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Abstract

Let R be a commutative ring with nonzero identity and let I be an ideal of R.
The zero-divisor graph of R with respect to I, denoted by ΓI(R), is the graph
whose vertices are the set {x ∈ R \ I| xy ∈ I for some y ∈ R \ I} with distinct
vertices x and y adjacent if and only if xy ∈ I. In the case I = 0, Γ0(R),
denoted by Γ(R), is the zero-divisor graph which has well known results in the
literature. In this article we explore the relationship between ΓI(R) ∼= ΓJ(S)
and Γ(R/I) ∼= Γ(S/J). We also discuss when ΓI(R) is bipartite. Finally we
give some results on the subgraphs and the parameters of ΓI(R).

Keywords: Zero-divisor graph, r-Partite graph, Clique number, Girth.

2000 Mathematics Subject Classification: 05C75, 13A15.

1 Introduction and Preliminaries

Let R be a commutative ring with nonzero identity, and let Z(R) be its set of zero
divisors. The zero-divisor graph, Γ(R), is the graph with vertices Z(R)∗ = Z(R)\{0},
the set of nonzero zero divisors of R, and for distinct x, y ∈ Z(R)∗, the vertices x

and y are adjacent if and only if xy = 0. In [7] Beck introduced the concept of
a zero-divisor graph of a commutative ring. However, he lets all elements of R be
vertices of the graph and his work was mostly concerned with coloring of rings. We
adopt the approach used by D. F. Anderson and P. S. Livingston in [6] and consider
only nonzero zero divisors as vertices of the graph. The zero-divisor graph of a
commutative ring has been studied extensively by several authors, e.g., [7, 6, 4, 10,
5, 1, 2].

In [11] Redmond introduced the definition of the zero-divisor graph with respect
to an ideal. Let I be an ideal of R. The zero-divisor graph of R with respect to
I, denoted by ΓI(R), is the graph whose vertices are the set {x ∈ R \ I| xy ∈
I for some y ∈ R \ I} with distinct vertices x and y adjacent if and only if xy ∈ I.
Thus if I = 0 then ΓI(R) = Γ(R), and I is a nonzero prime ideal of R if and
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only if ΓI(R) = ∅. In [11] Redmond explored the relationship between ΓI(R) and
Γ(R/I). He gave an example of rings R and S and ideals I E R and J E S, where
Γ(R/I) ∼= Γ(S/J) but ΓI(R) � ΓJ(S). Among other things, he showed that for an
ideal I of R, ΓI(R) contains |I| disjoint subgraphs isomorphic to Γ(R/I). In section
2, we show that for finite ideals I and J of R and S, respectively, for which I =

√
I

and J =
√

J , if ΓI(R) ∼= ΓJ(S), then Γ(R/I) ∼= Γ(S/J). Also we will show that the
converse of this result holds if |I| = |J | (see Theorem 2.2).

For a graph G, the vertices set of G is denoted by V (G). The degree of a vertex v

in G is the number of edges of G incident with v. We denote by δ(G) the minimum
degree of vertices of G. For any nonnegative integer r, the graph G is called r-regular
if the degree of each vertex is equal to r. The girth of G is the length of a shortest
cycle in G and is denoted by gr(G). If G has no cycles, we define the girth of G

to be infinite. An r-partite graph is one whose vertex set can be partitioned into r

subsets so that no edge has both ends in any one subset. A complete r-partite graph
is one in which each vertex is jointed to every vertex that is not in the same subset.
The complete bipartite (i.e., 2-partite) graph with part sizes m and n is denoted by
Km,n. A graph in which each pair of distinct vertices is jointed by an edge is called
a complete graph. We use Kn for the complete graph with n vertices. In section
3, we show that ΓI(R) is a complete bipartite graph provided I = p1 ∩ p2 6= 0 for
prime ideals p1 and p2 of R (see Theorem 3.1).

A clique of a graph is a maximal complete subgraph and the number of graph
vertices in the largest clique of graph G, denoted by ω(G), is called the clique number
of G. In section 4, we show that if I is an ideal of R such that I =

⋂
1≤i≤n pi and

for each 1 ≤ j ≤ n, I 6=
⋂

1≤i≤n, i6=j pi where pi’s are prime ideals of R, then
ω(ΓI(R)) = n (see Theorem 4.2).

In this article the notations of graph theory are from [8], and the notations of
commutative rings are from [9].

2 Some Basic Properties of Zero-Divisor Graphs

One of the main questions in the study of zero-divisor graphs is as follows: Let R

and S be two commutative rings. If Γ(R) ∼= Γ(S), then do we have R ∼= S? Some
well known results on this question are as follows:

(i) If R and S are two finite reduced rings which are not fields, and Γ(R) ∼= Γ(S),
then R ∼= S (see [4, Theorem 4.1]).
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(ii) If R is a finite reduced ring which is not isomorphic to Z2 ⊕ Z2 or Z6, and
S is a ring which is not a local integral domain, and Γ(R) ∼= Γ(S), then R ∼= S (see
[2, Theorem 5]).

(iii) If R =
∏

i∈I Fi and S =
∏

j∈J Gj , where Fi’s are finite fields and Gj ’s are
integral domains, and Γ(R) ∼= Γ(S), then R ∼= S (see [5, Theorem 2.1]).

Now let I be an ideal of R and J be an ideal of S. It is natural to ask the
following question. If ΓI(R) ∼= ΓJ(S), then do we have R/I ∼= S/J? The main
purpose of this section is to focus on this question.

A subgraph H of G is called a spanning subgraph when V (G) = V (H). A 1-
regular spanning subgraph H of G is called a 1-factor or a perfect matching of G. A
graph G is 1-factorable if the edges of G are partitioned into 1-factors of G. Every
r-regular bipartite graph is 1-factorable (cf. [8, p. 192]). If the edges of G are
partitioned into subgraphs H1, . . . ,Hn, then we write G ∼= H1 ⊕ . . . ⊕ Hn, and if
Hi

∼= Hj for all 1 ≤ i, j ≤ n, then we write G ∼= nH, where H ∼= Hi.

Theorem 2.1 Let I be a finite ideal of R such that I =
√

I. Then ΓI(R) ∼=
|I|2Γ(R/I).

Proof. Let e be the edge of Γ(R/I) between the vertices a and b. Since every
element of coset a + I is adjacent to every element of coset b + I, it is easy to
see that there exists a subgraph of ΓI(R), denoted by H(e), which is isomorphic
to complete bipartite graph K|I|,|I|. On the other hand, by [8, p. 192], we have
K|I|,|I| ∼= M1

(e) ⊕ . . .⊕M|I|
(e), where each of Mi

(e) is a perfect matching of K|I|,|I|.
Now consider Ki := ⊕e∈E(Γ(R/I))Mi

(e) which is a subgraph of ΓI(R). Since I =
√

I,
ΓI(R) ∼= K1 ⊕ . . . ⊕ K|I|. Now the assertion follows from the fact that each Ki is
partitioned into |I| edge-disjoint subgraphs, where each of them is isomorphic to
Γ(R/I). �

Let S be a nonempty set of vertices of a graph G. The subgraph induced by S is
the maximal subgraph of G with vertex set S, and is denoted by 〈S〉, that is, 〈S〉
contains precisely those edges of G joining two vertices in S.

Theorem 2.2 Let I be a finite ideal of R and let J be a finite ideal of S such that
I =

√
I and J =

√
J . Then the following hold:

(a) If |I| = |J | and Γ(R/I) ∼= Γ(S/J), then ΓI(R) ∼= ΓJ(S).
(b) If ΓI(R) ∼= ΓJ(S), then Γ(R/I) ∼= Γ(S/J).

Proof. Part (a) is an easy consequence of Theorem 2.1. For proving part (b),
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let ϕ : ΓI(R) −→ ΓJ(S) be an isomorphism. Now consider K ⊆ R to be a set of
distinct representatives of the vertices of Γ(R/I). Clearly, the subgraph induced by
K is isomorphic to Γ(R/I). Now consider the restriction of ϕ to K. Suppose that
ϕ(K) = K ′ and 〈K ′〉 = H. Now, if a, b ∈ V (K ′), then a + J 6= b + J ; otherwise,
a2 ∈ J =

√
J , and hence a ∈ J , which is a contradiction. Hence, K ′ is a distinct

representation of the vertices of Γ(S/J), and hence 〈K ′〉 = H ∼= ΓJ(S). Therefore,
ϕ induced an isomorphism from Γ(R/I) to Γ(S/J). �

Note that in Theorem 2.2 (a), the condition “|I| = |J |” is not superficial, as the
following example shows.

Example 2.3 Let R = Z3 ⊕ Z3 ⊕ Z3 ⊕ Z3 and S = Z3 ⊕ Z3 ⊕ Z3 ⊕ Z3 ⊕ Z3, and
consider I = Z3 ⊕ Z3 and J = Z3 ⊕ Z3 ⊕ Z3. Hence, Γ(R/I) ∼= Γ(S/J). But by
computing the number of edges in each graph we have ΓI(R) � ΓJ(S).

The conditions “I =
√

I” and “J =
√

J” on ideals I and J are also necessary in
Theorem 2.2 (see [11, Remark 2.3]).

Theorem 2.4 Let I be a nonzero ideal of R and a ∈ ΓI(R), adjacent to every
vertex of ΓI(R). Then (I : a) is a maximal element of the set {(I : x)| x ∈ R}.
Moreover, (I : a) is a prime ideal.

Proof. Let V = V (ΓI(R)). Choose 0 6= x ∈ I. It is easy to see that a 6= a + x ∈
ΓI(R). Thus a(a + x) ∈ I and hence a2 ∈ I. Therefore, V ∪ I = (I : a), and so for
any x ∈ R, (I : x) is contained in V ∪ I = (I : a). Thus the first assertion holds.

Now, we prove that (I : a) is a prime ideal. Let xy ∈ (I : a) and x, y /∈ (I : a).
Therefore, xya ∈ I. If ya /∈ I, then x ∈ (I : ya). We know that (I : a) ⊆ (I : ya),
and therefore, (I : a) = (I : ya). Hence, x ∈ (I : a), which is a contradiction. �

Theorem 2.5 Let I be an ideal of R and let S be a clique in ΓI(R) such that
x2 = 0 for all x ∈ S. Then S ∪ I is an ideal of R.

Proof. Suppose that x, y ∈ S ∪ I. Consider the following three cases.
Case 1: If x, y ∈ I, then x− y ∈ S ∪ I.
Case 2: If x, y ∈ S with x − y /∈ I, then for all c ∈ S, c(x − y) ∈ I and hence

S ∪ {x− y} is a clique. Now, since S is a clique, x− y ∈ S.
Case 3: If x ∈ I and y ∈ S, then x−y /∈ I, and hence for any c ∈ S, c(x−y) ∈ I.

Therefore, x− y ∈ S.
Now, let x ∈ S ∪ I and r ∈ R. Suppose that r, x /∈ I. If rx ∈ I, then rx ∈ S ∪ I.
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If rx /∈ I, since for any c ∈ S, rxc ∈ I, we have rx ∈ S. �

Theorem 2.6 Let I be an ideal of R and consider S =
√

I \ I. If S is a nonempty
set, then 〈S〉 is connected.

Proof. Let x, y ∈ S. If xy ∈ I, then the result is obtained. Suppose that xy /∈ I,
where xn, ym ∈ I and xn−1, ym−1 /∈ I. Hence, the path

x — xn−1 — xy — ym−1 — y

is a path of length four from x to y. �

Corollary 2.7 Suppose either N is the nil radical of R, or is a nilpotent ideal of
R. If N is nontrivial, then 〈N \ {0}〉 is a connected subgraph of Γ(R).

3 Complete r-Partite Graph

It is easy to see that if I is a prime ideal of R, then we have ΓI(R) = ∅. In the
following, we show that if I = p1 ∩ p2, where p1 and p2 are prime ideals of R, then
ΓI(R) is a complete bipartite graph. In section 4, we study the girth and the clique
number of ΓI(R) for I = p1 ∩ . . . ∩ pn, where pi’s are prime ideals of R.

Theorem 3.1 Let I be a nonzero ideal of R. Then the following hold:
(a) If p1 and p2 are prime ideals of R and I = p1 ∩ p2 6= 0, then ΓI(R) is a

complete bipartite graph.
(b) If I 6= 0 is an ideal of R for which I =

√
I, then ΓI(R) is a complete bipartite

graph if and only if there exist prime ideals p1 and p2 of R such that I = p1 ∩ p2.

Proof. (a): Let a, b ∈ R \ I with ab ∈ I. Then ab ∈ p1 and ab ∈ p2. Since p1

and p2 are prime, we have a ∈ p1 or b ∈ p1 and a ∈ p2 or b ∈ p2. Therefore, suppose
a ∈ p1 \ p2 and b ∈ p2 \ p1. Thus, ΓI(R) is a complete bipartite graph with parts
p1 \ p2 and p2 \ p1.

(b): Suppose that the parts of ΓI(R) are V1 and V2. Set p1 = V1 ∪ I and
p2 = V2 ∪ I. It is clear that I = p1 ∩ p2. We now prove that p1 is an ideal of R. To
show this let a, b ∈ p1.

Case 1: If a, b ∈ I, then a− b ∈ I and so a− b ∈ p1.
Case 2: If a, b ∈ V1, then there is c ∈ V2 such that ca ∈ I and cb ∈ I. So,

c(a − b) ∈ I. If a − b ∈ I, then a − b ∈ p1. Otherwise, a − b ∈ V1, which implies
a− b ∈ p1.
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Case 3: If a ∈ V1 and b ∈ I, then a − b /∈ I, so there is c ∈ V2 such that
c(a− b) ∈ I. This implies that a− b ∈ V1, and so a− b ∈ p1.

Now let r ∈ R and a ∈ p1.
Case 1: If a ∈ I, then ra ∈ I and so ra ∈ p1.
Case 2: If a ∈ V1, then there exists c ∈ V2 such that ca ∈ I. So, c(ra) ∈ I. If

ra ∈ I, then ra ∈ p1 and if ra /∈ I, then ra ∈ V1 which implies ra ∈ p1. Therefore,
p1 E R.

We now prove p1 is prime. For proving this let ab ∈ p1 and a, b /∈ p1. Since
p1 = V1 ∪ I, ab ∈ I or ab ∈ V1, and so in any case there exists c ∈ V2 such that
c(ab) ∈ I. Thus a(cb) ∈ I. If cb ∈ I, then by the definition of ΓI(R) we have b ∈ V1,
that is a contradiction. Hence, cb /∈ I and so cb ∈ V1. Therefore, c2b ∈ I. Since
I =

√
I, c2 /∈ I. Hence, c2 ∈ V2. So b ∈ V1 which is a contradiction. Therefore, p1 is

a prime ideal of R. �

Note that if we consider R = Z8 and I = 〈4〉, then it is easy to see that ΓI(R) is
bipartite, but I cannot be written as the intersection of two prime ideals. Therefore,
the converse of Theorem 3.1 (a) is not valid in general. Hence, the condition “I =√

I” on ideal I is not superficial in Theorem 3.1 (b).

Theorem 3.2 Let I be a nonzero proper ideal of R. If ΓI(R) is a complete r-partite
graph, r ≥ 3, then at most one of the parts has more than one vertex.

Proof. Assume that V1, . . . , Vr are parts of ΓI(R). Let Vt and Vs have more than
one element. Choose x ∈ Vt and y ∈ Vs. Let Vl be a part of ΓI(R) such that Vl 6= Vt

and Vl 6= Vs. Let z ∈ Vl. Since ΓI(R) is a complete r-partite graph, (I : x) =
(
⋃

1≤i≤r, i 6=t Vi) ∪ I, (I : y) = (
⋃

1≤i≤r, i 6=s Vi) ∪ I, and (I : z) = (
⋃

1≤i≤r, i 6=l Vi) ∪ I.
Therefore, (I : z) ⊆ (I : x) ∪ (I : y), and so we have (I : z) ⊆ (I : x) or (I : z) ⊆
(I : y). Let (I : z) ⊆ (I : x) and choose x′ ∈ Vt such that x′ 6= x. Then we have
x′ ∈ (I : z) \ (I : x). This is a contradiction. �

4 Girth and Clique Number

In this section we study the girth and the clique number of ΓI(R), when I is an
intersection of prime ideals.

Theorem 4.1 Let p1 and p2 be prime ideals of R and I = p1 ∩ p2. Then either
gr(ΓI(R)) = 4 or R/I ∼= Z2 ⊕ Z2.
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Proof. If |p1 \ p2| = 1 and |p2 \ p1| ≥ 2, then ΓI(R) is a star graph and so has a
cut point. This is a contradiction by [11, Theorem 3.2]. Therefore, this case cannot
happen. The case |p2 \ p1| = 1 and |p1 \ p2| ≥ 2 is similar. So there are two other
possibilities.

Case 1: |pi \ pj | ≥ 2 for i 6= j and 1 ≤ i, j ≤ 2. In this case, Theorem 3.1 implies
that gr(ΓI(R)) = 4.

Case 2: |pi \ pj | < 2 for i 6= j and 1 ≤ i, j ≤ 2. In this case, there is x ∈ R for
which p1 \ p2 = {x} and so p1 = {x}∪ I. For any r ∈ R \ p2 we have rx ∈ p1 \ I and
so rx = x. Therefore, (1 − r)x = 0 ∈ p2 and hence (1 − r) ∈ p2. Thus |R/p2| = 2.
That implies p2 is a maximal ideal of R and R/p2

∼= Z2. But p1 + p2 = R, so that
implies R/I ∼= R/p1 ×R/p2

∼= Z2 ⊕ Z2 . �

Theorem 4.2 Let I be an ideal of R such that I =
⋂

1≤i≤n pi and for each
1 ≤ j ≤ n, I 6=

⋂
1≤i≤n, i6=j pi where pi’s are prime ideals of R. Then ω(ΓI(R)) = n.

Proof. Consider xj ∈
⋂

1≤i≤n, i6=j pi \ pj . It is easy to see that X = {x1, . . . , xn}
is a clique in ΓI(R). Hence, ω(ΓI(R)) ≥ n and so it is sufficient to show that
ω(ΓI(R)) ≤ n. In order to do this, we use induction on n. For n = 2, by Theorem
3.1, ΓI(R) is a bipartite graph and hence ω(ΓI(R)) = 2. Suppose n > 2 and the
result is true for any integer less than n. Let I =

⋂
1≤i≤n pi and for each 1 ≤ j ≤ n,

I 6=
⋂

1≤i≤n, i6=j pi. Let {x1, . . . , xm} be a clique in ΓI(R). Hence, x1xj ∈
⋂

1≤i≤n pi

for any 2 ≤ j ≤ m. Without loss of generality, suppose that x1 /∈ p1. Therefore,
x2, . . . , xm ∈ p1, so x2, . . . , xm /∈

⋂
2≤i≤n pi. Let J =

⋂
2≤i≤n pi. Hence, {x2 . . . , xm}

is a clique in ΓJ(R). Therefore, m− 1 ≤ n− 1, and the result is obtained. �

Corollary 4.3 The following hold:
(a) If I =

⋂
1≤i≤n pi 6= 0 and J =

⋂
1≤j≤m qj where pi’s and qj’s are prime ideals

such that ΓI(R) = ΓJ(R), then m = n.
(b) If for any p ∈ Min(R), p is a finitely generated ideal, then ω(Γnil(R)(R)) =

|Min(R)| (which is finite by the main theorem of [3]).
(c) If R is a semi-local ring and not local, then ω(ΓJ(R)(R)) = |Max(R)|.
(d) If n is a square-free integer, then ω(ΓnZ(Z)) = k, where k is the number of

primes in the decomposition of n into primes.

Theorem 4.4 Let I be an ideal of R. Suppose either I is a primary ideal of R

that is not prime and |I| ≥ 3, or |Ass(R/I)| ≥ 3. Then gr(ΓI(R)) = 3.

Proof. For the first case, let a, b ∈ R \ I such that ab ∈ I. Then there exists
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n ∈ N such that bn ∈ I, so we can choose t ∈ N for which bt ∈ I and bt−1 /∈ I. Since
a, bt−1 /∈ I, we have the chain

a — b — bt−1 — a

in the graph ΓI(R). Therefore, gr(ΓI(R)) = 3.
For the second case, |Ass(R/I)| ≥ 3 implies that gr(Γ(R/I)) = 3 (see [1, Corol-

lary 2.2]), and hence gr(ΓI(R)) = 3. �

In the above theorem, one of the conditions “|I| ≥ 3” or “|Ass(R/I)| ≥ 3” are
necessary. To see this, for example let R = Z8 and consider I = 〈4〉; and note that
we have |Ass(R/I)| = 1 and gr(Γ(R/I)) = ∞.
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