since it re-
quires control of the composition and pressure of the background gas. A separate
measurement chamber is required for this task, because altering the conditions in
the collector chamber can disrupt the EUV source. While the pressure in the col-
lector chamber was kept at a constant value of 0.1 Pa to ensure proper operation of
the EUV source, the pressure in the measurement chamber could be varied from
roughly 0.1 Pa to 10 Pa.

To record the evolution of the line intensities as a function of time, the setup
schematically depicted in Fig. 7.26 was used. The fluorescent light from the EUV
created plasma picked up by the collimating lens was led into a monochromator
through an optical fiber. The monochromator (an Oriel 7240 with off-axis Ebert
configuration) used a 1200 l/mm grating with a blaze wavelength of 500 nm. The
width of the entrance and exit slit was 280 µm, which equals an approximate
bandpass of 2 nm. With this configuration the usable wavelength region of the
monochromator is 300 nm to 1000 nm. Narrower slits were available but were not
used to maximize the signal yield. Because of the low resolution of the setup,
some lines were measured simultaneously. For instance, of the ArI system the
lines at 750.6 nm and 751.6 nm are measured simultaneously, as are the lines at
810.6 nm and 811.8 nm. The measurements of all ionic lines will have some added
radiation from neighboring lines.

The exit slit of the monochromator is connected to a photomultiplier tube
(PMT). The PMT (Hamamatsu 6780-04) has a working range of 185 nm to 850 nm

153

7. A CRM of EUV induced plasmas

and a rise time of 0.78 ns. The signal of the PMT is then amplified by a 1 GHz
preamplifier (Ortec 9306) before the signal is recorded by a digital oscilloscope
(LeCroy WaveSurfer 454).

When the EUV source is running it also generates a large amount of EM-inter-
ference. Initially, the interference picked up by the preamplifier was several orders
of magnitude larger than the signal from the PMT. It was therefore necessary to
place all the electronics in a metal enclosure. The power supplies for the PMT and
the preamplifier were realized using batteries, which were also placed inside the
enclosure. Although using this setup the interference was sufficiently reduced to
receive a clear signal on the scope, some electronic filtering still had to be applied.

The radiation of the plasma is very weak. A measurement with a spectrometer
(OceanOptics HR2000+) resulted in approximately 8000 counts for the 750.6 nm
line, when the spectrum was measured for 60 s and the source was running at
1 kHz, with a background pressure of 5 Pa. According to the manufacturer, the
sensitivity is 41 photons per count, meaning that per pulse only 5 photons are
registered. The measurements presented in this section are obtained by com-
bining at least 10 000 measurements per spectral line by binning. Each separate
measurement (a single triggered measurement of the oscilloscope) is stored on a
computer. For every measurement the total length is divided into a number of in-
tervals, called bins. The combination is realized by counting the number of pulses
in every bin for all measurements.

7.6.2 Results

The results of the measurements are shown in Fig. 7.27 for the atomic lines and
in Fig. 7.28 for the ionic lines. For comparison, the results of the CRM are also
plotted in these figures. The EEDF required for the CRM was computed by the
PIC-MC model for an EUV pulse with the same shape as in the experiments, and
with an increased energy of 50% to account for the first small pulse.

Comparing the experimental lines between pressures, it is clear that for 0.2 Pa
both the atomic and ionic lines decay slower. The maxima of the atomic lines lag
behind the maximum of the EUV pulse, more so at 0.2 Pa than at 5 Pa. The ratios
between the atomic lines are comparable, with the exception of the 763.7 nm line.

When we compare the experimental results to the CRM results we see some
similarities and some clear differences. For the atomic lines the slower decay for
0.2 Pa is present in both results, as is the delayed maximum for 0.2 Pa. Further-
more, the relative intensity of the lines is comparable, except for the 811.8 nm line.
While this line is the second strongest line in the CRM results, it is one of least in-
tense lines in the measurements. Furthermore, the prominent delayed maximum
of the 811.8 nm line at 0.2 Pa displayed in the CRM results is not seen in the ex-
perimental results.

154

7.6. Experimental results and discussion

0

0.005

0.01

0 100 200 300 400 500 600

Time [ns]

EUV pulse

696.7 nm

706.9 nm

738.6 nm

750.6 nm

763.7 nm

811.8 nm

0

0.25

0.5

C
o

u
n

ts
p

er
p

u
ls

e
p

er
b

in

0.2 Pa

5 Pa

(a) Experimental results.

0

1 · 10
19

2 · 10
19

0 100 200 300 400 500 600

Time [ns]

EUV pulse

696.7

706.9

738.6

750.6

763.7

811.8

0

2 · 10
21

4 · 10
21

T
ra

n
si

ti
o
n

s
p

er
se

co
n

d

0.2 Pa

5 Pa

(b) CRM results

Figure 7.27. The most intense ArI lines as function of time resulting from: (a) the measure-
ments, (b) the CRM. For both, the top graph shows the results for 5 Pa and the bottom for
0.2 Pa. The gray line shows the outline of the EUV-pulse. For the experimental results the
bin size is 10 ns for 5 Pa, and 20 ns for 0.2 Pa. The 0.2 Pa lines of the experimental results are
smoothed by weighted average of three points.

155

7. A CRM of EUV induced plasmas

0

0.0025

0.005

0.0075

C
o
u

n
ts

p
er

p
u

ls
e

p
er

b
in

0 100 200 300 400 500 600

Time [ns]

EUV pulse

424.9 nm

447.6 nm

454.6 nm

461.1 nm

473.7 nm

476.6 nm

488.1 nm

0

0.1

0.2

0.3

0.2 Pa

5 Pa

(a) Experimental results.

0

1 · 10
18

2 · 10
18

0 100 200 300 400 500 600

Time [ns]

EUV pulse

427.8

447.6

454.6

461.1

473.7

476.6

488.1

0

1 · 10
20

2 · 10
20

T
ra

n
si

ti
o
n

s
p

er
se

co
n

d

0.2 Pa

5 Pa

(b) CRM results.

Figure 7.28. The most intense ArII lines as function of time resulting from: (a) measurements,
(b) the CRM. For both, the top graph shows the results for 5 Pa and the bottom for 0.2 Pa. The
gray line shows the outline of the EUV-pulse. For the experimental results the bin size is 10 ns
for 5 Pa, and 20 ns for 0.2 Pa. The 0.2 Pa lines of the experimental results are smoothed by
weighted average of three points.

156

7.7. Conclusion

Of the ionic lines, the shapes between model and experiment are in agreement,
though the decay at 0.2 Pa is significantly slower in the CRM. The relative intensity
between lines is completely different; while the 424.9 nm line is dominant in the
measurements, it is the least intense line in the CRM.

The difference in relative intensity of the ionic lines can only be explained by
incorrect cross sections and/or transition probabilities. The faster decay of the
lines in the experimental results can be explained by geometrical effects. The PIC-
MC model is one-dimensional, so it is assumed that the plasma does not diffuse.
If the plasma expands or diffuses after it is created this would explain the faster
decay seen in the measurements. The same effect explains some of the discrepan-
cies seen in the atomic lines. While it gives a plausible reason for the faster delay
seen at 0.2 Pa, it can also account in part for the fact that no delayed maximum
of the 811.8 nm line is visible; the delayed population along the cascade would
be much lower. Apart from this, the lower sensitivity of the detector for 811.8 nm
compared to lower wavelengths can explain the lower intensity of the measured
line.

Overall we can state that although there are some clear differences between
the experimental and CRM results, the experiments support the findings of the
CRM that an increase in pressures of the background gas significantly decreases
the density of high energy electrons.

7.7 Conclusion

The sputter rate of a surface by Ar ions created by the interaction of EUV radiation
with a low pressure Ar gas is mainly determined by the energy of the electrons
(the EEDF). The energy, and thus the sputter rate, can be lowered by increasing
the background pressure. To verify the effect of increased pressure on the EEDF
is not straightforward. Time resolved optical emission spectroscopy can be em-
ployed to investigate the EEDF. The EUV induced plasma is not governed by any
form of equilibrium, therefore a CRM is required to interpret results. A simple
CRM, modeling a plasma in the Corona Balance regime, has been constructed.
The EEDF required by this CRM can be supplied by a PIC-MC model, or from a
simple analytical ladder model. Compared to the complex and computationally
expensive PIC-MC model, the analytical model gives satisfactory results for the
modeling of the time dependent behavior of emission lines.

The CRM shows that spectral lines give a good representation of the EEDF;
ionic lines for high energy (40 eV to 80 eV), atomic lines for lower energy (20 eV to
40 eV). At high pressure (5 Pa) the lines decay significantly faster than at low pres-
sure (0.2 Pa). Though at low pressure the lines decay faster in the experiments, the
overall evolution in time of the CRM results is in good agreement with the exper-
imental results, confirming the effect of increased pressure on the EEDF. Apart

157

7. A CRM of EUV induced plasmas

from the faster decay in the measured lines, some significant differences are seen
in the relative intensities of the lines.

Discrepancies can partly be attributed to the simplicity of the assumptions
used for creating the EEDF, which do not take into account spatial decay of the
plasma. Inaccurate cross sections and detector sensitivity can account for the dif-
ferences in relative intensities of the lines.

158

Chapter 8

A CRM of time dependent LIF
experiments

8.1 Introduction

In chapters 3, 4, and 5 a description of a general CRM code and its implementa-
tion using the plasimo framework was described. In chapter 7 the resulting CRM
module was applied to construct a time dependent CRM of EUV induced Ar plas-
mas. In this chapter we will employ the CRM module to make a model of Laser
Induced Fluorescence (LIF) experiments in Ar plasmas.

The CRM must give an accurate description of a real laser–plasma experiment,
in this case a Surfatron Induced Plasma (SIP) in Ar subjected to a laser pulse,
tuned to Ar transitions. In section 8.2 the CRM of a complete Ar system will be
constructed from various sources, in the form of an input file for the plasimo CRM
module. This Ar CRM will subsequently be used to model time resolved LIF
experiments.

In LIF experiments two excited levels are brought into short-lived equilibrium
due to absorption of, and stimulated emission by a laser pulse. The result is that
the densities of the states in the upper and lower level will attain the same value.
However, during and after the pulse the system as a whole is in imbalance, caus-
ing the systems to strive to a new equilibrium. After the pulse the system will
return to the steady state it was in before the pulse. In section 8.3 the time depen-
dent CRM will be employed to study this process.

The laser pulse causes a sudden change in density of the upper and lower level.
Since all levels are directly or indirectly connected to each other, this disturbance

159

8. A CRM of time dependent LIF experiments

will spread through the system. This process can be modeled with the CRM and
some of the results will be compared to experiments (section 8.3.3).

The goal of this chapter is to provide the tools for a profound analysis, and
show some of the results that can be obtained.

8.2 The Ar CRM

The CRM of Ar consists of several parts:

• the atom level scheme;

• radiative transitions;

• electron excitation cross sections;

• heavy particle excitation rates.

We will describe each of these elements in some detail.

8.2.1 Levels

In Fig. 8.1 a schematic depiction is shown of the Ar system as included in the CRM.
Table 8.1 gives an overview of the 78 included levels∗. A full list of the levels, their
energies, and statistical weights can be found in the appendix in table C.1. The
energies of the levels have been taken from Minnhagen et al. [78]. The energies of
the level blocks are determined by using the statistical weight g to get the weighted
average:

Eblock =
∑l glEl

∑l gl
, (8.1)

with El and gl the energy and statistical weight of level l included in the block.

8.2.2 Radiative transitions

The online NIST database [66] was used as the source for Einstein coefficients for
spontaneous emission. Since most of the levels in the CRM are in level blocks,
while the NIST database provides the transitions between individual levels, some
processing is required to convert the level-to-level transition probabilities in those
for the traffic between level blocks. When a transition (from level u to level l) orig-
inates from a level block (bu) the weighted average by weight of the level degen-
eracies (as in Eqn. 8.1) of the transition probability is used:

A(bu, l) =
gu A(u, l)

∑i gi
, (8.2)

∗ We will predominantly use Racah notation for levels and blocks. In some occurrences Paschen
is also given. See appendix B for conversion tables, or table 7.1 for an overview of the lower levels.

160

8.2. The Ar CRM

jc = 3/2

jc = 1/2

4s (2)

4s' (2)

4p (6)

5s (2)

5p (6)

3d (8)

5s' (2)

4p' (4)

5p' (4)

3d' (4)

0

12

13

14

15

15.76

E
n

er
g

y
 [

eV
]

6s

7s

8s

9s9s
10s10s

6p

7p

9p9p
8p8p

4d

6d

5d

7d7d
8d8d

4f

5f

6f

7f7f

6s'

7s'

8s'

9s'9s'
10s'10s'

6p'

7p'

8p'

9p'9p'

4d'

5d'

6d'

7d'7d'
8d'8d'

4f'

5f'

6f'

7f'7f'

15.94

Figure 8.1. Graphical overview of the Ar system as used in the CRM. The system is split into
two parts according to the configuration of the core: jc = 3/2 (un-primed), jc = 1/2 (primed).
The following blocks are split into individual levels (denoted by thin lines): 4s, 5s, 4p, 5p, and
3d (all primed as well as un-primed), see also table 8.1. All other levels are combined in blocks,
with a block consisting of all levels with the same principal and orbital quantum number and
core configuration. Note that the ion level energy in the un-primed configuration is 15.76 eV
and in the primed configuration 15.94 eV.

161

8. A CRM of time dependent LIF experiments

Individual levels (number of levels) Grouped levels

Primed and un-primed

4s (2), 4s’ (2), 5s (2), 5s’ (2) 6s, 7s, 8s, 9s, 10s

4p (6), 4p’ (4), 5p (6), 5p’ (4) 6p, 7p, 8p, 9p

3d (8), 3d’ (4) 4d, 5d, 6d, 7d, 8d

4f, 5f, 6f, 7f

Table 8.1. Overview of the levels included in the model (apart from the atom and ion ground
state), denoted by their principal and orbital quantum number. The prime symbol (’) denotes
the core configuration: primed (jc = 1/2) and un-primed (jc = 3/2). The left column lists the
levels that are included individually, the number between parentheses is the number of levels
with the same principal and orbital quantum number. The right column lists blocks of levels.
Each block in the list is included twice in the model, one for each core configuration.

with gu the degeneracy of the upper level u, and the sum running over all levels
i in the originating block bu. The weighted averages of all transitions originating
from the block ending at level l can simply be added:

A(bu, l) =
∑j gj A(uj, l)

∑i gi
, (8.3)

where the sum in the numerator runs over all levels uj in block bu with a radiative
transition to level l.

If the destination level is also part of a block we can sum the separate A(bu, l)
of Eqn. (8.3):

A(bu, bl) = ∑
k

∑j gj A(uj, lk)

∑i gi
, (8.4)

where the first sum runs over all levels lk in the lower group bl .

Table C.2 in the appendix lists all radiative transitions, their wavelengths and
transition probabilities.

8.2.3 Cross sections

Cross sections for electron excitation have been taken from various literature sour-
ces. For excitation from the ground state a collection by Yanguas-Gil et al. [67]
was used. This is the same set of cross sections that was used in chapter 7 for
the CRM of an EUV driven plasma. This collection contains look-up tables for
experimentally determined cross sections for the ground state excitation of 4s, 4p,
3d, 5s, and 5p levels. Some of those cross sections are for small blocks of levels
(for instance some of the 3d and 5s levels). Since in this CRM the 3d and 5s levels

162

8.2. The Ar CRM

are all modeled individually, the cross sections are split according to the weight
of the upper level, see Eqn. 7.14.

For excitation from the ground state to higher levels, semi-empirical cross sec-
tions by Vlček et al. [38] were used in the form of fit parameters for Drawin cross
sections (Eqns. (4.23), (4.24), and (4.25)). Some of those cross sections were also
split by ratio of statistical weight using Eqn. (7.14). The Drawin fit parameters by
Vlček et al. provide cross sections to levels 4d, 5d, 6d (only un-primed), 6s, 7s,
and 8s (only un-primed).

Excitation cross sections from 4s levels were taken from Zatsarinny et al. [79]
in the form of look-up tables, obtained from R-matrix calculations. They provide
cross sections from the four separate 4s levels towards the other 4s levels and all
separate 4p, 3d, and 5s levels.

The cross sections for excitation were completed using calculated fit parame-
ters for Drawin cross section by Kimura et al. [37]. They list fit parameters between
all blocks listed in table 8.1 (Kimura also combines the levels that are treated indi-
vidually in this CRM in blocks), with separate parameters for the primed and un-
primed subsystem. Since the parameters by Kimura et al. are for blocks, they have
been unraveled using Eqn. (7.14). For transitions between levels in the primed
and un-primed subsystem the average of the primed and un-primed fit param-
eters was used. Depending on the orbital quantum number of the upper and
lower block, a Drawin cross section for optically allowed transition (Eqn. (4.23)
for ∆l = ±1) or parity forbidden transition (Eqn. (4.24) for ∆l 6= ±1) was used.
Cross sections for transitions between levels within the same block (principal and
orbital quantum number) were not included (except for 4s).

In addition to excitation cross sections, ionization cross sections were included.
For direct ionization from the ground state the cross section from the collection
by Yanguas-Gil et al. was used, originating from experiments by Rapp et al. [80].
The ionization cross section from all other levels was taken from Vlček in the form
of Drawin fit parameters.

In total, the CRM contains cross sections for 2587 endothermic electron in-
duced transitions. For all collisional electron excitation transitions detailed bal-
ancing is enabled (section 4.3.2), as are radiative recombination and two electron
recombination (section 4.3.3).

8.2.4 Heavy particle induced processes

In addition to excitation by electrons, excitation by ground state atoms is included:

Arp + Ar1 + (Epq)
KAr(p,q)→ Arq + Ar1, (8.5)

163

8. A CRM of time dependent LIF experiments

Lower level p Upper level q bpq[m2 J−1]

4s[3/2]2 4s[3/2]1 1.12 × 10−5Ê−2.26
pq

4s[3/2]2 4s’[3/2]0 3.0 × 10−7Ê−2.26
pq

4s[3/2]2 4s’[3/2]1 3.0 × 10−7Ê−2.26
pq

4s[3/2]1 4s’[3/2]0 3.0 × 10−7Ê−2.26
pq

4s[3/2]1 4s’[3/2]0 3.0 × 10−7Ê−2.26
pq

4s’[1/2]0 4s’[3/2]1 1.12 × 10−5Ê−2.26
pq

Table 8.2. Fit parameters for heavy particle excitation rates (Eqn. (8.6)) between 4s levels.

where an Ar atom is excited from level p to level q by collision with an Ar atom in
the ground state (1). From Vlček et al. [38] the following rate coefficient is used:

KAr(p, q) = 4

√

kBTh

πMAr
bpq

(
Epq + 2kBTh

)
exp

(−Epq

kBTh

)

, (8.6)

with bpq (unit m2 J−1) a fit parameter depending on the upper and lower level.
Except for the transitions listed in table 8.2 dealing with transitions between 4s
levels, its value is bpq = 5.42 × 10−3Ê−2.26

pq m2 J−1, with the energy in electronvolt.
The reverse process of Eqn. (8.5), heavy particle de-excitation, is also included.

Its rate is derived from the excitation rate by use of detailed balancing, where we
assume that the heavy particle energy distribution function is Maxwellian (see
also Eqn. (4.29)):

KAr(q, p) = KAr(p, q)
gp

gq
exp

(
Epq

kBTh

)

. (8.7)

Following Vlček et al., Eqn (8.6) is also used for heavy particle ionization:

Arp + Ar1 + (Ep+)
KAr(p,+)→ Ar+ + e + Ar1. (8.8)

For all levels p the fit parameter is bp+ = 5.42 × 10−3Ê−2.26
p+ m2 J−1.

Additionally, heavy particle recombination, the reverse process of Eqn. (8.8),
is included. As demonstrated by Collins [81] the Saha balance can be employed
to determine the rate coefficient for recombination, which results in:

KAr(+, p) = KAr(p,+)
gp

2g+

(
h2

2πmekBTe

)3/2

exp

(
Ep+

kBTh

)

. (8.9)

8.2.5 Laser induced processes

The last, but most essential processes included in the CRM are those induced by
the laser. The plasma is targeted by a laser that is tuned to a specific transition in

164

8.2. The Ar CRM

Figure 8.2. Schematic depiction of the processes involved in a LIF process. Level p is excited
to level q due to absorption of a photon from the laser IL. Simultaneously the laser causes
stimulated emission of level q at a frequency Bν

qpρν. Furthermore, level q is depopulated by
spontaneous emission to p and other lower levels r, and by electron (de-)excitation to levels p,
r and s.

the system. In Fig. 8.2 a schematic depiction of an atomic system is shown, that is
exposed to a laser tuned to the p-q transition (Epq = hνpq).

Atoms in level p absorb a photon from the laser, exciting the atoms to level q.
At the same time the laser photons cause stimulated emission of atoms in level
q, forcing a decay to level p. Meanwhile, level q is also depopulated by all the
usual processes: spontaneous radiative decay to lower levels (q and r), excitation
to higher levels (s), and de-excitation to lower levels (p and r). The same applies,
of course, to level p.

The rate coefficient for population of q due to the laser is described by:

F L(p, q) =
σL

pqEL
e

hνpq
, (8.10)

with hν the photon energy, EL
e the laser irradiance in W m−2, and σL

pq the laser
absorption cross section. The absorption cross section is proportional to the Ein-
stein coefficient for absorption Bpq, which is related to the Einstein coefficient for
stimulated emission Bqp by:

Bqp =
gp

gq
Bpq, (8.11)

with g the degeneracy of a level. This means that the population of level q by a
laser with irradiance EL

e can be described by:

dnq

dt
=

σL
pqEL

e

hνpq
np −

σL
qpEL

e

hνpq
nq = F L

pq

(

np −
gp

gq
nq

)

(8.12)

165

8. A CRM of time dependent LIF experiments

Similarly, the depopulation of level p can be described by:

dnp

dt
= F L

pq

(
gp

gq
nq − np

)

. (8.13)

The LIF process is added to the CRM transition matrix F (see Eqn. (4.57)) in
the form of four elements:

Fpp = Fpp −F L
pq Fpq = Fpq +F L

pq

gp

gq

Fqp = Fqp +F L
pq Fqq = Fqq −F L

pq

gp

gq

(8.14)

The CRM allows for a time dependent pulse with any temporal shape. Here,
we will assume that the laser irradiance is in the form of an arbitrarily high rect-
angular pulse in a block shape. The result will be that during the pulse levels p
and q are saturated. In Eqns. (8.12) and (8.13) the influence of only the laser pulse
on the level population is given. As shown in Fig. 8.2, there will also be other
processes influencing the densities of these levels. If the laser intensity IL is high
enough, these other processes can be neglected, resulting in a quasi steady state
of levels p and q:

nq

gq
=

np

gp
. (8.15)

When levels p and q are saturated, their frequencies in the transition matrix,
Eqn. (8.14), cancel each other out in the source vector S = Fn (see Eqn. (4.2)).
The result is that the CRM becomes a system of balance equations with the added
constraint of Eqn. (8.15). During the pulse the system will evolve towards a new
steady state. The mechanisms driving this evolution are the radiative and colli-
sional (electron and heavy particle) processes in the plasma.

When the pulse has ended the system will return to the initial state, that is the
state of the system before the laser pulse entered the plasma. However, before
this condition can be reached the system has to get rid of the fast density change
created by the laser.. This disruption will spread through the system, which can
also be experimentally observed by monitoring the transient spectra. As the dis-
ruption travels through the different layers of the atomic system, spectral lines
will respond in some manner to the changes in level densities, thereby providing
a wealth of information on the various transitions in the atomic system.

8.3 CRM results

The Ar CRM described in the previous section has been implemented using the
plasimo CRM module. The densities of the ground level, ion level, and electrons,

166

8.3. CRM results

and the electron and heavy particle temperature∗ can freely be adjusted. Further-
more, the temporal behavior of the laser pulse can be given any desired shape. For
simplicity (see previous section) the laser intensity is assumed to be in the form
of a rectangular function with an arbitrarily high value with near infinite slopes.
The result is that when the laser is switched on, the lower and upper levels of the
transition stimulated by the laser are instantly in saturation. Saturation will then
remain until the pulse ends.

The initial densities of the Ar system are calculated using the QSS solution
(see section 4.2.1). The subsequent evolution of the system influenced by the LIF
process is modeled using the time dependent solver (see section 4.2.2).

We will first examine what happens to the saturation level during the pulse,
and we will do this for different electron densities.

8.3.1 LIF saturation

During the pulse, saturation is reached (Eqn. (8.15)). However, this does not mean
that during the laser pulse the level densities will not change. The system will
evolve towards a new steady state, due to the (de)population mechanisms present
in the system. Since mainly the electrons facilitate transitions between levels, the
electron density will be an important factor in the relaxation of the system toward
a steady state.

Figure 8.3 shows the evolution of the weighted density (η = n/g) of the upper
and lower level†. The laser is tuned to a wavelength of λpq = 696.7 nm, which
corresponds to the transition from 4p’[1/2]1 to 4s[3/2]2 (in Paschen notation 2p2

to 1s5). The η values are scaled for easier comparison of the curves.
A 10 ns laser pulse starts at 1 ns, causing instant saturation. When the satu-

ration density is reached instantly, the sum of the two level densities does not
change, meaning that:

n0
p + n0

q = ns
p(t) + ns

q(t), (8.16)

with n0 the density in steady state before the pulse, and ns(t) the saturation den-
sity. Combined with Eqn. (8.15) this results in the weighted saturation densities:

ηs
p = ηs

q =
1

gp + gq
(gpη0

p + gqη0
q). (8.17)

When we define:
∆0

η = η0
p − η0

q , (8.18)

this can be written as:

ηs
p = ηs

q =
1

gp + gq

(

gp(η
0
q + ∆0

η) + gqη0
q)
)

= η0
q +

gp

gp + gq
∆0

η . (8.19)

∗In this chapter the electron energy distribution function is assumed to be Maxwellian.
† Note that the lower level has a higher density. In a density plot the lower (in energy) level will

lie above the upper (in energy) level.

167

8. A CRM of time dependent LIF experiments

η0

4p

η0
4p + 5

8 ∆0
η

η0
4s

R
el

at
iv

e
w

ei
g
h

te
d

d
en

si
ty

0 5 10 15 20 25 30

Time [ns]

1017m−3

1018m−3

1019m−3

1020m−3

1021m−3

Figure 8.3. Influence of the electron density on the saturation density. Shown are the weighted
densities (η = n/g) of the levels 4s[3/2]2 and 4p’[1/2]1 (1s5 and 2p2 in Paschen notation)
as a function of time for different electron densities. The weighted densities have been scaled
so that at time t = 0 the overlapping η values for the 4p level are at the bottom of the graph,
and for the 4s level at the top. The laser pulse (starting at 1 ns and ending at 11 ns, gray
line) depopulates the 4s level in favor of the 4p level, until saturation is reached: ηp = ηq or
nq/gq = np/gp. During saturation the 4s and 4p curves overlap. After the pulse we see
a bifurcation; the lower level (4s) density goes up while the density for the upper level (4p)
goes back down again, both returning to their initial value (though not visible for low electron
densities).

For the 696.7 nm line we have p = 4s[3/2]2 and q = 4p’[1/2]1 so gp = 5 and

gq = 3. The saturation level, also shown in Fig. 8.3, is therefore at η0
4p + 5

8 ∆0
η .

The density of the 4p levels is much lower than for the 4s levels. The calculation
of the saturation density shows that the upward jump of the 4p level is far greater
than the downward drop of the 4s level. Since η4p ≪ η4s, the density difference,
Eqn. (8.18), will be ∆η ≈ η4s. The density change factor of the 4s level will be
approximately 5/8, but for the 4p level the density can increase with a far higher
factor, even up to 100.

From the curves in Fig. 8.3 it is clear that the electrons drive the system to a new
equilibrium state, which for ne = 1021 m−3 is already reached after 1 ns. After the
pulse the system returns to the initial state, which again happens faster for higher
electron density.

There is a clear difference in the time that the 4s and 4p levels require to re-

168

8.3. CRM results

gain their initial value. The basic balance equation (3.23) (neglecting transport)
describes the level densities:

∂

∂t
n(p) = P(p)− n(p) D(p), (8.20)

with P(p) the total production and D(p) the total destruction. When the steady
state density is n0(p) and the density due to a disturbance is n∗(p) the density
returns to steady state according to:

n(p)(t) = n0(p) +
(

n∗(p)− n0(p)
)

exp
(

− D(p) t
)

. (8.21)

Since for the 4p level D(p) is higher than for the 4s level, the 4p level will restore
faster to its initial density.

The results show that, only for low electron density and short pulse length the
theoretical saturation density of Eqn. (8.17) can be used to approximate the dis-
ruption in system densities due to the laser pulse. An accurate determination of
the saturation density requires a CRM incorporating the (de)population processes
influencing the levels during the pulse.

8.3.2 System response

We will now use the CRM to model the response to the laser pulse of other levels
in the system. Instead of focusing on the direct fluorescence of the upper level, the
first order response, we will examine the response of other levels, that are directly
or indirectly connected to the upper (and lower) level. This is the second order
response or Laser Collisional Induced Fluorescence (LCIF) [82, 83, 84].

As in the previous section, the LIF process in the Ar CRM will populate the
4p’[1/2]1 (2p2) level in favor of the 4s[3/2]2 (1s5) level, corresponding to the wave-
length λ = 696.7 nm. Instead of the radiative transitions from 4p’[1/2]1, we will
examine the radiative transitions from other 4p levels. The other 4p levels can be
affected by the laser pulse in several ways, as depicted in Fig. 8.4.

The laser pulse has two direct consequences: the lower level density (4s[3/2]2)
is decreased and the upper level density (4p’[1/2]1) is increased. As in the pre-
vious section we will assume that the laser pulse is energetic enough to instantly
achieve saturation. The indirect result is that population of other 4p levels (either
direct, via higher levels, or via lower levels) due to the increase of 4p’[1/2]1 is in-
creased. At the same time, population of 4p levels is decreased since population
from 4s[3/2]2 (also involving other intermediate levels) is decreased.

The direct reaction to the laser can be seen in Fig. 8.3: the 4s and 4p level
reach saturation and after the pulse the 4p level recovers quickly, and the 4s level
slowly. Combined this means that other 4p levels, and therefore the spectral lines
from other 4p levels, will first increase, then decrease below the steady state value,

169

8. A CRM of time dependent LIF experiments

Figure 8.4. Schematic depiction of an LCIF scheme. A laser excites level 4s[3/2]2 to
4p’[1/2]1 resulting in a decreased density of the 4s level and increased density of the 4p level.
Other 4s and 4p levels (denoted by ∗ so they can represent any other 4s and 4p level) are linked
to these two levels through heavy particle collisions (gray arrows), electron collisions (black
solid arrows), and radiative transitions (squiggly arrow), possibly involving other (higher)
levels (here only level 3d is shown). The response to the laser pulse of some other radiative
transition (4p∗ to 4s∗) is recorded.

to which they will eventually recover. The exact nature of this double response
depends on the rates that form the paths between the levels.

To simulate the responses of spectral lines, the following settings were used in
the CRM:

• ground state density: 9.7 × 1022 m−3 (4 mbar);

• electron density: 6.8 × 1018 m−3;

• electron temperature: 1.3 eV;

• cut-off level: 6d;

• laser pulse length 8 ns.

The responses of four lines are shown in Fig. 8.5.
All lines modeled by the CRM show a similar response, i.e. a sharp increase,

a fast decay to below the equilibrium value, followed by a slow rise. There is little
difference in the decay time following the sharp peak. The lines mostly differ in
the depth and rise time of the negative response, which is caused by the different
rates by which the depleted 4s[3/2]2 is linked to the radiating 4p levels.

8.3.3 Comparison to experiments

The spectral lines shown in Fig. 8.5 have also been measured in our group [54],
with the same parameters. The results are shown in Fig. 8.6. Apart from the lines
shown, many more lines were measured, but we will restrict ourselves to these
four lines.

170

8.3. CRM results

4 · 1022

6 · 1022

0 500 1000 1500 2000 2500

Time [ns]

4p[5/2]2 (2p8), λ = 842.7 nm, τ = 60 ns

7.5 · 1022

1 · 1023

1.25 · 1023

4p[5/2]3 (2p9), λ = 811.8 nm, τ = 410 ns

1 · 1022

1.5 · 1022

2 · 1022

2.5 · 1022

T
ra

n
si

ti
o
n

ra
te

[m
−

3
s−

1
]

4p[1/2]0 (2p5), λ = 751.7 nm, τ = 50 ns

1 · 1022

2 · 1022

3 · 1022 4p′[1/2]0 (2p1), λ = 750.6 nm, τ = 40 ns

Figure 8.5. The temporal behavior of the response of four spectral lines as calculated by the
CRM. Listed are the radiating level in Racah notation, Paschen notation between parentheses,
wavelength, and decay time. In the plot for the 811.8 nm line the time is the rise time. None
of these lines originate from the pumped 4p level (4p’[1/2]1).

171

8. A CRM of time dependent LIF experiments

1.15 · 104

1.2 · 104

0 500 1000 1500 2000 2500

Time [ns]

4p[5/2]2 (2p8), λ = 842.7 nm, τ = 762 ns

2.4 · 104

2.5 · 104

2.6 · 104

In
te

n
si

ty
[a

.u
.]

4p[5/2]3 (2p9), λ = 811.8 nm, τ = 640 ns

6250

6500

6750

7000

7250

4p[1/2]0 (2p5), λ = 751.7 nm, τ = 69 ns

5500

6000

6500

7000 4p′[1/2]0 (2p1), λ = 750.6 nm, τ = 187 ns

Figure 8.6. The temporal behavior of the response of four spectral lines (see also Fig. 8.5).
Listed are the radiating level in Racah notation, Paschen notation between parentheses, wave-
length, and decay time. In the bottom two plots (811.8 nm and 842.7 nm) the time is the rise
time. None of these lines originate from the pumped 4p level (4p’[1/2]1). An exponential fit
using τ is plotted as a thick black line.

172

8.4. Conclusion

The measurements were performed on a Surfatron Induced Plasma (SIP) [85]
for which the electron density and temperature, obtained by Thomson scattering,
are well known [86, 87]. In this plasma the electron density can easily be con-
trolled and adjusted. The laser pulses are generated with a high rep-rate YAG-
Dye laser system. The spectral line responses are recorded by a Multi Channel
Scaler connected to a monochromator.

The measured response of the 751.1 nm and 811.8 nm lines show reasonable
agreement with the behavior predicted by the model. However, all the 4p lines
modeled by the CRM decay with a similar time (30 ns to 60 ns), whereas in the
experiments a wide range of 69 ns to 412 ns has been found. Furthermore, all
modeled lines show a peaked, positive response followed by a (mostly shallow)
negative response. In the experiments the shallow, negative response is often not
observed, possibly due to noise. What is even more striking is that some lines do
not show the initial positive response, as the line at 842.7 nm. Also the magnitude
of the response is in most cases much larger in the experimental results than in
the measurements.

Analysis of the CRM reveals that the 3d (and higher) levels form an important
conduit for the population of the 4p levels. However, experimental data for these
collisional transitions is not available. In the CRM, Drawin cross sections with
calculated fit parameters are used. Since those fit parameters are only available for
the 3d levels as a block, the initial, positive responses of all 4p levels in the model
are very similar. From the experimental results we see that in reality things are
more refined, i.e., different 4p-3d transitions have very different cross sections.

8.4 Conclusion

The plasimo CRM module has been used to model a LIF experiment in an Ar
plasma. Since (de)population mechanisms above the 4p levels are involved in
this process, a model of a complete Ar system has been constructed, using data
from various sources.

The time dependent CRM enables us to model the laser pulse in a LIF exper-
iment in great detail. It is shown that due to electron collisions the saturation
density that is reached during the laser pulse does not stay constant, but decays
to an equilibrium value. A CRM is required to determine the saturation density
at the end of the pulse.

LIF is a very good tool to investigate how excitation channels build up the
atomic system. The CRM is a useful tool in analyzing these channels. Rates be-
tween levels can be accessed and analyzed individually and time resolved. How-
ever, the experimental results lay bare the shortcomings of the CRM: the exper-
imental data it is based on. In LCIF, rates above the 4p levels play an important
role, but no experimental data is available for these levels. Combination with ex-

173

8. A CRM of time dependent LIF experiments

periments can improve the accuracy of the CRM, and enhance scientific insight
into the system.

174

Chapter 9

A global model of HiPIMS discharges

9.1 Introduction

In chapter 2 an overview was given of types of zero-dimensional models for plas-
ma chemistry. Chapters 3, 4, and 5 contain a detailed description of a Collisional
Radiative Model (CRM) and its implementation in the plasimo framework. Appli-
cations of this CRM code were treated in chapter 7 and 8 where a CRM of an EUV
driven plasma and a CRM of a LIF experiment were described. Chapter 6 deals
with the implementation of a Global Plasma Model (GPM) code in the plasimo
framework.

In this chapter we will use the GPM to construct a model of a High Power
Impulse Magnetron Sputtering (HiPIMS) plasma. It is the implementation of a
model by Gudmundsson [88], and serves as a proof of concept for the GPM mod-
ule in plasimo. The parameters (species, reactions, and input parameters) are
taken from the model by Gudmundsson, but we will elaborate on them.

HiPIMS, also denoted by High Power Pulsed Magnetron Sputtering (HPPMS),
was introduced by Koeznetsov et al [89] in 1999. The method is based on the
fact that by applying high power in the form of short and very intense pulses
to a magnetron plasma, a very high plasma density can be reached. Whereas
in Conventional DC Magnetron Sputtering (CDCMS) densities of 1015 m−3 can be
reached, this number is increased to more than 1018 m−3 at 5 mTorr in HiPIMS [90].
The discharge is created by applying high voltage (500 V to 2000 V), short (50 µs
to 500 µs), unipolar pulses with a low duty cycle (1 Hz to 1000 Hz) to the cathode
target, resulting in a peak power that can reach values up to kilowatts and even
megawatts.

175

9. A global model of HiPIMS discharges

The advantages of the HiPIMS technique are the uniform deposition of struc-
tures with high aspect ratios, interface modification through ion irradiation and
increased film density. In general these advantages are attributed to the large de-
gree of ionization of the sputtering flux. However, the reported ionization degree
in literature is highly inconsistent, ranging from 4.5% from a C target [91], to more
than 90% for a Ti target [92].

The goal of the GPM in this chapter is to explore the ionization mechanism
and the temporal behavior of the plasma parameters. The ionization degree can
easily be deduced from these results.

This chapter will continue with a description of the model: the species, the re-
actions between them, and their interaction with the wall. In section 9.3 some de-
tails of the implementation of this model for the GPM plasimo module are given.
The results are shown in section 9.4.

9.2 Model

The plasma under investigation is an Ar plasma that sputters an Al surface. The
surface is bombarded by Ar ions, thereby introducing Al atoms into the plasma.
Subsequently, selfsputtering will also occur after Al atoms have been ionized. The
model consists of balance equations for the densities of the following species:

• Ar atoms in the ground state: Ar, energy level: 0 eV;

• excited Ar atoms: Ar∗, energy level: 11.56 eV;

• Ar ions: Ar+, energy level: 15.76 eV;

• Al atoms in the ground state: Al, energy level: 0 eV;

• Al ions: Al+, energy level: 5.99 eV.

There is no separate density balance for the electrons. Since quasi-neutrality is as-
sumed, the density of the electrons equals the sum of the Ar and Al ion densities:
ne = nAr+ + nAl+ . The density of Ar ground state atoms is kept constant; i.e., the
balance equation source term is kept to zero.

Additionally (see also chapter 6), the model contains a balance equation for the
electron energy density, see Eqn. (6.12). The source terms for the balance equa-
tions are formed by reactions between these species and by processes involving
the wall.

9.2.1 Volume relations

The reactions that occur in the bulk of the plasma are listed in table 9.1. All reac-
tions and their respective rate coefficients can be entered as is into the GPM model,

176

9.2. Model

Process
Rate coefficient Source

reaction

Ar ionization:
kiz = 2.9 × 10−14 T̂0.50

e exp(−17.8/T̂e) [93]
Ar + e → Ar+ + 2e

Ar excitation:
kexc = 6.37 × 10−15 exp(−12.53/T̂e) [94]

Ar + e → Ar∗ + e

Ar excited ionization:
kexc, iz = 6.8 × 10−15 T̂0.67

e exp(−4.20/T̂e) [95]
Ar∗ + e → Ar+ + 2e

Ar de-excitation:
kdeexc = 4.3 × 10−16 T̂0.74

e [16]
Ar∗ + e → Ar + e

Ar elastic collisions: ln(kelas) = −31.3897 + 1.6090 ln(T̂e)
[93]

Ar + e → Ar + e +0.0618 ln(T̂e)2 − 0.1171 ln(T̂e)3

Ar radiative decay:
krad = 3.15 × 108 [66]

Ar∗ → Ar + hν

Al ionization:
kiz,Al = 1.23 × 10−13 exp(−7.23/T̂e) [96]

Al + e → Al+ + 2e

Al Penning ionization:
kP = 5.9 × 10−16 [97]

Ar∗ + Al → Al+ + Ar

Charge exchange:
kchex = 1 × 10−15 [97]

Ar+ + Al → Ar + Al+

Table 9.1. The volume reactions included in the model and their rate coefficients. The electron
temperatures are in electronvolt.

except for the elastic collisional process. In this process electrons and ground state
Ar atoms are involved, but the source terms of neither of these species will get an
extra term due to this process, since the net stoichiometry is zero. However, the
electron energy density balance should receive a source term from this process,
therefore it will be implemented as an extra source term, (see also section 6.3.2).
The extra source term for elastic collisions is defined as:

Sextra
elas = −kelasnArne

3me

mAr
kBTe. (9.1)

The processes in table 9.1 describe the chemistry in the bulk of the plasma.
Apart from this chemistry, species will be transported to the wall and species will
be introduced into the bulk from the wall. This means that transport and configu-
ration aspects come into play, but they are combined and treated as frequencies.

177

9. A global model of HiPIMS discharges

9.2.2 Wall losses

Loss of neutral species is described by simple diffusion:

X → Xwall, (9.2)

where X represents either excited Ar (Ar∗) or metal atoms (Al). These two dif-
fusion reactions make it necessary to introduce two more species into the model:
Arwall and Alwall. The rate coefficient for the diffusion reactions is:

kdiff,X =
DX

Λ2
, (9.3)

with DX the diffusion coefficient, and Λ the effective diffusion length. The diffu-
sion coefficient is given by:

DX =
kBThλX

mXvth
, (9.4)

where we use the thermal velocity vth =
√

8kBTh/πmX , and the mean free path
λX = (nArσX,Ar)

−1, with σX,Ar the X-Ar scattering cross section for which a value
of 10−18 m2 is assumed.

The configuration aspects of the plasma are represented in the effective diffu-
sion length Λ. The shape of the plasma is cylindrical with radius R and length L,
resulting in:

Λ =

[
(π

L

)2
+

(
2.405

R

)2
]−1/2

. (9.5)

As is evident from table 9.1, recombination in the bulk is not included, but
charged particles are lost at the wall. Furthermore it is assumed that ion and
electron fluxes toward the wall balance at all times.

For the treatment of the transport of charged particles we follow Godyak et
al [21] who gave an analytical solution for the diffusion equation, resulting in the
plasma densities at the sheath edges (see also section 2.4):

nsheath,L

nbulk
= hL ≈ 0.86

(

3.0 +
L

2λi

)−1/2

, (9.6)

at the axial sheath edge and:

nsheath,R

nbulk
= hR ≈ 0.80

(

4.0 +
R

2λi

)−1/2

, (9.7)

at the radial sheath edge. A value of 10−18 m2 is used for all ion-neutral cross
sections to obtain λi.

At the sheath edges the fluxes of ions leaving the plasma will be:

Γi = ni uB,i, (9.8)

178

9.2. Model

with uB,i =
√

kBTe/Mi the Bohm velocity. For the ionic species i (Ar+ and Al+)
the balance of generation in the bulk and losses at the wall is then:

V
∂ni

∂t
= V ∑

j

Sj − (hL AL + hR AR)niuB,i, (9.9)

where the sum runs over all volume reactions in table 9.1 that form a source or
sink for the ionic species, V is the bulk volume, and AL and AR are the areas of
the axial and radial sheath. It is assumed that the sheath thickness is negligible,
so that AL = 2πR2 and AR = 2πRL. Dividing by the volume V = πR2L the rate
coefficients for wall losses of the ions are:

kwall,i =
hLR2 + hRRL

R2L
2uB,i, (9.10)

with i being either Ar+ or Al+.
Metal atoms are however not only lost at the wall, they are also introduced

into the bulk of the plasma by sputtering.

9.2.3 Sputtering

To determine the flux of particles entering the bulk from sputtering, the flux of
ions on the surface is required and the sputter yield from those ions. The rate coef-
ficient for losses to the target, a disc with radius RT , is in analogy with Eqn. (9.10):

ktarget,i =
hLR2

T

R2L
uB,i, (9.11)

which multiplied by the sputter yield gives the rate coefficient of the source from
sputtering. The target surface is sputtered by both ion species: Ar+ and M+.
Using the sputter yield γsputter by Ar+ and γselfsputter by M+ the total source term
from sputtering for species M is:

Ssputter,Al =
hLR2

T

R2L

(

γsputteruB,Ar+nAr+ + γselfsputteruB,Al+nAl+

)

. (9.12)

The sputter yield is the average number of atoms ejected from the target per
incident ion, which depends on the energy of the incident ion. However, in this
model there is no self-consistent way to determine the energy of the ions upon
impact of the target. It is assumed that the sputter yields depend on the target
voltage which was measured during an experiment. The voltage as function of
time for a background pressure of 10 mTorr is shown in Fig. 9.1 together with the
sputter yields derived from this voltage when combined with sputter yield data
collected by Ruzic [98] and Hayward et al. [99].

The source terms by sputtering will be added as extra source terms.

179

9. A global model of HiPIMS discharges

0

0.5

1

1.5

2

V
ol

ta
ge

[k
V

]

0 0.02 0.04 0.06 0.08 0.1

Time [ms]

0

0.5

1

1.5

2
Sp

u
tter

yield
voltage

γsputter

γselfsputter

Figure 9.1. Experimentally determined target voltage at 10 mTorr as a function of time, and
the sputter yields derived from the voltage.

9.2.4 Electron energy density balance

The reactions in table 9.1 involving electrons will form source terms for the elec-
tron energy density balance. These source terms are automatically calculated by
the GPM, apart from the term for elastic collisions which is implemented as an
extra source (Eqn. (9.1)).

Charged particles flowing to the wall also contribute in the form of a negative
term to the energy balance. The source term is:

Swall,E = −kwall,Ar+nAr+
3

2
kB(εe + εi), (9.13)

where εe and εi are the mean kinetic energy per lost electron and ion respectively.
The last term that is added to the energy balance is the input power. This is a

time dependent external control parameter shown in Fig. 9.2.

9.3 Implementation in GPM

The set of balance equations (density of every species and electron energy density)
will be solved with the plasimo GPM module, described in chapter 6. All the
reactions, extra source terms, and external control parameters were described in
the previous section, making the actual implementation quite straightforward.

Figures 9.3 through 9.6 show screenshots of the plasimo Graphical User Inter-
face (GUI). They show how the species (Fig. 9.3), volume reactions (Fig. 9.4), rate
coefficients (Fig. 9.5), and extra source terms (Fig. 9.6) can be entered.

180

9.3. Implementation in GPM

0

50

100

150
P
o
w

er
[k

W
]

0 0.05 0.1 0.15 0.2

Time [ms]

Figure 9.2. Input power as function of time, implemented via a look-up table.

Figure 9.3. Screenshot of the graphical plasimo application, showing how the species are
entered in the “Model editor”. Species can easily be added and edited in the GUI.

Figure 9.4. Detail of a screenshot of plasimo showing how reactions can be entered; in this
case the ionization of excited Ar atoms by electrons.

181

9. A global model of HiPIMS discharges

Figure 9.5. Detail of a screenshot of plasimo showing how rate coefficients can be defined; in
this case for the ionization of Al atoms by electrons. A general expression can be used with an
arbitrary amount of parameters that can be defined separately.

Figure 9.6. Detail of a screenshot of plasimo showing how extra source terms are defined; in
this case energy losses to the wall by diffusion of electron ion pairs. In addition to the entries
shown, a rate coefficient must be defined, similar to the screenshot in Fig. 9.5.

In addition to the data shown in the screenshots, the input power must be
defined (in this case a look-up table in a file), and several other control parameters,
the most important of which are the length L = 15 cm and radius R = 15 cm of the
discharge chamber and the radius of the Al target RT = 7.5 cm. For all species an
initial density must be defined. The background Ar density is set to 3.2 × 1020 m−3

(10 mTorr at 300 K). The initial density of other species is set to zero, except for
the Ar ions, for which the initial density is 1010 m−3. Other control parameters are
for instance the run-time and solver. Once all the data is entered, the model can
be run, and the calculation results are shown real-time via the GUI.

9.4 Results and discussion

The densities of the Ar ions, and Al atoms and ions are shown in Fig. 9.7. The peak
densities and the times at which these are reached are listed in table 9.2. When
comparing the results to those reported by Gudmundsson (also in table 9.2), we

182

9.4. Results and discussion

plasimo Gudmundsson
Species Density [m−3] Peak time [µs] Density [m−3] Peak time [µs]

Ar+ 7.2 × 1019 60 3.4 × 1019 53
Al+ 1.5 × 1018 79 9.2 × 1017 70
Al 3.7 × 1016 91 1 × 1017 41

Table 9.2. Resulting densities as calculated by the GPM plasimo module and results as listed
by Gudmundsson.

10
14

10
16

10
18

10
20

D
en

si
ty

[m
−

3
]

0 1 2 3 4

Time [ms]

Ar+

Al

Al+

Figure 9.7. Species densities as function of time of the Ar ions and Al atoms and ions.

see that our ion densities are roughly twice as high, and peak slightly later. In
contrast the Al atom density is lower and peaks after the ion densities, whereas
in the results by Gudmundsson the peak lies before the ion density peaks. Fur-
thermore, in Gudmundsson’s results the densities decay much slower (by about
a factor of three).

These differences can be most likely attributed to differences in the rate pa-
rameters that were used. In many cases we had to make assumptions for the rate
coefficients or cross sections. The paper of Gudmundsson is not at all times quite
clear about this.

The ionized Al fraction is shown in Fig. 9.8. Already evident from Fig. 9.7 the
ionized fraction during the pulse is very high, approximately 0.98. Also shown in
Fig. 9.8 is the fraction of ionized flux towards the wall. This is determined from
the flux of Al ions ΓAl+ ≈ 0.61nAl+uB,Al , and Al atoms ΓAl =

1
4 nAlvAl . Because

the discharge is not in thermal equilibrium, i.e., the electron temperature Te is

183

9. A global model of HiPIMS discharges

0

0.25

0.5

0.75

1

Io
n

iz
e
d

fr
a
ct

io
n

0 0.05 0.1 0.15 0.2

Time [ms]

ionized fraction

ionized flux fraction

Figure 9.8. Ionized volume Al fraction (nAl+/(nAl + nAl+)) and ionized flux fraction
(ΓAl+/(ΓAl + ΓAl+)) as function of time.

significantly larger than the neutral gas temperature Th, the fraction of ionized
metal flux is larger than the fraction of ionized metal in the plasma. These results
compare very well to the results of Gudmundsson.

From Fig. 9.9 we can see that the dominant process for ionization of Al atoms
is different before and after the pulse. Whereas during the pulse Al is mainly
ionized by electron impact ionization, after the pulse the electron density has
dropped so much that charge exchange with Ar ions becomes dominant. Fur-
thermore, at no time Penning ionization is an important process.

In the results by Gudmundsson the time at which the rate for charge exchange
dominates the rate for electron impact ionization is roughly 30 µs earlier, after
which electron ionization quickly becomes negligible. This indicates that in Gud-
mundsson’s results the electron temperature decays more quickly (the electron
temperature is not reported).

9.5 Conclusion

The plasimo GPM module has been used to implement a zero dimensional model
of a HiPIMS plasma that sputters an Al target. The required density balance equa-
tions, including the density balance equation for electron energy, are automati-
cally constructed from the definition of a set of species and volume reactions. In
addition some reactions have to be defined to deal with processes involving the
wall. Diffusion to the wall is included by introducing a separate wall species. The
more complex process of sputtering is dealt with by defining the process as an
extra source term.

184

9.5. Conclusion

0

0.25

0.5

0.75

1
F
ra

ct
io

n

0 0.1 0.2 0.3 0.4

Time [ms]

Riz,Al

RP

Rchex

Figure 9.9. Relative Al ionization mechanism as function of time. At all times Penning
ionization (RP) is negligible.

The model showed that Al in the plasma and in the flux towards the target is
almost fully ionized. Furthermore, during the pulse Al ions are mostly created by
electron impact ionization of the sputtered Al atoms, and after the pulse mostly
by charge exchange with Ar ions. Though these results were also found by Gud-
mundsson, there are also differences: the species densities have different peak
values and transient behavior (time of peak and speed of decay). The most likely
cause for this is a difference in the parameters that were used, since the model is
very sensitive to changes in cross sections (and therefore rates).

The GPM module is a convenient tool to probe the effect of rates on the plasma
behavior, giving valuable insights.

The plasimo interface offers a user friendly way of defining the model and
manipulating its parameters. Parameters such as rate coefficients can easily be
changed and the results of such changes can then be examined by viewing the
resulting model data in the same plasimo interface. When rate coefficients and
sputter rates for other species (e.g., Cu or W) are known, the model can effortlessly
be adapted to accommodate for these other species, and after a run-time of mere
minutes the results are presented.

This case study shows that the plasimo ZDM is a convenient, flexible tool for
constructing general GPMs.

185

Chapter 10

General conclusions

The subject of this thesis is the documentation of the design and application of
models that focus on chemistry aspects of plasmas. Other aspects, that can be
classified as configuration and transport, are reduced to frequencies.

In chapter 2 a classification of zero-dimensional models was made. The focus
lies on Collisional Radiative Model (CRM) and Global Plasma Models (GPM) em-
ploying the Reaction Exploration Method (REM). CRMs describe (mainly) atomic
systems in which the processes are facilitated by external agents (photons, elec-
trons), whereas GPMs are more general models that can describe any form of
chemistry, while simultaneously solving the energy balance. Chapters 3, 4, and 5
were dedicated to a theoretical treatment and implementation of the CRM, and
chapter 6 to the GPM.

In chapter 3 the three tasks of the CRM (to determine the Atomic State Dis-
tribution Function, effective conversion rates, and source terms for the energy
balance) were formulated using simple matrix-vector representations. This was
made possible by making a distinction between levels (species) for which trans-
port is important and for which it can be neglected; the former being the Transport
Sensitive (TS) levels, and the latter Local Chemistry (LC) levels. The matrix rep-
resentation offers great flexibility, by allowing for a system with more than two
TS levels (beyond the typical atom and ion ground state). This is demonstrated
for a plasma in which radiation transport is important, which is dealt with by
promoting an LC level to a TS level.

In chapter 4 we have described the processes that are included in the transi-
tion matrix that is required for the matrix representation of the CRM tasks, and
how this matrix is constructed. The CRM has been implemented in the plasimo

187

10. General conclusions

framework, which is written in the C++ programming language. We have shown
how the use of classes in C++ offers the possibility for a strong modular design.
Modularity is a concept that is used throughout plasimo on all levels. We have
shown how at the most basic level a plasimo model can be built, which we have
applied to the CRM. The result is a flexible, general CRM code, that can be used
for a wide range of plasmas. The CRM module supports steady state and tran-
sient CRMs, defined using rate coefficients or cross sections in combination with
any form of EEDF.

In chapter 6 the plasimo module for GPMs was introduced. The GPM is de-
fined by a set of species and general reactions between those species. The benefits
of modularity have been demonstrated in this chapter, as many tools provided by
plasimo are utilized to construct the GPM module.

The CRM and GPM plasimo modules are designed to be user friendly, general
purpose tools. Chapters 7 and 8 describe applications of the CRM module, and
chapter 9 of the GPM module.

Extreme UltraViolet (EUV) Ar plasmas are the subject of chapter 7. These
plasmas, present in lithography machines, can cause sputtering of mirror sur-
faces within those machines, which is detrimental to the mirror’s reflectivity. The
sputter rate is largely determined by the electron energy, which can be monitored
using Optical Emission Spectroscopy (OES). A time dependent CRM is required
to interpret the OES measurements.

One of the ingredients the CRM module requires is the Electron Energy Distri-
bution Function (EEDF). This EEDF can be obtained from a complex and computa-
tionally expensive Monte-Carlo model, but we have shown that a simple analytical
model gives satisfactory results. The results of the CRM have been compared to
experimental results, showing that, as expected, an increased background pres-
sure effectively reduces the electron energy. Although the overall evolution in
time of the CRM results show good agreement with the experiments, some dis-
crepancies are found. These can be attributed to the simplicity of the assumptions
used for creating the EEDF (no spatial effects), inaccuracies in the cross sections
that were used, and experimental concerns.

The second application of the CRM module, is for Laser Induced Fluorescence
(LIF) experiments in Ar plasmas in chapter 8. Whereas a relatively simple model
was sufficient for the EUV induced Ar plasma, for this plasma a complete Ar sys-
tem has been constructed, using data from various sources. With the time depen-
dent CRM the effect of a laser pulse on the densities in a plasma can be studied
in great detail. It was shown that the saturation densities during the laser pulse
can quickly reach an equilibrium, depending on the electron density. This equi-
librium is far from the theoretical saturation densities, and requires a CRM to be
determined.

The CRM was also used to model the response of levels not directly involved
in the LIF process. Comparison with experimental results showed that lack of

188

accurate cross section data can result in strong discrepancies between experiments
and model. However, the CRM is a useful tool to investigate excitation channels
in the system.

Chapter 9 describes an application of the GPM module in the form of a well-
known case study, which is the implementation of a model by Gudmundsson [88].
It is used to model a High Power Impulse Magnetron Sputtering (HiPIMS) Ar
plasma that sputters an Al surface. We demonstrate how chemistry can easily be
entered into the model. In this model transport and configuration play an im-
portant role, and care must be taken in translating these aspects into frequencies.
Once this has been done, a flexible tool is available in which several parameters
can easily be adjusted.

The model shows that the Al in the plasma has a very high ionization degree,
and that initially electron impact ionization is the main mechanism for creating
Al ions, whereas later this becomes charge exchange with Ar ions. These main
results are identical to the original model, but some differences are also found,
which can be attributed to differences in the rate coefficients that were used.

Design versus research

Although this thesis lying before you is the documentation of a design, it has
several research aspects:

• the EUV induced plasma described in chapter 7 is from a research point of
view highly unusual in its lack of equilibria;

• the time resolved measurements performed on this plasma are unique;

• the CRM for LIF experiments described in chapter 8 combined with exper-
imental results provides exceptional insights into the dynamics of the Ar
system.

In addition, we can state that, although the GPM presented in chapter 9 does not
provide important new insights, its flexibility does offer the possibility to obtain
results for other sputtered species with relatively little effort. The GPM model
also paves the way to many other new research studies that will lead to new tech-
nological applications.

189

Appendices

191

Appendix A

General C/C++ constructs

In this appendix some important aspects of the C and C++ programming lan-
guage will be explained. The goal is to give more details about the aspects used
in chapter 5. We will do this by discussing listings of small, simple programs. The
treatment in this appendix is far from complete and not intended as a language
tutorial. Many textbooks are available to learn C/C++ or to be used as reference.
Here we will only mention the books by Dennis Ritchie [100] (co-authored by
Brian Kernighan), the developer of C, and the book by Bjarne Stroustrup [101],
developer of C++. Additionally many tutorials are available online, for instance
cprogramming.com and cplusplus.com.

Since C++ is an enhancement of C, and therefore most constructs in C are also
valid in C++∗, we will start with some syntaxes in C.

A.1 C: data types and functions

The C programming language is a very widely used general purpose procedural
programming language. The language consists of instructions that are executed
in sequence, but allows for subroutines to be defined that also consist of a series
of computational steps. These subroutines (also called procedures or functions)
might be called at any given time at any point during a program’s execution. It is
also possible for subroutines to be called by other subroutines.

The C programming language has several built-in data types, also called prim-
itive data types. These are the basic types of variables that can be used to perform

∗ There are many C syntaxes that are invalid or behave differently in C++. This is however beyond
the scope of this text, and only C code that is valid in C++ will be treated.

193

cprogramming.com
cplusplus.com

A. General C/C++ constructs

1 double square(double x) {

2 double result = x * x;

3 return result;

4 }

5

6 int main() {

7 double input1 = 2.718;

8 double input2(3.142);

9 double out;

10 out = input1 + square(input2);

11 return 0;

12 }

Listing A.1. Listing of a simple C program equipped with a function to calculate the square.

calculations. Here, we only mention int, the mathematical integer, and double,
a floating point number of double precision, meaning that the number is repre-
sented using 64 bits. Integers can also be defined as unsigned, so that negative
values are not allowed.

The listing of a simple program is shown in listing A.1. Every C program
must implement a “primary” subroutine: the main()-function. When the pro-
gram starts, it starts with the first instruction inside this function. Apart from the
main()-function, other functions can be defined, and all functions must have the
following structure:

• output data type;

• name of the function;

• between parentheses a number of pairs of data type and variable name, sep-
arated by commas, representing the input data. When no input is required
the list can be empty.

The data types can be any that are known by the program. The output data type
can also be void, meaning that there is no return value. In listing A.1 two func-
tions are defined: main() in line 6, and square() in line 1. The main() function
must always be defined, and this is where the program will start. The square()

function calculates the square of the input value (a double) and then returns this
value, which is again a double. Note the definition of the return values of both
these functions. Functions that have a non-void return data type, must end with
a return-statement (line 3 and 11), where a return value of the appropriate data
type is returned by the function∗.

∗ A function can have multiple “exit points”, i.e. return statements. When one is encountered
the execution of the program exits the function and continues where it left of.

194

A.2. C++: a simple class

In addition to the functions, some variables are declared (lines 2, 7, 8, and 9).
A variable is always declared by a data type followed by a variable name∗. Note
that a variable can only be used after it has been declared, and once it is declared,
its type can not change. In line 9 a variable is only defined; it is not given a value,
so it is uninitialized. In contrast, the variables input1 and input2 are declared
and initialized, each in a different way. Variable input1 is initialized using c-like
initialization and variable input2 using constructor initialization, which will also be
used for classes.

The variables within each function can only be used within the function it is
defined in. So variable x can not be used in the main() function, and input1 can
not be used in square(). This is called the scope of a variable.

What is important to realize, is that in all cases the definition of functions and
declaration of variables follows the same syntax. Sometimes the syntax is ob-
scured by complex data types or complex variable names, but the structure is
always the same. Whenever parentheses are encountered in code it means that a
function is involved, either as a function definition or a function call.

A.2 C++: a simple class

The main feature of C++ is that it allows for the definition of custom data types
called classes. A class is a construct that combines data storage and functional-
ity. Data is stored in members, and functionality is implemented in methods, also
called member functions. Members can be of any known data type, including other
classes.

Listing A.2 shows a the declaration and implementation of a simple class. It
contains the definition of a class for a rectangle. A rectangle has a width and a
height so naturally the class has two members to store these two values (lines 14
and 15). In addition the class has a member function to calculate the surface.
Line 10 contains the definition and the name of this member function and its in-
and output values including their data type. The class has a second, special mem-
ber function in line 5; the constructor. The constructor is special since it has no
return value, and since it is called automatically when a variable of the class type
is declared. A variable of a class type is an instance of that class or an object. The
constructor can be recognized from the fact that it has the same name as the class.
Since the constructor is automatically called when an object is declared, it is in
general used to initialize the members. Members can be initialized in the body
of the constructor function (line 8) or in the so called initializer list (line 6), which
uses the constructor initialization syntax.

∗There are certain rules the name of a variable should follow. For example, it can not start with a
digit, and it can not contain certain characters like “-”, “+”, and “{”.

195

A. General C/C++ constructs

1 #include <iostream>

2

3 class Rectangle{

4 public:

5 Rectangle(double width, double height)

6 : m_width(width)

7 {

8 m_height = height;

9 }

10 double surface() {

11 return m_width * m_height;

12 }

13 private:

14 double m_width;

15 double m_height;

16 };

17

18 int main() {

19 double width = 2.0;

20 double height(4.0);

21 Rectangle my_rec(width, height);

22

23 double surface = my_rec.surface();

24 std::cout << surface;

25 return 0;

26 }

Listing A.2. Listing of a simple C++ program equipped with a class.

The Rectangle class is divided into two sections: a public section and a
private section, denoted by their respective access specifiers∗. Access specifiers
define the accessibility of class members; public members are accessible from
outside the class, private only from members within the class.

In line 21 an instance of the class, called an object, is created. This uses the
same syntax as line 20: constructor initialization. The constructor is called passing
the two required initialization values. Whereas a double only requires a single
initialization value, the Rectangle class requires two values, as defined on line 5.

In line 23 the surface()member of my_rec is called, which can be recognized
by the dot “.”. This is a function call just like any other, only now the function
resides within a class so we need to specify which object contains the desired
function.

∗ There is no limit to the number of sections; the access of a member is defined by the last access
specifier that was listed. If no access specifier is listed, members are private.

196

A.3. Operator overloading

On line 24 the contents of the surface variable are sent to output (printed on
screen). This line requires some more explanation. The line starts with the object
std::cout. The actual object is cout which is an object representing console out-
put; everything sent to this object is printed to screen. It is defined externally in the
file iostream.h, a so called header file, containing only definitions (no implemen-
tation) of classes and functions. We can use this externally defined object since it
is included in line 1. The prefix std:: means that the cout object is available in
a so called namespace. A namespace is an environment within which identifiers
(variables, functions) can be defined and subsequently used. In this way multiple
identifiers with the same name can be defined as long as they reside in different
namespaces. They can only be used within a namespace or in combination with
the appropriate namespace, requiring a double colon “::” (as demonstrated by
std::cout).

The second element of line 24 is the “<<”-operator∗, which is here used to send
the variable surface to the cout object. This demonstrates an important feature
of C++ called operator overloading.

A.3 Operator overloading

As previously stated, classes are types just like the built-in types. This means
that they can be used in combination with operators, but the result of an operator
acting on a class† must be defined explicitly. An example is shown in listing A.3,
where the result of adding two Rectangle objects is that the width of the resulting
Rectangle is the sum of the widths of the original Rectangles‡.

The Rectangle class is extended with the operator on line 13. Note that only
the fact that this operator is available for this class is defined. The actual im-
plementation is located outside the class on lines 19 and 20. This separation of
interface (the definition of a class by its members and member functions by their
names, input types, and output types) and implementation can be done for all mem-
ber functions. It is a feature that is widely used in C++, and in practice the two
parts are usually placed in separate files: a header file (for the interface) and a
source file (for the implementation).

The interface (line 13) shows that the += operator requires one Rectangle ob-
ject as input (the right-hand side of the operator) and returns a Rectangle object
(the left-hand side). This format is also present on line 19, but the namespace
Rectangle is added since it concerns a member of that class. The body of the im-

∗ The standard use of the “<<”-operator is shift left, i.e., a bitwise shifting to the left of an integer
variable. A shift by one bit equals a multiplication by 2.

† Nearly all operators can be overloaded, for instance “+”, “--”, “&&”, and “()”.
‡ Not the “+” operator but the “+=” operator is implemented. So instead of a new Rectangle

object being created, the width of the right-hand side Rectangle object is added to the width of
the left-hand side Rectangle object.

197

A. General C/C++ constructs

1 #include <iostream>

2

3 class Rectangle{

4 public:

5 Rectangle(double width, double height)

6 : m_width(width)

7 {

8 m_height = height;

9 }

10 double surface() {

11 return m_width * m_height;

12 }

13 Rectangle operator+=(Rectangle& other);

14 private:

15 double m_width;

16 double m_height;

17 };

18

19 Rectangle Rectangle::operator+=(Rectangle& other) {

20 m_width += other.width;

21 }

22

23 int main() {

24 double width = 2.0;

25 double width2 = 3.0;

26 double height(4.0);

27 Rectangle my_rec(width, height);

28 Rectangle my_rec2(width2, height);

29

30 my_rec += my_rec2;

31 std::cout << my_rec.surface();

32 return 0;

33 }

Listing A.3. Listing of a simple C++ program demonstrating operator overloading. The code
is an extension of the code in listing A.2.

198

A.4. Pointers and references

1 #include <iostream>

2

3 int main() {

4 int i = 2.0;

5 int* p_i;

6 p_i = &i;

7 std::cout << *p_i;

8 int& r_i = i;

9 std::cout << r_i;

10 return 0;

11 }

Listing A.4. Listing of a simple C++ program demonstrating the syntax of pointers and
references.

plementation on line 20 shows that the width of the Rectangle is increased with
the width of the Rectangle given as argument.

On line 30 the += operator is used so that the new width of my_rec will be
2.0 + 3.0 = 5.0.

In the definition of the argument list of the operator on lines 13 and 19 there
is an extra “&” character denoting that the argument is passed as a reference.

A.4 Pointers and references

A pointer is a variable that holds an address (usually the address of another vari-
able) and a reference is a datatype that only refers to another variable, i.e., it is an
alternative name for a variable. The difference is that a pointer itself represents
data (the address) and a reference does not, meaning that a pointer can be de-
clared without initialization (it points to an undefined address in memory) and a
reference can only refer to an existing variable.

In listing A.4 the syntax and use of pointers and references is shown. On line 5
a pointer is defined (note the “*”), but it is not initialized, meaning that its contents
(the address) is not defined and it can point to any value in memory. In the next
line (line 6) the pointer is given the address of variable i (note the “&”). Line 7
shows how the pointer can be used to access variable i. By prefixing the pointer
variable with “*” the pointer is dereferenced, meaning that the value at the address
the pointer points to is read from memory.

On line 8 a reference to variable i is defined (note the “&”), and on line 9 the
reference is used to print the value of i to screen. It shows that reference r_i can
be used just like a normal variable, it is only a different name.

Pointers and references are often used in function calls. When a variable is
passed to a function as argument, the whole object is copied. This is called pass by

199

A. General C/C++ constructs

1 template <class T>

2 T square(T x) {

3 T result = x * x;

4 return result;

5 }

6

7 int main() {

8 double input1 = 2.718;

9 double input2(3.142);

10 double out;

11 out = input1 + square<double>(input2);

12 return 0;

13 }

Listing A.5. Listing of a reimplementation of listing A.1 with a template function to calculate
the square.

value. For small variables like the built-in types this is not a problem, but for large
classes this can be a large amount of data, meaning that the program is slower and
requires more memory. Another option is called pass by reference, meaning that the
function is only given a reference to the argument variable. This is demonstrated
in listing A.3 line 19. Since only a reference to the original data has to be passed
to the function it is a lot faster and requires less memory. Because the function
now has access to the original data (instead of to a copy of the data), the function
can alter this data, meaning that this effectively acts as a return mechanism. In
contrast to the standard return mechanism it is not limited to a single variable,
since a function can have multiple arguments, each passed as reference.

A similar functionality can be reached using pointers. If a pointer is passed
as argument to a function, the pointer is copied (pass by value), but through the
pointer the original data can be accessed.

A.5 Templates

The square()-function in listing A.1 only works with variables of type double.
It would be convenient to have a general square()-function that we can use with
any type of variable. This can be accomplished with templates.

Listing A.5 show how the square()-function is implemented as a function
template. The actual function is preceded with a template declaration in line 1.
Between angled brackets the template parameter T is given, which represents any
type, it does not have to be defined. In the rest of the function the type double is
replaced with the type T. Only when the function is called, do we need to tell the
function which type we are dealing with, line 11, again using angled brackets.

200

A.6. Frequently used operators

1 template <class T>

2 class Container {

3 public:

4 T m_value;

5 };

6

7 int main() {

8 double input = 2.718;

9 Container<double> my_contain;

10 my_contain.m_value = input;

11 return 0;

12 }

Listing A.6. Listing of a simple program using a template class.

This single function can now be used with any type. The only thing that is
required is that the type must support a multiplication with a variable of the same
type, required on line 3∗. Any type means that we can also use it with classes.
For instance, we could define a class for complex numbers containing a real and
imaginary value. What a multiplication does to this kind of variable must be
explicitly defined in the class.

Apart from functions, we can also use templates in classes: template classes.
This is demonstrated in listing A.6.

As with the function template, the class is preceded by a templatedeclaration,
naming the random variable type T. The class only contains a member variable of
this type T (line 4). On line 9 an object of this Container<> type is created, where
the desired type (double) is passed between angled brackets. The my_contain

variable can now store a double variable which is done in line 10.
Templates allow general functions and classes to be defined. Only when an

actual call to such a function or an object of such a class is required does the type
have to be defined. This offers more flexibility and modularity.

A.6 Frequently used operators

We conclude this appendix with a number of frequently used operators. Because
in C++ intricate combinations of data types can be used the syntax is often ob-
scured by long, complex variable types and names. The key in understanding a
piece of C++ code is to recognize the different elements: variable type, variable
name, operator. In table A.1 the most commonly used operators are listed together
with their meaning. The table can be used as a legend when reading C++.

∗ This particular implementation also requires that the assignment operator (operator=) is
defined.

201

A. General C/C++ constructs

operator meaning

{ } section of code
() (member) function definition or call, or

variable declaration and initialization
. class member (function)
: parent class(es) for derived class, or initializer list
:: namespace (of class)

* pointer (or multiplication)
& reference or obtain address
< > template

Table A.1. Frequently used C++ operators and their meaning.

202

Appendix B

Rachah & Paschen notation

The following two tables can be used to translate Paschen notation into Racah
notation and vice versa.

Orbital Block

s
4s 5s 6s 7s
1s 2s 3s 4s

p
4p 5p 6p 7p
2p 3p 4p 5p

d
3d 4d 5d 6d
3d 4d 5d 6d

Table B.1. The blocks in Racah notation (top row) and the corresponding blocks in Paschen
notation (bottom row). Note that the four primed d levels in Racah notation are denoted as s
in Paschen notation.

203

B. Rachah & Paschen notation

Orbital Levels

s
[3/2]2 [3/2]1

′[1/2]0
′[1/2]1

s5 s4 s3 s2

p

[1/2]1 [5/2]3 [5/2]2 [3/2]1 [3/2]2
p10 p9 p8 p7 p6

[1/2]0
′[3/2]1

′[3/2]2
′[1/2]1

′[1/2]0
p5 p4 p3 p2 p1

d

[1/2]0 [1/2]1 [7/2]4 [7/2]3 [3/2]2 [3/2]1
d6 d5 d′4 d4 d3 d2

[5/2]2 [5/2]3
′[5/2]2

′[5/2]3
′[3/2]2

′[3/2]1
d′′1 d′1 s′′′′1 s′′′1 s′′1 s′1

f
[7/2]3,4 [9/2]4,5

′[7/2]3,4 [3/2]1,2 [5/2]2,3
′[5/2]2,3

U V W X Y Z

Table B.2. The orbitals (Racah notation) and the levels they contain. The top line shows
the Racah notation and the bottom line the corresponding Paschen notation (in italics). The
prime in the Racah notation denotes the configuration of the core: P3/2 for unprimed, P1/2 for
primed.

204

Appendix C

Ar CRM data

CRM model data for Ar model of chapter 8.

Table C.1. All levels included in the Ar model of chapter 8, their energy, and statistical weight.

name energy weight name energy weight

ground 0.000000 1

4s[3/2]2 11.548354 5 4s[3/2]1 11.623592 3

4s’[1/2]0 11.723160 1 4s’[1/2]1 11.828071 3

4p[1/2]1 12.907015 3 4p[5/2]3 13.075715 7

4p[5/2]2 13.094872 5 4p[3/2]1 13.153143 5

4p[3/2]2 13.171777 3 4p[1/2]0 13.273038 1

4p’[3/2]1 13.282638 3 4p’[3/2]2 13.302227 5

4p’[1/2]1 13.327856 3 4p’[1/2]0 13.479886 1

3d[1/2]0 13.845038 1 3d[1/2]1 13.863668 3

3d[3/2]2 13.903454 5 3d[7/2]4 13.979237 9

3d[7/2]3 14.012738 7 3d[5/2]2 14.063027 5

3d[5/2]3 14.099055 7 3d[3/2]1 14.152514 3

3d’[5/2]2 14.213671 5 3d’[3/2]2 14.234022 5

205

C. Ar CRM data

name energy weight name energy weight

3d’[5/2]3 14.236105 7 3d’[3/2]1 14.303668 3

5s[3/2]2 14.068297 5 5s[3/2]1 14.089968 3

5s’[1/2]0 14.241027 1 5s’[1/2]1 14.255085 3

5p[1/2]1 14.463995 3 5p[5/2]3 14.499053 7

5p[5/2]2 14.506067 5 5p[3/2]1 14.524913 3

5p[3/2]2 14.528913 5 5p[1/2]0 14.575948 1

5p’[3/2]1 14.680650 3 5p’[1/2]1 14.687118 3

5p’[3/2]2 14.688290 5 5p’[1/2]0 14.738115 1

6s 14.842395 8 6s’ 15.020082 4

7s 15.182461 8 7s’ 15.359150 4

8s 15.363559 8 8s’ 15.541244 4

9s 15.470217 8 9s’ 15.647963 4

10s 15.539020 8 10s’ 15.716050 4

6p 15.027492 24 6p’ 15.204578 12

7p 15.285607 24 7p’ 15.441823 12

8p 15.418657 24 8p’ 15.595913 12

9p 15.505837 24 9p’ 15.687000 12

4d 14.780255 40 4d’ 14.967431 20

5d 15.146943 40 5d’ 15.316640 20

6d 15.343672 40 6d’ 15.515428 20

7d 15.454865 40 7d’ 15.632548 20

8d 15.530544 40 8d’ 15.713471 20

4f 14.905574 56 4f’ 15.083141 28

5f 15.213270 56 5f’ 15.390949 28

6f 15.380265 56 6f’ 15.557897 28

7f 15.481085 56 7f’ 15.658571 28

ion 15.75961 6

206

Table C.2. All radiative transitions included in the Ar CRM of chapter 8, their wavelength

and transition probability.

upper lower λ A upper lower λ A

level level [nm] [106s−1] level level [nm] [106s−1]

4s[3/2]1 ground 106.7 119 4s’[1/2]1 ground 104.8 510

4p[1/2]1 4s’[1/2]0 1047.3 0.98 4p[1/2]1 4s’[1/2]1 1149.1 0.19

4p[1/2]1 4s[3/2]1 966.0 5.43 4p[1/2]1 4s[3/2]2 912.5 18.9

4p[5/2]3 4s[3/2]2 811.8 33.1 4p[5/2]2 4s’[1/2]1 978.7 1.47

4p[5/2]2 4s[3/2]1 842.7 21.5 4p[5/2]2 4s[3/2]2 801.7 9.28

4p[3/2]1 4s’[1/2]1 935.7 5.03 4p[3/2]1 4s[3/2]1 810.6 4.9

4p[3/2]1 4s[3/2]2 772.6 24.5 4p[3/2]1 4s’[1/2]0 867.0 2.43

4p[3/2]2 4s’[1/2]1 922.7 1.06 4p[3/2]2 4s[3/2]1 800.8 25.0

4p[3/2]2 4s[3/2]2 763.7 5.18 4p[1/2]0 4s[3/2]1 751.7 40.2

4p’[3/2]1 4s’[1/2]0 795.0 18.6 4p’[3/2]1 4s’[1/2]1 852.4 13.9

4p’[3/2]1 4s[3/2]1 747.3 0.022 4p’[3/2]1 4s[3/2]2 714.9 0.625

4p’[3/2]2 4s’[1/2]1 841.1 22.3 4p’[3/2]2 4s[3/2]1 738.6 8.47

4p’[3/2]2 4s[3/2]2 706.9 3.8 4p’[1/2]1 4s’[1/2]0 772.6 11.7

4p’[1/2]1 4s’[1/2]1 826.7 15.3 4p’[1/2]1 4s[3/2]1 727.5 1.83

4p’[1/2]1 4s[3/2]2 696.7 6.39 4p’[1/2]0 4s’[1/2]1 750.6 44.5

4p’[1/2]0 4s[3/2]1 667.9 0.236

3d[1/2]0 4p[1/2]1 1321.8 8.1 3d[1/2]0 4p’[1/2]1 2397.3 0.36

3d[1/2]0 4p’[3/2]1 2204.6 0.12 3d[1/2]1 4p[1/2]1 1296.0 7.4

3d[1/2]1 4p’[1/2]1 2314.0 0.17 3d[1/2]1 4p’[3/2]1 2133.9 0.032

3d[1/2]1 4p’[3/2]2 2208.3 0.14 3d[1/2]1 4p[5/2]2 1612.7 0.039

3d[3/2]2 4p[1/2]1 1244.3 4.9 3d[3/2]2 4p’[1/2]1 2154.0 0.11

3d[3/2]2 4p[3/2]1 1694.5 0.26 3d[3/2]2 4p[3/2]2 1652.4 2.5

3d[3/2]2 4p’[3/2]2 2062.2 0.39 3d[3/2]2 4p[5/2]2 1533.4 0.12

3d[7/2]3 4p[3/2]2 1442.4 0.088 3d[7/2]3 4p[5/2]2 1350.8 11

3d[5/2]2 4p[3/2]1 1391.1 7.3 3d[5/2]2 4p[5/2]2 1280.6 5.7

3d[5/2]2 4p[5/2]3 1255.8 0.12 3d[5/2]3 4p’[3/2]2 1556.0 0.0098

3d[5/2]3 4p[5/2]2 1234.7 2 3d[5/2]3 4p[5/2]3 1211.6 3.1

3d[3/2]1 4p[1/2]0 1409.7 4.3 3d[3/2]1 4p[3/2]1 1264.2 11

3d[3/2]1 4p[5/2]2 1172.3 0.952 3d[3/2]1 ground 87.6 270

207

C. Ar CRM data

upper lower λ A upper lower λ A

level level [nm] [106s−1] level level [nm] [106s−1]

3d’[5/2]2 4p’[3/2]1 1331.7 13 3d’[5/2]2 4p’[3/2]2 1360.3 2.2

3d’[5/2]2 4p[5/2]2 1108.2 0.83 3d’[3/2]2 4p’[1/2]1 1368.2 6.2

3d’[3/2]2 4p[3/2]1 1167.2 0.369 3d’[3/2]2 4p[3/2]2 1147.1 3.76

3d’[5/2]3 4p’[3/2]2 1327.6 15 3d’[3/2]1 4p[1/2]0 1203.0 0.42

3d’[3/2]1 4p’[1/2]0 1505.1 5.2 3d’[3/2]1 4p’[1/2]1 1270.6 7.1

3d’[3/2]1 4p’[3/2]1 1214.3 4.5 3d’[3/2]1 4p[3/2]2 1077.6 0.396

3d’[3/2]1 ground 86.7 313

5s[3/2]2 4p[1/2]1 1067.6 4.9 5s[3/2]2 4p’[1/2]1 1674.5 0.31

5s[3/2]2 4p[3/2]1 1382.9 0.46 5s[3/2]2 4p’[3/2]1 1578.1 0.059

5s[3/2]2 4p[3/2]2 1354.8 3.3 5s[3/2]2 4p’[3/2]2 1618.4 0.12

5s[3/2]2 4p[5/2]2 1273.7 1.1 5s[3/2]2 4p[5/2]3 1249.1 11

5s[3/2]1 4p[1/2]0 1517.7 1.3 5s[3/2]1 4p’[1/2]0 2032.3 0.16

5s[3/2]1 4p[1/2]1 1048.1 2.44 5s[3/2]1 4p’[1/2]1 1626.9 0.03

5s[3/2]1 4p[3/2]1 1350.3 4.6 5s[3/2]1 4p’[3/2]1 1535.7 0.45

5s[3/2]1 4p[3/2]2 1323.5 2.7 5s[3/2]1 4p’[3/2]2 1573.9 0.029

5s[3/2]1 4p[5/2]2 1246.0 8.9 5s[3/2]1 ground 88.0 77

5s’[1/2]0 4p’[1/2]1 1357.7 5.1 5s’[1/2]0 4p[1/2]1 929.4 3.26

5s’[1/2]0 4p[3/2]1 1159.5 2.22 5s’[1/2]0 4p’[3/2]1 1293.7 10

5s’[1/2]1 4p[1/2]0 1262.5 0.38 5s’[1/2]1 4p’[1/2]0 1599.4 1.9

5s’[1/2]1 4p’[1/2]1 1337.1 3.4 5s’[1/2]1 4p[1/2]1 919.7 1.76

5s’[1/2]1 4p[3/2]1 1144.5 0.28 5s’[1/2]1 4p’[3/2]1 1275.0 2.0

5s’[1/2]1 4p[3/2]2 1125.1 1.39 5s’[1/2]1 4p’[3/2]2 1301.2 8.9

5s’[1/2]1 4p[5/2]2 1068.6 0.21 5s’[1/2]1 ground 87.0 35

5p[1/2]1 4s’[1/2]0 452.4 0.0898 5p[1/2]1 4s’[1/2]1 470.4 0.109

5p[1/2]1 4s[3/2]1 436.5 0.012 5p[1/2]1 4s[3/2]2 425.2 0.111

5p[5/2]3 3d[3/2]2 2081.7 0.076 5p[5/2]3 3d[7/2]4 2385.2 1.1

5p[5/2]3 4s[3/2]2 420.2 0.967 5p[5/2]2 4s’[1/2]1 463.0 0.0383

5p[5/2]2 4s[3/2]1 430.1 0.377 5p[5/2]2 4s[3/2]2 419.2 0.28

5p[3/2]1 4s’[1/2]0 442.5 0.0073 5p[3/2]1 4s’[1/2]1 459.7 0.0947

5p[3/2]1 4s[3/2]1 427.3 0.797 5p[3/2]1 4s[3/2]2 416.5 0.288

5p[3/2]2 4s’[1/2]1 459.1 0.0062 5p[3/2]2 4s[3/2]1 426.7 0.312

5p[3/2]2 4s[3/2]2 416.0 1.4 5p[1/2]0 4s’[1/2]1 451.2 1.18

5p[1/2]0 4s[3/2]1 419.9 2.57 5p’[3/2]1 4s’[1/2]0 419.2 0.539

208

upper lower λ A upper lower λ A

level level [nm] [106s−1] level level [nm] [106s−1]

5p’[3/2]1 4s’[1/2]1 434.6 0.297 5p’[3/2]1 4s[3/2]1 405.6 0.027

5p’[1/2]1 3d[3/2]2 1582.1 0.087 5p’[1/2]1 4s’[1/2]0 418.3 0.561

5p’[1/2]1 4s’[1/2]1 433.7 0.387 5p’[1/2]1 4s[3/2]1 404.7 0.041

5p’[1/2]1 4s[3/2]2 395.0 0.455 5p’[3/2]2 4s’[1/2]1 433.5 0.568

5p’[3/2]2 4s[3/2]1 404.6 0.333 5p’[3/2]2 4s[3/2]2 394.9 0.056

5p’[1/2]0 4s’[1/2]1 426.1 3.98

4d 4p[1/2]0 822.6 0.069 4d 4p[1/2]1 661.9 0.53

4d 4p’[1/2]1 853.7 0.16 4d 4p[3/2]1 770.8 0.094

4d 4p’[3/2]1 827.9 0.018 4d 4p[3/2]2 762.0 0.19

4d 4p’[3/2]2 838.8 0.21 4d 4p[5/2]2 735.6 0.20

4d 4p[5/2]3 727.4 0.48

6s 4p[1/2]0 790.0 0.13 6s 4p’[1/2]0 910.0 0.036

6s 4p[1/2]1 640.6 0.88 6s 4p’[1/2]1 818.6 0.11

6s 4p[3/2]1 742.1 0.77 6s 4p’[3/2]1 794.9 0.066

6s 4p[3/2]2 734.0 0.83 6s 4p’[3/2]2 805.0 0.089

6s 4p[5/2]2 709.5 1.03 6s 4p[5/2]3 701.8 1.67

6s’ 4p[1/2]0 709.7 0.11 6s’ 4p’[1/2]0 805.0 0.27

6s’ 4p[1/2]1 586.7 0.52 6s’ 4p’[1/2]1 732.7 1.02

6s’ 4p[3/2]1 670.8 0.23 6s’ 4p’[3/2]1 713.6 0.98

6s’ 4p[3/2]2 664.1 0.12 6s’ 4p’[3/2]2 721.7 1.86

6s’ 4p[5/2]2 644.0 0.038

7s 4p[1/2]0 649.3 0.035 7s 4p[1/2]1 544.9 0.37

7s 4p[3/2]1 616.6 0.22 7s 4p’[3/2]1 652.6 0.020

7s 4p[3/2]2 611.0 0.50 7s 4p’[3/2]2 659.4 0.023

7s 4p[5/2]2 593.9 0.53 7s 4p[5/2]3 588.5 0.81

7s’ 4p[1/2]0 594.3 0.09 7s’ 4p[1/2]1 505.6 0.48

7s’ 4p’[1/2]1 610.4 0.33 7s’ 4p[3/2]1 566.8 0.25

7s’ 4p’[3/2]1 597.1 0.41 7s’ 4p’[3/2]2 602.8 0.68

7s’ 4p[5/2]2 547.6 0.15

8s 4p[1/2]1 504.7 0.29 8s 4p’[1/2]1 609.0 0.028

8s 4p’[3/2]1 595.8 0.056 8s 4p[3/2]2 560.9 0.21

209

C. Ar CRM data

upper lower λ A upper lower λ A

level level [nm] [106s−1] level level [nm] [106s−1]

8s 4p’[3/2]2 601.5 0.052 8s 4p[5/2]2 546.5 0.18

8s 4p[5/2]3 541.9 0.38 8s’ 4p[3/2]1 523.3 0.20

8s’ 4p’[3/2]1 548.9 0.14 8s’ 4p’[3/2]2 553.7 0.20

9s 4p[1/2]0 564.3 0.079 9s 4p[1/2]1 483.7 0.064

9s 4p[3/2]2 535.1 0.060 9s 4p[5/2]2 522.0 0.049

9s 4p[5/2]3 517.8 0.15

10s 4p[5/2]2 507.3 0.098 10s 4p[5/2]3 503.3 0.051

6p 4s’[1/2]0 375.2 0.0088 6p 4s’[1/2]1 387.5 0.038

6p 4s[3/2]1 364.2 0.072 6p 4s[3/2]2 356.4 0.088

6p’ 4s’[1/2]0 356.1 0.030 6p’ 4s’[1/2]1 367.2 0.092

6p’ 4s[3/2]1 346.2 0.028

7p 4s’[1/2]1 358.6 0.021 7p’ 4s’[1/2]1 343.1 0.033

4d’ 4p[1/2]0 731.7 0.0087 4d’ 4p[1/2]1 601.7 0.31

4d’ 4p’[1/2]1 756.2 0.15 4d’ 4p[3/2]1 690.5 0.11

4d’ 4p’[3/2]1 735.9 0.11 4d’ 4p[3/2]2 683.4 0.22

4d’ 4p’[3/2]2 744.6 0.24 4d’ 4p[5/2]2 662.1 0.047

4d’ 4p[5/2]3 655.4 0.11

5d 4p[1/2]0 661.6 0.029 5d 4p[1/2]1 553.5 0.42

5d 4p’[1/2]1 681.6 0.038 5d 4p[3/2]1 627.7 0.11

5d 4p’[3/2]1 665.0 0.026 5d 4p[3/2]2 621.8 0.18

5d 4p’[3/2]2 672.1 0.069 5d 4p[5/2]2 604.2 0.29

5d 4p[5/2]3 598.6 0.60 5d’ 4p[1/2]0 606.7 0.012

5d’ 4p[1/2]1 514.5 0.37 5d’ 4p’[1/2]1 623.4 0.23

5d’ 4p[3/2]1 578.1 0.24 5d’ 4p’[3/2]1 609.6 0.30

5d’ 4p[3/2]2 573.1 0.21 5d’ 4p’[3/2]2 615.5 0.43

5d’ 4p[5/2]2 558.0 0.27 5d’ 4p[5/2]3 553.3 0.084

6d 4p[1/2]0 598.8 0.023 6d 4p’[1/2]0 665.2 0.0091

6d 4p[1/2]1 508.8 0.21 6d 4p’[1/2]1 615.1 0.016

210

upper lower λ A upper lower λ A

level level [nm] [106s−1] level level [nm] [106s−1]

6d 4p[3/2]1 570.9 0.023 6d 4p’[3/2]1 601.6 0.015

6d 4p[3/2]2 566.0 0.19 6d 4p’[3/2]2 607.3 0.015

6d 4p[5/2]2 551.3 0.074 6d 4p[5/2]3 546.7 0.40

6d’ 4p[1/2]1 475.3 0.22 6d’ 4p[3/2]1 529.0 0.090

6d’ 4p’[3/2]1 555.3 0.067 6d’ 4p[3/2]2 524.8 0.064

6d’ 4p’[3/2]2 560.2 0.18 6d’ 4p[5/2]2 512.2 0.10

6d’ 4p[5/2]3 508.2 0.016

7d 4p[1/2]0 568.3 0.013 7d 4p[1/2]1 486.6 0.24

7d 4p’[1/2]1 582.9 0.0041 7d 4p[3/2]1 543.1 0.034

7d 4p[3/2]2 538.7 0.035 7d 4p’[3/2]2 576.0 0.016

7d 4p[5/2]2 525.4 0.13 7d 4p[5/2]3 521.1 0.22

7d’ 4p[1/2]1 454.9 0.0095 7d’ 4p’[3/2]2 532.0 0.091

8d 4p[1/2]0 549.2 0.0090 8d 4p[1/2]1 472.6 0.043

8d 4p’[3/2]1 551.6 0.0059 8d 4p[3/2]2 521.5 0.038

8d 4p[5/2]2 509.0 0.028 8d 4p[5/2]3 505.1 0.083

4f 3d[1/2]0 1169.1 0.036 4f 3d[1/2]1 1190.0 0.66

4f 3d[3/2]1 1646.4 0.76 4f 3d[3/2]2 1237.2 0.75

4f 3d’[5/2]2 1791.9 0.11 4f 3d[5/2]3 1537.3 1.77

4f 3d[7/2]4 1338.4 2.3 4f 5s[3/2]2 1480.8 0.053

4f’ 3d’[3/2]1 1590.6 1.38 4f’ 3d[3/2]2 1051.0 0.68

4f’ 3d’[3/2]2 1460.2 2.3 4f’ 3d’[5/2]3 1463.7 5.1

4f’ 3d[7/2]3 1158.3 0.20

211

Bibliography

[1] W. Baumjohann and R.A. Treumann. Basic space plasma physics. Imperial
College Press, 1997.

[2] G.J.M. Hagelaar. Modeling of Microdischarges for Display Technology. PhD
thesis, Eindhoven University of Technology, The Netherlands, 2000.

[3] H.W.P. van der Heijden. Modelling of Radiative Transfer in Light Sources. PhD
thesis, Eindhoven University of Technology, The Netherlands, 2003.

[4] C.W. Johnston. Transport and Equilibrium in Molecular Plasmas: the sulfur
lamp. PhD thesis, Eindhoven University of Technology, The Netherlands,
2003.

[5] V. Banine and R. Moors. Plasma sources for euv lithography exposure tools.
Journal of Physics D: Applied Physics, 37(23):3207, 2004.

[6] R.S. Tipa and G.M.W. Kroesen. Plasma-stimulated wound healing. Plasma
Science, IEEE Transactions on, 39(11):2978 –2979, nov. 2011.

[7] G.J.J. Winands, Keping Yan, A.J.M. Pemen, S.A. Nair, Zhen Liu, and E.J.M.
van Heesch. An industrial streamer corona plasma system for gas cleaning.
Plasma Science, IEEE Transactions on, 34(5):2426 –2433, oct. 2006.

[8] D.R. Bates, A.E. Kingston, and R.W.P. McWhirter. Recombination between
electrons and atomic ions, I. Optically thin plasmas. Proc. R. Soc., A267:297,
1962.

[9] J. van Dijk, A. Hartgers, J. Jonkers, and J.J.A.M. van der Mullen. Colli-
sional radiative models with multiple transport-sensitive levels - applica-
tion to high electron density mercury discharges. Journal of Physics D: Ap-
plied Physics, 34(10):1499, 2001.

[10] A. Flitti and S. Pancheshnyi. Gas heating in fast pulsed discharges in N2-O2

mixtures. The European Physical Journal Applied Physics, 45:21001, 2009.

213

Bibliography

[11] J.J. Munro and J. Tennyson. Global plasma simulations using dynamically
generated chemical models. Journal of Vacuum Science and Technology A: Vac-
uum, Surfaces, and Films, 26(4):865–869, 2008.

[12] V. Guerra and J. Loureiro. Non-equilibrium coupled kinetics in stationary
N2-O2 discharges. Journal of Physics D: Applied Physics, 28(9):1903, 1995.

[13] M. Jiménez Díaz. Modelling of Microwave Induced Plasmas. The interplay be-
tween electromagnetism, plasma chemistry and transport. PhD thesis, Eind-
hoven University of Technology, The Netherlands, 2011.

[14] M.J. van den Donker. Modelling microwave plasmas for deposition purposes;
exploring the freedom in space and chemistry. PhD thesis, Eindhoven University
of Technology, The Netherlands, 2008.

[15] T.H. Chung, H.J. Yoon, and D.C. Seo. Global model and scaling laws for
inductively coupled oxygen discharge plasmas. Journal Applied Physics,
86(7):3536–3542, 1999.

[16] S. Ashida, C. Lee, and M.A. Lieberman. Spatially averaged (global) model
of time modulated high density argon plasmas. American Vacuum Society,
13(5):2498, 1995.

[17] S. Kim. An improved global model for electronegative discharge and ignition con-
ditions for peripheral plasma connected to a capacitive discharge. PhD thesis, Uni-
versity of California, Berkeley, 2006.

[18] B.H.P. Broks and J.J.A.M. van der Mullen. Creating a global plasma model
using disturbed bilateral relations. Journal of Physics: Conference Series,
44(1):53, 2006.

[19] R.D. Present. Kinetic theory of gases. Number v. 222 in International series in
pure and applied physics. McGraw-Hill, 1958.

[20] M.A. Lieberman and A.J. Lichtenberg. Principles of plasma discharges and
materials processing. Wiley-Interscience, 2005.

[21] V.A. Godyak. Soviet radio frequency discharge research. Monograph series on
Soviet Union. Delphic Associates, 1986.

[22] J.J.A.M. van der Mullen. Excitation equilibria in plasmas; a classification. PhD
thesis, Eindhoven University of Technology, The Netherlands, 1986.

[23] Takashi Fujimoto. Kinetics of ionization-recombination of a plasma
and population density of excited ions. IV. Recombining plasma—low-
temperature case. Journal of the Physical Society of Japan, 49(4):1569–1576,
1980.

214

Bibliography

[24] J. van Dijk, A. Hartgers, J. Jonkers, and J.J.A.M. van der Mullen. A collisional
radiative model for mercury in high-current discharges. Journal of Physics
D: Applied Physics, 33(21):2798, 2000.

[25] J.J.A.M. and van der Mullen. Excitation equilibria in plasmas; a classifica-
tion. Physics Reports, 191(2-3):109–220, 1990.

[26] E.R. Kieft. Transient behavior of EUV emitting plasmas, a study by optical meth-
ods. PhD thesis, Eindhoven University of Technology, The Netherlands,
2005.

[27] J. van Dijk. Modelling of Plasma Light Sources — an object-oriented approach.
PhD thesis, Eindhoven University of Technology, The Netherlands, 2001.

[28] C.W. Johnston, H.W.P. van der Heijden, G.M. Janssen, J. van Dijk, and
J.J.A.M. van der Mullen. A self-consistent LTE model of a microwave-
driven, high-pressure sulfur lamp. Journal of Physics D: Applied Physics,
35(4):342, 2002.

[29] H.W.P. van der Heijden and J.J.A.M. van der Mullen. General treatment of
the interplay between fluid and radiative transport phenomena in symmet-
ric plasmas: the sulphur lamp as a case study. Journal of Physics D: Applied
Physics, 35(17):2112, 2002.

[30] L. Vriens and A.H.M. Smeets. Cross-section and rate formulas for electron-
impact ionization, excitation, deexcitation, and total depopulation of ex-
cited atoms. Phys. Rev. A, 22:940–951, Sep 1980.

[31] D.A. Benoy. Modelling of Thermal Argon Plasmas. PhD thesis, Eindhoven
University of Technology, The Netherlands, 1993.

[32] L. C. Johnson. Approximations for Collisional and Radiative Transition
Rates in Atomic Hydrogen. The Astrophysical Journal, 174:227, May 1972.

[33] D.A. Benoy, J.J.A.M. van der Mullen, B. Van Der Sijde, and D.C. Schram. A
novel collisional radiative model with a numerical bottom and an analytical
top. Journal of Quantitative Spectroscopy and Radiative Transfer, 46(3):195 – 210,
1991.

[34] H.W.P. van der Heijden, M.G.H. Boogaarts, S. Mazouffre, J.J.A.M. van der
Mullen, and D.C. Schram. Time-resolved experimental and computational
study of two-photon laser-induced fluorescence in a hydrogen plasma.
Phys. Rev. E, 61:4402–4409, Apr 2000.

[35] H.W. Drawin. Collision and transport cross-sections. Technical Report EUR-
CEA-FC-383, Association Euratom-C.E.A., 1967.

215

Bibliography

[36] Yong-Ki Kim and Mitio Inokuti. Generalized oscillator strengths of the he-
lium atom. I. Phys. Rev., 175:176–188, Nov 1968.

[37] A. Kimura, H. Kobayashi, M. Nishida, and P. Valentin. Calculation of colli-
sional and radiative transition probabilities between excited argon levels.
Journal of Quantitative Spectroscopy and Radiative Transfer, 34(2):189 – 215,
1985.

[38] J. Vlček. A collisional-radiative model applicable to argon discharges over
a wide range of conditions. I. Formulation and basic data. Journal of Physics
D: Applied Physics, 22(5):623–631, 1989.

[39] Fumihiko Kannari, Minoru Obara, and Tomoo Fujioka. An advanced ki-
netic model of electron-beam-excited KrF lasers including the vibrational
relaxation in KrF∗(B) and collisional mixing of KrF∗(B,C). Journal of Applied
Physics, 57(9):4309–4322, 1985.

[40] R.C. Tolman. The principles of statistical mechanics. Dover books on physics
and chemistry. Dover Publications, 1938.

[41] T. Holstein. Imprisonment of resonance radiation in gases. Phys. Rev.,
72:1212–1233, Dec 1947.

[42] A. Unsöld. Quantitative spektralanalyse der sonnenatmosphäre. Z. Astro-
phys., 24:355, 1948.

[43] G. Ecker and W. Weizel. Zustandssumme und effektive ionisierungsspan-
nung eines atoms im inneren des plasmas. Annalen der Physik, 452(2-3):126–
140, 1956.

[44] Milton Abramowitz and Irene A. Stegun. Handbook of Mathematical Func-
tions. National Bureau of Standards, tenth edition, 1964.

[45] B.F.M. Pots, B. van der Sijde, and D.C. Schram. A collisional radiative model
for the argon ion (laser) system with an experimental test. Physica B+C,
94(3):369 – 393, 1978.

[46] A. Hartgers, J. van Dijk, J. Jonkers, and J.J.A.M. van der Mullen. CRModel:
A general collisional radiative modeling code. Computer Physics Communi-
cations, 135(2):199 – 218, 2001.

[47] G.M. Janssen. Design of a General Plasma Simulation Model, Fundamental As-
pects and Applications. PhD thesis, Eindhoven University of Technology, The
Netherlands, 2000.

[48] A. Hartgers. Modelling of a Fluorescent Lamp Plasma. PhD thesis, Eindhoven
University of Technology, The Netherlands, 2003.

216

Bibliography

[49] B.H.P. Broks. Multi-fluid Modeling of Transient Plasmas. PhD thesis, Eind-
hoven University of Technology, The Netherlands, 2006.

[50] M.L. Beks. Modelling additive transport in metal halide lamps. PhD thesis,
Eindhoven University of Technology, The Netherlands, 2008.

[51] W.J.M. Brok. Modelling of Transient Phenomena in Gas Discharges. PhD thesis,
Eindhoven University of Technology, The Netherlands, 2005.

[52] D. Mihailova. Sputtering Hollow Cathode Discharges designed for Laser Appli-
cations. Experiments and Theory. PhD thesis, Eindhoven University of Tech-
nology, The Netherlands, 2010.

[53] M.H.L. van der Velden. Radiation generated plasmas, a challenge in modern
lithography. PhD thesis, Eindhoven University of Technology, The Nether-
lands, 2008.

[54] J.J.A.M. van der Mullen, J.M. Palomares Linares, E.A.D. Carbone, W.A.A.D.
Graef, and S. Hübner. High rep-rate laser induced fluorescence applied to
surfatron induced plasmas: the method, proof of principle and preliminary
results. Journal of Instrumentation, 2012. Submitted.

[55] Jim Beveridge. Self-registering objects in C++. Dr. Dobb’s Journal, 288:38,
1998.

[56] The TBCI templated C++ numerical library. http://plasimo.phys.

tue.nl/TBCI.

[57] W.H. Press. Numerical recipes: the art of scientific computing. Cambridge Uni-
versity Press, 2007.

[58] E. Kreyszig. Advanced Engineering Mathematics. John Wiley & Sons, 2010.

[59] J.R. Dormand and P.J. Prince. A family of embedded Runge-Kutta formulae.
Journal of Computational and Applied Mathematics, 6(1):19 – 26, 1980.

[60] Alan C. Hindmarsh. LSODE and LSODI, two new initial value ordinary
differential equation solvers. SIGNUM Newsl., 15:10–11, December 1980.

[61] Linda Petzold. Automatic selection of methods for solving stiff and nonstiff
systems of ordinary differential equations. SIAM Journal on Scientific and
Statistical Computing, 4(1):136–148, 1983.

[62] N. Saito and I.H. Suzuki. Multiple photoionization in Ne, Ar, Kr and Xe
from 44 to 1300 eV. Int. J. Mass Spectrom. Ion Processes, 115:157–172, 1992.

[63] M.C.M. van de Sanden, J.M. de Regt, and D.C. Schram. Recombination of
argon in an expanding plasma jet. Phys. Rev. E, 47(4):2792–2797, Apr 1993.

217

http://plasimo.phys.tue.nl/TBCI
http://plasimo.phys.tue.nl/TBCI

Bibliography

[64] A.V. Phelps. The application of scattering cross sections to ion flux models
in discharge sheaths. Journal of Applied Physics, 76(2):747–753, 1994.

[65] P.M. Bellan. Fundamentals of plasma physics. Cambridge University Press,
Cambridge, UK, first edition, 2006.

[66] NIST atomic spectra database. http://physics.nist.gov/

PhysRefData/ASD/index.html.

[67] Àngel Yanguas-Gil, José Cotrino, and Luís L. Alves. An update of argon
inelastic cross sections for plasma discharges. Journal of Physics D: Applied
Physics, 38(10):1588, 2005.

[68] M.A. Khakoo, P. Vandeventer, J.G. Childers, I. Kanik, C.J. Fontes,
K. Bartschat, V. Zeman, D.H. Madison, S. Saxena, R. Srivastava, and A.D.
Stauffer. Electron impact excitation of the argon 3p54s configuration: dif-
ferential cross-sections and cross-section ratios. Journal of Physics B: Atomic,
Molecular and Optical Physics, 37(1):247, 2004.

[69] J. Ethan Chilton, John B. Boffard, R. Scott Schappe, and Chun C. Lin. Mea-
surement of electron-impact excitation into the 3p54p levels of argon using
Fourier-transform spectroscopy. Phys. Rev. A, 57:267–277, Jan 1998.

[70] M. Hayashi. Bibliography of electron and photon cross sections with atoms and
molecules published in the 20th century: argon. NIFS data series. National Inst.
for Fusion Science, 2003.

[71] Tobin Weber, John B. Boffard, and Chun C. Lin. Electron-impact excitation
cross sections of the higher argon 3p5np (n = 5, 6, 7) levels. Phys. Rev. A,
68:032719, Sep 2003.

[72] J.E. Chilton and C.C. Lin. Measurement of electron-impact excitation into
the 3p53d and 3p55s levels of argon using Fourier-transform spectroscopy.
Phys. Rev. A, 60(5):3712–3721, Nov 1999.

[73] A.I. Imre, A.I. Dashchenko, I.P. Zapesochnyi, and V.A. Kel’Man. Cross Sec-
tions for the Excitation of Ar II Laser Lines in Electron-Ion Collisions. ZhETF
Pis ma Redaktsiiu, 15:712, June 1972.

[74] J. B. Boffard, C. C. Lin, and C. A. DeJoseph, Jr. TOPICAL REVIEW: Appli-
cation of excitation cross sections to optical plasma diagnostics. Journal of
Physics D Applied Physics, 37:143–161, June 2004.

[75] J.B. Boffard, B.C., T. Weber, and C.C. Lin. Electron-impact excitation of ar-
gon: Optical emission cross sections in the range of 300-2500 nm. Atomic
Data and Nuclear Data Tables, 93(6):831 – 863, 2007.

218

http://physics.nist.gov/PhysRefData/ASD/index.html
http://physics.nist.gov/PhysRefData/ASD/index.html

Bibliography

[76] C.B. Opal, W.K. Peterson, and E.C. Beaty. Measurements of secondary-
electron spectra produced by electron impact ionization of a number of sim-
ple gases. J. Chem. Phys., 55:4100–4106, 1971.

[77] J. Jonkers. High power extreme ultra-violet (EUV) light sources for future
lithography. Plasma Sources Science and Technology, 15(2):S8–S16, 2006.

[78] Lennart Minnhagen. Spectrum and the energy levels of neutral argon, ArI.
J. Opt. Soc. Am., 63(10):1185–1198, Oct 1973.

[79] O. Zatsarinny and K. Bartschat. B-spline Breit-Pauli R-matrix calculations
for electron collisions with argon atoms. Journal of Physics B: Atomic, Molec-
ular and Optical Physics, 37(23):4693, 2004.

[80] Donald Rapp and Paula Englander-Golden. Total cross sections for ioniza-
tion and attachment in gases by electron impact. I. Positive ionization. The
Journal of Chemical Physics, 43(5):1464–1479, 1965.

[81] C.B. Collins. Analog to the Saha equation for recombining high-pressure
plasmas in which the electron temperature exceeds the gas temperature.
Phys. Rev., 158:94–96, Jun 1967.

[82] K. Dzierżęga, K. Musioł, E. C. Benck, and J. R. Roberts. Electron density
measurement in a rf helium plasma by laser-collision induced fluorescence
method. Journal of Applied Physics, 80:3196–3201, September 1996.

[83] R.S. Stewart, D.J. Smith, I.S. Borthwick, and A.M. Paterson. Model for
cw laser collisionally induced fluorescence in low-temperature discharges.
Phys. Rev. E, 62:2678–2683, Aug 2000.

[84] E.V. Barnat and K. Frederickson. Two-dimensional mapping of electron
densities and temperatures using laser-collisional induced fluorescence.
Plasma Sources Science and Technology, 19(5):055015, 2010.

[85] M. Moisan, Z. Zakrzewski, and R. Pantel. The theory and characteristics
of an efficient surface wave launcher (surfatron) producing long plasma
columns. Journal of Physics D: Applied Physics, 12(2):219, 1979.

[86] N. de Vries. Spectroscopic study of microwave induced plasmas : exploration of
active and passive methods. PhD thesis, Eindhoven University of Technology,
The Netherlands, 2008.

[87] J.M. Palomares, E. Iordanova, E.M. van Veldhuizen, L. Baede, A. Gamero,
A. Sola, and J.J.A.M. van der Mullen. Thomson scattering on argon sur-
fatron plasmas at intermediate pressures: Axial profiles of the electron
temperature and electron density. Spectrochimica Acta Part B: Atomic Spec-
troscopy, 65(3):225 – 233, 2010.

219

Bibliography

[88] J.T. Gudmundsson. Ionization mechanism in the high power impulse mag-
netron sputtering (HiPIMS) discharge. Journal of Physics: Conference Series,
100(8):082013, 2008.

[89] Vladimir Kouznetsov, Karol Macák, Jochen M. Schneider, Ulf Helmersson,
and Ivan Petrov. A novel pulsed magnetron sputter technique utilizing very
high target power densities. Surface and Coatings Technology, 122(2-3):290 –
293, 1999.

[90] J.T. Gudmundsson, J. Alami, and U. Helmersson. Spatial and temporal be-
havior of the plasma parameters in a pulsed magnetron discharge. Surface
and Coatings Technology, 161(2-3):249 – 256, 2002.

[91] B.M. DeKoven, P.R. Ward, R.E. Weiss, R.A. Christie, W. Scholl, D. Sproul,
F. Tomasel, and A. Anders. Carbon thin film deposition using high power
pulsed magnetron sputtering. In SVC - Society of Vacuum Coaters, Albu-
querque,NM, page 158, 2003.

[92] Johan Bohlmark, Jones Alami, Chris Christou, Arutiun P. Ehiasarian, and
Ulf Helmersson. Ionization of sputtered metals in high power pulsed mag-
netron sputtering. Journal of Vacuum Science & Technology A: Vacuum, Sur-
faces, and Films, 23(1):18–22, 2005.

[93] J.T. Gudmundsson. Notes on the electron excitation rate coefficients for ar-
gon and oxygen discharge. Technical Report RH-21-2002, Science Institute,
University of Iceland, 2002.

[94] K. Tachibana. Excitation of the 1s5,1s4, 1s3, and 1s2 levels of argon by low-
energy electrons. Phys. Rev. A, 34:1007–1015, Aug 1986.

[95] C. Lee and M.A. Lieberman. Global model of Ar, O2, Cl2, and Ar/O2 high-
density plasma discharges. Journal of Vacuum Science & Technology A: Vac-
uum, Surfaces, and Films, 13(2):368–380, 1995.

[96] J.A. Hopwood. Thin films. Number v. 27 in Thin Films. Academic Press,
2000.

[97] Junqing Lu and Mark J. Kushner. Effect of sputter heating in ionized metal
physical vapor deposition reactors. Journal of Applied Physics, 87(10):7198–
7207, 2000.

[98] S.M. Rossnagel, J.J. Cuomo, and W.D. Westwood. Handbook of plasma pro-
cessing technology: fundamentals, etching, deposition, and surface interactions.
Materials science and process technology series. Noyes Publications, 1990.

220

Bibliography

[99] W.H. Hayward and A.R. Wolter. Sputtering yield measurements with low-
energy metal ion beams. Journal of Applied Physics, 40(7):2911 –2916, jun
1969.

[100] B.W. Kernighan and D.M. Ritchie. The C Programming Language. Prentice-
Hall software series. Prentice Hall, 1988.

[101] B. Stroustrup. The C++ programming language. Addison-Wesley, 1991.

221

Acknowledgements/Dankwoord

Toen ik in 2007 als afstudeerder officieel lid werd van de groep EPG had ik nooit
kunnen denken dat dat zou resulteren in het werk dat voor u ligt. Met name
omdat de eerste taak die ik kreeg bestond uit het verdedigen van het doel tijdens
het (eerste) jaarlijkse voetbaltoernooi van de faculteit natuurkunde. Alhoewel dat
niet illustratief is voor de productiviteit binnen de groep, is het dat wel voor de
aangename sfeer. Vanaf het begin heb ik me in de groep thuis gevoeld, temeer
omdat ik met open armen werd ontvangen (het toernooi verliep voorspoedig).

Afgezien van experimentele strubbelingen is het afstudeeronderzoek onder
begeleiding van Joost van der Mullen me goed bevallen. Het kostte hem dan ook
weinig overredingskracht om mij nog wat langer in de groep te laten blijven om
hem te assisteren met de cursus numerieke plasmafysica. Er werd al gepolst of ik
zin had in een promotie, maar zo’n lang traject zag ik niet zitten.

Na ruim een jaar heeft Joost me toch overgehaald om eens wat dingen op te
gaan schrijven, wat geresulteerd heeft in dit proefontwerp. Het moge duidelijk
zijn dat ik Joost veel dank verschuldigd ben. Hij heeft me van begin af aan met
veel kennis, energie en humor begeleid. Joost, bedankt voor je tomeloze inzet, al
de tijd die je aan mij hebt opgeofferd en al de moeite die je hebt gedaan mij langer
van deze groep deel te laten zijn.

Daarnaast wil ik mijn tweede promotor Wim Goedheer bedanken. Ondanks
zijn drukke schema zag hij toch kans mij van nuttig commentaar te voorzien, zelfs
op materiaal dat ik hem pas op het laatste nippertje had opgestuurd. Ook mijn
copromotor Jan van Dijk ben ik dankbaar voor zijn feedback, niet zelden binnen
één minuut na een cvs commit.

Furthermore, I would like to thank my other committee members Gerrit Kroe-
sen, Gérard Degrez, Charles de Izarra, Leon Kamp, and Yi-Kang Pu. Thank you
for taking the time to read my thesis and to attend my defense.

Mijn positie als promovendus binnen de groep EPG heb ik als een zeer pret-
tige werkplek ervaren. Het is een groep met een grote verscheidenheid, maar ik
heb met iedereen goed kunnen opschieten. Op mijn “privé”-kamer, die me na de

223

Acknowledgements/Dankwoord

verhuizing vanuit n-laag is toebedeeld, was het soms wel erg rustig zonder het af
en toe kunnen kletsen met mijn voormalige kamergenoten Niels, Simon en Jesper,
alhoewel dat wel goed is gebleken voor de productiviteit.

De overige leden van de groep wil ik ook graag danken voor de gezelligheid
en hulpvaardigheid, met name secretaresse extraordinaire Rina, de leden van het
plasimo-team Manolo, Lei, Efe, Diana, Kim en Sara, en de experimentalisten José,
Ana en Emile. Vooral met Emile heb ik vele nuttige discussies gehad, en zijn
vaardigheden in het testen van mijn code, hoewel soms frustrerend, zijn zeer
waardevol geweest. Dank daarvoor.

Niet alleen een goede werkplek is belangrijk voor het succesvol afronden van
een promotie traject. Ook de privésfeer speelt een belangrijke rol door de steun en
nodige afleiding die ze bieden. Al mijn vrienden, die ik eigenlijk wel kan samen-
vatten als de leden en aanhang van het illustere (helaas ter ziele gegane) TOP-
Eindhoven en huidige TOB-7, wil ik daarvoor danken. Speciaal dank aan mijn
twee paranimfen Roel en Frank, en mijn vaste kompaan voor punk concerten,
Casper.

Dank ook aan mijn ouders, broers, zussen en geweldige kinderen die jullie op
deze aardbol hebben neergezet. Ik heb jullie in de laatste fase van mijn promotie
veel te weinig opgezocht, ik zal proberen mijn leven te beteren.

Verder wil ik mijn familie in Eindhoven bedanken. Ria, maar zeker ook Henk
en Joek. Jullie hebben deze “eeuwige student” met heel jullie hart geaccepteerd.
Ik zal nooit vergeten hoe Joek me elke maand weer kwam motiveren met een grote
zak drop. Joek, het heeft gewerkt!

Ten slotte wil ik de belangrijkste persoon in mijn leven bedanken. Sarah, dank
je wel dat je het na al die avonden en weekenden dat ik me op de studeerkamer
terugtrok nog steeds met me uithoudt. Ik hou van je.

Wouter Graef, Eindhoven 2012

224

Curriculum vitæ

24 January 1976

Born in Horn, the Netherlands.

1988–1994

Pre-university education, Sg. St. Ursula, Horn, the Netherlands.

1994–2009

M.Sc. in Applied Physics at Eindhoven University of Technology, the Nether-
lands.

• Traineeship in the Vortex Dynamics group, department of Applied Physics
at the Eindhoven University of Technology, the Netherlands.
Subject: Numerical simulation of tripoles on the gamma-plane using con-
tour dynamics.

• Traineeship at Máxima Medisch Centrum, Veldhoven, the Netherlands.
Subject: Validation of the Finometer in sympathovagal research in adults
and neonates.

• Master’s thesis project at ASML, Veldhoven, the Netherlands.
Subject: Time dependent collisional radiative model of an extreme ultravi-
olet driven plasma.

2009–2012

Ph.D. candidate in the Elementary Processes in Gas discharges group, department
of Applied Physics at Eindhoven University of Technology, the Netherlands.
Subject: Zero-dimensional models for plasma chemistry.

225

Glossary

(E)EDF — (Electron) Energy Distribution Function — Description of the energy
distribution over a species (or electrons).

ASDF — Atomic State Distribution Function — Description of the distribution of
the density of an atomic species over its excited energy levels.

BDF — Backward Differentiation Formula — Algorithm for solving stiff ordinary
differential equations.

CB — Corona Balance — Condition in which levels are populated by electron colli-
sional excitation from the ground state and depopulated by radiative decay.
CRM — Collisional Radiative Model — A model of the various collisional and ra-
diative processes in an atomic or ionic system.
CV — Control Volume method — Fluid modeling method using a mesh of discrete
static volumes.

ECC — Effective Conversion Coefficient — The coefficient describing the conver-
sion between two species including direct and indirect reaction paths.
EEK — Electron Excitation Kinetics
ESB — Excitation Saturation Balance — Condition in which levels are populated
and depopulated by electron impact.
EUV(L) — Extreme UltraViolet (Lithography) — (IC manufacturing technique us-
ing) light at a wavelength of 13.5 nm

GPM — Global Plasma Model — A volume averaged plasma model, predicting mean
plasma parameters as function of external control parameters, such as power density.
GUI — Graphical User Interface

HEK — Heavy particle Excitation Kinetics
HID — High Intensity Discharge
HiPIMS — High Power Impulse Magnetron Sputtering — Method for achieving
high plasma densities through the use of short, intense pulses to a magnetron plasma.

227

Glossary

IC — Integrated Circuit
ICP — Inductively Coupled Plasma — Plasma source in which the energy is sup-
plied through electromagnetic induction.

LC — Local Chemistry — Classification of a species whose (de)population mechanics
are predominantly in excitation space.
LCIF — Laser Collisional Induced Fluorescence — LIF experiment were the radi-
ation from a level linked to a laser pumped or laser depleted level is observed.
LIF — Laser Induced Fluorescence — Experimental technique in which an excited
level is populated by a tuned laser and the radiation of the excited level is observed.
LSODA — Livermore Solver for Ordinary Differential equations, with Auto-
matic method switching — Solver for stiff and non-stiff ordinary differential equations
that automatically switches to the most appropriate method.
LTE — Local Thermal Equilibrium

MAR — Molecular Assisted Recombination — A reaction sequence in which the
conversion of an atomic ion into a molecular ion is followed by dissociative recombination.
MD2D — Micro-Discharge 2-Dimensional — Code aimed at modeling plasma–elec-
trode interactions.
MEK — Mixed Excitation Kinetics
MIP — Microwave Induced Plasma

OES — Optical Emission Spectroscopy
OOP — Object Oriented Programming — Programming paradigm using objects
that contain both data and functionality.

PDR — Principal Density Reservoir — A species with a relatively high density.
PIC-MC — Particle-In-Cell Monte-Carlo — Particle-in-cell is a modeling technique
that tracks trajectories of individual (super)particles, while their interaction is modeled
through an averaged field assigned to a mesh. Monte-Carlo is a stochastic technique to
determine collisional occurrences and their outcome.
PLASIMO — Plasma Simulation Model — General plasma modeling framework.
PMT — PhotoMultiplier Tube

QSS(S) — Quasi Steady-State (Solution) — State or solution achieved when the
densities of excited levels (LC) can be described in terms of the densities of a small number
of species that are governed by transport (TS).

REM — Reaction Exploration Model — A model focusing on the interplay between
species through chemical reactions.
RRD — Reaction Rate Domain — Description of the source vector originating from
individual reaction rates.
RTCV — Ray-Trace Control-Volume method — CV method to which the tracing
of light paths through control volumes has been added.

228

Glossary

SDD — Species Density Domain — Description of the source vector originating
from species densities.
SIP — Surfatron Induced Plasma — A Surfatron is a launcher that produces surface
wave discharges.
SRO — Self Registering Object — Programming concept allowing for classes to be
registered at run time.
STL — Standard Template Library — A C++ software library.

TALIF — Two-photon Absorption Laser Induced Fluorescence — LIF technique
in which a transition of double the photon energy is pumped.
TBCI — Temporary Base Class Idiom — A high performance C++ library for nu-
merical calculations.
TS — Transport Sensitive — Classification of a species whose (de)population is also
affected by transport in configuration space.

XML — Extensible Markup Language — Language defining rules for encoding doc-
uments.

ZDM — Zero-Dimensional Model — The plasimo model plug-in implementing
the GPM described in this thesis.

229

	Summary
	General introduction
	Thesis outline

	Theoretical framework and implementation
	Particle balances: species and rate domain
	Introduction
	Analysis
	Balance domains
	Species density domain
	Reaction rate domain

	Wall reactions
	Conclusion

	The tasks of collisional radiative models
	Introduction
	General exploration
	Two level system
	Three level system
	Generalization
	Further generalization

	The system of coupled particle balance equations
	Reordering
	Matrix notation

	Simplification
	Local chemistry versus transport sensitive
	Cut-off procedure

	Structure and tasks of a CRM
	A {2-entry/2-level} system
	A {2-entry/3-level} system
	The tasks of a CRM

	Generalization
	Further generalization
	Level sensitive to radiation transport
	Time dependence
	Conclusion

	Description of a general CRM code
	Introduction
	Model
	Quasi Steady State (QSS)
	Transient behavior

	Transition-matrix
	Electron excitation
	Electron de-excitation
	Ionization and recombination
	Radiative transitions
	Cut-off procedure
	Optimization
	Matrix composition
	Additional processes

	Conclusion

	Implementation of a CRM code in the plasimo framework
	Introduction
	History of plasimo
	C++: C with classes
	A simple cross section code
	A simple class
	Class derivation and polymorphism
	Self registering objects

	The CRM as a plasimo model
	The basic model
	The CRM model plug-in
	Input file
	Optimization

	Solution procedure
	Quasi Steady State
	Transient
	Callback using a functor
	Implemented steppers
	Transient results

	Conclusion

	Implementation of a GPM code in the plasimo framework
	Introduction
	General equations
	Species balance
	Energy balance
	Solution procedure

	Special cases
	Wall reactions
	Extra sources

	Implementation
	Model construction
	Solution procedure

	Conclusion

	Applications
	A CRM of EUV induced plasmas
	Introduction
	Background
	Lithography
	Previous research
	The EUV induced plasma
	Optical emission spectroscopy

	CRM
	Non-equilibrium
	Classification of excitation balances
	CRM construction

	EEDF modeling
	Particle-in-Cell Monte-Carlo model
	PIC-MC model of EUV driven plasma
	EEDF analysis
	Elastic collisions
	Excitation
	Ionization
	Complete PIC-MC model

	CRM results
	Experimental results and discussion
	Experimental setup
	Results

	Conclusion

	A CRM of time dependent LIF experiments
	Introduction
	The Ar CRM
	Levels
	Radiative transitions
	Cross sections
	Heavy particle induced processes
	Laser induced processes

	CRM results
	LIF saturation
	System response
	Comparison to experiments

	Conclusion

	A global model of HiPIMS discharges
	Introduction
	Model
	Volume relations
	Wall losses
	Sputtering
	Electron energy density balance

	Implementation in GPM
	Results and discussion
	Conclusion

	General conclusions
	Appendices
	General C/C++ constructs
	C: data types and functions
	C++: a simple class
	Operator overloading
	Pointers and references
	Templates
	Frequently used operators

	Rachah & Paschen notation
	Ar CRM data
	Bibliography
	Acknowledgements/Dankwoord
	Curriculum vitæ
	Glossary
	Symbols
	A
	B
	C
	E
	G
	H
	I
	L
	M
	O
	P
	Q
	R
	S
	T
	X
	Z

