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Abstract

Let finite source and reproduction alphabets X and Y and a distortion measure d :
X ×Y → [0,∞) be given. We study the minimum asymptotic rate required to describe a
source distributed over X within a (given) distortion threshold D at every sample. The
problem is hence a min-max problem, and the distortion measure is extended to vectors
as follows: for xn ∈ Xn, yn ∈ Yn, d(xn, yn) = maxi d(xi, yi).

In the graph-theoretic formulation we introduce, a code for the problem is a dominat-
ing set of an equivalent distortion graph. We introduce a linear programming lower bound
for the minimum dominating set size of an arbitrary graph, and show that this bound is
also the minimum asymptotic rate required for the corresponding source. Turning then
to the optimality of scalar coding, we show that scalar codes are asymptotically optimal
if the underlying graph is either an interval graph or a tree.

1 Introduction

Consider a signal compression scenario, where it is unacceptable to have occasional high dis-
tortion at the sample level, even if the expected distortion is kept small. The motivation for
this more restrictive constraint is that high distortion at individual samples is often percep-
tually disturbing, and compromises the accuracy of subsequent analysis of the reconstructed
signal. Examples include compression of medical images, where detail may be of paramount
importance to ensure correct diagnoses. Hence conventional high rate lossy compression
techniques which only promise a small expected distortion, cannot be used. JPEG-LS [11],
a recent image coding standard, guarantees, at every pixel, reconstruction within a specified
distortion. Our work is partly motivated by such applications, and studies the optimum
theoretically achievable performance of such codes.

Let the finite sets X and Y denote the source and the reproduction alphabets, respectively,
and let a distortion measure d : X×Y → [0,∞) be given. Assume that the source distribution
P satisfies P (xn) > 0 for all xn ∈ X n. We investigate both finite and asymptotic rate-
distortion performance of source coders φ : X n −→ Yn, which guarantee that every source
sample is reproduced within a prespecified distortion level D. This problem is fundamentally
different from the problem addressed by classical rate-distortion theory [2] in two ways:

i. Maximum distortion criterion: Let xi and yi denote the ith coordinate of xn and
yn, respectively. Given a single-letter distortion criterion d : X × Y −→ [0,∞), the
distortion between source block xn ∈ X n and reproduction block yn ∈ Yn is measured
by

d(xn, yn) = max
i
d(xi, yi) , (1)
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instead of the averaging measure

d(xn, yn) =
1
n

n∑
i=1

d(xi, yi) , (2)

as considered in the classical theory.

ii. Zero-error constraint: In many derivations in classical information theory, a small but
eventually vanishing error probability is allowed, i.e.,

lim
n−→∞Pr[d(Xn, Y n) > D] = 0 . (3)

However, we should enforce a non-asymptotic zero-error constraint, i.e., for all n > 0,

Pr[d(Xn, Y n) > D] = 0 . (4)

The zero-error constraint is a natural complement to the maximum distortion criterion. For
finite block coding (n < ∞), if the encoder is permitted to occasionally exceed distortion
D, albeit with a small probability, then with probability 1, we will eventually observe unac-
ceptable spikes at the reproduction, in contradiction to the main purpose of the maximum
distortion criterion.

In this investigation we will focus our attention on fixed-length codes. Further, we assume
no knowledge about the underlying source statistics. Fixed-length codes, with zero error for
the maximum distortion criterion, yield a robust coding system: the rate of transmission
depends only on the distortion measure, and system performance is insensitive to the often-
encountered practical problem of changing source statistics. Interestingly, our results imply
that this coding system is also asymptotically optimal in the following sense: under the
assumption that the source statistics may vary arbitrarily with time, variable-length codes
of smaller rate than the minimum asymptotic fixed-length coding rate do not exist.

Throughout, we further assume that X = Y, and d(x, x) = 0. Our results retain their
validity when these assumptions are dropped; however, constraints of space force us to omit
the corresponding extended proofs.

We begin by reformulating the problem in a graph-theoretic framework. In Section 2, we
define a characteristic graph G for the triplet (X , d,D). A valid code is then a dominating
set of G, i.e., a set of vertices the union of whose neighborhoods cover the entire graph [7].
Hence, the domination number (the size of the smallest dominating set) of Gn (the n-fold AND
product of G), characterizes the minimum rate required for block length n. We are interested
in the minimum asymptotic rate R(G), given by the limit of the normalized domination
numbers of Gn.

In [8], Lovász showed that R(G) = r∗(G), where r∗(G) is the solution of a linear program
obtained by relaxing the integer program defining the domination number. In Section 3, we
obtain Lovász’s result in the context of a rate-distortion theoretic approach. We introduce a
transformation from the maximum distortion measure d(xn, yn) to an appropriately defined
averaging measure d′(xn, yn). Specifically, the averaging measure d′ (in the sense of (2)) is
such that d′(xn, yn) = 0 if and only if d(xn, yn) ≤ D. Then we show that R(G) is in fact the
rate-distortion function of an arbitrarily varying source (considered earlier by Csiszár and
Körner in [5]) with this new distortion measure d′. The resultant formula could be simplified
to r∗(G).
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We next consider conditions for optimality of scalar quantizers. The complexity vs. perfor-
mance trade-off of vector quantizers is well-known. The simplicity of scalar coding makes it
an attractive option in practice. An important question is then the following: Are there cases
where scalar coding is optimal, i.e., where scalar coding achieves the minimum asymptotic
rate? For the maximum-distortion problem under consideration, the graph-theoretic formu-
lation provides a natural setting to study this question: Applying the duality theorem [9] to
the linear program defining r∗(G), and then reinstalling the integer constraints, one obtains
a lower bound on the domination number, which we call the tiling number of the graph. A
sufficient condition for optimality of scalar coding is the equality of the domination and tiling
numbers of the characteristic graph. Pursuing this approach, in Section 4, we exhibit two
infinite families of graphs - interval graphs and forests [1] - for which scalar coding is opti-
mal. The result involving interval graphs is especially interesting, since for the case where
X consists of points on the real line, the most popular distortion measure d(x, y) = |x− y|m
yields an interval graph. This result can be generalized: For a distortion measure such that
each source symbol x is allowed to be coded by any reproduction symbol y in the prespecified
interval Ix, we prove the optimality of scalar coding. The presented proofs are constructive,
and provide linear-time algorithms to design optimal codes.

2 Problem Statement, Examples and Observations

Given a source distributed over the alphabet X , the reproduction alphabet Y, and the dis-
tortion measure d between these alphabets, we are interested in the minimum rate of a code
that represents the source without exceeding a maximum distortion of D per input symbol.
In other words, for all block lengths n, we enforce

d(xn, yn) = max
i
d(xi, yi) ≤ D ,

for all xn ∈ X n, where yn denotes the quantized version of xn.

We will make heavy use of graph theory to attack this problem; we briefly summarize here
simple and well-known definitions from graph theory [1]: A graph is denoted by G = (V,E),
where V and E are its vertices and the edges, respectively. Two vertices connected by an
edge are called adjacent or neighbor vertices. The complement of a graph G is denoted by
G, and consists of the same vertices for which the adjacency relation is complemented. The
neighborhood Nv of a vertex v ∈ V is the set consisting of v and all vertices adjacent to v. A
dominating set D is a subset of vertices where any vertex in the graph is in the neighborhood
of some vertex in D. The domination number, which we denote by r(G), is defined as the
size of the smallest dominating set. If V ′ ⊂ V and E′ = {(v1, v2) : v1, v2 ∈ V ′, (v1, v2) ∈ E},
then the subgraph G′ = (V ′, E′) is said to be induced by V ′.
Let us first consider a scalar coder. We define the characteristic graph G for the triplet
(X , d,D) as follows: V = X , and two distinct vertices x and y are connected if and only if
d(x, y) ≤ D. A one-to-one correspondence exists between dominating sets of G and codebooks
satisfying the maximum distortion constraint. The minimum codebook size is given by r(G).

For block coding, two distinct vectors xn and yn can represent each other if and only if
d(xi, yi) ≤ D for all 0 < i ≤ n. In the corresponding characteristic graph for the triplet
(X n, d,D), two distinct vertices (v1, v2, . . . , vn) ∈ V n and (v′1, v′2, . . . , v′n) ∈ V n are connected
if and only if vi is adjacent to v′i in G for all 0 < i ≤ n such that vi �= v′i. But, this is precisely
the definition of the n-fold AND product of the graph G with itself, denoted by Gn. The
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number r(Gn) therefore defines the minimum number of codevectors needed, for block length
n.

It is obvious that r is sub-multiplicative over AND products: r(Gm+n) ≤ r(Gm)r(Gn). Thus,
by Fekete’s lemma, the limit

R(G) = lim
n−→∞

n

√
r(Gn) (5)

exists, and logR(G) is the minimum asymptotic zero-error rate for the source P with maxi-
mum distortion constraint D.

In the following examples with possible practical distortion measures, we investigate how
r(Gn) changes with increasing n.

Example 1: Consider X = {0, 1, . . . ,K − 1}, and d(x, y) = |x− y|. This setting is useful in
various signal compression applications which require a guarantee of no more than D units
of distortion at any sample. For instance, the signal may be a medical image, where a large
absolute error in the value of a few pixels may lead to incorrect diagnosis.

Let G be the characteristic graph corresponding to the case K = 6 and D = 2. It is obvious
that r(G) = 2, e.g., {2, 3} is one of the smallest dominating sets in G. For evaluating r(G2),
we make the following observation: On G2, all “corner” points {(0, 0), (0, 5), (5, 0), (5, 5)}
have to be adjacent to at least one vertex in the minimal dominating set, by definition. But
no vertex can be adjacent to more than one corner vertex, and hence r(G2) ≥ 4. Since
r(G2) ≤ r(G)2 = 4, we have r(G2) = 4. This argument can be generalized for all n, so that
R(G) = r(G) = 2. Thus, scalar coding is in fact optimal. Optimality of scalar coding is a
very useful property of a graph, and it is of interest to identify classes of graphs that possess
it. The above graph belongs to the special class of graphs called interval graphs, for which
we will show later that R(G) = r(G). ✸

Example 2: Let X = {0, 1, . . . ,K − 1}, and d(x, y) = min{(x − y) mod K, (y − x) mod
K}. Thus, if the vertices are considered as equally spaced points on a circle, the distortion
between two points is proportional to the length of the shortest path connecting them. An
example for this scenario is phase quantization, commonly encountered in speech coding.
The characteristic graph for the case K = 4, and D = 1 is the familiar four-cycle, denoted
by C4. Obviously, r(C4) = 2 (choose the dominating set {0, 2}). However, r(C2

4) = 3, e.g.,
{(1, 1), (2, 3), (3, 2)} is a minimal dominating set for C2

4 . Further increasing the block size,
we get r(C3

4) = 5, and r(C4
4) = 8. In fact, it will follow from the results of Section 4 that

R(G) = 4/3. Since (4/3)n is not an integer for any finite n, the minimum rate logR(G) is not
achieved by vector quantization for any finite dimension n. ✸

We proceed by reformulating r(G) as the solution to an integer program:

r(G) = min
xi ∈ {0, 1}∑

i∈Nj
xi ≥ 1 ∀j ∈ V

|V |∑
i=1

xi , (6)

where Nj denotes the neighborhood of vertex j. The minimization is obviously over all
dominating sets of G, hence the achieved minimum is r(G). When the integer constraints on
xi are relaxed to only impose non-negativity, we obtain the linear program

r∗(G) �= min
xi ≥ 0∑

i∈Nj
xi ≥ 1 ∀j ∈ V

|V |∑
i=1

xi . (7)
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Applying the duality principle in linear programming [9], we obtain an alternative definition
for r∗(G):

r∗(G) = max
wj ≥ 0∑

j∈Ni
wj ≤ 1 ∀i ∈ V

|V |∑
j=1

wj . (8)

The nonnegative weights wj are in fact assigned to neighborhoods. The above formula fol-
lows because there is a one-to-one correspondence between vertices and neighborhoods. Re-
installing the integer constraints in (8) yields a smaller quantity given by

t(G) �= max
wj ∈ {0, 1}∑

j∈Ni
wj ≤ 1 ∀i ∈ V

|V |∑
j=1

wj .

This time, the maximization is over all subsets of V such that no two vertices in the subset
have a common neighbor, nor are they adjacent. In other words, the neighborhoods of vertices
in the subset shall be pairwise disjoint. We define such sets as tiling sets and call the size of
the largest tiling set, t(G), the tiling number. The name naturally follows after observing the
correspondence between choosing vertices and packing tiles (neighborhoods) in the graph.

It easily follows from the discussion above that r(G) ≥ r∗(G) ≥ t(G). Lovász [8], after
introducing the above relaxation, proved using combinatorial arguments that R(G) = r∗(G).
It can be easily shown that the sequence n

√
t(Gn) is super-multiplicative, so (again by Fekete’s

lemma) the limit T (G) �= limn→∞ n
√
t(Gn) exists. Thus, for every n ≥ 1,

r(G) ≥ n

√
r(Gn) ≥ R(G) = r∗(G) ≥ T (G) ≥ n

√
t(Gn) ≥ t(G) .

The significance of this chain of inequalities is that if r(Gn) = t(Gn) , for some 0 < n < ∞,
then n

√
r(Gn) = R(G) = T (G) = n

√
t(Gn), i.e., R(G) is achieved by a coding scheme using

blocks of length n. The most interesting case, of course, is n = 1, which means that scalar
coding is optimal, as is the case for Example 1. In Section 4, we will investigate examples of
this phenomenon further. In fact, we will show that for certain classes of graphs, r(G) = t(G).

3 A Single-letter Formula for R(G)

We prove the result of Lovász [8] with a purely rate-distortion theoretic approach. We begin
by converting the maximum distortion constraint into the more familiar average distortion
constraint via a transformation of the distortion measure. The transformation is given by:

d′(x, y) =

{
0 d(x, y) ≤ D
1 d(x, y) > D

. (9)

Defining

d′(xn, yn) �=
1
n

∑
i

d′(xi, yi) ,

it easily follows that d′(xn, yn) = 0 if and only if d(xn, yn) = maxi d(xi, yi) ≤ D.

Since the solution to the regular rate-distortion problem is for the case where an eventually
vanishing Pr[d′(Xn, Y n) > 0] is sufficient, it cannot be directly applied here. Specifically, we
are interested in the asymptotical rate when the error constraint is

Pr[d(Xn, Y n) > D] = Pr[d′(Xn, Y n) > 0] = 0 ∀n > 0 .
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Towards this end, we define the “D′-ball” around a reproduction point yn, with respect to
the single-letter distortion measure d′, as Bd′(yn,D′) = {xn ∈ X n : 1

n

∑
i d

′(xi, yi) ≤ D′} .
Hence, we need to “cover” X n with as few 0-balls as possible, i.e., we are interested in finding
the smallest cardinality of a set C ⊂ Yn such that

⋃
yn∈C Bd′(yn, 0) = X n . Recall that the

type of a sequence xn ∈ X n is the distribution Pxn defined by Pxn(a) = 1
nN(a|xn) ∀a ∈ X ,

where N(a|xn) denotes the number of occurences of a in the sequence xn. T n
P denotes the

set of all xn ∈ X n having type P .

Fix δ > 0. The type covering lemma of Csiszár and Körner [5, Lemma 2.4.1] guarantees that,
for any distortion measure d′ on X × Y, and for n ≥ n0(d′, δ) > 0, T n

P for any type P can be
covered with not more than 2nRP,d′ (0)+nδ 0-balls Bd′(yn, 0), where yn ∈ Yn. Here RP,d′(D′) is
the rate-distortion function for the memoryless source P and single-letter distortion d′, given
by

RP,d′(D′) = min
Q(y|x):E{d′(X,Y )}≤D′

I(X;Y ) .

Only the case D′ = 0 interests us here. Since X n =
⋃

P T
n
P , the type covering lemma now

assures us that as n −→ ∞, the sufficient number of 0-balls to cover the space X n is given by∑
P

2nRP,d′ (0) ≤ (n+ 1)|X |2n maxP RP,d′(0)

= 2n
[
maxP RP,d′(0)+

|X|
n

log(n+1)
]
,

where for the inequality, we use the polynomial bound on the number of types. Hence
R(G) ≤ 2maxP RP,d′(0). However, according to Marton’s result [10], it is not possible to achieve
an infinite error probability exponent, and hence a zero error probability, with a coding rate
less than maxP RP,d′(0). Therefore,

R(G) = 2maxP RP,d′(0) . (10)

Note that, by definition, R(G) is the minimum asymptotic rate for fixed-length codes. Thus,
the above discussion shows that fixed-length codes are asymptotically optimal for the maxi-
mum distortion criterion, for sources whose statistics may vary arbitrarily with time.

To expand and simplify the formula (10), we first repeat the variational formula given in [2]
for the rate-distortion function for arbitrary D′ ≥ 0:

RP,d′(D′) = max
β≥0


−βD′ + min

Q


−

∑
x∈X

P (x) log
∑
y∈X

Q(y)2−βd′(x,y)





 . (11)

Here, β denotes the negative slope of the rate-distortion function, and Q denotes the repro-
duction distribution. When D′ > 0, the maximum over β is attained by the actual slope at
distortion point D′. When D′ = 0, however, the maximum is guaranteed to be achieved by
β −→ ∞, for all sources P . In this case, turning back to the graph interpretation, for every
vertex i ∈ V , only the vertex pairs i, j ∈ V with d′(i, j) = 0 (i.e., only the connected pairs of
vertices) contribute to the sum above. Hence the formula for R(G) simplifies to

logR(G) = max
P

min
Q


−

∑
i∈V

P (i) log


 ∑

j∈Ni

Q(j)





 .

Proceedings of the DATA COMPRESSION CONFERENCE (DCC�02) 
1068-0314/02 $17.00 © 2002 IEEE 



The argument of the above min-max problem is concave (in fact linear) in P and convex
in Q. Therefore, from von Neumann’s minmax theorem, the order of minimization and
maximization may be reversed:

logR(G) = min
Q

max
P


−

∑
i∈V

P (i) log


 ∑

j∈Ni

Q(j)





 . (12)

Since the inner maximization is over a linear functional of P , which is constrained on a
simplex, the maximum is attained when

P (i) =

{
1 i = arg mink∈V log

[∑
j∈Nk

Q(j)
]

0 otherwise
.

Substituting this in (12), we obtain

R(G) = min
Q

1
mini∈V

∑
j∈Ni

Q(j)
. (13)

In the next lemma, we prove that the above formula for R(G) simplifies to r∗(G).

Lemma 1
R(G) = r∗(G) (14)

✸

Proof:
R(G) ≤ r∗(G) : Let {x1, x2, . . . , x|V |} be the solution to the minimization in (7), i.e., r∗(G) =∑|V |

j=1 xj . There must exist at least one i such that
∑

j∈Ni
xj = 1 , otherwise the objective

could be decreased further. Now, for j ∈ V , set Q(j) = xj

r∗(G) . Obviously Q is a legitimate
probability distribution and

min
i∈V

∑
j∈Ni

Q(j) =
1

r∗(G)
min
i∈V

∑
j∈Ni

xj =
1

r∗(G)
. (15)

From (13), R(G) ≤ r∗(G) follows.

R(G) ≥ r∗(G) : Let Q achieve the minimum in (13), i.e., mini∈V
∑

j∈Ni
Q(j) = 1

R(G) . Choose
xj = R(G)Q(j) for all j ∈ V . Observing that xj ≥ 0 and mini∈V

∑
j∈Ni

xj = 1 , or in other
words,

∑
j∈Ni

xj ≥ 1 for all i, it easily follows that
∑

j∈V xj = R(G) ≥ r∗(G). ✷

4 Optimality of Scalar Coding for Special Classes of Graphs

In this section, we show that for some classes of graphs, scalar coding is optimal. This means
r(G) = r∗(G) for all graphs in those particular classes. To this end, we will prove the sufficient
condition r(G) = t(G).

For the following discussion, we need to define generalized versions of tiling and dominating
sets and corresponding numbers. Let a graph with free vertices be denoted as G = (V,E, F ),
where V and E are the vertices and the edges as usual, and F ⊆ V are called free vertices.
A dominating set Df for G is defined as a subset of vertices such that all non-free vertices
are either in Df , or adjacent to a vertex in Df . A tiling set Tf for G is defined as a subset of
non-free vertices whose neighborhoods are pairwise disjoint. Let rf (G) and tf (G) denote the
size of the smallest dominating set and the largest tiling set, respectively. It is easy to check
that for graphs with free nodes, rf (G) ≥ tf (G).
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4.1 Interval Graphs and Forests

A graph is called an interval graph, [1], if there exists a one-to-one correspondence between
the vertices of the graph and intervals on the real line, such that two vertices are connected
if and only if the corresponding intervals overlap. Thus, in the subsequent discussion, we will
use the words “vertex” and “interval” interchangeably. An example is shown in Figure 1.
The graph of Example 1, Section 2 was also an interval graph.

A connected graph is a tree, [1], if it does not contain any circuits of length more than 2.
A forest is a collection of disconnected trees. The vertices with only one neighbor are called
leaves. Note that a forest has at least two leaves unless it is composed only of isolated vertices.

Theorem 1 For all interval graphs G, r(G) = t(G). Similarly, for all forests G, r(G) = t(G).
✸

Remark: The significance of the result for interval graphs is immediately seen once the
following observation is made: whenever X consists of a finite set of points on the real
line, and a difference distortion measure in the form d(x, y) = |x − y|m is employed, the
corresponding graph is an interval graph. This is demonstrated by mapping the symbol x
to the interval Ix = [x − m

√
D/2, x + m

√
D/2]. (The source and the distortion measure in

Example 1, Section 2 correspond to m = 1, and D = 2.) The theorem establishes that for
such distortion measures, which are the most widely used, scalar coding is optimal. The
theorem can be generalized to the case where the finite set of reproduction points Y �= X is
pre-specified, the intervals Ix are of different widths, and each x ∈ X is constrained to be
reproduced by some y ∈ Y ∩ Ix.

0 1 2 3 4 5

0
1
2
3
4
5

Figure 1: Intervals and the corresponding graph.

Remark: Due to lack of space we will omit the proof for the case of forests, which is
essentially similar. Note that both the proofs are constructive, in that they also yield the
smallest dominating set for the corresponding graph.

Proof:
We prove by induction the more general statement that for all interval graphs G with free
vertices, rf (G) = tf (G). The base case for the induction is when the intervals are pairwise
disjoint, in which case rf (G) = tf (G) = |V | − |F |.
Now, for a general interval graph, sort the intervals in increasing order of their right end
points. Take the first interval v. Denote by w the neighbor of v with the highest order
(rightmost right end). Consider the two possibilities.
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i. v is a free interval: Removing v does not change rf (G) or tf (G). To see this, note that
Nv ⊆ Nw. Hence v and w cannot both be in the smallest dominating set. Also, if v is in
the smallest dominating set, we can replace it with w, and obtain another dominating
set of the same size. This proves that rf (G) does not change by removing v. Now, since
v is free, it cannot be in any tiling set. However, if v is the only common neighbor of
two other intervals, then removing it may increase the size of the largest tiling set. But
since Nv ⊆ Nw, any two intervals connected to v are either also connected to w, or (if
w is already one of the two intervals) connected to each other. Hence removing v does
not change tf (G).

ii. v is a non-free interval: We define two new graphs: The first graph G1 is induced by
Nw, while preserving the freeness of intervals. The second graph, G2, is induced by
V −{v,w}, preserving the freeness of intervals in V −Nw, but declaring all intervals in
Nw−{v,w} free. See Figure 2 for an example on the interval graph in Figure 1. Now, it
is clear that rf (G1) = tf (G1) = 1, since in G1, {w} and {v} are the smallest dominating
and the largest tiling sets, respectively. Moreover, clearly if Df is a dominating set in
G2, then Df ∪ {w} is a dominating set for G. Hence, 1 + rf (G2) ≥ rf (G). Let Tf be
a tiling set in G2. An interval in G2 that overlaps v or w is declared free, and hence
cannot be picked in Tf . Since v is non-free, it follows that Tf ∪ {v} is a tiling set for G.
So, we have

1 + rf (G2) ≥ rf (G) ≥ tf (G) ≥ 1 + tf (G2) .

The proof is complete after observing that G2 is also an interval graph, which contains fewer
intervals than G. The above recursion can be applied to G, until G becomes a graph with
nonoverlapping intervals (or an empty graph). ✷

v

w

0
1
2
3
4
5

3
4
5

1

4

0
1
2

v

w

Figure 2: Original intervals (top) and intervals corresponding to G1 (left) and G2 (right). Free
intervals are shown as dashed lines.

4.2 On Codebook Design Algorithms

Finally, let us briefly consider here the question of codebook design algorithms for the max-
imum distortion criterion. This, as noted before, is equivalent to finding dominating sets in
graphs. But it is known, [7], that finding the smallest dominating set in an arbitrary graph
is NP -Hard. In fact, even polynomial-time algorithms guaranteed to finding a dominating
set of size within a factor O(log |V |) of the minimum are unlikely to exist, unless P = NP ,
[6].

Thus fast design of even near-optimal scalar quantizers appears to be infeasible. This shifts
the attention to algorithms developed for particular classes of graphs. The practical relevance
of interval graphs was pointed out above. For the class of interval graphs (and of forests),
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the proof of Theorem 1 provides an algorithm with worst-case running time O(|V |) which
designs the optimal (scalar) codebook. Note that design algorithms with shorter worst-case
running times cannot exist, since even listing the neighbors of all the nodes of a graph takes
O(|V |) time.

Algorithms to find the smallest dominating sets of particular classes of graphs had been
considered in the computer science community previously, and O(|V |) algorithms for interval
graphs and forests were previously proposed in [4] and [3] respectively. The algorithms for
interval graphs and forests derived via our common approach are close relatives of these earlier
independent algorithms, and our approach explains why finding the smallest dominating sets
for these classes of graphs is so easy.
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