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Zero Duality Gap in Optimal Power Flow Problem

Javad Lavaei and Steven H. Low

Abstract— The optimal power flow (OPF) problem is non-
convex and generally hard to solve. We provide a sufficient
condition under which the OPF problem is equivalent to a
convex problem and therefore is efficiently solvable. Specifically,
we prove that the dual of OPF is a semidefinite program and
our sufficient condition guarantees that the duality gap is zero
and a globally optimal solution of OPF is recoverable from
a dual optimal solution. This sufficient condition is satisfied
by standard IEEE benchmark systems with 14, 30, 57, 118
and 300 buses after small resistance (10−5 per unit) is added
to every transformer that originally assumes zero resistance.
We justify why the condition might hold widely in practice
from algebraic and geometric perspectives. The main underlying
reason is that physical quantities such as resistance, capacitance
and inductance, are all positive.

Index Terms— Power System, Optimal Power Flow, Convex
Optimization, Linear Matrix Inequality, Polynomial-Time Algo-
rithm.

I. INTRODUCTION

Optimal power flow (OPF) problem deals with finding
an optimal operating point of a power system that mini-
mizes an appropriate cost function such as generation cost
or transmission loss subject to certain constraints on power
and voltage variables [1]. Started by the work [2] in 1962, the
OPF problem has been extensively studied in the literature
and numerous algorithms have been proposed for solving
this highly nonconvex problem [3], [4], [5], including lin-
ear programming, Newton Raphson, quadratic programming,
nonlinear programming, Lagrange relaxation, interior point
methods, artificial intelligence, artificial neural network, fuzzy
logic, genetic algorithm, evolutionary programming and par-
ticle swarm optimization [1], [6], [7], [8]. A good number of
these methods are based on the Karush-Kuhn-Tucker (KKT)
necessary conditions, which can only guarantee a locally
optimal solution due to nonconvexity of the OPF problem
[9]. This nonconvexity is partially due to the cross products
of voltage variables corresponding to disparate buses. In the
past decade, much attention has been paid to devising efficient
algorithms with guaranteed performance for the OPF problem.
For instance, the recent papers [10] and [11] propose nonlinear
interior-point algorithms for an equivalent current injection
model of the problem. An improved implementation of the
automatic differentiation technique for the OPF problem is
studied in the recent work [12]. In an effort to convexity
the OPF problem, it is shown in [13] that the load flow
problem of a radial distribution system can be modeled as a
convex optimization problem in the form of a conic program.
Nonetheless, the results fail to hold for a meshed network,
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due to the presence of arctangent equality constraints [14].
Nonconvexity appears in more sophisticated power problems
such as the stability constrained OPF problem where the
stability at the operating point is an extra constraint [15],
[16] or the dynamic OPF problem where the dynamics of the
generators are also taken into account [17], [18].

The OPF problem is in general NP-hard [19]. We also
showed in our recent work that a closely related problem
of finding an optimal operating point of a radiating antenna
circuit is an NP-complete problem, by reducing the number
partitioning problem to the antenna problem [20]. Using du-
ality theory and semidefinite programming, however, we will
show in this paper that a power system has special structure
(Condition C0(ii) below) that often renders the OPF problems
efficiently solvable.

Specifically, instead of solving the OPF problem directly,
we propose solving its Lagrangian dual problem, and recover a
primal solution from a dual optimal solution. We prove that the
dual problem is a convex semidefinite program and therefore
can be solved efficiently. However, the optimal objective value
of the dual problem is only a lower bound on the optimal
value of the original OPF problem and the lower bound may
not be tight (nonzero duality gap) [21]. If the primal solution
computed from an optimal dual solution indeed satisfies all
the constraints of the OPF problem and the resulting objective
value equals the optimal dual objective value (zero duality
gap), then strong duality holds and the primal solution is in-
deed optimal for the original OPF problem. This approach has
allowed us to solve exactly (globally optimal) and efficiently
all the five IEEE benchmark systems archived at [22] with
14, 30, 57, 118 and 300 buses. Our main result (Theorem 1)
provides a sufficient condition (C1 below) that guarantees zero
duality gap and optimality of the resulting OPF solution. This
is explained in Section II and proved in Section III through
clarifying the duality structure of the OPF problem.

Therefore, even though the OPF problem is NP-hard in
general, a subset of the problem instances that satisfy condition
C1 are equivalent to its convex dual. Although the sufficient
condition C1 is not satisfied by the IEEE benchmark systems,
the duality gap is zero for all of them. Moreover, C1 is violated
in a “trivial” manner in these systems: when it is violated, it
is due to the simplifying assumption that transformers have
zero resistance. When even a small resistance (10−5 per unit)
is added to each transformer that originally assumes zero
resistance, condition C1 is satisfied for all the IEEE benchmark
systems. In Section IV, we provide informal justification on
why condition C1 might hold widely, both from an algebraic
and a geometric perspective. The geometrical interpretation
is that the feasibility region of the dual of the OPF problem
must be smooth on its boundary around the optimal point. The
algebraic argument relies on the Perron-Frobenius theorem
in graph theory and implies that the zero duality gap is
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due to physical quantities, namely resistance, capacitance and
inductance, being positive (condition C0(ii)). In other words,
it is a consequence of the physical constraints that nature
imposes that many OPF problems have zero duality gap. This
suggests hope that the OPF problem for practical networks
may be efficiently solvable using the algorithm prescribed
in Section II. Generalizations to the basic OPF formulation
are discussed in Section V. The various results are illustrated
in Section VI through IEEE benchmark systems and smaller
examples. Concluding remarks are drawn in Section VII.
Some background on semidefinite programming is provided
in Appendix A and, finally, a few proofs are collected in
Appendix B.

Notations: We introduce the following notations:
• i : The imaginary unit.
• R: The set of real numbers.
• Re{·} and Im{·}: The operators returning the real and

imaginary parts of a complex matrix.
• ∗ : The conjugate transpose operator.
• T : The transpose operator.
• � and � : The matrix inequality signs in the positive

semidefinite sense (i.e. given two symmetric matrices A
and B, A � B implies A− B is a positive semidefinite
matrix, meaning that its eigenvalues are all nonnegative).

• Trace: The matrix trace operator.
• | · | : The absolute value operator.
• For any vector x, xi generally denotes the ith component.

II. PROBLEM FORMULATION AND MAIN RESULT

A. Problem formulation

Consider a power network with n buses, labeled 1, ..., n,
where all buses are possibly directly connected to loads, but
only the first m buses are directly connected to generators.
For k ∈ {1, ..., n} and l ∈ {1, ...,m}, define the following
quantities:
• P d

k and Qd
k: Active and reactive loads at buses k, respec-

tively. They are given demands that must be met.
• P g

l and Qg
l : Active and reactive powers generated at buses

l, respectively. They are optimization variables.
• Vk: Complex voltages at buses k. They are optimization

variables.
• fl(P

g
l ) = cl2(P

g
l )2 + cl1P

g
l + cl0: Cost functions associ-

ated with generators l, where cl2, cl1, cl0 are nonnegative
numbers.

Derive the circuit model of the power network by replacing
every transmission line and transformer with their equivalent
Π models [1]. In this circuit model, let ykl be the mutual
admittance between buses k and l, and ykk be the admittance-
to-ground at bus k, for every l, k ∈ {1, ..., n}. Denote the
admittance matrix of this equivalent circuit model with Y ,
which is an n × n complex-valued matrix whose (l, k) entry
is equal to −ylk if l 6= k and yll +

∑
p∈N (l) ylp otherwise,

where N (l) is the set of buses that are directly connected to
bus l. Denote by the column vector V := (Vk, k = 1, . . . , n)
the complex voltages. Define the current vector I := Y V =
(Ik, k = 1, ..., n). Let P g := (P g

1 , l = 1, . . . ,m) and Qg :=
(Qg

1, l = 1, . . . ,m).

The classical optimal power flow (OPF) problem is:
OPF:

min
V,P g,Qg

m∑
l=1

fl(P
g
l ) (1)

subject to

Pmin
l ≤ P g

l ≤ Pmax
l , l = 1, 2, ...,m (2a)

Qmin
l ≤ Qg

l ≤ Qmax
l , l = 1, 2, ...,m (2b)

V min
k ≤ |Vk| ≤ V max

k , k = 1, 2, ..., n (2c)

VlI
∗
l = (P g

l − P d
l ) + (Qg

l −Qd
l )i, l = 1, 2, ...,m (2d)

VkI∗k = −P d
k −Qd

ki, k = m + 1, ..., n (2e)

The inequalities (2a), (2b) and (2c) limit the power
and voltage variables to within the given bounds
Pmin

l , Pmax
l , Qmin

l , Qmax
l , V min

k , V max
k , whereas the last

two equations (2d) and (2e) express the physical constraints
imposed by the network. There could be more constraints in
the OPF problem, e.g. line flow limits, which we will discuss
in Section V below.

Though not stated explicitly in the results that follow, we
assume the following condition to hold throughout the paper:

C0: (i) OPF (1)–(2) is feasible. Moreover, V = 0 is not a
feasible point of OPF.

(ii) The admittance matrix Y is symmetric (Yij = Yji)
and has two important properties: the off-diagonal
entries of the matrix Re{Y } are all nonpositive, and
the off-diagonal entries of the matrix Im{Y } are all
nonnegative.

Assumption C0(i) is to avoid triviality. Assumption C0(ii)
always holds in standard power systems where the resistance,
capacitance and inductance in the Π model of transmission
lines are positive.

B. Main result

The voltage constraints (2c) and the network constraints
(2d)–(2e) are the sources of nonconvexity that makes OPF
generally hard. Our goal is to derive a sufficient condition
under which the OPF problem is equivalent to a convex
problem, and hence can be solved efficiently. Moreover, we
will demonstrate in later sections that this sufficient condition
is (essentially) satisfied by all the IEEE benchmark systems
archived at [22] and provide informal justifications on why
the condition is likely to hold in practice. To state our main
result, we need the following notations.

Eliminating the variables P g
l = Re{YlI

∗
l } + P d

l and
Qg

l = Im{YlI
∗
l } + Qd

l using the network constraints (2d)
and (2e), we can write the OPF problem in terms only of the
complex voltages V (noting I = Y V ). Extend the definition
of Pmin

k , Pmax
k , Qmin

k , Qmax
k to k ∈ {m + 1, ..., n}, with

Pmin
k = Pmax

k = Qmin
k = Qmax

k = 0 if k ∈ {m + 1, ..., n}.
Let e1, e2, ..., en denote the standard basis vectors in Rn. For
every k = 1, 2, ..., n, define Mk ∈ R2n×2n as a diagonal
matrix whose entries are all equal to zero, except for its (k, k)
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and (n + k, n + k) entries that are equal to 1. Define also

Yk := eke∗kY

Yk :=
1
2

[
Re{Yk + Y T

k } Im{Y T
k − Yk}

Im{Yk − Y T
k } Re{Yk + Y T

k }

]
Ȳk :=

−1
2

[
Im{Yk + Y T

k } Re{Yk − Y T
k }

Re{Y T
k − Yk} Im{Yk + Y T

k }

]
Define the variables for the dual problem as a 6n-

dimensional real vector:

x := (λmin
k , λmax

k , λ̄min
k , λ̄max

k , µmin
k , µmax

k , k = 1, ..., n)

and a 2m-dimensional real vector

r := (rl1, rl2, l = 1, ...,m)

Define the affine function

h(x, r) :=
n∑

k=1

{
λmin

k Pmin
k − λmax

k Pmax
k + λkP d

k

+ λ̄min
k Qmin

k − λ̄max
k Qmax

k + λ̄kQd
k + µmin

k

(
V min

k

)2
− µmax

k (V max
k )2

}
+

m∑
l=1

(cl0 − rl2)

where the bold variables are defined in terms of (x, r) as: for
k = 1, ..., n

λk :=
{
−λmin

k + λmax
k + ck1 + 2

√
ck2rk1 if k = 1, ...,m

−λmin
k + λmax

k otherwise

λ̄k := −λ̄min
k + λ̄max

k

µk := −µmin
k + µmax

k

Instead of the nonconvex OPF problem, we propose solving
the following convex problem.
Dual OPF:

max
x≥0,r

h(x, r) (3)

subject to
n∑

k=1

(
λkYk + λ̄kȲk + µkMk

)
� 0 (4a)[

1 rl1

rl1 rl2

]
� 0, l = 1, 2, ...,m (4b)

This semidefinite program is the dual of an equivalent form of
OPF (see Section III-A for more details and Appendix A for
a brief overview of semidefinite programming). It is therefore
convex and can be solved efficiently. This motivates the
following approach to solving OPF.
Algorithm for Solving OPF:

1) Compute a solution (xopt, ropf) of Dual OPF (3)–(4).
2) If the optimal value of Dual OPF is +∞, then OPF is

infeasible.
3) Compute any nonzero vector

[
UT

1 UT
2

]T
in the null

space of the 2n× 2n positive semidefinite matrix

Aopt :=
n∑

k=1

(
λopt

k Yk + λ̄
opt
k Ȳk + µopt

k Mk

)
(5)

4) Compute an optimal solution V opt of OPF as

V opt = (ζ1 + ζ2i)(U1 + U2i) (6)

by solving for ζ1 and ζ2 from optimality conditions.
5) Verify that V opt satisfies all the constraints of OPF (1)–

(2) and that the resulting objective value of OPF equals
the optimal value of Dual OPF (zero duality gap).

We make several remarks. First, provided OPF is feasible,
the null space of Aopt has an even dimension of at least
2 (see proof of Theorem 1 below). Hence Step 3 of the
Algorithm will always yield a nonzero vector

[
UT

1 UT
2

]T
.

Second, having found U1 and U2, the scalars ζ1 and ζ2 can be
identified from the first order optimality (KKT) condition for
Dual OPF or the feasibility condition for OPF. For instance,
the voltage angle at the swing bus being zero introduces an
equation in terms of ζ1 and ζ2. If, in addition, (µmin

k )opt

(respectively, (µmax
k )opt) turns out to be nonzero for some

k ∈ {1, 2, ...n}, then the relation |V opt
k | = V min

k (respectively,
|V opt

k | = V max
k ) must hold by complementary slackness, which

provides another equation relating ζ1 to ζ2. Third, the weak
duality theorem implies that the optimal value of OPF is
greater than or equal to that of its dual. Hence, Step 2 detects
when OPF is infeasible. Even when OPF is feasible, there is
generally a nonzero duality gap and an optimal solution to
OPF may not be recoverable from an optimal dual solution.
However, if V opt computed in Step 4 indeed is primal feasible
as verified in Step 5, then duality gap is zero and V opt is indeed
optimal for OPF. This is the case with all the IEEE benchmark
examples described in Section VI, and hence all of them can
be solved efficiently by the above Algorithm.

Indeed, the following sufficient condition guarantees that the
Algorithm finds an optimal solution of OPF:
C1: There exists a dual optimal solution (xopt, ropt) such that

the 2n × 2n positive semidefinite matrix Aopt in (5) has
a zero eigenvalue of multiplicity 2.

In this case, the null space of Aopt has dimension 2.
Theorem 1: If condition C1 holds, then
1) There is no duality gap between OPF and Dual OPF.
2) Given any vector

[
UT

1 UT
2

]T
in the null space of

Aopt, the voltages V opt calculated in (6) is indeed optimal
for OPF.

III. CONVEX RELAXATIONS OF OPF

In this section, we provide further insights on the structure
of OPF (1)–(2) and prove our main result (Theorem 1). We
will do this by defining four optimization problems, clarifying
their relationship as summarized in Figure 1, and showing how
they imply Theorem 1.

A. Duality structure of OPF

As alluded to above, we can eliminate the variables P g
l =

Re{YlI
∗
l }+ P d

l and Qg
l = Im{YlI

∗
l }+ Qd

l using the network
constraints (2d) and (2e) to write OPF in the following
equivalent form.
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OPF Problem 

(nonconvex)

Optimization 1 

(nonconvex)

Optimization 4 

(nonconvex)

Optimization 2 

(convex)

Optimization 3 

(convex)
Equivalence:                  

strong duality

Equivalence

Equivalence:                

change of variable     

W=UU*

Rank relaxation:        

removing constraint 

rank{W}=1

Dual 

relaxation

Fig. 1. The relationship among OPF and Optimizations 1-4.

Optimization 1:

min
α,V

m∑
l=1

αl (7)

subject to

Pmin
k − P d

k ≤ Re{VkI∗k} ≤ Pmax
k − P d

k (8a)

Qmin
k −Qd

k ≤ Im{VkI∗k} ≤ Qmax
k −Qd

k (8b)(
V min

k

)2 ≤ |Vk|2 ≤ (V max
k )2 (8c)[

cl1Re{VlI
∗
l } − αl + al

√
cl2Re{VlI

∗
l }+ bl√

cl2Re{VlI
∗
l }+ bl −1

]
� 0

(8d)

for k = 1, 2, ..., n and l = 1, 2, ...,m. Here I = Y V and the
problem parameters are al := cl0 + cl1P

d
l , bl :=

√
cl2P

d
l .

Optimization 2: This is Dual OPF (3)–(4).
We first establish that Dual OPF is a dual relaxation of OPF.

Its proof is relegated to the Appendix.
Theorem 2: We have
1) Optimization 1 is equivalent to OPF (1)–(2).
2) Optimization 2 is the dual of Optimization 1 with (x, r)

as the Lagrange multipliers.
By weak duality, Dual OPF (3)–(4) provides a lower bound

on OPF. To prove that the bound is exact (zero duality gap)
under condition C1 and to recover an optimal solution to OPF,
we need another pair of optimization problems. To motivate,
observe that for k = 1, . . . , n:

Re{VkI∗k} = Re{V ∗eke∗kI} = Re{V ∗YkV }

= UT

[
Re{Yk} −Im{Yk}
Im{Yk} Re{Yk}

]
U

=
1
2
UT

[
Re{Yk + Y T

k } Im{Y T
k − Yk}

Im{Yk − Y T
k } Re{Yk + Y T

k }

]
U

= UT YkU = trace
{
YkUUT

}
(9)

where
U :=

[
Re{V }T Im{V }T

]T
(10)

Likewise,

Im{VkI∗k} = UT ȲkU = trace
{
ȲkUUT

}
(11)

Furthermore,

|Vk|2 = UT MkU = trace
{
MkUUT

}
(12)

Substituting these expressions into Optimization 1 and identi-
fying W = UUT motivate Optimizations 3 and 4.

Optimization 3:

min
α,W

m∑
l=1

αl

where W ∈ R2n×2n denotes symmetric matrices, subject to

Pmin
k − P d

k ≤ trace{YkW} ≤ Pmax
k − P d

k

Qmin
k −Qd

k ≤ trace{ȲkW} ≤ Qmax
k −Qd

k(
V min

k

)2 ≤ trace{MkW} ≤ (V max
k )2[

cl1trace{YkW} − αl + al
√

cl2trace{YkW}+ bl√
cl2trace{YkW}+ bl −1

]
� 0

W � 0

for k = 1, 2, ..., n and l = 1, 2, ...,m.
Optimization 4: This is Optimization 3 with an additional

constraint rank{W} = 1.
The next result, proved in the Appendix, completes the

relationship depicted in Figure 1 among these optimization
problems.

Theorem 3: We have
1) Optimization 4 is equivalent to Optimization 1 via the

change of variable W = UUT , i.e.,

W =
[

Re{V }T Im{V }T
]T [ Re{V }T Im{V }T

]
2) Optimization 3 is the Lagrangian dual of Optimization

2. Moreover, strong duality holds between them.
It is hard to prove directly our main result that condition

C1 implies zero duality gap between Optimizations 1 (hence
OPF) and 2. Figure 1 suggests a different proof approach, as
follows. The rank of a symmetric matrix is the number of
its nonzero eigenvalues. Optimization 4 is not convex because
of the additional constraint rank{W} = 1. Optimization 3 is
therefore a rank (convex) relaxation of Optimization 4. But
Optimization 3 is equivalent to Optimization 2 through strong
duality (Theorem 3(2)), and hence, when the rank relaxation
turns out to be exact (i.e., Optimizations 3 and 4 are equiva-
lent), Optimization 2 will be equivalent to Optimization 4 and
therefore to OPF (Theorem 3(1) and Theorem 2(1)).

We now prove Theorem 1 by showing that condition C1
closes the gap between Optimizations 3 and 4, i.e., it guar-
antees that any solution of Optimization 3 always satisfies
the constraint rank{W} = 1 and hence is also a solution of
Optimization 4.

B. Proof of Main Result Theorem 1

Aopt has a simple structure, which becomes more trans-
parent with an alternative representation, as follows. Define
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the following matrices (that depend implicitly on a feasible
solution (x, r) of Optimization 2): 1

Λ := diag{λ1, ...,λn}
Λ̄ := diag{λ̄1, ..., λ̄n}
Γ := diag{µ1, ...,µn}

where diag{·} maps its vector argument to a diagonal matrix.
Denote by A(Λ, Λ̄,Γ) the matrix

A(Λ, Λ̄,Γ) =
n∑

k=1

(
λkYk + λ̄kȲk + µkMk

)
Then Aopt = A(Λopt, Λ̄opt,Γopt). An alternative representation
is:

A(Λ, Λ̄,Γ) =
1
2

[
H1(Λ, Λ̄,Γ) H2(Λ, Λ̄,Γ)
−H2(Λ, Λ̄,Γ) H1(Λ, Λ̄,Γ)

]
(13)

where

H1(Λ, Λ̄,Γ) := Λ× Re{Y }+ Re{Y } ×Λ

− Λ̄× Im{Y } − Im{Y } × Λ̄ + 2Γ
H2(Λ, Λ̄,Γ) := −Λ̄× Re{Y }+ Re{Y } × Λ̄

−Λ× Im{Y }+ Im{Y } ×Λ.

We will use these expressions in the proof.
1) As stated in the proof of Theorem 3, Optimization 3

is the dual of Optimization 2 with its variable W
playing the role of a Lagrange multiplier for the matrix
constraint (4a) in Optimization 2 (see the Appendix).
One can write the KKT conditions for Optimization 2
to obtain

trace
{
AoptW opt} = 0 (14)

where Aopt is the matrix in condition C1. Denote the
nonzero eigenvalues of W opt as a1, ..., af and their as-
sociated eigenvectors as E1, ..., Ef for some nonnegative
integer f . Writing W opt =

∑f
l=1 alElE

T
l , it follows

from (14) that

f∑
l=1

alE
T
l AoptEl = 0 (15)

Furthermore, the constraints

W opt � 0, Aopt � 0

in Optimizations 2 and 3 imply that a1, ..., af are all
positive and ET

l AoptEl are all nonnegative for l =
1, . . . , f . Therefore, the equality (15) holds if and only
if ET

l AoptEl = 0 for l = 1, . . . , f . Since Aopt is positive
semidefinite, this is equivalent to

AoptEl = 0, l = 1, ..., f

This implies that the orthogonal eigenvectors E1, ..., Ef

all belong to the null space of Aopt, which, under
condition C1, has dimension 2. Hence f ≤ 2.

1For any feasible solution (x, r) of Optimization 2, we will often write
Λ, Λ̄, Γ instead of Λ(x, r), Λ̄(x, r), Γ(x, r) when the underlying variable
(x, r) of Optimization 2 is understood.

Since OPF is feasible by condition C0(i), f > 0 as W
must be nonzero. If f = 1, then rank{W} = 1 and
hence the solution W of Optimization 3 must also be a
solution of Optimization 4.
If f = 2, let E1 and E2 be two orthogonal eigenvectors
of Aopt associated with its zero eigenvalue. Decompose
E1 as

[
ET

11 ET
12

]T
for some vectors E11, E12 ∈ Rn.

¿From the expression (13) for Aopt, the only vector (up
to a constant factor) in the null space of Aopt that is
orthogonal to E1 is E2 =

[
−ET

12 ET
11

]T
. Therefore

W opt = a1

[
E11

E12

] [
ET

11 ET
12

]
+ a2

[
−E12

E11

] [
−ET

12 ET
11

] (16)

Consider now the rank-1 matrix

(a1 + a2)
[

E11

E12

] [
ET

11 ET
12

]
(17)

Since W opt given in (16) satisfies the constraints of
Optimization 3 and also maximizes its objective func-
tion, it is easy to verify that the rank-1 matrix in (17)
is also a solution of Optimization 3. In other words,
Optimization 3 has a rank-1 solution, which must also
be a solution of Optimization 4.
Hence, we have shown that condition C1 closes the
gap between Optimizations 3 and 4. The optimal value
of Optimization 2 is equal to that of Optimization 3
(Theorem 3(2)), which is equal to that of Optimization 4,
and hence equal to that of Optimization 1 and OPF
(Theorem 3(1) and Theorem 2(1)). This completes the
proof of zero duality gap between OPF and Dual OPF.

2) One can solve the convex problem of Optimization 2
efficiently to find optimal values λopt

k , λ̄
opt
k ,µopt

k , k =
1, 2, ..., n. ¿From the expression (13) for Aopt, it can be
easily verify that if

[
UT

1 UT
2

]T
is an eigenvector

associated with any eigenvalue, then
[

UT
2 −UT

1

]T
is another (orthogonal) eigenvector associated with the
same eigenvalue. Hence, Aopt either has no zero eigen-
value or its zero eigenvalue has multiplicity 2. Theo-
rem 3(1) implies that if Aopt has no zero eigenvalue,
then W opt = 0 and V opt = 0, contradicting condition
C0(i). Thus, Aopt has a zero eigenvalue with multi-
plicity 2. Hence, there exist two orthogonal vectors[

UT
1 UT

2

]T
and

[
UT

2 −UT
1

]T
in the null space

of Aopt and two scalars ζ1 and ζ2 such that[
Re{V opt}
Im{V opt}

]
= ζ1

[
U1

U2

]
+ ζ2

[
−U2

U1

]
or equivalently

V opt = (ζ1 + ζ2i)(U1 + U2i)

This completes the proof of Theorem 1. �

IV. DISCUSSION: CONDITION C1 FOR ZERO DUALITY GAP

As we elaborate in Section VI, all the five IEEE benchmark
systems archived at [22] can be solved exactly and quickly
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following the Algorithm prescribed in Section II. Moreover all
of them satisfy condition C1 after a small resistance (10−5)
has been added to each transformer that originally has zero
resistance. This suggests hope that practical systems are likely
to satisfy condition C1 and hence solvable efficiently. In this
section, we discuss why this might be the case. We exhibit
special power system scenarios in which condition C1 can
be proved to hold and explain why we believe the optimal
solutions of general scenarios are likely to be close to the
optimal of the special scenarios and hence, by continuity, also
have zero duality gap.

A graph is called strongly connected if there is a path
between any two nodes. Consider the graph induced by the
matrix Re{Y }.2 We will need the following condition:
C2: The graph induced by Re{Y } (the resistive part of the

power system) is strongly connected.
Condition C2 can be checked by examining its n×n Laplacian
matrix L where Lij = −1 if Re{Y }ij 6= 0 and Lii =
−
∑

j 6=i Lij : C2 holds if and only if L has a zero eigenvalue
of multiplicity 1 [32].

A. Algebraic structure

The next theorem exploits a result in algebraic graph theory
to study condition C1.

Theorem 4: Suppose condition C2 holds. Consider a feasi-
ble point (x, r) of Optimization 2 so that the corresponding
Λ and Λ̄ satisfy λi + λj > 0 and λ̄i + λ̄j ≥ 0 whenever
Yij 6= 0, i 6= j.

1) The smallest eigenvalue of the matrix H1(Λ, Λ̄,Γ) is
simple (not repeated).

2) If H2(Λopt, Λ̄opt,Γopt) = 0 at optimality, then Aopt has a
zero eigenvalue of multiplicity 2. Moreover, (V opt)k 6=
0, k = 1, . . . , n.

Proof:
1) For i 6= j with Yij 6= 0(

H1(Λ, Λ̄,Γ)
)
ij

= (λi + λj)Re{Yij}
− (λ̄i + λ̄j)Im{Yij}

(18)

Recall from condition C0(ii) that Re{Yij} are non-
positive and Im{Yij} are nonnegative. Therefore, all
off-diagonal entries of H1(Λ, Λ̄,Γ) are non-positive.
Moreover, the condition in the theorem guarantees that(
H1(Λ, Λ̄,Γ)

)
ij

< 0 if Yij 6= 0, and hence the graph
induced by H1(Λ, Λ̄,Γ) is strongly connected (due to
condition C2). The matrix H1(Λ, Λ̄,Γ) is a generalized
Laplacian of some graph (see, e.g., [32, p. 296]). By
Lemma 13.9.1 of [32, p. 297], its smallest eigenvalue is
simple. Moreover, the corresponding eigenvector can be
taken to have only positive entries.

2) If H2(Λopt, Λ̄opt
,Γopt) = 0, Aopt in (13) is block

diagonal with H1(Λ, Λ̄,Γ) on the diagonal. Since (x, r)
is feasible, A(Λ, Λ̄,Γ) is positive semidefinite, and so
is H1(Λ, Λ̄,Γ). Hence, the eigenvalues of A(Λ, Λ̄,Γ)
and H1(Λ, Λ̄,Γ) are all nonnegative. As argued in the

2Given an n × n symmetric matrix Q, a graph induced by Q is a graph
that has n vertices labeled by 1, . . . , n and an edge (i, j), i 6= j, if Qij 6= 0.

proof of Theorem 1, feasibility of OPF (condition C0(i))
implies their smallest eigenvalue is zero. If U is an
eigenvector of H1(Λ, Λ̄,Γ) associated with its zero
eigenvalue, then [UT UT ]T and [UT −UT ]T are two
orthogonal eigenvectors of Aopt associated with a zero
eigenvalue. Since the zero eigenvalue of H1(Λ, Λ̄,Γ) is
simple, that of Aopt must have multiplicity 2. Therefore,
condition C1 is satisfied. Since U can be taken as strictly
positive, Theorem 1(2) implies that every component of
the optimal voltages V opt

k are nonzero.
This completes the proof. �

Hence, provided the resistive part of the power system is
strongly connected, condition C1 holds and the duality gap of
OPF is zero if the off diagonal entries of H1 are nonpositive
and H2 = 0. Since eigenvalues are continuous in the entries
of their matrix, we expect C1 to hold even if H2 is nonzero
but small enough (relative to H1). We make two remarks on
why this might be the case in practice, one on H1 and the
other on H2.

First, we can interpret λopt
k and λ̄

opt
k , k = 1, ..., n, as the

prices for active and reactive powers. We therefore expect
λopt

k to be all positive and λ̄
opt
k , µopt

k to be small. For example,
consider a load bus k ∈ {m+1, ..., n}. That λopt

k being positive
means that although the generators must provide at least
Pmin

k amount of active power at bus k, the optimal strategy
is to provide exactly this minimum amount (complementary
slackness). Even though λ̄

opt
k might sometimes be negative,

they are far smaller than λopt
k in all the examples we have

tried (see Section VI). The off-diagonal entries of H1 are likely
negative if λopt

k are positive and dominant over λ̄
opt
k . Second,(

H2(Λ, Λ̄,Γ)
)
ij

= (λ̄j − λ̄i)Re{Y }+ (λj − λi)Im{Y }

Hence, we expect H2 to be small relative to H1; c.f. (18).
This is indeed the case with the IEEE benchmark systems
discussed in Section VI. Note that H2 becomes zero when the
power system is purely resistive.

B. Geometric structure

We now study condition C1 from an geometric perspective.
Recall the definition of Dual OPF (3)–(4) with variables (x, r).
To simplify, we assume that fl(P

g
l ) = P g

l for l = 1, ...,m,
which specializes OPF to loss minimization. It can be shown
that this implies ropt

l1 = ropt
l2 = 0, l = 1, . . . ,m, at optimality.

Consider the remaining 6n-dimensional variable x and let D ∈
R6n denote the set of x that makes A(Λ, Λ̄,Γ) in (13) positive
semidefinite. We will write the 3n-dimensional reduced vector
xr := (λk, λ̄k,µk, k = 1, ..., n), without making explicit their
dependence on (x, r = 0). Define Dr ∈ R3n as the set of all
vectors xr that make A(Λ, Λ̄,Γ) positive semidefinite. With
no loss of generality, assume also that the real part of Y has
at least one eigenvalue at the origin meaning that the constant
impedance-to-ground loads (if any) have no resistive parts (as
satisfied for IEEE benchmark systems).

Optimization 2 minimizes a linear function ρT x, for some
constant vector ρ ∈ R6n, over the convex feasible set D.
This finds the farthest point on the boundary of D (including
infinity) in the direction of the negative gradient −ρ. Denote
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this farthest point by xopt. Condition C1 given in Theorem 1 is
closely related to the smoothness of the boundary of Dr around
the point xopt

r . Specifically, using results on the geometrical
shape of the set of all semidefinite matrices [28] and the fact
that every eigenvalue of the matrix Aopt is repeated twice, one
can infer that:
• The boundary of Dr is composed of different minimal

faces, where the zero eigenvalue of Aopt has a constant
multiplicity at all points of every such face.

• The multiplicity of the zero eigenvalues of Aopt over each
face is a positive multiple of 2.

• The boundary of Dr at a point xopt
r is smooth (differen-

tiable) if and only if xopt
r belongs to the face over which

the multiplicity of the zero eigenvalue of Aopt is 2.
Therefore, condition C1 means that the optimal point xopt

r is
finite and the boundary of Dr is smooth at this point. To
appreciate why this condition is likely to hold, we first exhibit
such a point.

Theorem 5: Suppose the cost functions of OPF are
fl(P

g
l ) = P g

l , l = 1, . . . ,m. Suppose condition C2 holds.
If the active power losses in the transmission lines are zero at
optimality, then the following point

λopt
k = 1, λ̄

opt
k = 0, µopt

k = 0, k = 1, ..., n

is an optimal solution of Optimization 2 and satisfies condi-
tion C1.

Proof: Consider the point (x, r) defined by:

λmin
k = λ̄min

k = λ̄max
k = µmin

k = µmax
k = rl1 = rl2 = 0,

λmax
k :=

{
0 if k = 1, ...,m
1 otherwise

where k = 1, ..., n and l = 1, ...,m. It is straightforward to
verify that the given point (x, r) is feasible and h(x, r) =∑n

k=1 P d
k . Moreover, the corresponding xr is given by:

λk = 1, λ̄k = 0, µk = 0, k = 1, ..., n

On the other hand
n∑

k=1

(
1×Yk + 0× Ȳk + 0×Mk

)
=
[

Re{Y } 0
0 Re{Y }

]
which has a zero eigenvalue of multiplicity 2 (due to Condi-
tion C2). Therefore, xr is a differentiable point lying on the
boundary of Dr and hence satisfies condition C1.

Since OPF is feasible and the total power loss is zero, the
total generation must be equal to the total demand. Hence, it
follows from the weak duality theorem that

h(x, r) ≤
m∑

l=1

P g
l =

n∑
k=1

P d
k

for every feasible point (x, r) of Optimization 2. Then
h(x, r) =

∑n
k=1 P d

k means that (x, r) = (xopt, ropt) is indeed
a maximizer of Optimization 2. �

Theorem 5 says that condition C1 holds when the objective
is to minimize total generated power and active power loss is
zero at optimality. In that case, the theorem exhibits explicitly
an optimal point that lies on a smooth face of the feasible

set. The assumption on the objective can be relaxed to allow
more general cost functions; see the IEEE 118-bus system
discussed in Section VI-A for an example. Active power loss
is, however, nonzero in practice. In that case, if the Lagrange
multipliers λopt

k , λ̄
opt
k and µopt

k are treated as prices for active
and reactive powers as well as voltage levels, then the optimal
point is likely to be in the vicinity of (1, 0, 0), and hence, by
continuity, also a differentiable point on the boundary of Dr.
As we will see in Section VI, this is indeed the case for the
IEEE benchmark systems.

C. Summary

Summarizing the ideas in this section, condition C1 is
mainly the consequence of two properties of power systems:
(i) the particular “sign” structure of the Y matrix as described
in condition C0(ii) (due to the positivity of the physical
quantities, namely resistance, capacitance and inductance), (ii)
the positivity of the Lagrange multipliers λopt representing the
cost of active power generation

We showed in a recent paper [20] that an antenna design
problem can be cast as an optimization problem with the
same structure as Optimization 1, which was proven to be
NP-complete. Hence, the duality gap of Optimization 1 is
in general nonzero. However, due to the special structure
of the admittance matrix Y of a power system, a subset of
Optimization 1 has zero duality gap and is hence efficiently
solvable.

V. DISCUSSION: GENERALIZATIONS

We have shown that the solution of the highly nonconvex
OPF problem can be found by solving its convex dual problem
when condition C1 holds. Most of the existing algorithms for
solving the OPF problem can also be adapted to solving Dual
OPF. For instance, powerful primal-dual algorithms can be
deployed to solve the “dual” and the “dual of the dual” of
the OPF problem, i.e. Optimizations 2 and 3, iteratively. This
contrasts with the common technique of using a primal-dual
algorithm to solve OPF and its dual concurrently. Note that
although the number of variables in Optimization 2 is linear
in n, Optimization 3 has a matrix variable that makes the
number of its scalar variables quadratic in n. In other words,
Optimization 3 might be costly to solve directly for very large
values of n, in which case it is recommended to use some
sub-gradient techniques [27].

Optimization 2 has the interesting property that the
given loads and limits on power/voltage variables
(P d

k , P d
k , Pmin

l , Pmax
l , Qmin

l , Qmax
l , V min

k , V max
k for

k = 1, 2, ..., n and l = 1, 2, ...,m) only appear in the
objective function, whereas the network topology (the matrix
Y ) appears only in its linear matrix constraint. Therefore,
there is a natural decomposition between the load profile and
the network topology in Optimization 2. This useful property,
besides the linearity of Optimization 2, makes it possible
to solve many more sophisticated problems efficiently, such
as solving the OPF problem in the case when the load is
stochastic and time-varying, designing the best network
topology (using certain switches) to minimize power loss, etc.
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The classical OPF problem formulated in (1) and (2) en-
compasses the basic and most important constraints needed to
find an operating point of a power network. Nonetheless, more
constraints are imposed in practice, e.g. stability limits, ther-
mal limits and line flow constraints. The techniques developed
in this paper can be used to prove that the incorporation of
such constraints into Optimization 2 does not create a nonzero
duality gap.

As the simplest example, assume that there are extra con-
ditions |Vi−Vj | < V max

ij in the OPF problem, for some given
limits V max

ij and indices i, j = 1, . . . , n to ensure that the
voltages at buses i and j are sufficiently close to each other.
Define the matrix Mij as[

eie
∗
i − eie

∗
j − eje

∗
i + eje

∗
j 0

0 eie
∗
i − eie

∗
j − eje

∗
i + eje

∗
j

]
By considering a scalar nonnegative variable µij (Lagrange
multiplier) associated with the constraint |Vi − Vj |2 <
(V max

ij )2, the only modifications needed in Optimization 2
are (i) to add the linear term −µij(V max

ij )2 to the objective
function, and (ii) to add the matrix term µijMij to the left
side of the matrix constraint (4a). The duality gap is still
expected to be zero (under appropriate conditions) because
the parameter µopt

ij is nonnegative and the off-diagonal entries
of the matrix Mij are non-positive. Similarly, one can incor-
porate any constraints on the magnitudes of line currents into
Optimization 2.

VI. POWER SYSTEM EXAMPLES

This section illustrates our results through two examples.
Example 1 uses the IEEE benchmark systems archived at
[22] to show the practicality of our result. Since the systems
analyzed in Example 1 are so large that the specific values
of the optimal solution cannot be provided in the paper, some
smaller examples are analyzed in Example 2 with more details.

There are two main findings from this exercise. First, the
duality gap is zero for all the systems we have tried, even
when the sufficient condition C1 is not satisfied. We verify
this by following the Algorithm in Section II-B to solve Dual
OPF and compute the voltages. In all cases, the voltages
obtained are feasible for Optimization 1 and achieve a primal
objective value that is equal to the optimal objective value of
Optimization 2. By weak duality theorem, the duality gap is
zero and the voltages are optimal for OPF. Second, condition
C1 is essentially satisfied: when it is violated, the violation is
due to the simplifying modeling assumption that transformers
have zero resistance. If a small resistance (10−5 per unit) is
added to each of these transformers, condition C1 is satisfied
for all IEEE benchmark systems.

The results of this section are attained using the following
software tools:
• The MATLAB-based toolbox “YALMIP” (together with

the solver “SEDUMI”) is used to solve the dual of the
OPF problem (Optimization 2), which is in the form of
a linear-matrix-inequality optimization problem [29].

• The software toolbox “MATPOWER” is used to solve the
OPF problem in Example 1 for the sake of comparison.

The data for the IEEE benchmark systems analyzed in
this example is extracted from the library of this toolbox
[30].

• The software toolbox “PSAT” is used to draw and analyze
the power networks given in Example 2 [31].

A. Example 1: IEEE benchmark systems

We have solved all IEEE systems with 14, 30, 57, 118 and
300 buses using the method developed in this paper, where
the goal is to minimize either the total generation cost or the
power loss. However, due to space restrictions, the details will
be provided here only for two cases: (i) the loss minimization
for the IEEE 30-bus system, and (ii) the total generation cost
minimization for the IEEE 118-bus system.

1) IEEE 30-bus system: First, consider the OPF problem
for the IEEE 30-bus system, where the objective is to minimize
the total power generated by the generators. When the original
Optimization 2 is solved, the four smallest eigenvalues of the
matrix

Aopt =

[
H1(Λopt, Λ̄opt

,Γopt) H2(Λopt, Λ̄opt
,Γopt)

−H2(Λopt, Λ̄opt
,Γopt) H1(Λopt, Λ̄opt

,Γopt)

]
would be obtained as 0, 0, 0, 0. Since the number of zero
eigenvalues is 4, condition C1 required in Theorem 1 is
violated. To explore the underlying reason, consider the circuit
of this power system that is depicted in Figure 2. The circuit
is composed of three regions connected to each other via
some transformers. This implies that if each line of the circuit
is replaced by its resistive part, the resulting resistive graph
will not be connected (since the lines with transformers are
assumed to have no resistive parts). Thus, the graph induced
by Re{Y } is not strongly connected and the zero eigenvalue of
Re{Y } has multiplicity larger than 1, violating condition C2.
This is an issue with all the IEEE benchmark systems. This can
be easily fixed by adding a little resistance to each transformer,
say on the order of 10−5 (per unit). After this modification
to the real part of Y , the four smallest eigenvalues of the
matrix Aopt turn out to be 0, 0, 0.0075, 0.0075; i.e. the zero
eigenvalues resulting from the non-connectivity of the resistive
graph have disappeared. Condition C1 is satisfied and the
corresponding vector of optimal voltages can be recovered
using the algorithm described after Theorem 1.

To illustrate the discussion in Section IV, we note that, for
k = 1, . . . , n,

λk ∈ [1, 1.0426], λ̄k ∈ [0, 0.0152], µk ∈ [0, 0.0098],

Hence
• λk’s are all positive and around 1.
• λ̄k’s are all positive and around 0.
• µk’s are all very close to 0.

confirming the properties discussed in Section IV-B. More-
over, the maximum absolute values of the entries of
H2(Λopt, Λ̄opt

,Γopt) is 0.0867, whereas the average absolute
values of the nonzero entries of H1(Λopt, Λ̄opt

,Γopt) is 4.1201.
This confirms the claim in Section IV-A that the matrix H2 is
expected to be negligible compared to H1.
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(a)

Fig. 2. The circuit of the IEEE 30-bus system taken from [22].

2) IEEE 118-bus system: Consider now the problem of
minimizing the total generation cost for the IEEE 118-bus
system. After adding some small resistance to certain entries
of Re{Y } to make the induced graph strongly connected, the
four smallest eigenvalues of the matrix[

H1(Λopt, Λ̄opt
,Γopt) H2(Λopt, Λ̄opt

,Γopt)
−H2(Λopt, Λ̄opt

,Γopt) H1(Λopt, Λ̄opt
,Γopt)

]
are 0, 0, 1.3552, 1.3552. Hence, condition C1 is satisfied and
OPF can be solved by solving Dual OPF. Since the cost func-
tion fl is not total generated power, the condition discussed in
Section IV-B (λk, λ̄k,µk) ∼ (1, 0, 0) needs to be modified:
the optimal variables normalized by cl1 = 40 satisfy, for
k = 1, . . . , n,

λk

cl1
∈ [0.8858, 1.0356],

λ̄k

cl1
∈ [−0.0063, 0.0118],

µk

cl1
∈ [0, 0.1894]

As before, (λk

cl1
, λ̄k

cl1
, µk

cl1
) are around (1, 0, 0). In addition,

λk’s are all positive and most of λ̄k are positive (more
than 100 of them). As the last property, the maximum of
the absolute values of the entries of H2(Λopt, Λ̄opt

,Γopt) is
13.8613, whereas the average of the absolute values of the
nonzero entries of H1(Λopt, Λ̄opt

,Γopt) is 237.3938. Thus, H2

is negligible compared to H1 as before.
The computation on the IEEE benchmark examples were

all finished in a few seconds and the number of iterations

for each example was between 5 and 20. Note that although
Optimization 2 is convex and there is no convergence problem
regardless of what initial point is used, the number of iterations
needed to converge mainly depends on the choice of starting
point. It is worth mentioning that when different algorithms
implemented in Matpower were applied to these systems, some
of the constraints are violated at the optimal point probably due
to the large-scale and non-convex nature of the OPF problem.
However, no constraint violation have occurred by solving the
dual of the OPF problem due to its convexity.

B. Example 2: small systems
The IEEE test systems in the previous example operate in

a normal condition when the optimal bus voltages are close
to each other both in magnitude and phase. This example
illustrates that condition C1 is satisfied even in the absence
of such a normal operation. Consider three distributed power
systems, referred to as Systems 1, 2 and 3, depicted in
Figure 3. Note that Systems 2 and 3 are radial, while System 1
has a loop. The detailed specifications of these systems are
provided in Table I in per unit for the voltage rating 400kV
and the power rating 100MVA, in which z̄ij and ȳij denote the
series impedance and the shunt capacitance of the Π model of
the transmission line connecting buses i, j ∈ {1, 2, 3, 4}. The
goal is to minimize the active power injected at slack bus 1
while satisfying the constraints given in Table II.

Optimization 2 is solved for each of these systems, and it is
observed that condition C1 always holds. The optimal solution
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TABLE I
PARAMETERS OF THE SYSTEMS GIVEN IN FIGURE 3.

Parameters System 1 System 2 System 3
z̄12 0.05 + 0.25i 0.1 + 0.5i 0.10 + 0.1i
z̄13 0.04 + 0.40i None None
z̄23 0.02 + 0.10i 0.02 + 0.20i 0.01 + 0.1i
z̄14 None None 0.01 + 0.2i
ȳ12 0.06i 0.02i 0.06i
ȳ13 0.05i None None
ȳ23 0.02i 0.02i 0.02i
ȳ14 None None 0.02i

TABLE II
CONSTRAINTS TO BE SATISFIED FOR THE SYSTEMS GIVEN IN FIGURE 3.

Constraints System 1 System 2 System 3
P d

2 + Qd
2 i 0.95 + 0.4i 0.7 + 0.02i 0.9 + 0.02i

P d
3 + Qd

3 i 0.9 + 0.6i 0.65 + 0.02i 0.6 + 0.02i
P d

4 + Qd
4 i None None 0.9 + 0.02i

V max
1 1.05 1.4 1

of OPF recovered from the solution of Optimization 2 are
provided in Table III (Ploss and Qloss in the table represent
the total active and reactive power losses, respectively). It
is interesting to note that although different buses have very
disparate voltage magnitudes and phases, the duality gap is still
zero. The optimal solution of Optimization 2 is summarized
in Table IV to demonstrate that the Lagrange multipliers
corresponding to active and reactive power constraints are
positive.

As another scenario, let the desired voltage magnitude at the
slack bus of System 1 be changed from 1.05 to 1. It can be
verified that the optimal value of Optimization 2 becomes +∞,
which simply implies that the corresponding OPF problem is
infeasible.

TABLE III
PARAMETERS OF THE OPF PROBLEM RECOVERED FROM THE SOLUTION

OF OPTIMIZATION 2.

Recovered System 1 System 2 System 3
Parameters

V1 1.05∠0◦ 1.4∠0◦ 1∠0◦

V2 0.71∠−20.11◦ 1.10∠−25.73◦ 0.78∠−10.58◦

V3 0.68∠−21.94◦ 1.08∠−31.96◦ 0.76∠−16.31◦

V4 None None 0.95∠−10.82◦

Ploss 0.2193 0.1588 0.3877
Qloss 1.2944 0.7744 0.5343

TABLE IV
LAGRANGE MULTIPLIERS OBTAINED BY SOLVING OPTIMIZATION 2 FOR

THE SYSTEMS GIVEN IN FIGURE 3.

Lagrange Multipliers System 1 System 2 System 3
λ2 1.3809 1.4028 1.7176
λ3 1.4155 1.4917 1.7900
λ4 None None 1.0207
¯̄λ2 0.4391 0.2508 0.1764
¯̄λ3 0.4955 0.2633 0.1858
¯̄λ4 None None 0.0061
µ1 0.0005 0.0001 0.0005

We repeated several hundred times this example by ran-
domly choosing the parameters of the systems given in Fig-
ure 3 over a wide range of values. In all these trials, the Algo-
rithm prescribed in Section II always found a globally optimal
solution of the OPF problem or detected its infeasibility.

VII. CONCLUSIONS

We study the optimal power flow (OPF) problem that has
been studied for about half a century and is notorious for
its high nonconvexity. We have derived the dual of OPF as
a convex linear matrix inequality optimization which can be
efficiently solved. We have provided a sufficient condition
under which the duality gap is zero and a globally optimal
solution of the OPF problem can be recovered from a dual
optimal solution. This condition is satisfied for the IEEE
benchmark systems with 14, 30, 57, 118 and 300 buses, after a
small resistance (10−5 per unit) is added to every transformer
that originally assumes zero resistance. We have provided an
informal justification from algebraic and geometric perspec-
tives on why the condition might hold widely in practice. The
main underlying reason for zero duality gap is that physical
quantities, such as resistance, capacitance and inductance, are
all positive.
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APPENDIX

A. LMI Optimization Problems

The area of convex optimization has seen remarkable
progress in the past two decades, particularly in linear matrix
inequalities (LMIs) and semidefinite programming where the
goal is to minimize a linear function subject to some linear
matrix inequalities [21], [23]. The book [24] describes several
difficult control problems that can be cast as LMI problems
and then solved efficiently. The recent advances in this field
have been successfully applied to different problems in other
areas, e.g. circuit and communications [25], [26]. A powerful
property in semidefinite programming is that the dual of an
LMI optimization problem is again an LMI problem and,
moreover, strong duality often holds [23].

Given the scalar variables x1, ..., xn, consider the problem
of minimizing

a1x1 + a2x2 + · · ·+ anxn (19)

subject to the constraint

A0 + A1x1 + · · ·+ Anxn � 0 (20)

where a1, ..., an are given real numbers and A0, ..., An are
given symmetric matrices in Rn0×n0 , for some natural num-
ber n0. Notice that the objective of the above optimization
problem is a linear scalar function, and its constraint is a
linear matrix inequality. Therefore, the above optimization
problem is referred to as an LMI problem, which belongs to the
category of convex optimization problems that can be solved
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Fig. 3. Figures (a), (b) and (c) depict Systems 1, 2 and 3 studied in Example 2, respectively.

efficiently. To write the Lagrangian for the above optimization
problem, a Lagrange multiplier should be introduced for the
inequality (20). In light of the generalized Lagrangian theory,
the multiplier associated with the inequality (20) is a symmet-
ric matrix W in Rn0×n0 that must be positive semidefinite.
The corresponding Lagrangian will be as follows:

n∑
k=1

akxk + trace

{
W

(
A0 +

n∑
k=1

Akxk

)}
Note that the trace operator performs the multiplication be-
tween the expression in the constraint (20) and its associated
Lagrange multiplier. Minimizing the above Lagrangian over
x1, ..., xn and then maximizing the resulting term over W � 0
lead to the optimization problem of maximizing

trace{WA0}

subject to the constraints

trace{WAk}+ ak = 0, k = 1, 2, ..., n

for a symmetric matrix variable W � 0. This optimization
problem is the dual of the initial optimization problem formu-
lated in (19) and (20). If some mild conditions (such as Slater’s
conditions) hold, then the duality gap between the solutions
of these two optimization problems becomes zero, meaning
that the optimal objective values obtained by these problems
will be identical. In this case, it is said that “strong duality”
holds; otherwise, only “weak duality” holds in which case the
optimal value of the dual problem is only a lower bound on
the optimal value of the original problem. One can refer to
[21] and [23] for detailed discussions on LMI problems.

B. Proofs

We prove in this subsection Theorems 2 and 3 that are
summarized pictorially in Figure 1.

Proof of Theorem 2:
1) As discussed before the definition of Optimization 1,

constraints (8a) and (8b) are derived by eliminating
dependent variables P g and Qg using (2d), (2e) and the
convention Pmin

k = Pmax
k = Qmin

k = Qmax
k = 0 for k ∈

{m + 1, ..., n}. To show that the objective function (1)
in OPF is tantamount to the objective function (7) with
the extra constraint (8d) in Optimization 1, observe that

minimizing
∑m

l=1 fl(P
g
l ) is the same as minimizing∑m

l=1 αl subject to the constraint

cl2(P
g
l )2 + cl1P

g
l + cl0 ≤ αl, l = 1, 2, ...,m

Using Schur complement, this constraint is equivalent to[
cl0 + cl1P

g
l − αl

√
cl2P

g
l√

cl2P
g
l −1

]
� 0

Substituting P g
l = Re{YlI

∗
l } + P d

l yields the condi-
tion (8d).

2) For k = 1, . . . , n, let λmin
k , λ̄min

k , µmin
k denote the

respective Lagrange multipliers associated with the
lower inequalities in (8a), (8b), (8c); similarly, let
λmax

k , λ̄max
k , µmax

k denote the Lagrange multipliers for
the upper inequalities in (8a), (8b), (8c). These Lagrange
multipliers must all be nonnegative. Introduce a (sym-
metric) positive semidefinite matrix[

rl0 rl1

rl1 rl2

]
as the Lagrange multiplier for the inequality (8d). Then
the Lagrangian corresponding to Optimization 1 is (after
some simplifications)

m∑
k=1

(
λkRe{VkI∗k}+ λ̄kIm{VkI∗k}+ µk|Vk|2

)
+h(x, r) +

m∑
l=1

(1− rl0)αl

(21)

Substituting (9), (11) and (12) into (21), the Lagrangian
can be written as

trace
{ m∑

k=1

(
λ̂kYk + λ̄kȲk + µkMk

)
UUT

}
+h(x, r) +

m∑
l=1

(1− rl0)αl

To obtain the dual of Optimization 1, the Lagrangian
should first be minimized over U,α and then maximized
over the Lagrange multipliers. Observe that
• The minimum of (1− rl0) αl over the variable αl

is −∞ unless rl0 = 1, in which case the minimum
is zero.
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• The minimum of the term

trace
{ m∑

k=1

(
λ̂kReYk + λ̄kImȲk + µkMk

)
UUT

}
over U is −∞ unless

m∑
k=1

(
λ̂kReYk + λ̄kImȲk + µkMk

)
� 0

in which case the minimum is zero.
Hence, we must have rl0 = 1. The dual objective
function is therefore as stated.

This completes the proof of Theorem 2. �

Proof of Theorem 3:

1) Given a feasible vector V of Optimization 1, define W
as UUT , where U is expressed in terms of V via (10).
The matrix W defined this way is positive semidefinite
and has rank at most 1. On the other hand, one can
use singular value decomposition to show that every
positive semidefinite matrix W with rank at most 1 can
be decomposed as UUT for some vector U . Hence, this
change of variable is a bijective map (up to the sign of
U ). To prove the equivalence between Optimizations 1
and 4, it suffices to show that the constraints of these
optimization problems will be mapped to each other
using this change of variable. But this follows directly
from (9), (11) and (12).

2) One can derive the dual of Optimization 2 following
the standard procedure to obtain Optimization 3, noting
that W in Optimization 3 plays the role of Lagrange
multiplier for the matrix constraint (4a) in Optimiza-
tion 2; see Appendix A and, e.g., [21], [24]. The details
are omitted for brevity. Since Optimizations 2 and 3 are
both semidefinite programs and hence convex, strong
duality holds if Optimization 2 has a finite optimal
value and a strictly feasible point (Slater condition).
Since OPF is feasible and equivalent to Optimization 1,
Optimization 1 has a finite optimal value. Optimization 2
is its dual by Theorem 2, and is therefore upper bounded
by the finite optimal value of Optimization 1 (weak
duality). To show that Optimization 2 has a strictly
feasible point, consider the point (x, r) specified by: for
k = 1, . . . , n,

λmin
k :=

{
ck1 + 1 if k = 1, ...,m

1 otherwise ,

λmax
k = 1, λ̄min

k = λ̄max
k = 1,

µmin
k = 1, µmax

k = 2, rl1 = 0, rl2 = 1

(22)

Then λk = λ̄k = 0 and µk = 1. Now, observe that
• The variable x specified in (22) is strictly positive

componentwise.
• The relations

n∑
k=1

(
λkYk + λ̄kȲk + µkMk

)
= I � 0

and [
1 rl1

rl11 rl2

]
=
[

1 0
0 1

]
� 0

both hold.
Hence (x, r) given in (22) is strictly feasible and strong
duality holds.

This completes the proof of Theorem 3. �
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