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ZERO-DIVISORS OF CONTENT ALGEBRAS

Peyman Nasehpour

Abstract. In this article, we prove that in content extentions minimal primes
extend to minimal primes and discuss zero-divisors of a content algebra over
a ring who has Property (A) or whose set of zero-divisors is a finite union
of prime ideals. We also examine the preservation of diameter of zero-divisor
graph under content extensions.

1. Introduction

Throughout this paper all rings are commutative with unit and all modules are
assumed to be unitary. In this paper, we discuss zero-divisors of content algebras.
To this end, one needs to know about content modules and algebras introduced in
[19]. Our main goal is to show that many results of the zero-divisors of polynomial
rings are correct for content algebras.

First we recall the essential definitions. Let R be a commutative ring with
identity, and M a unitary R-module. The content function, c from M to the ideals
of R is defined by

c(x) =
⋂
{I : I is an ideal of R and x ∈ IM} .

M is called a content R-module if x ∈ c(x)M , for all x ∈M .
Note that c(x) is a finitely generated ideal of R for all x ∈M , if M is a content

R-module [19, 1.2]. So when M is a content R-module, the function c is from M
to FId(R), where by FId(R), we mean the set of finitely generated ideals of R.

Let R′ be an R-algebra. R′ is defined to be a content R-algebra, if the following
conditions hold:

(1) R′ is a content R-module.
(2) (Faithful flatness) For any r ∈ R and f ∈ R′, the equation c(rf) = rc(f)

holds, and c(R′) = R.
(3) (Dedekind-Mertens content formula) For all f and g in R′, there exists a

natural number n such that c(f)nc(g) = c(f)n−1c(fg).
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In Section 2, we discuss content and weak content algebras and prove that if
R is a ring and S, a commutative monoid, then the monoid ring B = R[S] is a
content R-algebra if and only if one of the following conditions satisfies:

(1) For f, g ∈ B, if c(f) = c(g) = R, then c(fg) = R.
(2) (McCoy’s Property) For g ∈ B, g is a zero-divisor of B iff there exists
r ∈ R− {0} such that rg = 0.

(3) S is a cancellative and torsion-free monoid.

In Section 3, we discuss prime ideals of content and weak content algebras and
we show that in content extensions, minimal primes extend to minimal primes.
More precisely, if B is a content R-algebra, then there is a correspondence between
Min(R) and Min(B), with the function ϕ : Min(R)→ Min(B) defined by p→ pB.

In Section 4, we introduce a family of rings which have very few zero-divisors. It
is a well-known result that the set of zero-divisors of a Noetherian ring is a finite
union of its associated primes [14, p.55]. Rings having few zero-divisors have been
introduced in [7]. We define that a ring R has very few zero-divisors, if Z(R) is a
finite union of prime ideals in Ass(R). In this section, we prove that if R is a ring
that has very few zero-divisors and B is a content R-algebra, then B has very few
zero-divisors too.

Another celebrated property of Noetherian rings is that every ideal entirely
contained in the set of their zero-divisors has a nonzero annihilator. A ring R has
Property (A), if each finitely generated ideal I ⊆ Z(R) has a nonzero annihilator
[13]. In Section 4, we also prove some results for content algebras over rings
having Property (A) and then we discuss rings having few zero-divisors in more
details. Let us recall that a ring R is said to have few zero-divisors, if the set
Z(R) of zero-divisors is a finite union of prime ideals. It is well-known that a
ring R has few zero-divisors iff its classical quotient ring T (R) is semi-local [7].
We may suppose that Z(R) =

⋃n
i=1 pi such that pi *

⋃
∪nj=1∧j 6=ipj for all

1 ≤ i ≤ n. Then we have pi * pj for all i 6= j and by Prime Avoidance Theorem,
these prime ideals are uniquely determined. In such a case, it is easy to see that
Max(T (R)) = {p1T (R), . . . ,pnT (R)}, where by T (R) we mean total quotient ring
of R. Such prime ideals are called maximal primes in Z(R). We denote the number
of maximal primes in Z(R) by zd(R). As one of the main results of this section,
we show that if R has Property (A) and zd(R) = n and B is a content R-algebra,
then zd(B) = n. At the end of this section, we consider the interesting case, when
zd(R) = 1, i.e. Z(R) is an ideal of R. Such a ring is called a primal ring [6].

We let Z(R)∗ denote the (nonempty) set of proper zero-divisors of R, where by
a proper zero-divisor we mean a zero-divisor different from zero. We consider the
graph Γ(R), called the zero-divisor graph of R, whose vertices are the elements of
Z(R)∗ and edges are those pairs of distinct proper zero-divisors {a, b} such that
ab = 0. The last section is devoted to examine the preservation of diameter of
zero-divisor graph under content extensions.

Unless otherwise stated, our notation and terminology will follow as closely as
possible that of Gilmer [9]. Note that iff always stands for if and only if.
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2. Content algebras

Content modules and algebras were introduced in [19]. Content algebras are
actually a natural generalization of polynomial rings [8]. Let R be a commutative
ring with identity. For f ∈ R[X], the content of f , denoted by c(f), is defined as the
R-ideal generated by the coefficients of f . One can easily check that c(fg) ⊆ c(f)c(g)
for the two polynomials f, g ∈ R[X] and may ask when the equation c(fg) =
c(f)c(g) holds. Tsang, a student of Kaplansky, proved that if D is an integral
domain and c(f), for f ∈ D[X], is an invertible ideal of D, then c(fg) = c(f)c(g),
for all g ∈ D[X]. Tsang’s guess in [21] was that the converse was true and the
correctness of her guess was completely proved some decades later [15]. Though
the equation c(fg) = c(f)c(g) is not always true, a weaker formula always holds
that is called the Dedekind-Mertens content formula [3].

Theorem 1 (Dedekind-Mertens Lemma). Let R be a ring. For each f and g in
R[X], there exists a natural number n such that c(f)nc(g) = c(f)n−1c(fg).

Good examples of content R-algebras are the polynomial ring R[X] and the
group ring R[G], where G is a torsion-free abelian group [18]. These are actually
free R-modules. For some examples of content R-algebras that as R-modules are
not free, one can refer to [19, Examples 6.3, p.64]. Rush generalized content algebras
and defined weak content algebras as follows [20, p.330]:

Definition 2. Let R be a commutative ring with identity and R′ an R-algebra.
R′ is defined to be a weak content R-algebra, if the following conditions hold:

(1) R′ is a content R-module.
(2) (Weak content formula) For all f and g in R′, c(f)c(g) ⊆ rad(c(fg)) (Here

rad(A) denotes the radical of the ideal A.)

It is obvious that content algebras are weak content algebras, but the converse
is not true. For example if R is a Noetherian ring, then R[[X1, X2, . . . , Xn]] is a
weak content R-algebra, while it is not a content R-algebra [20, p.331]. We end
our introductory section with the following result:

Theorem 3. Let R be a ring and S be a commutative monoid. Then the following
statements about the monoid algebra B = R[S] are equivalent:

(1) B is a content R-algebra.
(2) B is a weak content R-algebra.
(3) For f, g ∈ B, if c(f) = c(g) = R, then c(fg) = R.
(4) (McCoy’s Property) For g ∈ B, g is a zero-divisor of B iff there exists
r ∈ R− {0} such that rg = 0.

(5) S is a cancellative and torsion-free monoid.

Proof. (1)→ (2)→ (3) and (1)→ (4) are obvious ([19] and [20]). Also, according
to [18] (5) implies (1). Therefore the proof will be complete if we prove that (3) as
well as (4) implies (5).
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(3) → (5): We prove that if S is not cancellative or not torsion-free then (3)
cannot hold. For the moment, suppose that S is not cancellative, so there exist
s, t, u ∈ S such that s+ t = s+ u while t 6= u. Put f = Xs and g = (Xt −Xu).
Then obviously c(f) = c(g) = R, while c(fg) = (0). Finally suppose that S is
cancellative but not torsion-free. Let s, t ∈ S be such that s 6= t, while ns = nt for
some natural n. Choose the natural number k minimal so that ks = kt. Then we
have 0 = Xks −Xkt = (Xs −Xt)(

∑k−1
i=0 X

(k−i−1)s+it).
Since S is cancellative, the choice of k implies that (k − i1 − 1)s + i1t 6=

(k − i2 − 1)s+ i2t for 0 ≤ i1 < i2 ≤ k − 1. Therefore
∑k−1
i=0 X

(k−i−1)s+it 6= 0, and
this completes the proof. In a similar way one can prove (4)→ (5) [10, p.82]. �

3. Prime ideals in content algebras

Let B be a weak content R-algebra such that for all m ∈ Max(R) (by Max(R),
we mean the maximal ideals of R), we have mB 6= B, then by [20, Theorem
1.2, p.330], prime ideals extend to prime ideals. Particularly in content algebras
primes extend to primes. We recall that when B is a content R-algebra, then g is a
zero-divisor of B, iff there exists an r ∈ R − {0} such that rg = 0 [19, 6.1, p.63].
Now we give the following theorem about associated prime ideals. We assert that
by AssR(M), we mean the associated prime ideals of the R-module M .

Theorem 4. Let B be a content R-algebra and M a nonzero R-module. If p ∈
AssR(M) then pB ∈ AssB(M ⊗R B).

Proof. Let p ∈ AssR(M) and p = Ann(x), where x ∈M . Therefore 0→ R/p→
M is an R-exact sequence. Since B is a faithfully flat R-module, we have the
following B-exact sequence:

0→ B/pB →M ⊗R B
with pB = Ann(x⊗R 1B). Since B is a content R-algebra, pB is a prime ideal of
B. �

Now we give a general theorem on minimal prime ideals in algebras. One of the
results of this theorem is that in faithfully flat weak content algebras (including
content algebras), minimal primes extend to minimal primes and, more precisely,
there is actually a correspondence between the minimal primes of the ring and
their extensions in the algebra.

Theorem 5. Let B be an R-algebra with the following properties:
(1) For each prime ideal p of R, the extended ideal pB of B is prime.
(2) For each prime ideal p of R, pB ∩R = p.

Then the function ϕ : Min(R)→ Min(B) given by p→ pB is a bijection.

Proof. First we prove that if p is a minimal prime ideal of R, then pB is also
a minimal prime ideal of B. Let Q be a prime ideal of B such that Q ⊆ pB. So
Q ∩R ⊆ pB ∩R = p. Since p is a minimal prime ideal of R, we have Q ∩R = p
and therefore Q = pB. This means that ϕ is a well-defined function. Obviously
the second condition causes ϕ to be one-to-one. The next step is to prove that ϕ is
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onto. For showing this, consider Q ∈ Min(B), so Q ∩R is a prime ideal of R such
that (Q ∩R)B ⊆ Q and therefore (Q ∩R)B = Q. Our claim is that (Q ∩R) is a
minimal prime ideal of R. Suppose p is a prime ideal of R such that p ⊆ Q ∩R,
then pB ⊆ Q and since Q is a minimal prime ideal of B, pB = Q = (Q∩R)B and
therefore p = Q ∩R. �

Corollary 6. Let B be a weak content and faithfully flat R-algebra. Then the
function ϕ : Min(R)→ Min(B) given by p→ pB is a bijection.

Proof. Since B is a weak content and faithfully flat R-algebra, then for each prime
ideal p of R, the extended ideal pB of B is prime and also c(1B) = R by [19,
Corollary 1.6] and [20, Theorem 1.2]. Now consider r ∈ R, then c(r) = c(r · 1B) =
r · c(1B) = (r). Therefore if r ∈ IB ∩R, then (r) = c(r) ⊆ I. Thus for each prime
ideal p of R, pB ∩R = p. �

Corollary 7. Let R be a Noetherian ring. Then ϕ : Min(R)→ Min(R[[X1, . . . , Xn]])
given by p→ p · (R[[X1, . . . , Xn]]) is a bijection.

4. Content algebras over rings having few zero-divisors

For a ring R, by Z(R), we mean the set of zero-divisors of R. In [7], it has been
defined that a ring R has few zero-divisors, if Z(R) is a finite union of prime ideals.
We present the following definition to prove some other theorems related to content
algebras.

Definition 8. A ring R has very few zero-divisors, if Z(R) is a finite union of
prime ideals in Ass(R).

Theorem 9. Let R be a ring that has very few zero-divisors. If B is a content
R-algebra, then B has very few zero-divisors too.

Proof. Let Z(R) = p1 ∪ p2 ∪ · · · ∪ pn, where pi ∈ AssR(R) for all 1 ≤ i ≤ n. We
will show that Z(B) = p1B ∪ p2B ∪ · · · ∪ pnB. Let g ∈ Z(B), so there exists an
r ∈ R − {0} such that rg = 0 and so rc(g) = (0). Therefore c(g) ⊆ Z(R) and
according to Prime Avoidance Theorem, we have c(g) ⊆ pi, for some 1 ≤ i ≤ n
and therefore g ∈ piB. Now let g ∈ p1B ∪ p2B ∪ · · · ∪ pnB so there exists an i
such that g ∈ piB, so c(g) ⊆ pi and c(g) has a nonzero annihilator and this means
that g is a zero-divisor of B. Note that piB ∈ AssB(B), for all 1 ≤ i ≤ n. �

Remark 10. Let R be a ring and consider the following three conditions on R:
(1) R is a Noetherian ring.
(2) R has very few zero-divisors.
(3) R has few zero-divisors.

Then, (1)→ (2)→ (3) and none of the implications is reversible.

Proof. For (1)→ (2) use [14, p. 55]. It is obvious that (2)→ (3).
Suppose k is a field, A = k[X1, X2, X3, . . . , Xn, . . . ] and m = (X1, X2, X3, . . . ,

Xn, . . . ) and at last a = (X2
1 , X

2
2 , X

2
3 , . . . , X

2
n, . . . ). Since A is a content k-algebra

and k has very few zero-divisors, A has very few zero-divisors while it is not a
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Noetherian ring. Also consider the ring R = A/a. It is easy to check that R is
a quasi-local ring with the only prime ideal m/a and Z(R) = m/a and finally
m/a /∈ AssR(R). Note that AssR(R) = ∅. �

Now we bring the following definition from [13] and prove some other results for
content algebras.

Definition 11. A ring R has Property (A), if each finitely generated ideal I ⊆ Z(R)
has a nonzero annihilator.

Let R be a ring. If R has very few zero-divisors (for example if R is Noe-
therian), then R has Property (A) [14, Theorem 82, p.56], but there are some
non-Noetherian rings which do not have Property (A) [14, Exercise 7, p.63]. The
class of non-Noetherian rings having Property (A) is quite large [12, p.2].

Theorem 12. Let B be a content R-algebra such that R has Property (A). Then
T (B) is a content T (R)-algebra, where by T (R), we mean total quotient ring of R.

Proof. Let S′ = B − Z(B). If S = S′ ∩R, then S = R− Z(R). We prove that if
c(f)∩S = ∅, then f 6∈ S′. In fact when c(f)∩S = ∅, then c(f) ⊆ Z(R) and since R
has Property (A), c(f) has a nonzero annihilator. This means that f is a zero-divisor
of B and according to [19, Theorem 6.2, p. 64] the proof is complete. �

Theorem 13. Let B be a content R-algebra such that the content function c : B →
FId(R) is onto, where by FId(R), we mean the set of finitely generated ideals of R.
The following statements are equivalent:

(1) R has Property (A).
(2) For all f ∈ B, f is a regular element of B iff c(f) is a regular ideal of R.

Proof. (1)→ (2): Let R have Property (A). If f ∈ B is regular, then for all nonzero
r ∈ R, rf 6= 0 and so for all nonzero r ∈ R, rc(f) 6= (0), i.e. Ann(c(f)) = (0) and
according to the definition of Property (A), c(f) 6⊆ Z(R). This means that c(f)
is a regular ideal of R. Now let c(f) be a regular ideal of R, so c(f) 6⊆ Z(R) and
therefore Ann(c(f)) = (0). This means that for all nonzero r ∈ R, rc(f) 6= (0),
hence for all nonzero r ∈ R, rf 6= 0. Since B is a content R-algebra, f is not a
zero-divisor of B.

(2)→ (1): Let I be a finitely generated ideal of R such that I ⊆ Z(R). Since the
content function c : B −→ FId(R) is onto, there exists an f ∈ B such that c(f) = I.
But c(f) is not a regular ideal of R, therefore according to our assumption, f is not
a regular element of B. Since B is a content R-algebra, there exists a nonzero r ∈ R
such that rf = 0 and this means that rI = (0), i.e. I has a nonzero annihilator. �

Remark 14. In the above theorem the surjectivity condition for the content
function c is necessary, because obviously R is a content R-algebra and the condition
(2) is satisfied, while one can choose the ring R such that it does not have Property
(A) [14, Exercise 7, p.63].

Theorem 15. Let R have Property (A) and B be a content R-algebra. Then Z(B)
is a finite union of prime ideals in Min(B) iff Z(R) is a finite union of prime
ideals in Min(R).
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Proof. The proof is similar to the proof of Theorem 9 by considering Theorem 5.
�

Please note that if R is a Noetherian reduced ring, then Z(R) is a finite union
of prime ideals in Min(R) (refer to [14, Theorem 88, p.59] and [12, Corollary 2.4]).

It is well-known that a ring R has few zero-divisors iff its classical quotient
ring T (R) is semi-local [7]. We may suppose that Z(R) =

⋃n
i=1 pi such that

pi *
⋃n
j=1∧j 6=i pj for all 1 ≤ i ≤ n. Then we have pi * pj for all i 6= j and by

Prime Avoidance Theorem, these prime ideals are uniquely determined. In such a
case, it is easy to see that Max(T (R)) = {p1T (R), . . . ,pnT (R)}, where by T (R)
we mean total quotient ring of R. This is the base for the following definition.

Definition 16. A ring R is said to have few zero-divisors of degree n, if R has few
zero-divisors and n = card Max(T (R)). In such a case, we write zd(R) = n.

Remark 17. If Ri is a ring having few zero-divisors of degree ki for all 1 ≤ i ≤ n,
then zd(R1 × · · · ×Rn) = zd(R1) + · · ·+ zd(Rn).

Now we give the following theorem:

Theorem 18. Let B be a content R-algebra. Then the following statements hold
for all natural numbers n:

(1) If zd(B) = n, then zd(R) ≤ n.
(2) If R has Property (A) and zd(R) = n, then zd(B) = n.
(3) If the content function c : B → FId(R) is onto, then zd(B) = n iff zd(R) =
n and R has Property (A).

Proof. (1): Let Z(B) =
⋃n
i=1Qi. We prove that Z(R) =

⋃n
i=1(Qi ∩R). In order

to do that let r ∈ Z(R). Since Z(R) ⊆ Z(B), there exists an i such that r ∈ Qi
and therefore r ∈ Qi ∩R. Now let r ∈ Qi ∩R for some i, then r ∈ Z(B), and this
means that there exists a nonzero g ∈ B such that rg = 0 and at last rc(g) = 0.
Choose a nonzero d ∈ c(g) and we have rd = 0.

(2): Note that similar to the proof of Theorem 9, if Z(R) =
⋃n
i=1 pi, then

Z(B) =
⋃n
i=1 piB. Also it is obvious that piB ⊆ pjB iff pi ⊆ pj for all 1 ≤ i, j ≤ n.

These two imply that zd(B) = n.
3: (←) is nothing but (2). For proving (→), consider that by (1), we have

zd(R) ≤ n. Now we prove that ring R has Property (A). Let I ⊆ Z(R) be a finite
ideal of R. Choose f ∈ B such that I = c(f). So c(f) ⊆ Z(R) and by Prime
Avoidance Theorem and (1), there exists an 1 ≤ i ≤ n such that c(f) ⊆ Qi ∩ R.
Therefore f ∈ (Qi ∩ R)B. But (Qi ∩ R)B ⊆ Qi. So f ∈ Z(B) and according to
McCoy’s property for content algebras, there exists a nonzero r ∈ R such that
f · r = 0. This means that I · r = 0 and I has a nonzero annihilator. Now by (2),
we have zd(R) = n. �

Corollary 19. Let R be a ring and S a commutative, cancellative, torsion-free
monoid. Then for all natural numbers n, zd(R[S]) = n iff zd(R) = n and R has
Property (A).
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Definition 20. An element r of a ring R is said to be prime to an ideal I of R
if I : (r) = I, where by I : (r), we mean the set of all members c of R such that
cr ∈ I ([22, p.223]).

Theorem 21. Let R be a ring, I an ideal of R and B a content R-algebra. Then
f ∈ B is not prime to IB iff f · r ∈ IB for some r ∈ R− I.

Proof. If I is an ideal of R and B a content R-algebra, then B/IB is a content
(R/I)-algebra. Assume that f ∈ B is not prime to IB, so there exists g ∈ B such
that fg ∈ IB, while g /∈ IB. This means that f + IB is a zero-divisor of B/IB
and according to McCoy’s property, we have (f + IB)(r + IB) = IB for some
r ∈ R− I. �

Let I be an ideal of R. We denote the set of all elements of R that are not prime
to I by S(I). It is obvious that r ∈ S(I) iff r + I is a zero-divisor of the quotient
ring R/I. The ideal I is said to be primal if S(I) forms an ideal and in such a case,
S(I) is a prime ideal of R. A ring R is said to be primal, if the zero ideal of R is
primal [6]. It is obvious that R is primal iff Z(R) is an ideal of R. It is easy to
check that if Z(R) is an ideal of R, it is a prime ideal and therefore R is primal iff
R has few zero-divisors of degree one, i.e. zd(R) = 1.

Theorem 22. Let B be a content R-algebra. Then the following statements hold:
(1) If B is primal, then R is primal and Z(B) = Z(R)B.
(2) If R is primal and has Property (A), then B is primal, has Property (A)

and Z(B) = Z(R)B.
(3) If the content function c : B → FId(R) is onto, then B is primal iff R is

primal and has Property (A).

Proof. (1): Assume that Z(B) is an ideal of B. We show that Z(R) is an ideal of
R. For doing that it is enough to show that if a, b ∈ Z(R), then a+ b ∈ Z(R). Let
a, b ∈ Z(R). Since Z(R) ⊆ Z(B) and Z(B) is an ideal of B, we have a+ b ∈ Z(B).
This means that there exists a nonzero g ∈ B such that (a+ b)g = 0. Since g 6= 0,
we can choose 0 6= d ∈ c(g) and we have (a+ b)d = 0. Now it is easy to check that
Z(B) = Z(R)B.

(2): Let R have Property (A) and Z(R) be an ideal of R. We show that Z(B) =
Z(R)B. Let f ∈ Z(B), then there exists a nonzero r ∈ R such that f · r = 0.
Therefore we have c(f) ⊆ Z(R) and since Z(R) is an ideal of R, f ∈ Z(R)B.
Now let f ∈ Z(R)B, then c(f) ⊆ Z(R). Since R has Property (A), c(f) has a
nonzero annihilator and this means that f is a zero-divisor in B. So we have already
shown that Z(B) is an ideal of B and therefore B is primal. Finally we prove
that B has Property (A). Assume that J = (f1, f2, . . . , fn) ⊆ Z(B). Therefore
c(f1), c(f2), . . . , c(fn) ⊆ Z(R). But Z(R) is an ideal of R and c(fi) is a finitely
generated ideal of R for any 1 ≤ i ≤ n, so I = c(f1) + c(f2) + · · ·+ c(fn) ⊆ Z(R)
is a finitely generated ideal of R and there exists a nonzero s ∈ R such that sI = 0.
This causes sJ = 0 and J has a nonzero annihilator in B.

(3): We just need to prove that if B is primal, then R has Property (A). For
doing that let I ⊆ Z(R) be a finitely generated ideal of R. Since the content
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function is onto, there exists an f ∈ B such that I = c(f). Since c(f) ⊆ Z(R),
f ∈ Z(B). According to McCoy’s property for content algebras, we have f · r = 0
for some nonzero r ∈ R and this means I = c(f) has a nonzero annihilator and the
proof is complete. �

5. Zero-divisor graph of content algebras

Let R be a commutative ring with identity and proper zero-divisors, where by
a proper zero-divisor we mean a zero-divisor different from zero. We let Z(R)∗
denote the set of proper zero-divisors of R. We consider the graph Γ(R), called
zero-divisor graph of R, whose vertices are the elements of Z(R)∗ and edges are
those pairs of distinct proper zero-divisors {a, b} such that ab = 0.

Recall that a graph is said to be connected if for each pair of distinct vertices
v and w, there is a finite sequence of distinct vertices v = v1, v2, . . . , vn = w such
that each pair {vi, vi+1} is an edge. Such a sequence is said to be a path and the
distance, d(v, w), between connected vertices v and w is the length of the shortest
path connecting them. The diameter of a connected graph G is the supremum
of the distances between vertices and is denoted by diam(G). In [2], zero-divisor
graphs were studied and among many things, it was proved that any zero-divisor
graph, Γ(R), is connected with 0 ≤ diam(Γ(R)) ≤ 3 [2, Theorem 2.3]. Note that
the diameter is 0 if the graph consists of a single vertex and a connected graph
with more than one vertex has diameter 1 if and only if it is complete; i.e., each
pair of distinct vertices forms an edge.

In this section, we examine the preservation of diameter of zero-divisor graph
under content extensions. What we do is the generalization of what it has been
done for polynomial rings in [4] and [16]. The following lemmas are straightforward,
but we bring them only for the sake of reference.

Lemma 23. Let R be a ring and B a content R-algebra. Then the following
statements hold:

(1) Nil(B) = Nil(R)B, where by Nil(R) we mean all nilpotent elements of R.
(2) Z(R) ⊆ Z(B) ⊆ Z(R)B.
(3) Z(R)n = (0) iff Z(B)n = (0) for all n ≥ 1.

Proof. It is well-known that the set of all nilpotent elements of a ring is equal to
the intersection of all its minimal primes. For proving (1), use Theorem 5 and [19,
1.2, p.51]. The statements (2) is obvious by definition of content modules and [19,
6.1]. For (3), suppose that Z(R)n = 0. Choose f1, f2, . . . , fn ∈ Z(B). Therefore
by McCoy’s property for content algebras, c(f1), c(f2), . . . , c(fn) ⊆ Z(R). But by
[20, Proposition 1.1] c(f1f2 . . . fn) ⊆ c(f1)c(f2) . . . c(fn) ⊆ Z(R)n = (0). Hence
f1f2 . . . fn = 0. �

Lemma 24. Let R be a ring and B a content R-algebra. Then diam(Γ(R)) ≤
diam(Γ(B)).

Proof. Note that the defining homomorphism of R into B is injective and therefore
we can suppose R to be a subring of B [19, Remark 6.1(b)] and so Z(R)∗ ⊆ Z(B)∗.
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It is obvious that if diam(Γ(R)) = 0, 1, or 2, then no path in Γ(R) can have a
shortcut in Γ(B). Now let diam(Γ(R)) = 3 and a− b− c− d be the path in Γ(R)
with a, b, c, d ∈ Z(R)∗ without having any shortcut. Our claim is that neither is
there a shortcut for this path in Z(B)∗. On the contrary suppose that there is an
h ∈ Z(B)∗ such that a−h−d is a path in Z(B)∗. Then a·c(h) = d·c(h) = (0). Since
h 6= 0, there exists a nonzero element r ∈ c(h) such that ar = rd = 0 and this means
that a− r − d is a shortcut in Γ(R), a contradiction. Therefore diam(Γ(B)) = 3.
This means that in any case the inequality diam(Γ(R)) ≤ diam(Γ(B)) holds. �

Recall that diam(Γ(R)) = 0 iff R is isomorphic to either Z4 or Z2[y]/(y2) [2,
Example 2.1] and diam(Γ(R)) = 1 iff xy = 0 for each pair of distinct zero-divisors
of R and R has at least two proper zero-divisors [2, Theorem 2.8]. Also from [16,
Theorem 2.6(3)], we know that diam(Γ(R)) = 2 iff either (i) R is reduced with
exactly two minimal primes and at least three proper zero-divisors or (ii) Z(R)
is an ideal whose square is not (0) and each pair of distinct zero-divisors has a
nonzero annihilator. These facts help us to examine the preservation of diameter
of zero-divisor graph under content extensions for the cases diam(Γ(R)) = 0, 1.

Theorem 25. Let R be a ring and B be a content R-algebra and B � R. Then
the following statements hold:

(1) diam(Γ(R)) = 0 and diam(Γ(B)) = 1 iff either R ∼= Z4 or R ∼= Z2[y]/(y2).
(2) diam(Γ(R)) = diam(Γ(B)) = 1 iff R is a nonreduced ring with more than

one proper zero-divisor and Z(R)2 = 0.
(3) diam(Γ(R)) = 1 and diam(Γ(B)) = 2 iff R ∼= Z2 × Z2.

Proof. Let B be a content R-algebra such that B � R. For (1), we just need
to prove that if diam(Γ(R)) = 0, then diam(Γ(B)) = 1. It is obvious that R is
isomorphic to either Z4 or Z2[y]/(y2) [2, Example 2.1]. But Z(Z4) = (2) and
Z(Z2[y]/(y2)) = {by + (y2) : b ∈ Z2} = (y), so in any case Z(B) = Z(R)B by
Theorem 22(2). It is easy to check that fg = 0 for any distinct pair of zero-divisors
f, g in B and B has at least two proper zero-divisors. So according to [16, Theorem
2.6(2)], diam(Γ(B)) = 1.

(2) and (3): If R is a nonreduced ring with more than one proper zero-divisor and
Z(R)2 = (0) then R � Z2×Z2 and ab = 0 for all a, b ∈ Z(R) [2, Theorem 2.8]. This
means that diam(Γ(R)) = 1. Let f , g ∈ Z(B)∗. According to McCoy’s property
for content algebras, there exist nonzero r, s ∈ R such that c(f) · r = c(g) · s = 0.
This implies that c(f) ⊆ Z(R) and c(g) ⊆ Z(R) and therefore c(fg) ⊆ c(f) c(g) =
(0). But B has at least two proper zero-divisors, since Z(R)∗ ⊆ Z(B)∗. Hence
diam(Γ(B)) = 1.

Now let R ∼= Z2×Z2. Then R is a reduced ring with exactly two minimal prime
ideals, p and q, where p = ((1, 0)) and q = ((0, 1)) and according to Lemma 23
and Corollary 6, B is a reduced ring with exactly two minimal prime ideals, pB
and qB. It is obvious that B has at least two proper zero-divisors. If B has exactly
two proper zero-divisors, then Z(B)∗ = {(1, 0), (0, 1)} and therefore according to
[2, Theorem 2.8], B ∼= Z2 × Z2. Therefore B has at least three proper zero-divisors
and according to [16, Theorem 2.6(3)], we have diam(Γ(B)) = 2. By this discussion,
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it is, then, obvious that diam(Γ(R)) = diam(Γ(B)) = 1 implies R is a nonreduced
ring with more than one proper zero-divisor and Z(R)2 = 0.

Now let diam(Γ(R)) = 1 and diam(Γ(B)) = 2. If Z(R)2 = (0), then Z(B)2 = 0
and diam(Γ(B)) = 1, therefore R ∼= Z2 × Z2 by [2, Theorem 2.8]. �

Now we examine the preservation of diameter of zero-divisor graph under content
extensions with diam(Γ(R)) = 2.

Theorem 26. Let B be a content R-algebra such that the content function c : B →
FId(R) is onto. Let R has at least three proper zero-divisors and B � R. Then the
following statements hold:

(1) diam(Γ(R)) = diam(Γ(B)) = 2 iff either (i) R is a reduced ring with exactly
two minimal prime ideals and R has more than two proper zero-divisors,
or (ii) R is a primal ring with Z(R)2 6= (0) and R has Property (A).

(2) diam(Γ(R)) = 2 and diam(Γ(B)) = 3 iff Z(R) is an ideal of R and R does
not have Property (A) but each pair of proper zero-divisors of R has a
nonzero annihilator.

Proof. (1): If R is a reduced ring with exactly two minimal prime ideals and
R has more than two proper zero-divisors, then according to Lemma 23 and
Corollary 6, B is a reduced ring with exactly two minimal prime ideals and
obviously B has more than two proper zero-divisors and therefore according to
[16, Theorem 2.6(3)], diam(Γ(R)) = diam(Γ(B)) = 2. If R is a primal ring with
Z(R)2 6= (0) and R has Property (A), then by Theorem 22(2), B is primal and
has Property (A). Also obviously Z(B)2 6= 0. So according to [16, Theorem 2.6(3)],
diam(Γ(R)) = diam(Γ(B)) = 2. Now let diam(Γ(R)) = diam(Γ(B)) = 2. If R is
a reduced ring with exactly two minimal prime ideals and R has more than two
proper zero-divisors, then we are done, otherwise, Z(B) is an ideal whose square is
not (0) and each pair of distinct zero-divisors has a nonzero annihilator. Since Z(B)
is primal, then Z(R) is an ideal of R and R has Property (A) by Theorem 22(3).
But Z(B)2 6= 0 implies that Z(R)2 6= 0 and the proof is complete.

(2) Assume that Z(R) is an ideal of R and R does not have Property (A) but
each pair of proper zero-divisors of R have a nonzero annihilator. It is obvious
that diam(Γ(R)) = 2. Our claim is that diam(Γ(B)) = 3. On the contrary, let
diam(Γ(B)) = 2. According to [16, Theorem 2.6(3)] and [12, Corollary 2.4], either
zd(R) = 2 or zd(R) = 1. But the content function c : B → FId(R) is onto and in
both cases, by Theorem 18(3), R has Property (A), a contradiction. Therefore
diam(Γ(B)) = 3. Now let diam(Γ(R)) = 2 and diam(Γ(B)) = 3, then according to
[16, Theorem 2.6(3)] and Theorem 26(1), Z(R) is an ideal of R and each pair of
proper zero-divisors of R has a nonzero annihilator. Obviously R does not have
Property (A), otherwise diam(Γ(B)) = 2 and the proof is complete. �

Note that the two recent theorems are the generalization of [16, Theorem 3.6].
Consider that in the last theorem, we assume the content function c : B → FId(R)
to be onto. In the following we state a theorem similar to [4, Proposition 5], without
assuming the content function c : B → FId(R) to be onto.
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Theorem 27. Let B be a content R-algebra and Z(R)n = (0), while Z(R)n−1 6= (0)
for some n = 2. Then the following statements hold:

(1) If n = 2, then diam(Γ(R)) = diam(Γ(B)) = 1.
(2) If n > 2, then diam(Γ(R)) = diam(Γ(B)) = 2.

Proof. (1) holds by [2, Theorem 2.8] and Theorem 25(2).
(2): By assumption Z(R)n = (0) and Z(R)2 6= (0). Therefore Γ(R) is not a

complete graph and so there exist distinct a, b ∈ Z(R)∗ such that ab 6= 0. Since
Z(R)n−1 6= (0), there exist c1, c2, . . . , cn−1 ∈ Z(R) such that c = c1c2 . . . cn−1 6=
0. So c 6= a, b and ca = cb = 0. Hence diam(Γ(R)) = 2. On the other hand
Z(R)n−1 6= (0) causes Z(B)n−1 6= (0). By Lemma 23, Z(B)n = (0). This means
that diam(Γ(B)) = 2 and the proof is complete. �
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