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Zero-Knowledge Proofs for Finite Field

Arithmetic or: Can Zero-Knowledge be for

Free?

Ronald Cramer 1 and Ivan Damg̊ard 2

Abstract

We present zero-knowledge proofs and arguments for arithmetic circuits over fi-
nite prime fields, namely given a circuit, show in zero-knowledge that inputs can be
selected leading to a given output. For a field GF (q), where q is an n-bit prime, a
circuit of size O(n), and error probability 2−n, our protocols require communication of
O(n2) bits. This is the same worst-cast complexity as the trivial (non zero-knowledge)
interactive proof where the prover just reveals the input values. If the circuit involves
n multiplications, the best previously known methods would in general require com-
munication of Ω(n3 log n) bits.
Variations of the technique behind these protocols lead to other interesting ap-

plications. We first look at the Boolean Circuit Satisfiability problem and give zero-
knowledge proofs and arguments for a circuit of size n and error probability 2−n in
which there is an interactive preprocessing phase requiring communication of O(n2)
bits. In this phase, the statement to be proved later need not be known. Later the
prover can non-interactively prove any circuit he wants, i.e. by sending only one
message, of size O(n) bits.
As a second application, we show that Shamirs (Shens) interactive proof system

for the (IP-complete) QBF problem can be transformed to a zero-knowledge proof
system with the same asymptotic communication complexity and number of rounds.
The security of our protocols can be based on any one-way group homomorphism

with a particular set of properties. We give examples of special assumptions sufficient
for this, including: the RSA assumption, hardness of discrete log in a prime order
group, and polynomial security of Diffie-Hellman encryption.
We note that the constants involved in our asymptotic complexities are small

enough for our protocols to be practical with realistic choices of parameters.

1ETH Zurich, cramer@inf.ethz.ch
2Aarhus University, BRICS (Basic Research in Computer Science, center of the Danish National Re-

search Foundation), ivan@daimi.aau.dk
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1 Introduction

Zero-Knowledge interactive proofs [17] and arguments [5] allow a prover to
convince a verifier that a statement (on membership in a language) is true while
revealing nothing but the validity of the assertion.
Interactive proofs are secure against cheating even by infinitely powerful provers,
on the other hand, zero-knowledge can - at least for NP-hard problems - only be
guaranteed relative to a computational assumption (unless the polynomial time
hierachy collapses, [13]). The first zero-knowledge interactive proof for an NP-
hard problem was given in [16], this was later extended to build zero-knowledge
proofs for all languages in IP[6], the class of languages with interactive proofs3.
Interactive arguments are only secure against polynomial time provers, and so
require computational assumptions to establish soundness. On the other hand,
they can provide perfect (unconditional) zero-knowledge for all of NP, as shown
in [5].
Summarizing informally, these basic results say that, under reasonable compu-
tational assumptions, all languages that have an interactive proof (argument),
also have a zero-knowledge interactive proof (argument), albeit a much less effi-
cient one. From this has emerged naturally a line of research aimed at improving
the efficiency (in terms of communication complexity) of zero-knowledge proto-
cols for NP complete problems such as SAT [4, 18, 19, 9]. It is natural to ask to
what extent we can reach the optimal situation, where giving a zero-knowledge
interactive proof for SAT, or other problems in IP, is as efficient as giving a mere
interactive proof, in other words, can zero-knowledge be for free? In this paper we
give protocols showing that in some cases, zero-knowledge may indeed be almost
or entirely for free.
We first present zero-knowledge proofs and arguments for arithmetic circuits
over finite prime fields, namely given a circuit with multiplication and addition
gates, show in zero-knowledge that inputs can be selected leading to a given out-
put. We will refer to this as the arithmetic circuit problem. For a field GF (q),
where q is an n-bit prime, a circuit of size O(n), cryptographic security param-
eter n and error probability 2−n, our protocols require communication of O(n2)
bits. For interactive proof systems capable of handling any arithmetic circuit, we
believe this is an optimal result: the simplest non-zero knowledge proof system
would be to just reveal the inputs, which may cost Ω(n2) bits.
If the circuit involves n multiplications, the best previously known method is to

3In fact, IP is equal to PSPACE, as shown by Shamir[23]

2



rewrite the multiplications to Boolean circuits and use the best known protocol
for circuit satisfiability. This leads to a communication complexity of Ω(n3 log n)
bits. As a more precise account of the performance of our protocol, we mention
that its communication complexity is O((m+ t)(l+n)⌈k/n⌉) bits where the error
probability is 2−k, l is the cryptographic security parameter, m is the number of
inputs and t is the number of multiplication gates. Thus linear operations are
essentially for free.
So for arithmetic circuits, it seems the only price we must pay for zero-knowledge
is the interaction required. For an NP hard problem, this cannot be avoided
unless NP ⊂ BPP . But we can partially avoid it by going to the model of non-
interactive proofs or arguments with preprocessing [25]. In this model, we present
protocols for the Arithmetic Circuit Problem and Boolean Circuit Satisfiability.
Here, the prover and verifier are allowed to do an interactive preprocessing stage,
in which it is not necessary to know which statement (circuit) will be proved later
(except perhaps for an upper bound on its size). Then, at a later time, the prover
should be able to prove any circuit of his choice by sending only one message.
For the arithmetic circuit problem, the complexity of both our preprocessing
and proof phase is O(n2) bits (the same as for the interactive protocol mentioned
above).
For the Boolean circuit satisfiability problem using a circuit of size n, cryp-
tographic security parameter n and error probability 2−n, our preprocessing has
size O(n2) bits, whereas the proof is of size O(n) bits. Thus the proof stage has
the same worst case complexity as the obvious interactive proof for SAT, where
one just sends a satisfying assignment, which can in general have size Ω(n). Since
it is not known how to make do with less than this for an interactive proof for
SAT and given that the interaction (in the preprocessing) cannot be avoided un-
less NP ⊂ BPP , our result seems close to optimal. We also note that our total
communication complexity is the same as that of the best previously known zero-
knowledge interactive proofs [9] (which could not be split in a preprocessing and
proof phase).
To compare with earlier work on interactive arguments, we need to give a more
precise account of the performance of our protocols: for an error probability of
2−k, and cryptographic security parameter l, the complexity of the preprocessing
is O(n)max(k, l) bits in the proof case, and O(ln+ k) bits in the argument case.
The proof phase has size O(n + l) bits in both cases. The best earlier work on
arguments is by Cramer and Damg̊ard [9] who obtained O(n)max(l, k), and by
Kilian [19] who obtained O(kl log l). None of these protocol could be split in a
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preprocessing and proof phase, as ours. Our total complexity improves on [9]
and is not directly comparable to [19]. It is superior to [19] for some choices of
parameters, e.g. when all parameters are chosen equal to n, but inferior in other
cases - in particular because of the very interesting fact that the result from [19]
does not depend on n.
From a practical point of view, Kilian’s results are not of much relevance,
since they are based on PCP’s [2], and hence rely on the elaborate reductions
needed to build PCP’s. By contrast, the constants involved in our asymptotic
complexities are small enough for our protocols to be practical with realistic
choices of parameters. For example, our most efficient argument for SAT based
on RSA produces a proof stage of size 2(n + l) bits, where l is the length of
the RSA modulus used. Moreover, we believe that non-interactive protocols
with preprocessing and small proofs have significant advantages over ordinary
interactive protocols: In real networks, it is often the case that large amounts of
bandwidth is available at low prices during particular time intervals, typically at
times where the network operator expects traffic to be low. The preprocessing
can then be done at such times, which makes the added cost of later doing a
proof almost negligible: the prover must in any case send a message describing
the circuit he wants to prove satisfiable, and appending our proof makes this
message larger by only a constant factor.
Our final result shows that Shamirs (Shens) [23, 24]interactive proof system for
the (IP-complete) QBF problem can be transformed to a zero-knowledge proof
system with the same asymptotic communication and round complexity 4. Thus
for QBF, zero-knowledge may in fact be entirely for free.
The security of our protocols can be based on any one-way group homomor-
phism with a particular set of properties. We give examples of special assumptions
sufficient for this, including: the RSA assumption, hardness of discrete log in a
prime order group, and polynomial security of Diffie-Hellman encryption. Our
main technical tool is a method for building from the homomorphisms assumed
a commitment scheme, where commitments can contain elements from a finite
prime field, and where multiplication and comparison of committed values can
be handled very efficiently.

4It is, of course, well known [6] that it is possible to build a zero-knowledge protocol from Shen’s or
Shamir’s proof systems, provided one-way functions exist. However, the transformation from [6] leads a
huge loss of efficiency.
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2 Protocol Descriptions

Our basic protocols make use of a commitment scheme for numbers modulo q,
for some prime q. This section describes these protocols in a way that is inde-
pendent from any particular implementation of the commitment scheme. We will
describe how to build honest verifier zero-knowledge protocols. Standard tech-
niques may then be used to make protocols that are zero-knowledge in general.

2.1 Notation and Properties for Commitments

For now, the reader may think of the commitment scheme intuitively as follows:
the prover P puts an integer a into a closed box, where 0 ≤ a < q for some fixed
prime q and gives it to the verifier V . At this point, V cannot open the box,
and P cannot change his mind about a. However, P may later choose to open a
box and reveal the contents to V . More details on commitments can be found in
Section 3.
In a real implementation, commitments will be represented by bit strings. We
will use l to denote the length of a commitment, and we will assume that to open
a commitment, it suffices to send, in addition to the value revealed, a string of
length at most l bits.
We will need the following properties:

1. From commitment A containing a, resp. B containing b, V can on his own
compute a commitment containing a+b mod q, or he may choose to compute
one containing a− b mod q. Since in our concrete examples, commitments
are in a multiplicative group, we will denote these commitments by A · B,
resp. AB−1. The property also implies that V can multiply or add constants
into a commitment. We will let Ac, cA, cA−1 denote commitments to ca, c+
a, c− a mod q, as computed from A.

2. There is a protocol by which P can convince V in honest verifier zero-
knowledge that a given commitment is a bit commitment, i.e. P knows how
to open it to reveal 0 or 1.

3. There is a protocol by which P can convince V in honest verifier zero-
knowledge that he knows how to open a set of given commitments A,B,C
to reveal values a, b, c, for which c = ab mod q. In particular, this means
that P can show that he knows how to open a single commitment A (by
choosing C = A and B a default commitment to 1).
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In some implementations of commitments, q can be chosen independently of l,
we then talk about commitments with unbounded q. In other implementations,
q must be 2O(l). In such cases with bounded q, we will assume that q = 2δl, for
some constant δ > 0.
Property 1 above may be used to show relations on committed bits. Concretely,
suppose we want to show for two sets of bit-commitments D0, ...,Dn and C0, ..., Cn,
where n < log q, that the same bit bi is contained in Ci and Di, for i = 1...n. This
can be done much more efficiently than by comparing each Ci,Di individually.
For this, we have the following protocol:

EQUALITY PROTOCOL

1. the verifier first computes the commitments C = C2
n

n · C
2n−1
n−1 · .. · C0, and

D = D2
n

n ·D
2n−1
n−1 · .. ·D0 which should both be commitments to the number

whose binary representation is bnbn−1...b0.

2. Finally prover and verifier compute CD−1 and the prover opens the result
to reveal 0.

It is easy to see that this game reveals nothing about the value of b0, ..bn, and
that if P can open each of the commitments to reveal a one-bit value, all pairs
Ci,Di contain the same bit, or he can break the commitment scheme.

2.2 Protocols for Arithmetic Circuits over GF (q)

In this section, we are given an arithmetic circuit Ψ over GF (q), where q is
an n-bit prime, containing gates G1, .., Gv, where we assume that Gv is the gate
computing the final output from the circuit. We assume for simplicity that there
is only one output value computed, we are given a value y for this output, and the
prover’s goal is to demonstrate that inputs can be selected that lead to output y.
All gates have fan-in at most two and arbitrary fan-out. Gates may be multi-
plication gates, addition gates, and addition or multiplication by a constant.
The protocol takes place in a series of steps:

STEP 0
The prover and verifier go through the setup phase for the commitment scheme,
as described in Section 3. This can be done once and for all, and the instance of
the commitment scheme generated can be reused in several protocol executions.
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STEP 1
The prover makes m commitments I1, .., Im, such that Ij contains input value
xj ∈ GF (q). The input values are selected such that the circuit computes y as
output. The prover also makes t commitments T1, ..., Tt, such that Ti contains
the value that is output by the i’th multiplication gate in the circuit, given that
the inputs are x1, ..., xm. All commitments produced are sent to V , and P proves
that he knows how to open all of them (using the third assumed property of
commitments).

STEP 2
Both P and V compute, based on I1, .., Im, T1, .., Tt and using the first assumed
property of commitments, for each gate commitment(s) representing its input
value(s), and a commitment representing its output value.

PROOF, Step 3
For each multiplication gate, do the following: let A,B be the commitments
representing the input values a, b, and let C be the commitment representing the
output value c. P uses the third property of commitments to convince V that
ab mod q = c.

PROOF, Step 4
P opens the commitment representing the output value of Gv.

V accepts, if and only if all proofs in Steps 1 and 3 are accepted, and P correctly
opens the commitment in Step 4 to reveal y.
The following is immediate from inspection of the protocol description:

Lemma 2.1 If inputs for Ψ can be selected leading to output y and P follows the
protocol, then V always accepts. The communication complexity of the protocol
is (m + t + 1)l + β(m, t, l, k, n) bits, where β(m, t, l, k, n) is the communication
complexity for doing all the interactive proofs required in Steps 1 and 3.

2.2.1 A Non-interactive with Preprocessing Variant

We sketch here a variant of the arithmetic circuit protocol that is non-interactive
with preprocessing. The asymtotic complexity for the preprocessing is the same
as the original protocol, whereas the proof phase has complexityO((m+t)(l+n))
bits. The variant is based on a technique borrowed from Beaver et al. [1].
In the preprocessing, the prover will produce commitments J1, ..., Jm containing
random values, and t triples of commitments of form D,E,F containing random
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values d, e, f such that de = f mod q. The prover will show that he can open all
commitments and that the multiplicative relations hold.
In the proof phase, a circuit with input values is known to the prover. Consider
a fixed multiplication gate. It is first assigned a distinct triple D,E,F from the
preprocessing. Let a, b, c, where ab = c mod q be the values actually occurring at
the gate. The prover can now send to the verifier ǫ = a− d and δ = b− e. Now,
the verifier can on his own compute a triple A,B,C containing a, b, c by letting
A = ǫD, B = δE and C = ǫδF ·Dδ ·Eǫ.
In the same way, the prover tells the verifier how to modify the Ji’s to get
commitments containing the correct inputs to the circuit by giving the differences
between the random values in the Ji’s and the actual values.
All that remains is for the prover to show that “gates connect correctly”, i.e.
that if e.g. A′ represents the output from one gate, which is connected to the
input of another gate, represented by A, the prover shows that A and A′ contain
the same value by opening A′A−1 as 0.

2.3 Non-Interactive Protocols with Preprocessing for SAT

For the protocol description, we first need some notation and definitions: We
will assume (without loss of generality) that the circuit to be proved satisfiable
later is given with at most n NAND gates with fan-in 2 and arbitrary fan-out.

Definition 2.2 A NAND-Table is a matrix with 4 rows and 3 columns contain-
ing commitments. A NAND-table is correct, if any of its rows A,B,C satis-
fies that the prover can open the three commitments to reveal bits a, b, c, where
a∧b = ¬c. An NAND table is useful if it is correct, and if one obtains, by opening
all its commitments and permuting the rows, the truthtable of the NAND-function.

In the following the honest prover will make only useful NAND-tables, but to
keep the prover from cheating it will be enough to force him to generate at least
correct NAND-tables.
To show correctness of a NAND-table, P can first show that the 8 commit-
ments in the two first positions of each row are bit commitments, by the second
assumption on commitments. Then for each row A,B,C, containing a, b, c, P
uses properties 1 and 3 above to show that 1 − c = ab mod q. Assuming that a
and b are 0/1 values, this ensures that so is c, and that ¬c = a ∧ b.
We are now ready to start giving the protocol in detail. First is:

STEP 0
The prover and verifier go through the setup phase for the commitment scheme,
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as described in Section 3. This can be done once and for all, and the instance of
the commitment scheme generated can be reused in several protocol executions.

PREPROCESSING
The prover makes n useful NAND-tables, using for each table an independently
and uniformly chosen permutation of the rows. He proves that all NAND-tables
are correct, as described above.

For the proof phase, we are given the concrete circuit Φ that should be shown
to be satisfiable, containing gates G1, .., Gn, where we assume that Gn is the gate
computing the final output from the circuit. The proof string to be sent to V is
constructed by P as follows:

PROOF, Step 1
For i = 1..n, take the first unused NAND table Ti from the preprocessing and
assign it to gate Gi.

PROOF, Step 2
Fix a set of input bits that satisfy the circuit. For each i = 1...m, P selects a
row in Ti such that this row contains the 2 input bits and the output bit of Gi
in a computation on the satisfying input. P includes 2 bits in the proof string
indicating which row is selected.

By selecting rows in all truth tables, P has essentially defined a computation
in the circuit. He must now show that this computation is consistent, by demon-
strating that the output from one gate equals the input to another gate, if a wire
connects them, and also that if the same input bit is used in several gates, the
same value for this bit is consistently used.

PROOF, Step 3
Consider any wire W in the circuit. We will associate a pair of commitments to
W as described in the algorithm below. If W connects an input bit to a gate in
the circuit, we will, for convenience in the description of the algorithm, associate
a commitment YW to W . This commitment is defined during execution of the
algorithm.

• Suppose W connects the output of Gi to the u’th input of Gj, where u = 1
or 2. Let C be the last commitment in the selected row of Ti (representing
the output bit from Gi) and let X be the u’th commitment in the selected
row of Tj. Associate to W the pair C,X.
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• Suppose W connects input bit y to input number u of gate Gi (u = 1
or 2), and let A be the u’th commitment in the selcted row of Ti. If the
commitment YW has not been defined yet, let YW = A. Associate to W the
pair YW , A.

For all wires, P must now show that the associated pair of commitments contain
the same bit. Clearly, this gives at most 2n pairs of commitments that must
checked for equality. For commitments with unbounded q, or bounded commit-
ments where δl ≥ 2n, P completes these equality proofs by opening only one
commitment, by running the Equality protocol shown above. Otherwise, the bits
to be compared are distributed over several commitments holding δl bits each, so
P will need to open 2n/(δl) commitments.

PROOF, Step 4
P opens the last commitment in the selected row of Tn (to reveal 1, in order to
convince V about the final result of the computation in the circuit).

VERIFICATION OF PROOF
If V rejected any of the proofs in the preprocessing, V rejects immediately. V
selects the rows designated by the information from Step 2 of the proof. V
computes the pairs of commitments used by P in Step 3, and verifies that P have
proved that all pairs contain equal bits (this amounts to verifying that P has
correctly opened one or more commitments to reveal 0). Finally V verifies that
the commitment opened in Step 4 was correctly opened to reveal 1.

The following is immediate from inspection of the protocol description:

Lemma 2.3 If Φ is satisfiable and P follows the protocol, then V always accepts.
The communication complexity of the protocol is for the preprocessing 12ln +
α(n, l, k) bits, where α(n, l, k) is the communication complexity for doing all the
interactive proofs required in the preprocessing; and for the proof phase 2(n + l)
or (2 + 2/δ)n+ l bits.

2.4 An Alternative Approach Based on Span Programs

The contents of this section can be found in Appendix A

2.5 Zero-Knowledge Proof for QBF

In [23], Shamir gave the first proof that IP = PSPACE, by exhibiting an
interactive proof system for the PSPACE complete QBF problem. A little later,
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Shen [24], building on Shamirs ideas, gave a somewhat more efficient proof system
for QBF, which appears to be the most efficient proof system known for QBF.
In this section, we sketch how our techniques may be applied to transform Shens
proof system into a zero-knowledge proof system with the essentially the same
communication and round complexity.
By examining Shen’s protocol, one finds that all the work done takes place in a
finite field GF (q) for some prime q. If, for a QBF instance of length n, we want
error probability negligible in n, say 2−n, the analysis of the protocol shows that
this can be done by using a q of bit length O(n).
By further inspection of the protocol, one finds that in each round of the pro-
tocol, the prover sends the coefficients of some polynomial, the verifier checks
this polynomial, and returns a random element in the field. The operations done
by the verifier in order to check the polynomials received all fall in one of the
following categories:

1. Evaluate a polynomial received from the prover in a point chosen by the
verifier, or in a constant point.

2. Add or multiply a constant number of values computed as in 1).

3. Compare values computed as in 1) or 2).

4. The final step: insert all random values chosen by the verifier into a mul-
tivariate polynomial efficiently computable from the input QBF instance.
Compare the result to a value obtained from the previous rounds.

Our proposed modification of the protocol now simply consists of having the
prover communicate his polynomials by in stead sending commitments to each of
the coefficients.
By our assumptions on commitments, it is clear that this affects the number of
bits needed to send a polynomial by at most a constant factor, and furthermore
that the verifier can on his own compute commitments to results of operations of
type 1. For the multiplications in 2), the prover supplies a commitment containing
the result of each such multiplication. Therefore, at the end of the interaction,
the verifier has for each multiplication in the original protocol a set of triples of
commitments (A,B,C) containing values (a, b, c), also he has one commitment D
together with a value d that can be computed efficiently from the QBF instance.
The verifier now only needs to be convinced that for each triple, it holds that
ab mod p = c, and that D contains d. From our assumptions on commitments,
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it follows directly that the prover can convince the verifier about these facts in
honest verifier zero-knowledge. Standard techniques can then be used to build a
zero-knowledge protocol.
As can be seen from the following, the multiplication protocol we have is con-
stant round and communicates a constant number of commitments. We therefore
get a protocol with the same round and communication complexity, up to a con-
stant factor.
Intuitively, this new protocol is zero-knowledge, because the verifer never sees
any of the values chosen by the prover, only computationally useless commit-
ments to them. Soundness is preserved, because the prover must, even in the
transformed protocol, decide on the polynomial to send in a given round, before
he sees the random field element chosen by the verifier in that round. A more
precise statement of our result follows in Section 4.

3 Commitment Schemes Based on Group Homomorphisms

A commitment scheme of the kind we use consists of a function commit :
{0, 1}l × [0..q[→ {0, 1}l, whose description is output by a probabilistic polyno-
mial time generator on input 1l and a prime q, where l is a security parameter.
This is done in the set-up phase of the commitment scheme. The generator may
be able to take an arbitrary prime q as input. This is called a generator with
unbounded q. Or there may be a constant δ > 0, such that the generator works,
only if q = 2δl. This corresponds to the definition in Section 2.1.
We refer to commit as the public key of the commitment scheme. To commit
to an integer a ∈ [0..q[, one chooses r at random from {0, 1}l and computes
the commitment C as C ← commit(r, a). The value r masks a. To open a
commitment, r, a are revealed, and the verifier verifies that commit(r, a) = C.

For interactive proofs, we will need commitments to be unconditionally binding.
This means that a is uniquely determined from commit(r, a). Of course we also
need the scheme to hide a, but the best we can get in this case is that it is
computationally hiding: the distributions of commitments to any pair of distinct
integers are polynomially indistinguishable.

For interactive arguments, we will use commitment schemes with dual properties:
unconditionally hiding. This means that the a commitment to a has distribution
independent of a. Then, with respect to the binding property, the best we can
achieve is that the scheme is computationally binding. This means that, given
the public key, no probabilistic polynomial time algorithm can compute a com-
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mitment and open it in two distinct ways, except with negligible probability.

3.1 Basic Definitions

To show how we build commitment schemes of the kind we need, we start with
some notation and definitions:

Definition 3.1 A Group Homomorphism Generator G is a probabilistic polyno-
mial time algorithm which on input 1l outputs a description of two finite Abelian
groups G,H and a homomorphism f : H → G. Elements in G,H can be repre-
sented as l-bit strings, and the group operation and inverses in G and H can be
computed in polynomial time. Finally, a uniformly chosen element in H can be
selected in probabilistic polynomial time.

Definition 3.2 A group homomorphism generator G is said to be one-way if
the following holds for any polynomial size family of circuits {∆i| i = 1, 2, ..}: on
input f, y, where f is selected by G on input 1l and y is uniformly chosen in Im(f),
the probability that ∆l outputs x ∈ H such that f(x) = y is superpolynomially
small (in l).

We will need a further property of the generator, which loosely speaking says
that f is as hard to invert in points of form yi as it is to invert it in y, as long as
0 < i < q, but inversion is easy in points of form yq:

Definition 3.3 A group homomorphism generator G is said to be q-one-way if
it is one-way, takes a prime q as additional input, and there is a polynomial time
algorithm satisfying the following: on input f, z, y, i where 0 < i < q, y ∈ G,
f(z) = yi, it computes x such that f(x) = y. Finally, there is a polynomial time
algorithm which on input y computes x′ such that f(x′) = yq.

We remark that if f is one-one, and |H| = q, q-one-wayness follows trivially
from one-wayness.
We are now ready to define the two kinds of generators that will enable us to
make the bit commitment schemes we need:

Definition 3.4 An unconditionally hiding q-homomorphism generator G is a q-
one-way generator (even though this is the same as the previous definition, we
have chosen to give it a separate name, for uniformity with Definition 3.5).
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Definition 3.5 An unconditionally binding q-homomorphism generator G is a
q-one-way generator, which also satisfies that for f generated by G, there exists
y ∈ G, such that yIm(f) has order q in the factor group G/Im(f). Furthermore,
the distributions yif(r) and yjf(s) for 0 ≤ i, j < q, i 6= j and independently
chosen uniform r, s, must be polynomially indistinguishable.

Informally, what this definition says, is that a y should exist, such that the cosets
yIm(f), y2Im(f), .. are all distinct, and it should be hard to tell the difference
between random elements in distinct cosets.

3.2 Commiment Schemes

We are now ready to describe the two types of commitment schemes we have.
Throughout, we will assume that a prover P will be generating commitments and
sending them to a verifier V . First is an unconditionally hiding scheme:

• Set-up Phase: V runs unconditionally hiding q-homomorphism generator
G on input 1l, to obtain f : H → G. He chooses a random element y ∈
Im(f), e.g. by choosing an element in H and applying f . Then f,G,H, y
are sent to P . V must now give an interactive proof of knowledge that he
knows an f -preimage of y. This proof can be easily constructed from the f -
preimage protocol in Section 3.3, by using one-bit challenges, and iterating
the protocol sequentially.

• Commitment to integer 0 ≤ a < q: P chooses random r ∈ H, and sends
commit(r, a) = yaf(r) to V .

• Opening commitment C: P sends a, r to V who accepts if and only if
C = commit(r, a) and 0 ≤ a < q.

• Hiding Property: is clear, since if P has accepted the set-up phase, it
follows that (except with exponentially small probability) a commitment
will have distribution independent from the value committed to, namely
the uniform distribution over Im(f).

• Binding Property: If any cheating prover P ∗ can open a commitment to
reveal two different values, he can produce a, r, a′, r′ such that a 6= a′ and
yaf(r) = ya

′

f(r′). Assume without loss of generality that a > a′. Then
ya−a

′

= f(r′r−1), which means we can find a preimage of y by definition of
q-one-wayness. This in turn contradicts the assumption that G is one-way,
if P ∗ is in polynomial time.
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Next, we describe an unconditionally binding scheme:

• Set-up Phase: P runs unconditionally binding q-homomorphism genera-
tor G on input 1l, to obtain f : H → G. He chooses an element y ∈ G
according to Definition 3.5. Then f,G,H, y are sent to V . For some gen-
erators V can verify himself that indeed y has the property requested in
Definition 3.5. If this is not the case, P must give a zero-knowledge proof
that y 6∈ Im(f). This can be done by a straightforward modification of the
classical quadratic non-residuosity protocol from [17].

• Commitment to integer 0 ≤ a < q: P chooses random r ∈ H, and sends
commit(r, a) = yaf(r) to V .

• Opening commitment C: P sends a, r to V who accepts if and only if
C = commit(r, a) and 0 ≤ a < q.

• Hiding Property: follows immediately from the assumption in Definition
3.5.

• Binding Property: Definition 3.5 guarantees that if V accepts the set-up
phase, commitments to different values will be in distinct cosets of Im(f).

It should be clear from the definition of these commitments that both types
have the additive homomorphism property required in our protocols: suppose
we are given commitments to values a and b. Let j be such that a + b = (a +
b) mod q + jq, and let t be such that f(t) = yjq. Note that by assumption, t is
easy to compute. It then holds that commit(r, a) ·commit(s, b) = commit(rst, (a+
b) mod q). In a similar way, it follows that commit(r, a)c = commit(r′, ca mod q)
and yc · commit(r, a) = commit(r′′, (c + a) mod q) for a constant c and easily
computable values r′, r′′ ∈ H.

3.3 Proofs for Bit Commitments and Multiplication

We now turn to the required protocol for showing that a commitment contains
a 0/1 value. For this, it turns out to be sufficient to be able to prove knowledge
of a preimage under f . We have the following protocol, which can used for any f
generated by a q-one-way generator, and is a generalization of Schnorr’s discrete
log protocol [22]:

f -PREIMAGE PROTOCOL
Input: f and u ∈ G. P knows v, such that f(v) = u.
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1. P chooses r ∈ H at random and sends m = f(r) to V .

2. V chooses a random number e, so that 0 ≤ e < q and sends it to P .

3. P sends z = rve to V , who checks that f(z) = mue.

The properties of this protocol are the following:

Lemma 3.6 If P, V follow the protocol, V always accepts. From two accepting
conversations (m, e, z), (m, e′, z′), where e 6= e′, one can efficiently compute v such
that f(v) = u. Finally, the protocol is honest verifier zero-knowledge.

Proof The first claim is trivial. The second follows directly from the definition
of q-one-wayness. Finally, conversations with the honest verifier are simulated by
choosing at random e, z, computing m = f(z)u−e and outputting (m, e, z). ⊓⊔
It is clear that this protocol can be used to show that a commitment C contains
0, by using u = C, and that it contains 1 by using u = Cy−1. We may now use
the proof of partial knowledge technique from [10] to make a protocol in which P
proves that C contains 0 or 1, without revealing which is the case. This involves
running the protocol for 0 in parallel with the protocol for 1, but have V issue
only one challenge s. Now P must answer challenges e0, e1 in the two parallel
instances, such that e0 + e1 = s (for details, please refer to [10]).
The resulting protocol is referred to as a bit commitment proof. It is still honest
verifier zero-knowledge, and is a proof of knowledge with error probability 1/q
that P can open C as 0 or 1. Its communication complexity is 4l + log q bits.
Suppose that for some protocol, we need error probability 2−k. For this, we
will need to repeat the 0/1 protocol in parallel ⌈k/ log q⌉ times, leading to a
communication complexity of 4l⌈k/ log q⌉+ k bits.
The final auxiliary protocol we need is a multiplication protocol, an interactive
proof that commitments A,B,C contain a, b, c for which c = ab mod q. Assume
P knows how to write the commitments in the form

A = yaf(r), B = ybf(u), C = yabmodqf(s).

Now observe that if we choose j such that ab = (ab) mod q + jq and set t =
f−1(y−jq)su−a, then t is easily computable by P , and

C = Baf(t).

Conversely, assuming that you can open A and B to reveal a, b, knowledge of
such a t implies you can open C to reveal ab mod q.
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This leads to a protocol proving what we want:

MULTIPLICATION PROTOCOL
Input: f and commitments A,B,C. P knows a, r, t, b, u, such that A = yaf(r),
C = Baf(t) and B = ybf(u).
The protocol proceeds by executing the following two 3-step protocols in par-
allel, using the same challenge e in both instances. The first is intended to verify
that A,C have the correct form, while the second verifies that the prover can
open B:

1. First protocol:

(a) P chooses x ∈ Zq and s1, s2 ∈ H at random and sends m1 = y
xf(s1),

m2 = B
xf(s2) to V .

(b) V chooses a random number e, so that 0 ≤ e < q and sends it to P .

(c) P sets z = (x+ ea) mod q and chooses i such that z = x+ ea+ iq. He
then computes w1 = s1r

ef−1(y−iq) and w2 = s2t
ef−1(B−iq). He sends

z, w1, w2 to V , who verifies that y
zf(w1) = m1A

e andBzf(w2) = m2C
e.

2. Second protocol:

(a) P chooses d ∈ Zq and s ∈ H at random and sends m = y
df(s) to V .

(b) V chooses a random number e, so that 0 ≤ e < q and sends it to P .

(c) P sets z = (d + eb) mod q and chooses j such that z = d + eb + jq.
He then computes w = suef−1(y−jq). He sends z, w to V , who verifies
that yzf(w) = mBe

The properties of this protocol are the following:

Lemma 3.7 If P, V follow the protocol, V always accepts. From two accepting
conversations (m,m1,m2, e, z, w,w1, w2), (m,m1,m2, e

′, z′, w′, w′1, w
′
2), where e 6=

e′, one can efficiently compute a, r, b, u, s such that A = yaf(r), B = ybf(u), C =
yabmodqf(s). Finally, the protocol is honest verifier perfect zero-knowledge.

Proof Easy modification of the proof of Lemma 3.6. ⊓⊔
The communication complexity of the multiplication protocol is 6l+3 log q bits.
Suppose that for the main protocol, we need error probability 2−k. For this, we
will repeat it in parallel ⌈k/ log q⌉ times.
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4 Results for the Main Protocols

In this section we state, without proof, the results we obtain for our main
protocols when using the commitment schemes from the previous section. The
results are restated and proved in Appendix B.
For formal definitions of proof systems, completeness, soundness and zero-
knowledge, please refer to [17]. In the case of arguments, completeness and
zero-knowledge are as for proof systems, but for soundness, we treat the error
probability in a way similar to the soundness error of proofs of knowledge as
defined by Bellare and Goldreich [3]: we will show that if a cheating prover can
convince the verifier with probability ǫ > 2−k, then he can break the bit commit-
ment scheme in expected time polynomial in l and 1/(ǫ− 2−k).
We remark that all our communication complexity results are computed with-
out including the complexity of setting up the commitment schemes (Step 0 in the
protocol descriptions). This is of course motivated by the fact that the same com-
mitment scheme instance can be reused in many protocol executions. However,
there are several cases, where including the setup step would make no difference.
This is true in general for Theorem 4.3, and for Theorems 4.4, 4.6 when based on
the Diffie-Hellman generator described later.
The general strategy for proving the results for our protocols is the following:
we first show directly that the main protocols as described earlier are honest
verifier zero-knowledge. We cannot get zero-knowledge in general using standard
resettable simulation since the prover must in all our protocols answer a challenge
consisting of many bits. For arguments, this is solved by having the verifier prove
initially knowledge of a trapdoor for the commitment scheme; the simulator can
extract the trapdoor, and then simulate easily. For interactive proofs, we use the
technique of having the verifier commit to his challenge in advance. This allows
simulation as shown by Goldreich and Kahan [14]

4.1 Results for Non-Interactive SAT Protocols with Pre-

processing

Lemma 4.1 The protocol in Subsection 2.3 using commitments constructed from
an unconditionally hiding q-homomorphism generator with unbounded q is a per-
fect honest verifier zero-knowledge argument with preprocessing for Boolean Cir-
cuit Satisfiability. The communication complexity of the preprocessing is O(nl+k)
bits, while the proof phase has size O(n+ l). If the generator has bounded q, the
conclusion is the same, except that the communication complexity of the prepro-
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cessing is O(n)max(k, l) bits.

Before we give the corresponding result for unconditionally binding generators,
we note that an unconditionally binding generator cannot have unbounded q,
because it leads to l-bit commitments from which the contents is uniquely deter-
mined, and so we must have at least that q < 2l.

Lemma 4.2 The protocol in Subsection 2.3 using commitments constructed from
an unconditionally binding q-homomorphism generator (with bounded q) is a com-
putational honest verifier zero-knowledge proof with preprocessing for Boolean Cir-
cuit Satisfiability. Communication complexity of the preprocessing is O(n)max(k, l)
bits, while the proof phase has size O(n+ l).

It now only remains to modify these protocols to be zero-knowledge in general,
of course without loosing efficiency. We obtain the following:

Theorem 4.3 If there exists an unconditionally hiding q-homomorphism gener-
ator with unbounded q then there exists a non-interactive perfect zero-knowledge
argument with preprocessing for Boolean Formula Satisfiability. The communica-
tion complexity of the preprocessing is O(nl + k) bits, while the proof phase has
size O(n+ l). If the generator has bounded q, the conclusion is the same, but the
communication complexity of the preprocessing becomes O(n)max(k, l) bits.

Theorem 4.4 If there exists an unconditionally binding q-homomorphism gen-
erator (with bounded q) then there exists a non-interactive zero-knowledge proof
with preprocessing for Boolean Formula Satisfiability, such that the communica-
tion complexity of the preprocessing is O(n)max(k, l) bits, while the proof phase
has size O(n+ l).

4.2 Results for Arithmetic Circuit Protocols

Recall that the protocols in Section 2.2 were defined for an n-bit prime q, error
probability 2−k, and a circuit with m inputs and t multiplication gates.

Lemma 4.5 The protocol in Subsection 2.2 using commitments constructed from
an unconditionally hiding q-homomorphism generator is a perfect honest verifier
zero-knowledge argument for the arithmetic circuit problem. When using commit-
ments constructed from an unconditionally binding q-homomorphism generator
we obtain an honest verifier computationally zero-knowledge proof. The commu-
nication complexity is O((m+ t)(l + n)⌈k/n⌉) bits in either case.
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Theorem 4.6 If there exists an unconditionally hiding, resp. an unconditionally
binding q-homomorphism generator then there exists a perfect zero-knowledge ar-
gument, resp. a computational zero-knowledge proof for the arithmetic circuit
problem. The communication complexity is O((m+ t)(l+ n)⌈k/n⌉) bits in either
case.

4.3 Result for the Zero-Knowledge QBF Protocol

Theorem 4.7 If there exists an unconditionally binding q-homomorphism gener-
ator (with bounded q), then there exists a zero-knowledge interactive proof system
for the QBF problem with the same asymptotic round and communication com-
plexity as Shen’s interactive proof system when designed to have error probability
2−n for a length n QBF instance.

Proof sketch

The zero-knowledge protocol described in Subsection 2.5 consists of first a stage
where the prover and verifier go through ”the same” interaction as in the original
proof system, except that the prover sends commitments to his messages. Then
a stage, where the prover convinces the verifier that a set of relations hold be-
tween the committed values. This stage is only honest verifier zero-knowledge as
described in Section 2.5, but can be made zero-knowledge with no essential loss
of efficiency in the same way as in the proof of Theorem 4.4, using the method
from [14].
Having said this, the proof that our modified protocol is a zero-knowledge
proof system for QBF is a straightforward modification of the proof from [6]
that everything in IP has a zero-knowledge proof system if one-way functions
exist. Specifically, note the following: Like ours, the protocol built in [6] is a
modification of an Arthur-Merlin interactive proof system with one-sided error
(the honest prover always convinces the verifier). The transformation from [6]
results in a two-stage protocol of the same form as ours. And finally, [6] assumes
that the prover encrypts his messages using polynomially secure probabilistic
encryption. This corresponds to the hiding property of our commitments. ⊓⊔

5 Examples of Group Homomorphisms

Recall that any of our generators have 1l and a prime q as parameters. Gener-
ators with bounded q include as part of their definition a constant δ.
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5.1 RSA based One-Way Homomorphisms

We first show an example of an unconditionally hiding homomorphism genera-
tor based on RSA:

RSA GENERATOR
The generator selects an RSA modulus N = p1p2 of bit length l, for primes p1, p2,
such that (q, (p1 − 1)(p2 − 1)) = 1. The output is N .

For this generator, we define H = G = Z∗N , and f(x) = x
q mod N .

Lemma 5.1 Under the RSA assumption, the RSA generator is an uncondition-
ally hiding q-homomorphism generator, with unbounded q.

Proof If q > N , it must be prime to φ(N), whence f is surjective. Hence
deciding membership of some y in Im(f) only consists of verifying the q is a
prime and that (y,N) = 1. Otherwise, a zero-knowledge proof must be provided
that y is a qth power modulo N .
The generator is clearly one-way under the usual RSA assumption.
The only other requirement that is not completely trivial is q-one-wayness:
assume we have z, y, i such that yi = zq mod N . Since 1 ≤ i < q, i is prime to q,
so take α, β such that αi+ βq = 1. We claim that x = zα · yβ is the preimage of
y we are looking for:

f(x) = zαq · yβq = yαi cot yβq = y mod N

⊓⊔
One can also base an unconditionally binding generator on an RSA-like func-
tion. The resulting commitment/encryption scheme was first discovered by Be-
naloh [7] in the context of verifiable secret sharing.

q-RESIDUOSITY GENERATOR
The generator selects an RSA modulus N = p1p2 of bit length l, for primes p1, p2,
subject to q|(p1 − 1)(p2 − 1) and δ = log q/ logN . The output is N .

For this generator, we define H = G = Z∗N , and f(x) = x
q mod N .

By the q’th residusity assumption, we mean the assumption that random ele-
ments in distinct cosets of Im(f) as defined here are polynomially indistinguish-
able. This is a natural generalization of the well known quadratic residuosity
assumption.
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Lemma 5.2 Under the q’th residuosity assumption, the q-residuosity generator
is an unconditionally binding q-homomorphism generator.

Proof The proof of q-one-wayness is the same as for the RSA generator (note
that our assumption in particular implies that f is one-way). The element y
that is required to exist in Definition 3.5 can be chosen as any element not in
Im(f). ⊓⊔

5.2 Diffie-Hellman and Discrete Log Based One-Way Ho-

momorphisms

We first give a generator based on the discrete log problem modulo a prime
number. The commitment scheme resulting from this generator was first discov-
ered by Pedersen [21] in the context of verifiable secret sharing.

DISCRETE LOG GENERATOR
The generator selects randomly a prime p of bit length l, subject to δ = log q/ log p
and q|p − 1, where 0 < δ < 1 is a constant. It also selects g ∈ Z∗p , such that g
generates the (unique) subgroup in Z∗p of order q. The output is p, g.

For this generator, we define H = Zq, G =< g >, and f(x) = g
x mod p. When

using this generator as basis for our protocols, we will assume that a party re-
ceiving an element u supposedly in G always verifies that uq = 1 and stops the
protocol if not.

Lemma 5.3 Assume that any probabilistic polynomial time algorithm solves the
discrete log problem modulo prime numbers as selected by the Discrete Log Gen-
erator with superpolynomially small probability. Then the Discrete Log Generator
is an unconditionally hiding q-homomorphism generator with bounded q.

Proof It is clear that deciding membership of y in Im(f) amounts to verifying
that p, q are primes, that q|p − 1 and that gq = yq = 1 mod p. Inverting f is
exactly the discrete log problem, which we assumed hard. Finally, for q-one-
wayness, from yi = gz mod p, we obtain

y = gz·i
−1modq mod p = f(z · i−1 mod q)

which is possible since i < q and so prime to q. ⊓⊔
We remark that nothing prevents us from using other groups of prime order,
such as for example the group on an appropriately chosen elliptic curve.
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Finally, we show an example of an unconditionally binding generator, based on
the Diffie-Hellman problem [11]:

DIFFIE-HELLMAN GENERATOR
The generator selects randomly a prime p of bit length l/2, subject to δ = log q/l
and q|p− 1, where 0 < δ < 1/2 is a constant. It also selects g ∈ Z∗p , such that g
generates the (unique) subgroup in Z∗p of order q, and finally a random h ∈< g >.
The output is p, g, h.

For this generator, we define H = Zq, G =< g > × < g >, and f(x) =
(gx mod p, hx mod p) 5.
Recall that (p, q, g, h) can be used as a public key to encrypt an element m ∈<
g > by choosing r at random and letting the ciphertext be (gr mod p,mhr mod
p) [12]. We will call this Diffie-Hellman encryption. Recall also the notion
of polynomial security, defined by Goldwasser and Micali [15], which says that
random encryptions of distinct messages are poynomially indistinguishable.

Lemma 5.4 If Diffie-Hellman encryption is polynomially secure, then the Diffie-
Hellman generator is an unconditionally binding q-homomorphism generator.

Proof Considering Diffie-Hellman encryption in group theoretic terms, we are
in fact choosing a random representative of the coset (1,m) · Im(f) in G. Hence
polynomial security is equivalent to saying that random elements in cosets of
form (1,mi)Im(f), (1,mj)Im(f) are polynomially indistinguishable. So for the
requirement in Definition 3.5, we can use any y = (1,m), where m 6= 1 mod p.
Clearly, Diffie-Hellman cannot be polynomially secure, unless x → gx mod p
is hard to invert, and f is easily seen to be as hard to invert as this mapping.
q-one-wayness follows in the same way as for the discrete log generator. ⊓⊔
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A An Alternative Approach Based on Span Programs

The span program is a computational model based on linear algebra over (finite)
fields, introduced by Karchmer and Wigderson [20].
First, it is immediately clear that our protocol for general arithmetic circuits
applies to show satisfiability of a span program. Since most of the computation
required in a span program is linear, the resulting protocol would have complexity
depending only linearly on the size of the span program. Since span programs
may be more powerful for some problems than Boolean circuits, this can for such
problems lead to more efficient protocols than the ones obtained by going through
a reduction to SAT.
Moreover, the span approach leads to particularly efficent protocols when ap-
plied to the SAT problem: based on span programs and our commitment schemes
from Section 2.1 it is possible to construct non-interactive zero knowledge proofs
for SAT with preprocessing, achieving the same asymptotic communication com-
plexities as our protocol from Section 2.3. Although the constants involved are
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less favorable, we outline this approach based on span programs, since we believe
that future improvements on the communication complexities might very well
proceed along these lines. Let C be the Boolean circuit to be proved satisfiable.
Our goal is to find an efficient span program MC, i.e. one with a “small” number
of rows and columns, such that the Boolean function computed by it is satisfiable
if and only if C is 6 (please refer to [20] for definitions concerning span programs).
To this end, it is sufficient to pass first to a Boolean formula ΦC that is satis-
fiable if and only if C is: it is quite straightforward to construct a span-program
computing the same function as a given Boolean formula (inductive argument).
Moreover, this construction yields a span program with at most O(m) rows and
columns, where m is the size of the formula.
To faciliate construction of our protocol based on span programs and our com-
mitment schemes, some further properties are very useful.
If we pass from C to Phi by taking it as the conjunction over the |C| formulas
that check the computation of C at each gate, and derive the span program
from this particular formula Φ, it turns out that the matrix that defines the
span program can be chosen as a 0/1-matrix and that the coefficients in a linear
combination of the rows leading to the root of the span program can be selected
from the set {−1, 0, 1}, regardless the underlying field we have chosen for the span
program. Finally, we note that the columns of the span program thus obtained
have constant Hamming weight.
With MC constructed from C as outlined above, to show that C is satisfiable
it is sufficient to show that there exists a suitable linear combination of the rows
leading to the root of the span program. There is a direct correspondence between
a satisfying assignment of C and the coefficients of that linear combination.
Without giving any further details here, we state that even if those coefficients
are committed to by means of a commitment scheme as defined in Section 2.1,
it is still possible to perform the necessary linear algebraic operations on the
coefficients hidden in the commitments and to show, non-interactively and in
zero knowledge, the satisfiability of the span program and hence that of C. The
pre-processing phase is similar to the one from Section 2.3.
We finally note that finding an even more efficient span program MC that
is satisfiable if and only if C, would probably yield even more efficient non-
interactive zero knowledge proofs for SAT with preprocessing.

6Note that we do not require that C and M(C) compute the same Boolean function
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B Results With Proofs for the Main Protocols

In this section we restate and prove the results we obtain for our main protocols
when using the commitment schemes we have presented.
For formal definitions of proof systems, completeness, soundness and zero-
knowledge, please refer to [17]. In the case of arguments, completeness and
zero-knowledge are as for proof systems, but for soundness, we treat the error
probability in a way similar to the soundness error of proofs of knowledge as
defined by Bellare and Goldreich [3]: we will show that if a cheating prover can
convince the verifier with probability ǫ > 2−k, then he can break the bit commit-
ment scheme in expected time polynomial in l and 1/(ǫ− 2−k).
We remark that all our communication complexity results are computed with-
out including the complexity of setting up the commitment schemes (Step 0 in the
protocol descriptions). This is of course motivated by the fact that the same com-
mitment scheme instance can be reused in many protocol executions. However,
there are several cases, where including the setup step would make no difference.
This is true in general for Theorem B.3, and for Theorems B.4, B.6 when based
on the Diffie-Hellman generator.

B.1 Results for Non-Interactive SAT Protocols with Pre-

processing

Lemma B.1 The protocol in Subsection 2.3 using commitments constructed from
an unconditionally hiding q-homomorphism generator with unbounded q is a per-
fect honest verifier zero-knowledge argument with preprocessing for Boolean Cir-
cuit Satisfiability. The communication complexity of the preprocessing is O(nl+k)
bits, while the proof phase has size O(n+ l). If the generator has bounded q, the
conclusion is the same, except that the communication complexity of the prepro-
cessing is O(n)max(k, l) bits.

Proof First recall that completeness and communcation complexity was estab-
lished already in Lemma 2.3, except for the complexity α(n, k, l) of doing the
bit commitment proofs in the preprocessing. For the unbounded q case, we will
choose q = max(2k, 22n). For the bounded q case, we have q = 2δl for a constant
δ > 0. In both cases the communication complexities now follow directly from
the remarks on the f -preimage protocol, if one also observes that all the required
bit commitment proofs can be done in parallel, using the same k-bit challenge for
all of them.
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For soundness, assume that some polynomial time P ∗ can get V to accept a
circuit Φ with probability ǫ > 2−k. We will build from this an algorithm Alg
which in expected time polynomial in 1/(ǫ − 2−k) and l finds either a satisfying
assignment, or breaks a given instance of the commitment scheme. This is clearly
enough for soundness as defined above.
Alg starts by sending the public key of the bit commitment scheme to P ∗. It
then simulates the proof that y ∈ Im(f), with P ∗ acting as the verifier. Then Alg
issues random challenges for the bit commitment proofs, rewinding P ∗ after each
challenge has been answered. When correct answers to two different challenges
have been obtained, by Lemma 3.6, we will know how to open all commitments
issued. We may assume that all NAND-tables produced are correct, since other-
wise the proofs of correctness will give a way to open at least one commitment
in a new way.
The proof in Step 3 establishes equality of bits in a set of pairs of commitments
selected from the Ti’s by multiplying together two sets of commitments and open-
ing the quotient as 0. Given the group element revealed in this opening, if one
can open one product, one can compute a way to open the other one to reveal
the same value. But since we already know how to open all commitments in the
Ti’s, we know a priori how to open both products, and hence if they do not in
fact contain the same value, we can break the commitment scheme.
It now follows that the rows selected in the Ti’s represent a consistent compu-
tation in the circuit, and since the output is 1, by the opening in Step 4 of the
proof, we have a satisfying assignment.
Finally, honest verifier zero-knowledge is easy, since the simulator can use the
proof of knowledge given by V in the setup phase to extract a preimage under f of
y. This will always succeed if V is honest. Given such a preimage, the simulator
can open any commitment any way it wants, and the simulation becomes trivial.

⊓⊔
Before we give the corresponding result for unconditionally binding generators,
we note that an unconditionally binding generator cannot have unbounded q,
because it leads to l-bit commitments from which the contents is uniquely deter-
mined, and so we must have at least that q < 2l.

Lemma B.2 The protocol in Subsection 2.3 using commitments constructed from
an unconditionally binding q-homomorphism generator (with bounded q) is a com-
putational honest verifier zero-knowledge proof with preprocessing for Boolean Cir-
cuit Satisfiability. Communication complexity of the preprocessing is O(n)max(k, l)
bits, while the proof phase has size O(n+ l).
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Proof The proof of soundness is essentially the same as for the previous lemma.
The only difference is that it is enough to observe that if ǫ > 2−k, there exists good
answers to two different challenges, and so all commitments must contain 0/1
values. Furthermore, the cases where a commitment can be opened in different
ways simply cannot occur, and so we always find a satisfying assignment.
We then consider honest verifier zero-knowledge: the simulator executes the
setup phase for the commitment scheme according to the protocol. It then con-
structs all the NAND tables for the preprocessing according to the protocol,
except that Tn is constructed such that its third column contains commitments
to 1’s only. The proofs of correctness of AND-tables are simulated by invoking
the honest verifier simulators for the bit-commitment proof and the multiplication
protocol a sufficient number of times.
The simulator now chooses an arbitrary set of input bits for the circuit, and
does Steps 2 and 3 of the proof according to the protocol. Step 4 is also executed
according to the protocol, which is easy by construction of Tn.
The bit commitment proof simulation is sometimes invoked on commitments
that are not bit commitments (when we ”prove” correctness of the NAND-table
used for Tn). But by the hiding property, these commitments have distribu-
tions that are polynomially indistinguishable from good values. It follows that
the honest verifier simulators we call as subrutines will produce conversations
with distribution that is polynomially indistinguishable from the one produced
on inputs that are bit commitments.
Finally, the numbers revealed to open various products of commitments have
exactly the correct distribution, because this distribution depends only on the
form of the expressions defined in the protocol, not on the values in the commit-
ments. ⊓⊔
It now only remains to modify these protocols to be zero-knowledge in general,
of course without loosing efficiency. We obtain the following:

Theorem B.3 If there exists an unconditionally hiding q-homomorphism gener-
ator with unbounded q then there exists a non-interactive perfect zero-knowledge
argument with preprocessing for Boolean Formula Satisfiability. The communica-
tion complexity of the preprocessing is O(nl + k) bits, while the proof phase has
size O(n+ l). If the generator has bounded q, the conclusion is the same, but the
communication complexity of the preprocessing becomes O(n)max(k, l) bits.

Proof It turns out that the protocol guaranteed by Lemma B.1 can be used here
without modification, we only have to require that the proof of knowledge of an
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f -preimage of y given by V in the setup phase is iterated 2n times so that its
error probability is 2−2n (recall that we are using the f -preimage protocol with a
1-bit challenge in each iteration).
With this requirement, we can simulate against an arbitrary V ∗ as follows: we
first execute the setup phase according to the protocol. If V ∗ gives incorrect
answers, we stop and quit (as P would have done). Otherwise, we check if V ∗

could in any iteration answer also the question we did not ask him in the first run.
This is easy to do with rewinding. If yes, we compute a preimage of y, and can
trivially simulate the rest of the protocol. If no, we do an exhaustive search for a
satisfying assignment (we are only required to simulate if one exists) and do the
rest of the protocol by following the prover’s algorithm. This clearly produces a
correct output distribution. The expected running time is polynomial, since the
probability with which we do the exhaustive search is at most 2−2n, and in the
search, we need to check at most 22n possible assigments: since we have at most
n binary gates, there can be no more than 2n different input bits.
This establishes zero-knowledge. Soundness and asymptotic communication
complexity are the same as in Lemma B.1. ⊓⊔

Theorem B.4 If there exists an unconditionally binding q-homomorphism gen-
erator (with bounded q) then there exists a non-interactive zero-knowledge proof
with preprocessing for Boolean Formula Satisfiability, such that the communica-
tion complexity of the preprocessing is O(n)max(k, l) bits, while the proof phase
has size O(n+ l).

Proof We will use the protocol guaranteed by Lemma B.2 together with the tech-
nique of Goldreich and Kahan [14], where the verifier commits to his challenge
before the prover sends the first message. If an unconditionally hiding commit-
ment scheme is used, P gets no information on V ’s challenge ahead of time, and
hence the soundness is not affected. On the other hand, simulation becomes pos-
sible, because the simulator can first get the verifier to open his commitment,
and then invoke the honest verifier simulator using the fact that the challenge is
now known ahead of time. For a solution of the subtle technical problems with
this, see [14].
To establish the required commitment scheme (with V as the committer), notice
that we already assume that we have a q-one-way generator, so in the set-up
phase, the prover can, once and for all, publish a y′ ∈ Im(f) (in addition to the
y 6∈ Im(f)). By the way we choose q in Lemma B.2, this allows V to commit to
any l-bit value. If k is larger than this, more commitments must be used. An
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easy calculation shows that this adds O(max(k, l)) bits to the complexity, so the
asymptotic behavior stays the same as in Lemma B.2. ⊓⊔

B.2 Results for Arithmetic Circuit Protocols

Recall that the protocols in Section 2.2 were defined for an n-bit prime q, error
probability 2−k, and a circuit with m inputs and t multiplication gates.

Lemma B.5 The protocol in Subsection 2.2 using commitments constructed from
an unconditionally hiding q-homomorphism generator is a perfect honest verifier
zero-knowledge argument for the arithmetic circuit problem. When using commit-
ments constructed from an unconditionally binding q-homomorphism generator
we obtain an honest verifier computationally zero-knowledge proof. The commu-
nication complexity is O((m+ t)(l + n)⌈k/n⌉) bits in either case.

Proof The communication complexity follows from Lemma 2.1 and the remarks
following Lemma 3.7.
We then first handle the case of using an unconditionally hiding generator:
For soundness, assume that some polynomial time P ∗ can get V to accept a
circuit Ψ and output value y with probability ǫ > 2−k. We will build from this
an algorithm Alg which in expected time polynomial in 1/(ǫ − 2−k) and l finds
either a assignment to the inputs that lead to output y, or breaks the commitment
scheme. This is clearly enough for soundness as defined above.
Alg starts by sending the public key of the bit commitment scheme to P ∗.
It then a zero-knowledge proof that y ∈ Im(f), with P ∗ acting as the verifier.
Then Alg issues random challenges for the multiplication proofs and the proofs
of knowledge of contents for I1, .., Im, T1, ..., Tt, rewinding P

∗ after each challenge
has been answered. When correct answers to two different challenges have been
obtained, by Lemma 3.7, we know how to open all involved commitments. If the
input values in I1, ..., Im that we know lead to input values to a multiplication
gate that are not consistent with the values we know from the multiplication
protocol, we can break the commitment scheme. If not, the input values we have
found do in fact lead to y as output from Ψ.
Honest verifier zero-knowledge is easy, since the simulator can use the proof of
knowledge given by V in the setup phase to extract a preimage under f of y.
This will always succeed if V is honest. Given such a preimage, the simulator
can open any commitment any way it wants, and the simulation becomes trivial.
Now to the case of using an unconditionally binding generator:
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Soundness can be argued in the same way as above, except that it is enough
to observe that if ǫ > 2−k, there exists good answers to two different challenges,
and so all multiplication gates must have correctly related input/output values
assigned. Furthermore, the cases where a commitment can be opened in different
ways simply cannot occur, and so we always find a good set of input values.
For honest verifier zero-knowledge, note that Ψ is a natural way defines a linear
mapping from GF (q)m+t to GF (q), where one starts by the inputs to Ψ plus the
outputs from all multiplications and use the linear operations in Ψ to compute
the output. If the provers claim that Ψ may produce y is true, then y must be in
the image of this mapping. It follows that the simulator can, by solving a linear
system of equations, compute values to put in the I1, ..., Im, T1, ..., Tt that will
lead to a commitment containing y when the verifier computes the commitment
representing the output value. So the simulator constructs the commitments
this way. All that remains now is to invoke the honest verifier simulators for
multiplication proofs and proofs of contents an appropriate number of times, and
open the output commitment to reveal y.
For correctness of the output distribution, note that values in commitments
assigned to multiplication gates may not have the multiplicative relation they
always obey in real conversations. But by the hiding property, the commitments
to these values are polynomially indistinguishable from commitments to correct
values. It follows that the (polynomial-time) honest verifier simulator we call
as subrutine, produces from such commitments conversations that are polyno-
mially indistinguishable from real conversations. Hence we get computational
zero-knowledge. ⊓⊔

Theorem B.6 If there exists an unconditionally hiding, resp. an uncondition-
ally binding q-homomorphism generator then there exists a perfect zero-knowledge
argument, resp. a computational zero-knowledge proof for the arithmetic circuit
problem. The communication complexity is O((m+ t)(l+ n)⌈k/n⌉) bits in either
case.

Proof We can use the protocols guaranteed by Lemma B.5 and transform them
to zero-knowlegde protocols using exactly the same methods as in the proofs of
Theorems 4.3 and 4.4. ⊓⊔

B.3 Result for the Zero-Knowledge QBF Protocol

Theorem B.7 If there exists an unconditionally binding q-homomorphism gen-
erator (with bounded q), then there exists a zero-knowledge interactive proof sys-
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tem for the QBF problem with the same asymptotic round and communication
complexity as Shen’s interactive proof system when designed to have error proba-
bility 2−n for a length n QBF instance.

Proof sketch

The zero-knowledge protocol described in Subsection 2.5 consists of first a stage
where the prover and verifier go through ”the same” interaction as in the original
proof system, except that the prover sends commitments to his messages. Then
a stage, where the prover convinces the verifier that a set of relations hold be-
tween the committed values. This stage is only honest verifier zero-knowledge as
described in Section 2.5, but can be made zero-knowledge with no essential loss
of efficiency in the same way as in the proof of Theorem 4.4, using the method
from [14].
Having said this, the proof that our modified protocol is a zero-knowledge
proof system for QBF is a straightforward modification of the proof from [6]
that everything in IP has a zero-knowledge proof system if one-way functions
exist. Specifically, note the following: Like ours, the protocol built in [6] is a
modification of an Arthur-Merlin interactive proof system with one-sided error
(the honest prover always convinces the verifier). The transformation from [6]
results in a two-stage protocol of the same form as ours. And finally, [6] assumes
that the prover encrypts his messages using polynomially secure probabilistic
encryption. This corresponds to the hiding property of our commitments. ⊓⊔
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for Finite Field Arithmetic or: Can Zero-Knowledge be for Free?

November 1997. 33 pp.

RS-97-26 Luca Aceto and Anna Ingólfsdóttir. A Characterization of Fini-
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