

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. COMPUT. c© 2009 Society for Industrial and Applied Mathematics
Vol. 39, No. 3, pp. 1121–1152

ZERO-KNOWLEDGE PROOFS FROM SECURE MULTIPARTY
COMPUTATION∗

YUVAL ISHAI† , EYAL KUSHILEVITZ‡ , RAFAIL OSTROVSKY§ , AND AMIT SAHAI§

Abstract. A zero-knowledge proof allows a prover to convince a verifier of an assertion without
revealing any further information beyond the fact that the assertion is true. Secure multiparty
computation allows n mutually suspicious players to jointly compute a function of their local inputs
without revealing to any t corrupted players additional information beyond the output of the function.
We present a new general connection between these two fundamental notions. Specifically, we present
a general construction of a zero-knowledge proof for an NP relation R(x, w), which makes only a
black-box use of any secure protocol for a related multiparty functionality f . The latter protocol
is required only to be secure against a small number of “honest but curious” players. We also
present a variant of the basic construction that can leverage security against a large number of
malicious players to obtain better efficiency. As an application, one can translate previous results
on the efficiency of secure multiparty computation to the domain of zero-knowledge, improving over
previous constructions of efficient zero-knowledge proofs. In particular, if verifying R on a witness
of length m can be done by a circuit C of size s, and assuming that one-way functions exist, we
get the following types of zero-knowledge proof protocols: (1) Approaching the witness length. If
C has constant depth over ∧,∨,⊕,¬ gates of unbounded fan-in, we get a zero-knowledge proof
protocol with communication complexity m · poly(k) · polylog(s), where k is a security parameter.
(2) “Constant-rate” zero-knowledge. For an arbitrary circuit C of size s and a bounded fan-in, we
get a zero-knowledge protocol with communication complexity O(s) + poly(k, log s). Thus, for large
circuits, the ratio between the communication complexity and the circuit size approaches a constant.
This improves over the O(ks) complexity of the best previous protocols.

Key words. cryptography, zero-knowledge, secure computation, black-box reductions

AMS subject classification. 68Q01

DOI. 10.1137/080725398

1. Introduction. In this work we establish a new general connection between
two of the most fundamental tasks in cryptography: zero-knowledge proofs and secure
multiparty computation. Before explaining and motivating this connection, we give
some relevant background to put it in context.

A zero-knowledge proof protocol [24] allows a prover to convince a verifier of the
validity of a statement without revealing any further information about the proof

∗Received by the editors February 14, 2008; accepted for publication (in revised form) December 2,
2008; published electronically September 2, 2009. A preliminary version of this paper appeared in
the Proceedings of STOC 2007 [32]. This work was done in part while the authors were visiting the
Institute of Pure and Applied Mathematics (IPAM).

http://www.siam.org/journals/sicomp/39-3/72539.html
†Computer Science Department, Technion, Haifa 32000, Israel, and Computer Science Depart-

ment, UCLA, Los Angeles, CA 90095 (yuvali@cs.technion.ac.il). This author’s research was sup-
ported by BSF grant 2004361, ISF grant 1310/06, and NSF grants 0205594, 0430254, 0456717,
0627781, 0716835, and 0716389.

‡Computer Science Department, Technion, Haifa 32000, Israel (eyalk@cs.technion.ac.il). This
author’s research was supported by grant 1310/06 from the Israel Science Foundation and by grant
2002354 from the U.S.-Israel Binational Science Foundation.

§Computer Science Department and Math Department, UCLA, Los Angeles, CA 90095 (rafail@cs.
ucla.edu, sahai@cs.ucla.edu). The third author’s research was supported in part by an IBM Faculty
Award, a Xerox Innovation Group Award, NSF grants 0430254, 0716835, 0716389, and 0830803,
and a U.C. MICRO grant. The fourth author’s research was supported in part by grants from the
NSF ITR and Cybertrust programs (including grants 0627781, 0456717, 0830803, and 0205594), BSF
grant 2004361, a subgrant from SRI as part of the Army Cyber-TA program, an equipment grant
from Intel, an Alfred P. Sloan Foundation Fellowship, and an Okawa Foundation Research Grant.

1121

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1122 ISHAI, KUSHILEVITZ, OSTROVSKY, AND SAHAI

beyond the fact that the statement is true. A more general problem is that of secure
multiparty computation (MPC) [54, 21, 3, 8]. An MPC protocol allows n players to
compute a function of their inputs (also referred to as an “n-party functionality”)
while maintaining the privacy of their inputs and the correctness of the output. A bit
more precisely, the protocol should prevent an adversary which may corrupt at most
t players from achieving more than it could have achieved by attacking an idealized
protocol in which the function is computed by an external trusted party. In particular,
corrupted players should not learn further information about the remaining inputs
beyond the output of the function. Zero-knowledge protocols can be viewed as a
special case of secure two-party computation, where the function verifies the validity
of a witness held by the prover.

Honest versus dishonest majority. MPC protocols can be divided into two cat-
egories: ones that rely on the existence of an honest majority (namely, assume that
t < n/2) [3, 8, 48] and ones that can offer security even when there is no honest
majority [54, 21, 17]. In the case of an honest majority, it is possible to obtain
“information-theoretic” security that holds unconditionally, whereas in the case of
no honest majority, one needs to settle for computational security that holds under
cryptographic assumptions. On the other hand, the honest majority assumption is
often too strong and is meaningless in the important two-party case.

Constructions of these two types of protocols differ vastly in the types of tech-
niques they employ. While protocols from the second category (most notably, zero-
knowledge protocols) have occasionally proved useful for the design of protocols from
the first category, we are not aware of applications that go in the other direction. This
work is motivated in part by the hope of leveraging the efficiency and simplicity of
MPC with honest majority (as well as the large body of relevant work) for the design
of efficient protocols in the case of no honest majority, and in particular for the design
of efficient zero-knowledge protocols.

Semihonest versus malicious players. Another major distinction is between MPC
protocols that offer security against semihonest (i.e., “honest but curious”) players,
who follow the protocol’s instructions but may try to gain additional information
from what they see, and protocols that offer security against malicious players, who
may arbitrarily deviate from the protocol’s instructions in order to compromise the
privacy of the inputs or the correctness of the output. We refer to these two types
of protocols as being secure in the semihonest model and the malicious model, re-
spectively. Security in the semihonest model is typically much easier to realize than
security in the malicious model. Remarkably, the celebrated result of Goldreich, Mi-
cali, and Wigderson [20, 21] shows how to compile an arbitrary MPC protocol Π
which securely computes a function f in the semihonest model into a protocol Π′

which securely computes f in the malicious model. The high level technique, known
as the “GMW paradigm,” is to require players to validate every message they send
by supplying a zero-knowledge proof that the message is consistent with protocol’s
Π specification. To implement the zero-knowledge proofs, the compiler needs to look
into the code1 of Π rather than use it as a black-box, and the resulting protocol Π′

needs to perform multiple cryptographic operations for every gate in the circuit imple-
menting Π. Thus, applying the GMW paradigm may involve a considerable efficiency

1When we talk of “black-box” use of the protocol Π, we mean simply invoking the next-message
functions of each player in the protocol without looking inside the details of the circuits or Turing
Machines that describe these functions. This is in keeping with the standard usage of the term
“black-box” when talking of reductions between cryptographic primitives (cf. [50]).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ZERO-KNOWLEDGE FROM SECURE MULTIPARTY COMPUTATION 1123

overhead, which gets worse with the computational complexity of Π. A second source
of motivation for our work is the goal of finding alternative “black-box” approaches
for boosting security in the semihonest model into security in the malicious model.

1.1. Our contribution. We present a general construction of a zero-knowledge
proof system ΠR for an NP relation R(x,w) which makes a black-box 2 use of an MPC
protocol Πf for a related multiparty functionality f along with a bit commitment
protocol. The functionality f can be efficiently defined by making only a black-box
(oracle) access to R.

The MPC protocol Πf may involve an arbitrary number of players n, and needs to
be secure only against two semihonest players. In particular, the MPC protocol needs
to be secure only in the presence of an honest majority. (Our main construction allows
Πf to employ an ideal oblivious transfer (OT) [47, 14] channel between each pair of
players. For the case that Πf does not require OT channels, we present a variant of
the construction in which Πf needs to be secure only against one semihonest player.)

The basic variant of our construction proceeds as follows. Define f(x,w1, w2, . . . , wn)
= R(x,w1 ⊕ w2 ⊕ · · · ⊕ wn). The function f is viewed as an n-party functionality,
where x (an NP statement) is known to all n players, and wi (the ith share of the
witness) is a private input of Player i. Note that f is efficiently defined using an oracle
to R. The zero-knowledge protocol ΠR begins with the prover secret-sharing (on her
private work-tape) the witness w into n additive shares, picking random w1, . . . , wn

such that w = w1 ⊕ · · · ⊕ wn. The prover then “runs in her head” the given n-party
protocol Πf for the functionality f , using the statement x and the shares w1, . . . , wn

as inputs for the n players. After this execution is completed, the prover begins her
interaction with the verifier. The prover commits to the view of each of the n players,
and the verifier picks a random pair of distinct players i, j and challenges the prover to
open the committed views of these players. Finally, the verifier accepts if the opened
views are consistent with each other (with respect to Πf) and the outputs in these
views are 1. (If Πf employs OT channels, this consistency check applies also to the
inputs and output of each OT channel.)

The zero-knowledge property of the protocol follows from the security of Πf

against two semihonest players. Assuming that Πf is perfectly correct, violating
the soundness requires a cheating prover to generate at least one pair of inconsistent
views, which is detected with probability at least 1/

(
n
2

)
. Using O(kn2) repetitions,

the soundness error can be decreased to 2−k.
The black-box nature of our transformation suggests the possibility of significantly

better efficiency. In particular, the communication complexity of the resulting zero-
knowledge protocols can be smaller than the computational complexity of the MPC
protocols from which they are derived. This should be contrasted with traditional
zero-knowledge proofs (obtained via a Karp reduction to some fixed NP-complete
problem) whose communication complexity is typically much bigger than the compu-
tational complexity of the relation R.

Towards obtaining more efficient variants of the construction which avoid the cost
of soundness amplification via repetition, we employ MPC protocols that tolerate a
larger number of corruptions and allow the verifier to open many views at once. In
this case, security of Πf against semihonest players does not suffice, and we need to
rely on MPC protocols that have some form of robustness against t malicious players
(where typically t will be a constant multiple of the soundness parameter k, and n a

2See previous footnote for an explanation of the use of the term “black-box” here.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1124 ISHAI, KUSHILEVITZ, OSTROVSKY, AND SAHAI

constant multiple of t).
The intuition behind this modification is that it will allow the verifier to obtain

t views, rather than just two views, from a single execution of the protocol. Secu-
rity against t malicious players guarantees that in order to violate the correctness
of the MPC protocol Πf (or the soundness of the zero-knowledge protocol) the in-
consistencies between the views must be “well spread” in such a way that opening
t random views reveals an inconsistency with overwhelming probability. Note that
security against t semihonest players does not suffice here. Indeed, in this case a
single malicious player can cause all other players to have an incorrect output; if this
particular player is not picked by the verifier, no inconsistency is revealed and still
the output may be incorrect. On the other hand, we do not need full security against
malicious players: it suffices for the protocol to be correct in the presence of malicious
players, whereas its privacy is required to hold, as before, only against semihonest
players.

Another extension of the basic construction that is needed for our applications
is to the “statistical” case where Πf may produce an incorrect output with negligi-
ble probability. This case makes even the simple basic construction fail, as it allows
the adversary to cheat by biasing the randomness used for generating the views (but
otherwise behaving according to the protocol). We show how to overcome this ob-
stacle using standard cryptographic techniques, though for the efficient version of our
construction this involves some additional complications.

Applications. To demonstrate the usefulness of our general approach, we trans-
late previous results on the efficiency of MPC to the domain of zero-knowledge, im-
proving over some previous constructions of efficient zero-knowledge protocols. In
particular, if verifying R(x, ·) on a witness w of length m can be done by a circuit C
of size s, we get the following types of zero-knowledge proof protocols.

Simple zero-knowledge. By plugging in standard MPC protocols for the
semihonest model, such as the 2-private 3-player GMW protocol [21, 17] (which re-
lies on OT channels) or the 1-private 3-player protocol of Ben-Or, Goldwasser, and
Wigderson [3] (the “BGW protocol”), we get simple zero-knowledge protocols with
complexity O(ks). (Here and in the following, k denotes a security parameter, and the
soundness error is at most 2−k.) These protocols provide more efficient alternatives to
the classical zero-knowledge protocols based on 3-colorability or Hamiltonicity, since
they apply directly to the circuit representation and do not require a Karp reduction
to these NP-complete problems. In contrast to the classical protocols, zero-knowledge
protocols derived from the BGW protocol can be efficiently extended to prove relations
defined by arithmetic circuits, without requiring us to emulate arithmetic computa-
tions via Boolean operations.

Approaching the witness length. If C has constant depth over ∧,∨,⊕,¬
gates of unbounded fan-in, we get a zero-knowledge proof protocol with m · poly(k) ·
polylog(s) bits of communication. This protocol can be implemented using a one-
way function.3 Alternatively, our technique yields a zero-knowledge proof system in
a noninteractive model with preprocessing. The complexity of our protocols is com-
parable to that of a previous protocol of Kalai and Raz [34]. The latter, however,

3A similar result was obtained independently by Kalai and Raz [35]. In a subsequent work,
Goldwasser, Kalai, and Rothblum [23] extended the class of circuits for which m · poly(k, log s)
communication complexity can be achieved to polylog-depth circuits (capturing the complexity class
NC). We note that our approach is very different from the approaches taken in [35, 23], which rely
on variants of interactive proofs rather than MPC.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ZERO-KNOWLEDGE FROM SECURE MULTIPARTY COMPUTATION 1125

yields only zero-knowledge argument systems and relies on stronger assumptions, but
requires less communication for implementing the setup. Our zero-knowledge proto-
cols, described above, rely on an MPC protocol from [1], whose basic version combines
the BGW protocol [3] with the polynomial representation techniques of [49, 53]. We
note that the protocols we obtain are essentially the best one could hope for in terms
of both the underlying assumption (one-way functions) and the communication com-
plexity. Indeed, the existence of nontrivial zero-knowledge proofs implies the existence
of “nonuniform” one-way functions [45], and a lower communication complexity for
zero-knowledge proofs (as opposed to arguments [37]) would imply surprisingly effi-
cient probabilistic algorithms for satisfiability [19].

“Constant-rate” zero-knowledge. Assuming that one-way functions exist,
we get a zero-knowledge proof protocol for an arbitrary circuit C of size s and bounded
fan-in with communication complexity O(s) + poly(k, log s). Thus, for large circuits,
the ratio between the communication complexity and the circuit size approaches a
constant. This improves over the O(ks) complexity of the best previous protocols (e.g.,
[10]). Our zero-knowledge protocol relies on an MPC protocol from [13], optimized
to work over constant-size fields using secret sharing based on algebraic-geometric
codes [9].

Perspective. Our construction has direct relevance to the two motivating goals
discussed above. First, it establishes a new general connection between zero-knowledge
and MPC, which in particular allows us to exploit the large body of work on MPC
with honest majority for the design of zero-knowledge proofs. The latter, in turn,
can be used for the design of general secure two-party protocols and MPC with no
honest majority. This new connection also establishes a link between some remaining
open questions concerning the efficiency of zero-knowledge proofs and similar open
questions in the area of MPC. For instance, if all circuits can be securely evaluated
with communication complexity that depends (say) quadratically on the input size,
then all NP-relations have zero-knowledge proofs whose communication complexity is
roughly quadratic in the witness size.

Second, our construction shows a useful class of applications for which security in
the semihonest model can be boosted in a black-box way into security in the malicious
model. It is instructive to note that it is generally impossible to directly construct a
protocol Π′ which securely computes a function R in the malicious model by making
a black-box use of a protocol Π which securely computes R in the semihonest model.
For instance, if R is a zero-knowledge functionality, in the semihonest model we can
consider a trivial protocol Π in which the prover simply sends to the verifier the output
of R on its input (x,w). Clearly, Π is generally useless for the construction of Π′. By
modifying R into a related multiparty functionality f , we avoid this impossibility.4

1.2. Related work.
Black-box reductions. A rich body of work, initiated by the seminal paper of

Impagliazzo and Rudich [30], attempts to draw the lines between possibility and im-
possibility of black-box reductions in cryptography. In particular, black-box construc-
tions of MPC protocols from various cryptographic primitives have been previously
suggested [36, 41, 38, 12, 31, 26]. Our work differs from all this work in that it treats
as a black-box not only the underlying cryptographic primitives but also the func-

4Here it is crucial to insist that f make a black-box use of R; otherwise, the output of f can
encode the description of a circuit computing R, allowing us to use the standard (non–black-box)
GMW paradigm.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1126 ISHAI, KUSHILEVITZ, OSTROVSKY, AND SAHAI

tionality that should be realized. In contrast, previous constructions address either
the case of some fixed functionality or alternatively make a non–black-box use of the
functionality.

Efficiency of zero-knowledge. There has been a vast body of work on improving
the efficiency of interactive and noninteractive zero-knowledge proofs; e.g., see [5, 10,
39, 40, 11, 6, 25, 34] and the references therein. It is important to note in this context
that by settling for computational soundness, one can get asymptotically very efficient
zero-knowledge argument systems with a polylogarithmic communication complexity.
These argument systems can be either interactive and based on collision-resistant hash
functions [37] or noninteractive in the random oracle model [43]. Our focus on proofs
rather than arguments is motivated both from a theoretical and from a practical
point of view. From a theoretical point of view, we get a stronger notion of soundness
under weaker assumptions. From a more practical point of view, the probabilistically
checkable proof (PCP)-based constructions of arguments, as in [37, 43], are still quite
far from being efficient in practice. Finally, our results are independently motivated by
the general goal of boosting security against semihonest players into security against
malicious players in a black-box way. This motivation applies both to proofs and to
arguments.

Organization. In section 2 we give some preliminaries. The basic construction
of zero-knowledge protocols from MPC in the semihonest model is described in sec-
tion 3, including (in section 3.2) the application to zero-knowledge protocols whose
communication complexity is close to the witness length. In section 4, we present our
constructions of zero-knowledge protocols from MPC in the malicious model. These
are motivated by the application to constant-rate zero-knowledge, presented in sec-
tion 4.4. We conclude with some final remarks in section 5.

2. Preliminaries. In this section we define the notions of zero-knowledge proofs
and MPC protocols.

Indistinguishability. A function ε(·) is negligible if it is asymptotically smaller than
the inverse of any polynomial. That is, for every constant c > 0 and all sufficiently
large n we have ε(n) < 1/nc. We say that ε(·) is overwhelming if 1 − ε is negligible.
Let X ⊆ {0, 1}∗ be an infinite set of strings. Two distribution ensembles {Ax}x∈X

and {Bx}x∈X are said to be computationally indistinguishable if, for every efficient
nonuniform distinguisher D, there is a negligible function ε(·) such that for every
x ∈ X we have |Pr[D(Ax) = 1] − Pr[D(Bx) = 1]| ≤ ε(|x|).

2.1. Zero-knowledge. We use the standard notion of zero-knowledge proofs
from the literature [24, 20, 16], adapted to the case where the honest prover should
be efficient.

An NP-relation R(x,w) is an efficiently decidable binary relation which is polyno-
mially bounded, in the sense that there is a polynomial p(·) such that if R(x,w) is sat-
isfied, then |w| ≤ p(|x|). We naturally view R as a Boolean function which outputs 0
or 1. Note that any NP-relation R defines an NP-language L = {x : ∃w R(x,w) = 1}.

A zero-knowledge proof protocol for an NP-relation R(x,w) is defined by two
probabilistic polynomial time (PPT) interactive algorithms, a prover P and a verifier
V . Initially the prover is given an NP statement x and a corresponding witness w,
and the verifier is given only the statement x. The prover and the verifier interact
using the next-message function defined by their respective algorithms. This function
determines the next message to be sent based on the inputs, messages received so far,
and the coin tosses of the corresponding party.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ZERO-KNOWLEDGE FROM SECURE MULTIPARTY COMPUTATION 1127

Definition 2.1 (zero-knowledge proof). The protocol (P, V) is a zero-knowledge
proof protocol for the relation R if it satisfies the following requirements:

• Completeness. If R(x,w) = 1 and both players are honest (namely, compute
messages they send according to the protocol), the verifier always accepts.

• Soundness. For every malicious and computationally unbounded prover P ∗,
there is a negligible function ε(·) such that if x is a false statement (namely,
R(x,w) = 0 for all w), the interaction of P ∗ with V on input x makes V
reject except with at most ε(|x|) probability.

• Zero-knowledge. For any malicious PPT verifier V ∗ there is a PPT simula-
tor M∗ such that the view of V ∗, when interacting with P on inputs (x,w)
for which R(x,w) = 1, is computationally indistinguishable from the output
distribution of M∗(x). That is, there exists a negligible δ(·) such that for ev-
ery efficient nonuniform distinguisher D and every x,w such that (x,w) ∈ R
we have

|Pr[D(ViewV ∗(x,w)) = 1] − Pr[D(M∗(x)) = 1]| ≤ δ(|x|),

where ViewV ∗ denotes the view of V ∗, consisting of its input x, its coin-tosses,
and its incoming messages.

We will sometimes relax the completeness requirement to allow a negligible error
probability. Finally, we will also consider zero-knowledge protocols that have a non-
negligible (typically constant) soundness error ε. In such cases the soundness error
will be specified.

For the sake of simplicity, we do not consider the stronger proof of knowledge
property (cf. [16]) of zero-knowledge protocols. However, our general constructions
can be shown to satisfy this property as well.

Using an explicit security parameter. Note that the above standard definition of
zero-knowledge proofs implicitly treats the length of the statement x as a security
parameter, requiring the advantage of a dishonest party (prover or verifier) to be
negligible in |x|. While this is convenient for establishing feasibility results, when
studying the concrete efficiency of cryptographic protocols it is useful to introduce a
separate security parameter k which is given as an additional input to all algorithms.
In such a case, we modify the soundness and zero-knowledge requirements in Defini-
tion 2.1 by replacing ε(|x|) and δ(|x|) by ε(k) and δ(k), respectively. Furthermore, in
the zero-knowledge requirement we restrict the running time of V ∗ and D to be poly-
nomial in k. A zero-knowledge protocol satisfying the latter definition can be turned
into a zero-knowledge protocol satisfying the original definition by letting k = |x|c,
where c > 0 can be an arbitrarily small constant.5 Thus, k can be thought of as being
asymptotically much smaller than the input length.

2.2. Idealized primitives. When describing our zero-knowledge protocols, it
will be convenient to first describe and analyze them in a hybrid model in which
idealized versions of primitives such as bit commitment or coin-flipping are available.
We then explicitly describe how to instantiate invocations of the ideal primitives
(only making a black-box use of a one-way function) in order to get a protocol in
the plain model. Such a modular design approach is common in the area of MPC
(cf. [7, 17]). However, since we are dealing with unconditionally sound proofs rather
than computationally sound arguments, we cannot apply off-the-shelf composition

5In fact, for all protocols presented in this paper one can let k be as small as polylog(|x|) if the
underlying one-way function is assumed to be exponentially strong.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1128 ISHAI, KUSHILEVITZ, OSTROVSKY, AND SAHAI

theorems to deduce the security of the final protocol, and need to argue each case
separately.

We note that, despite the lack of general tools for a modular design of zero-
knowledge proofs, the analysis of the zero-knowledge protocols we obtain by instanti-
ating the ideal primitives combines in a rather straightforward way the analysis of our
protocols in the hybrid model with the analysis of previous zero-knowledge protocols
from the literature. Thus, the main contribution of this work may best be viewed
within the hybrid model.

2.3. Secure multiparty computation. We use standard definitions of MPC
from the literature [7, 16]. Our basic model assumes synchronous communication
over secure point-to-point channels. (Some protocols will also rely on other ideal
primitives such as OT channels, broadcast primitive, or ideal coin-flipping. These
will be explained when they are used.)

Let n be the number of players, which will be denoted by P1, . . . , Pn. All players
share a public input x, and each player Pi holds a local private input wi. We consider
protocols which securely realize an n-party functionality f , where f maps the inputs
(x,w1, . . . , wn) to an n-tuple of outputs. (When only a single output is specified, this
output is assumed to be given to all players.)

A protocol Π is specified via its next message function. That is, Π(i, x, wi, ri,
(m1, . . . ,mj)) returns the set of n messages (and, possibly, a broadcast message)
sent by Pi in round j + 1, given the public input x, its local input wi, its random
input ri, and the messages m1, . . . ,mj that it received in the first j rounds. In the
case of statistical or computational security, Π receives a security parameter k as
an additional input. The output of Π may also indicate that the protocol should
terminate, in which case Π returns the local output of Pi. The view of Pi, denoted by
Vi, includes wi, ri, and the messages received by Pi during the execution of Π. Note
that the messages sent by an uncorrupted player Pi as well as its local output can be
inferred from Vi and x by invoking Π. It will be useful to define the following natural
notion of consistency between views.

Definition 2.2 (consistent views). We say that a pair of views Vi, Vj is consis-
tent (with respect to the protocol Π and some public input x) if the outgoing messages
implicit in Vi, x are identical to the incoming messages reported in Vj and vice versa.

The following simple lemma asserts that an n-tuple of views corresponds to some
honest execution of Π if and only if every pair of views is consistent.

Lemma 2.3 (local versus global consistency). Let Π be an n-party protocol as
above and x be a public input. Let V1, . . . , Vn be an n-tuple of (possibly incorrect)
views. Then all pairs of views Vi, Vj are consistent with respect to Π and x if and
only if there exists an honest execution of Π with public input x (and some choice
of private inputs wi and random inputs ri) in which Vi is the view of Pi for every
1 ≤ i ≤ n.

Proof. The “if” direction follows directly from the definitions. For the “only if”
direction, let V1, . . . , Vn be pairwise consistent views, and let wi, ri be the input and
random input reported in view Vi. The pairwise consistency of the views implies, by
induction on the number of rounds d, that the actual view of every player Pi after d
rounds when Π is invoked on (x, (w1, r1), . . . , (wn, rn)) is the same as the view of Pi in
the first d rounds reported in Vi. It follows that the n views V1, . . . , Vn are consistent
with the full execution of Π, as required.

We consider security of protocols in both the semihonest and the malicious models.
In the semihonest model, one may break the security requirements into the following

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ZERO-KNOWLEDGE FROM SECURE MULTIPARTY COMPUTATION 1129

correctness and privacy requirements.
Definition 2.4 (correctness). We say that Π realizes a deterministic n-party

functionality f(x,w1, . . . , wn) with perfect (resp., statistical) correctness if for all
inputs x,w1, . . . , wn the probability that the output of some player is different from the
output of f is 0 (resp., negligible in k), where the probability is over the independent
choices of the random inputs r1, . . . , rn.

Definition 2.5 (t-privacy). Let 1 ≤ t < n. We say that Π realizes f with perfect
t-privacy if there is a PPT simulator Sim such that for any inputs x,w1, . . . , wn and
every set of corrupted players T ⊆ [n], where |T | ≤ t, the joint view ViewT (x,w1, . . . , wn)
of players in T is distributed identically to Sim(T, x, (wi)i∈T , fT (x,w1, . . . , wn)). The
relaxations to statistical or computational privacy are defined in the natural way. That
is, in the statistical (resp., computational) case we require that for every distinguisher
D (resp., D with circuit size poly(k)) there is a negligible function δ(·) such that

|Pr[D(ViewT (k, x, w1, . . . , wn)) = 1]
−Pr[D(Sim(k, T, x, (wi)i∈T , fT (x,w1, . . . , wn))) = 1]| ≤ δ(k).

In the malicious model, in which corrupted players may behave arbitrarily, se-
curity cannot be generally broken into correctness and privacy as above. However,
for our purposes we only need the protocols to satisfy a weaker notion of security in
the malicious model that is implied by the standard general definition. Specifically,
it suffices that Π be t-private as defined above, and moreover it should satisfy the
following notion of correctness in the malicious model.

Definition 2.6 (t-robustness). We say that Π realizes f with perfect (resp.,
statistical) t-robustness if it is perfectly (resp., statistically) correct in the presence
of a semihonest adversary as in Definition 2.4, and furthermore for any computa-
tionally unbounded malicious adversary corrupting a set T of at most t players, and
for any inputs (x,w1, . . . , wn), the following robustness property holds. If there is no
(w′

1, . . . , w
′
n) such that f(x,w′

1, . . . , w
′
n) = 1, then the probability that some uncor-

rupted player outputs 1 in an execution of Π in which the inputs of the honest players
are consistent with (x,w1, . . . , wn) is 0 (resp., is negligible in k).

Finally, we will also consider robustness against an adaptive adversary, which
is allowed to dynamically pick the set T of corrupted players based on the views
of the players it has seen so far (as long as the total number of corrupted players
does not exceed t). Definition 2.6 can be naturally extended to the case of adaptive
adversaries. (An instance of such a definition will be formally defined later.) By
default, we consider the nonadaptive notion of robustness defined above.

3. Zero-knowledge from MPC in the semihonest model. In this section
we present our basic constructions of zero-knowledge protocols, which rely on MPC
protocols in the semihonest model.

Let L be a language in NP, and let R(x,w) be a corresponding NP-relation. Let
f be the following (n+ 1)-argument function (n ≥ 3), corresponding to R:

f(x,w1, . . . , wn) = R(x,w1 ⊕ · · · ⊕ wn),

where ⊕ here denotes bitwise exclusive-or of strings (all of the same length). We view
f as an n-party functionality, where the first argument x is a public input known
to all n players, wi is a private input of player Pi, and the output is received by all
players. We will sometimes ignore the public input x, viewing f as an n-argument
function specified by x.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1130 ISHAI, KUSHILEVITZ, OSTROVSKY, AND SAHAI

Let Πf be an n-party protocol which realizes f with perfect correctness and either
perfect, statistical, or computational 2-privacy (in the semihonest model). We now
describe a zero-knowledge protocol ΠR for the NP-relation R. The prover and verifier
are both given an input x (an instance of L). The prover is also given a witness w,
and they both have a black-box access to the MPC protocol Πf . The zero-knowledge
protocol also makes use of a statistically binding commitment protocol Com [44],
which can in turn be based on any one-way function [29, 16].

We start by describing and analyzing ΠR using an idealized implementation of
Com, where a string can be committed to by secretly sending it to a trusted third
party, and later opened (or “decommitted”) by having the committer instruct the
trusted party to reveal the committed string. (Note that the committer can refuse to
open its commitment, but this fact becomes known to the designated receiver of the
committed string.) Alternatively, one can think of a direct physical implementation
in which the committed string is sent in a locked box, and decommitment is done by
sending a key to unlock the box. We refer to a protocol which employs such an ideal
commitment primitive as a protocol in the commitment-hybrid model.

The implementation of ΠR in the commitment-hybrid model can be viewed as our
main contribution. We will later describe the (standard) modifications to the analysis
that are required when instantiating the ideal commitment primitive with an actual
cryptographic commitment protocol. The protocol is presented in Figure 3.1.

Zero-knowledge protocol ΠR in the commitment-hybrid model.
1. The prover picks at random w1, . . . , wn ∈ {0, 1}m, whose exclusive-or

equals the witness w. She emulates “in her head” the execution of Πf on
input (x,w1, . . . , wn) (this involves choosing randomness for the n
players and running the protocol). Based on this execution, the prover
prepares the views V1, . . . , Vn of the n players; she separately commits to
each of these n views.

2. Verifier picks at random distinct player indices i, j ∈ [n] and sends them
to the prover.

3. Prover “opens” the commitments corresponding to the two views Vi, Vj .
4. Verifier accepts if and only if:

(a) the prover indeed successfully opened the two requested views,
(b) the outputs of both Pi and Pj (which are determined by their

views) are 1, and
(c) the two opened views are consistent with each other (with respect

to x and Πf ; see Definition 2.2).

Fig. 3.1. Zero-knowledge protocol ΠR.

Theorem 3.1. Let n ≥ 3 and R, f be as above. Suppose that Πf realizes the
n-party functionality f with perfect correctness and either perfect, statistical, or com-
putational 2-privacy (in the semihonest model). Then ΠR, described in Figure 3.1,
is a zero-knowledge proof protocol for the NP-relation R in the commitment-hybrid
model, with soundness error ε ≤ 1 − 1/

(
n
2

)
.

Proof. We separately argue completeness, soundness, and zero-knowledge.
Completeness. If (x,w) ∈ R and the prover is honest, then, since w1⊕· · ·⊕wn = w

and Πf is perfectly correct, the views V1, . . . , Vn always have output 1. Since these
views are produced by an honest execution of the protocol, they are always consistent
with each other.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ZERO-KNOWLEDGE FROM SECURE MULTIPARTY COMPUTATION 1131

Soundness. Suppose that R(x,w) = 0 for all w. Hence, by the perfect correctness
of Πf , for all choices of w1, . . . , wn and all choices of random inputs r1, . . . , rn, the
outputs of all n players in an honest execution of the protocol must be 0. Therefore,
considering the n views committed to by the prover in step 1, either in all views
the output is 0 or by Lemma 2.3 there exist two views which are inconsistent with
respect to x and Πf . In the former case the verifier always rejects, while in the latter
case he rejects with probability at least 1/

(
n
2

)
, which is his probability of selecting an

inconsistent pair i, j.
Zero-knowledge. Let V ∗ be a malicious verifier. We describe a simulator M∗ for

the view of V ∗ which invokes both V ∗ and the MPC simulator Sim as a black-box.
We start with the case where Πf is perfectly 2-private. The simulator M∗ on input x
proceeds as follows:

1. Run V ∗ on input x. Let i, j be the pair of indices sent by V ∗ in step 2 of ΠR.
2. M∗ simulates the two views Vi, Vj , received from the (honest) prover in step 3

of ΠR, by picking random wi, wj and running Sim(T = {i, j}, x, (wi, wj), 1).
(Note that the prover’s commitments in step 1 are trivial to simulate in the commit-
ment-hybrid model.) We argue that the above simulation is perfect. Fix any (x,w)
such that R(x,w) = 1. The randomness of V ∗ chosen by the simulator is distributed
identically to the randomness of V ∗ in the actual execution of ΠR. It thus suffices to
prove that the simulation is perfect, conditioned on every choice of such randomness
rV ∗ . Let i, j be the verifier’s selections determined by rV ∗ . In the real execution of
ΠR on (x,w), the inputs w1, . . . , wn to Πf (picked by the honest prover) are such
that wi and wj are uniform and independent. Thus, conditioned on rV ∗ , the choice
of wi, wj made by M∗ is distributed identically to the choice of wi, wj by the prover
in the execution of ΠR on inputs (x,w). It remains to show that, conditioned on
each possible choice of rV ∗ , wi, wj , the distribution of the views (Vi, Vj) received from
the prover in step 3 of ΠR is identical to the distribution of Sim((i, j), x, (wi, wj), 1).
Indeed, the fact that Sim is a perfect 2-private simulator for Πf guarantees that the
latter holds even when further conditioning on every possible choice of w1, . . . , wn

which is consistent with wi, wj , w.
Finally, if Πf is only statistically or computationally 2-private, the quality of the

simulation changes accordingly. (In these cases the simulator receives a security pa-
rameter k as an additional input, which it passes to V ∗ and Sim.) The only change
to the previous proof is in the final step: when further conditioning on every choice of
w1, . . . , wn which is consistent with wi, wj , w, the distribution of (Vi, Vj) in ΠR is now
only statistically or computationally close to the output of Sim(k, (i, j), x, (wi, wj), 1).
By a standard averaging argument, this implies that the final output of M∗ is statis-
tically or computationally close to the view of V ∗.

The ideal commitment primitive in the above protocol can be instantiated with
any statistically binding commitment protocol; see [16] for a formal definition. Such
a commitment protocol can be based (in a black-box way) on an arbitrary one-way
function [29, 44].

Let Com be a (perfectly binding, computationally hiding) commitment protocol,
and let ΠCom

R denote the protocol obtained from ΠR by implementing each invocation
of an ideal commitment (or decommitment) in the natural way using a corresponding
invocation of Com with security parameter k. Then, we have the following result.

Theorem 3.2. Let n ≥ 3 and R, f be as in Theorem 3.1. Suppose that Πf realizes
the n-party functionality f with perfect correctness and either perfect, statistical, or
computational 2-privacy (in the semihonest model). Let Com be any statistically
binding commitment protocol. Then ΠCom

R , described above, is a zero-knowledge proof

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1132 ISHAI, KUSHILEVITZ, OSTROVSKY, AND SAHAI

protocol for the NP-relation R with soundness error ε(k) ≤ 1−1/
(
n
2

)
+δ(k), where δ(·)

is some negligible function. Furthermore, the protocol obtained from kn2 sequential
repetitions of ΠCom

R is a zero-knowledge proof with soundness error 2−Ω(k).
Note that when Com is implemented using a black-box reduction to a one-way

function, the implementation of ΠCom
R (as well as its security reduction) makes only a

black-box use of Πf and the one-way function.
Proof. The analysis of ΠCom

R closely mimics the analysis of the classical GMW zero-
knowledge proof for 3-colorability [20]; we provide details here for self-containment.

The completeness of ΠCom
R follows from the completeness of ΠR and the fact that

a decommitment made by an honest prover will always be accepted by an honest
verifier.

Soundness. The statistical binding property of Com guarantees that each invoca-
tion of Com defines a committed string such that, except with negligible probability
over the verifier’s coins, only this string can later be decommitted. Thus, the sound-
ness error of ΠCom

R is bigger than that of ΠR by at most a negligible amount (namely,
the probability of the prover breaking the binding of any of the commitments).

Zero-knowledge. Similarly to the GMW protocol, a feature of ΠCom
R that is crucial

for the proof of its zero-knowledge property is that the verifier has only a polynomial
number of choices he can make in the protocol. As such, the simulator M∗ works as
follows:

1. The simulator makes the following � = n2k “attempts” until it succeeds. If
the simulator fails in all these attempts, it aborts.

2. The simulator first chooses a pair of distinct parties {i, j} and inputs wi, wj at
random, and invokes the MPC simulator Sim(k, (i, j), x, (wi, wj), 1) to obtain
the simulated views Vi and Vj of these parties. For all h /∈ {i, j}, the simulator
prepares random views Vh.

3. For each view Vi, the simulator runs the commitment protocol with the verifier
algorithm.

4. If the verifier responds with the challenge {i, j}, then we say that the attempt
succeeds; otherwise the attempt fails, and we start over. If the attempt did
succeed, then the simulator opens Vi and Vj to the verifier and outputs the
view of the verifier resulting from the successful interaction.

Clearly, each simulation attempt succeeds with independent probability at least
1/n2. Therefore the simulator succeeds at least once with probability 1 − 2−Ω(k).

The computational indistinguishability of the simulation follows from the follow-
ing standard hybrid argument. (We refer the reader to [20, 16] for a more detailed
exposition of this hybrid argument in the context of the GMW zero-knowledge pro-
tocol for 3-colorability.)

Hybrids A1, . . . , A�. Consider a sequence of hybrid experiments in which the sim-
ulator is given the witness. In experiment Aγ , in the first γ “attempts,” instead of
applying the MPC simulator, it acts as the honest prover would and prepares all views
{Vi} according to an honest execution of the MPC protocol. However, it then chooses
a pair of parties {i, j} at random, replaces all Vh (where h /∈ {i, j}) with random
views, and continues as the simulator does in the last step. (The remaining � − γ
attempts follow the above simulator.)

Any attacker that can distinguish Hybrid A1 from the simulator’s output would
immediately yield a distinguisher for the MPC simulator. Similarly, each Aγ is indis-
tinguishable from Aγ+1 for the same reason.

Hybrid B. Consider now a Hybrid B which is identical to Hybrid A�, except that
now all views {Vi} remain as generated from the honest execution of the MPC protocol

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ZERO-KNOWLEDGE FROM SECURE MULTIPARTY COMPUTATION 1133

(as the honest prover would). Recall that in Hybrid A�, some of these views—the ones
that are committed to but never opened—were random views. By indistinguishability
of commitments, Hybrid A� is indistinguishable from Hybrid B.

The only difference between Hybrid B and the real-world interaction of the prover
and verifier in ΠCom

R is that Hybrid B tries (many times independently) to guess the
verifier’s choices of i and j ahead of time. By independence, Hybrid B succeeds with
probability 1− 2−Ω(k). Therefore, Hybrid B is within statistical distance 2−Ω(k) from
the real-life interaction between the prover and the verifier, and this concludes the
proof of the zero-knowledge property.

Since the above simulator makes a black-box use of the malicious verifier, the
second part of the theorem is implied by a general sequential composition theorem
(cf. [17, 22]).

Additional remarks .
1. If Πf is not perfectly correct, a cheating prover may violate the soundness of

ΠR: on x /∈ L, she picks w1, . . . , wn and r1, . . . , rn, on which the protocol in-
correctly outputs 1, thereby making the verifier incorrectly accept (no matter
what indices i, j he chooses). We deal with the issue of imperfect correctness
in section 3.1 below.

2. Since the above protocol requires the prover to open at most two views, it
suffices to share the witness w among 3 of the n players rather than among
all of them.

3. We will later be interested in minimizing the amount of communication in
the zero-knowledge protocols. It is instructive to (briefly) analyze the com-
munication complexity of this basic construction. The communication in ΠR

consists mainly of commitments to the views in Πf . Implementing a statisti-
cally binding commitment to a string m of length � costs �+ poly(k) bits of
communication, where k is the security parameter. This can be done by first
committing to a random seed s ∈ {0, 1}k to a pseudorandom generator G,
and then sending m⊕G(s). Note that the total length of the views in ΠR is
equal to O(|w|) plus the communication and randomness complexity of Πf .

4. The description and analysis of ΠR can easily be extended to accommodate
protocols Πf that use more powerful communication channels. For instance,
we can assume that each pair of players has oracle access to an arbitrary
2-party functionality, where both players send inputs to and receive outputs
from this functionality. The notion of consistent views can naturally be ex-
tended for this case; i.e., the verifier can check that the reported outputs from
the oracle are consistent with its inputs. (Note that such oracles do not trivi-
alize the design of Πf because of the 2-privacy requirement.) In particular, we
may assume that each pair of players is connected via an OT channel [47, 14],
in which the sender has two inputs s0, s1 and the receiver a selection bit b,
and the receiver gets sb. It is also easy to extend ΠR to the case where Πf

employs broadcast channels, by simply having the prover send to the verifier
all broadcast messages.6

5. This protocol, as well as most of the following ones, is actually an Arthur–
Merlin protocol (namely, it requires the verifier to only send public random

6A broadcast channel allows a sender to deliver the same message to all players (preventing
a malicious sender from sending different messages to different players). This extension is mostly
relevant to MPC in the malicious model which is used in section 4. Interestingly, broadcast in our
setting is very cheap, while usually in the context of MPC it is considered an expensive means of
communication.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1134 ISHAI, KUSHILEVITZ, OSTROVSKY, AND SAHAI

coins to the prover).
Basing zero-knowledge on 1-private MPC. We now describe a modified version

of the basic zero-knowledge protocol ΠR that can employ any 1-private (rather than
2-private) MPC protocol Πf . In addition to committing to the n views Vi, the prover
will commit to the messages communicated over each of the

(
n
2

)
communication chan-

nels. The verifier now challenges the prover to open the view Vi of a random player Pi

together with all n− 1 channels incident to Pi. The zero-knowledge property follows
from the fact that the information revealed to the verifier is implied by the view of
the single player Pi. The soundness error is at most 1− 1/n: similarly to Lemma 2.3
one can show that any invalid execution of the protocol must include at least one
inconsistency between a local view and an incident channel. This soundness error is
better than the 1 − 1/

(
n
2

)
error of the basic construction, making the current variant

somewhat preferable in terms of efficiency. (We will later show how to obtain more
substantial efficiency gains by relying on MPC with stronger robustness properties.)
A disadvantage of the current variant over the original protocol ΠR is that it cannot
support MPC protocols Πf which employ ideal OT channels.

Using MPC protocols from the literature. Most standard MPC protocols for the
semihonest model can be used in the above transformation. Perhaps the simplest
instance is the 2-private 3-player GMW protocol [21, 17], implemented using ideal
OT channels between each pair of players. One can also employ the 2-private 5-player
BGW protocol [3] (or even the 1-private 3-player BGW protocol using the alternative
variant of the basic construction), as well as a somewhat simpler protocol from [42].
Finally, there is a large body of work on efficient special-purpose MPC protocols for
specific classes of functions, e.g., linear algebra functions. These protocols can now
be used to obtain efficient zero-knowledge protocols for the corresponding classes of
relations.

3.1. Coping with statistical correctness. As noted above, our basic con-
struction relies on the MPC protocol’s being perfectly correct. We now describe a
variant of the basic construction that allows Πf to be statistically correct.7 The fol-
lowing modification of ΠR starts with the prover committing to the inputs wi of the
players. Then, the prover and the verifier invoke a coin-flipping procedure whose final
outcome, r1, . . . , rn, is known only to the prover. Finally, when revealing two views,
the verifier is able to verify that the “correct” random inputs were used.

As before, we will mainly focus on describing and analyzing the construction
in the commitment-hybrid model, and later describe the modifications required for
basing the protocol on a one-way function.

The modified zero-knowledge protocol Π′
R proceeds, in the commitment-hybrid

model, as described in Figure 3.2.
Theorem 3.3. Let n ≥ 3 and R, f be as in Theorem 3.1. Suppose that Πf realizes

the n-party functionality f with statistical correctness and either perfect, statistical, or
computational 2-privacy (in the semihonest model). Then the protocol Π′

R described in
Figure 3.2 is a zero-knowledge proof protocol for the NP-relation R in the commitment-
hybrid model, with statistical completeness and soundness error ε ≤ 1 − 1/

(
n
2

)
+ δ(k)

for some negligible function δ(·).
Proof. Completeness, as before, is easy to verify: the probability of the verifier

rejecting in a correct interaction with an honest prover is precisely the error probability

7One could also consider a further relaxation to computational correctness. However, we cannot
make use of this relaxation in the current context of unconditionally sound proofs.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ZERO-KNOWLEDGE FROM SECURE MULTIPARTY COMPUTATION 1135

Zero-knowledge protocol Π′
R in the commitment-hybrid model.

1. The prover picks at random w1, . . . , wn ∈ {0, 1}m such that
w1 ⊕ · · · ⊕ wn = w. She separately commits to each input wi as well as
to n random strings rP

1 , . . . , r
P
n , where each rP

i is of the same length as
the random input of Pi in Πf .

2. Verifier sends to the prover n random strings rV
1 , . . . , r

V
n , where

|rV
i | = |rP

i |.
3. Prover emulates the execution of Πf on input (x,w1, . . . , wn), using

randomness ri = rP
i ⊕ rV

i for each player Pi. Based on this execution,
the prover prepares the views V1, . . . , Vn of the n players in the protocol
and commits to these views.

4. Verifier picks at random distinct i, j ∈ [n] and sends them to the prover.
5. Prover opens the two views Vi, Vj as well as the corresponding

committed inputs wi, wj and the shares of the random inputs rP
i and rP

j .
6. Verifier accepts if and only if all decommitments are successful, the

outputs of Pi and Pj implied by Vi, Vj are 1, the two views are consistent
with each other and with the opened inputs wi, wj (with respect to x
and Πf), and their random inputs satisfy ri = rP

i ⊕ rV
i and rj = rP

j ⊕ rV
j .

Fig. 3.2. Zero-knowledge protocol Π′
R.

of Πf . (Perfect completeness can be easily achieved by letting the prover send w if her
invocation of Πf produces an incorrect output; since this only happens with negligible
probability, the zero-knowledge property will not be affected.)

Soundness. Suppose that x is such that R(x,w) = 0 for all w. We show that the
verifier rejects with at least 1/

(
n
2

)− δ(k) probability for some negligible δ(·). Since we
are considering soundness, we can assume, without loss of generality, that the prover
always finishes the protocol and appropriately opens all of the committed values it is
requested to open. (Failing to open a commitment automatically makes the verifier
reject.) That is, any prover that occasionally fails to open its commitments or fails
to finish the protocol can be trivially converted into a prover that always opens its
commitments and finishes the protocol, and has at least as high a probability of
getting the verifier to accept. Since the inputs wi for Πf as well as the shares of
the random inputs rP

i are committed to in step 1, it is guaranteed that the effective
random inputs ri = rP

i ⊕ rV
i determined in step 2 are independent of the effective

inputs wi. (Indeed, the verifier selects rV
i uniformly and independently at random

once the prover is already committed to rP
i .) We can now distinguish between the

following cases:
• The inputs wi and the random inputs ri lead some player in an honest ex-

ecution of Πf to an (incorrect) output of 1. By the statistical correctness
of Πf and the independence of ri from wi, this event occurs with negligible
probability.

• Otherwise (namely, wi, ri lead all players to output 0); we distinguish between
two subcases:

– The views Vi committed to in step 3 are obtained by honestly running
Πf with the inputs wi and the random inputs ri. In this case, all views
Vi imply an output of 0, and the verifier always rejects.

– Otherwise, either the input in some view Vi is different from the string
wi determined in step 1, or the random input in some Vi is different

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1136 ISHAI, KUSHILEVITZ, OSTROVSKY, AND SAHAI

from the ri determined in step 2, or there is a pair of views Vi, Vj that
are not consistent with respect to x and Πf . (If neither of these types
of inconsistencies occurs, then we must be in the first subcase.) Either
way, an inconsistency will be detected with at least 1/

(
n
2

)
probability.

Overall, the verifier’s rejection probability is at least 1/
(
n
2

)−δ(k), where δ is the error
probability of Πf . Note that the statistical correctness of Πf not only relies on the
random inputs ri being uniformly distributed, but also assumes that they are chosen
independently of the inputs x,wi. Hence, it is essential that the prover first commit
to w1, . . . , wn (as done in step 1).

Zero-knowledge. The zero-knowledge property is proved similarly to the basic
case. Intuitively, the hiding property of the prover’s commitments guarantees that
the verifier cannot influence the randomness used when invoking Πf , nor can it learn
anything about the random inputs of players other than Pi, Pj . These views, as before,
can be simulated by using the simulator Sim guaranteed by the 2-privacy of Πf .

The simulator M∗ of a dishonest verifier V ∗ proceeds on input (k, x) as follows:
1. Run V ∗ on input (k, x). Let rV ∗

1 , . . . , rV ∗
n be the strings sent by V ∗ in step 2,

and i, j be the pair of indices sent in step 4. (As before, the prover’s commit-
ments are trivial to simulate in the commitment-hybrid model.)

2. Pick random wi, wj and run Sim(k, {i, j}, x, (wi, wj), 1) to simulate the pair
of views (Vi, Vj). Let ri, rj be the pair of random inputs contained in the
simulated views.

3. Use the above wi, wj , Vi, Vj and rP
i = ri ⊕ rV ∗

i , rP
j = rj ⊕ rV ∗

j to simulate the
prover’s decommitments in step 5.

The correctness ofM∗ is argued similarly to the previous case of a perfectly correct Πf .
The only difference is that now the random inputs ri used by the prover for running Πf

are generated jointly with V ∗. But since the prover’s contributions rP
i are independent

of the verifier’s contributions rV ∗
i , the views (Vi, Vj) in Π′

R are indistinguishable from
the output of Sim(k, {i, j}, x, (wi, wj), 1) even when conditioning on the randomness
of V ∗.

We turn to the question of implementing Π′
R using a statistically binding com-

mitment protocol Com. Unlike the basic construction, here the protocol obtained by
naturally substituting Com for every invocation of an ideal commitment is not known
to be zero-knowledge. The problem is that the randomness picked by a dishonest
verifier in step 2 can depend on the messages received from the prover in step 1. This
turns out to be problematic in the context of efficient simulation.

We solve this problem in a standard way, by replacing step 2 by a joint generation
of rV

i using a simulatable coin-flipping protocol involving both the prover and the
verifier. For this purpose, one can use a sequential repetition of Blum’s coin-flipping
protocol [4]. Specifically, to generate a random string rV

i of length m, the prover and
the verifier interact in m phases. In each phase the prover uses Com to commit to
a random bit μP , the verifier sends a random bit μV , and the prover opens μP . (If
the prover fails to open μP , the verifier rejects.) The random bit resulting from this
phase is taken to be μV ⊕ μP .

We describe this modified version, which (with a slight abuse of notation) we
denote by Π′Com

R , in Figure 3.3.
Theorem 3.4. Let n ≥ 3 and R, f be as in Theorem 3.1. Suppose that Πf realizes

the n-party functionality f with statistical correctness and either perfect, statistical, or
computational 2-privacy (in the semihonest model). Let Com be any statistically bind-
ing commitment protocol. Then Π′Com

R , described in Figure 3.3, is a zero-knowledge

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ZERO-KNOWLEDGE FROM SECURE MULTIPARTY COMPUTATION 1137

Zero-knowledge protocol Π′Com
R in the plain model.

1. The prover picks at random w1, . . . , wn ∈ {0, 1}m such that
w1 ⊕ · · · ⊕ wn = w. She separately uses Com to commit to each input wi

as well as to n random strings rP
1 , . . . , r

P
n , where rP

i is of the same length
as the random input of Pi in Πf . Let z = |rP

1 | + · · · + |rP
n |.

2. For γ = 1 to z, the following protocol Πcoin ensues, which determines a
string μ of length z:
(a) Prover commits using Com to a randomly chosen bit ψP .
(b) Verifier sends a randomly chosen bit ψV to the prover.
(c) Prover opens her commitment to ψP . If the prover fails to open her

commitment, the verifier aborts. At this point, we set the γth bit of
the string μ, denoted μγ , to be ψV ⊕ ψP .

3. Through the procedure above, the n strings rV
1 , . . . , r

V
n , where

|rV
i | = |rP

i |, are defined so that the γth bit of the string (rV
1 ◦ · · · ◦ rV

n) is
equal to μγ .

4. Prover emulates the execution of Πf on input (x,w1, . . . , wn), using
randomness ri = rP

i ⊕ rV
i for each player Pi. Based on this execution,

the prover prepares the views V1, . . . , Vn of the n players in the protocol
and uses Com to separately commit to each view.

5. Verifier picks at random distinct i, j ∈ [n] and sends them to the prover.
6. Prover opens the two views Vi, Vj as well as the corresponding

committed inputs wi, wj and the shares of the random inputs rP
i and rP

j .
7. Verifier accepts if and only if all decommitments are successful, the

outputs of Pi and Pj implied by Vi, Vj are 1, the two views are consistent
with each other and with the opened inputs wi, wj (with respect to x
and Πf), and their random inputs satisfy ri = rP

i ⊕ rV
i and rj = rP

j ⊕ rV
j .

Fig. 3.3. Zero-knowledge protocol Π′Com
R .

proof protocol for the NP-relation R with soundness error ε(k) ≤ 1 − 1/
(
n
2

)
+ δ(k),

where δ(·) is some negligible function. Furthermore, the protocol obtained from kn2

sequential repetitions of Π′Com
R is a zero-knowledge proof with soundness error 2−Ω(k).

Proof. Completeness follows exactly as in protocol Π′
R. Soundness also follows

almost exactly as in protocol Π′
R, the only difference being that the uniformity and

independence of the ri values is guaranteed by the honest verifier’s choice of μV
i in

the coin-flipping subprotocol.
Zero-knowledge. For arguing zero-knowledge, we will make use of the following

standard lemma regarding the coin-flipping protocol Πcoin carried out in step 2 of our
protocol (see, e.g., [17, Chapter 7]).

Lemma 3.5 (coin-flipping lemma). In protocol Πcoin, there exists a polynomial-
time oracle machine Scoin such that for any polynomial-time adversarial verifier V ∗,
we have that

1. the output of SV ∗
coin(k, b), where b is a bit chosen uniformly at random, is

computationally indistinguishable from real interactions between V ∗ and the
honest prover, and

2. the outputs of SV ∗
coin(k, b), for any bit b, in any nonaborting simulated inter-

action have the property that ψP ⊕ ψV = b.
We can now describe the simulation. The simulator M∗ of a dishonest verifier V ∗

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1138 ISHAI, KUSHILEVITZ, OSTROVSKY, AND SAHAI

proceeds on input (k, x) as follows:
1. The simulator makes the following � = n2k “attempts” until it succeeds. If

the simulator fails in all these attempts, it aborts.
2. The simulator first chooses a pair of distinct parties {i, j} and inputs wi, wj at

random, and invokes the MPC simulator Sim(k, (i, j), x, (wi, wj), 1) to obtain
the simulated views Vi and Vj of these parties. Let ri, rj be the pair of
random inputs contained in the simulated views. For all h /∈ {i, j}, the
simulator prepares random views Vh.

3. The simulator acts as the honest prover would in step 1.
4. For step 2, the simulator invokes Scoin guaranteed by Lemma 3.5 repeatedly

and uses it to guarantee that rP
i = ri ⊕ rV ∗

i , rP
j = rj ⊕ rV ∗

j , by making a
suitable requirement on each of the ψP ⊕ ψV .

5. For each view Vi, the simulator runs the commitment protocol with the verifier
algorithm.

6. If the verifier responds with the challenge {i, j}, then we say that the attempt
succeeds; otherwise the attempt fails, and we start over. If the attempt did
succeed, then the simulator opens Vi and Vj to the verifier and outputs the
view of the verifier resulting from the successful interaction.

The correctness of this simulator follows the same argument as the correctness
of the simulator of the basic protocol (using the same sequence of hybrids as in
the proof of Theorem 3.2), additionally using the simulator guarantee provided by
Lemma 3.5.

3.2. Application: Approaching the witness length. In this section, we
present zero-knowledge protocols whose communication complexity is m · poly(k) ·
polylog(s), where m is the witness length, k is a cryptographic security parameter,
and s is the size of the witness verification circuit Cx(w) verifying R(x, ·). This holds
whenever Cx has constant depth.

The zero-knowledge protocols rely on an MPC protocol for constant-depth circuits
from [1]. The basic version of this protocol combines the polynomial representation
techniques of Razborov [49] and Smolensky [53] with the MPC protocol of BGW [3].
(The protocol from [1] includes some additional optimizations that are not important
for our crude complexity analysis.)

Fact 3.6 (see [1]). Let C be a constant depth circuit (using ∨,∧,⊕,¬ gates with
unbounded fan-in) of size s and input v of length m. Then, for n = polylog(s) and any
partition (v1, . . . , vn) of v between n players, there is an n-party MPC protocol Π which
computes C(v1, . . . , vn) with statistical correctness and 2-privacy, where the commu-
nication complexity and randomness complexity of Π are at most m · k · polylog(s).

Combining Fact 3.6 with Theorem 3.4 we get the following.
Corollary 3.7. Suppose that one-way functions exist. Then, for any NP-

relation R(x,w) that can be verified by a circuit Cx(w) of size s and constant depth
(using ∨,∧,⊕,¬ gates with unbounded fan-in), there exists a zero-knowledge proof
protocol with communication complexity |w| · poly(k) · polylog(s), where k is a cryp-
tographic security parameter.

In the appendix we describe a noninteractive version of the above protocol which
achieves a similar communication complexity.

4. Zero-knowledge from MPC in the malicious model. In this section,
we aim at getting zero-knowledge protocols with negligible soundness error 2−k while
avoiding the naive repetition that carries a multiplicative overhead of Ω(k) in the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ZERO-KNOWLEDGE FROM SECURE MULTIPARTY COMPUTATION 1139

complexity. We do this by strengthening the security requirement from the underlying
MPC protocol Πf to t-security in the malicious model. (This should be contrasted
with 2-privacy or 1-privacy in the semihonest model used in the previous section.)
In fact, we only need the MPC protocol to be t-private in the semihonest model and
(perfectly or statistically) t-robust in the malicious model, as defined in Definition 2.6.

We start by assuming that Πf is perfectly t-robust. We will pick our parameters
such that t is a constant multiple of the soundness parameter k and n is a constant
multiple of t. The zero-knowledge protocol in this case is identical to the protocol
ΠR described in the basic construction (Figure 3.1), except that the verifier asks
the prover to open t randomly selected views and checks for their consistency. The
protocol ΠR,t is formally described in Figure 4.1.

Zero-knowledge protocol ΠR,t in the commitment-hybrid model.
1. Prover picks at random w1, . . . , wn ∈ {0, 1}m whose exclusive-or equals

the witness w. She emulates the execution of Πf on input
(x,w1, . . . , wn). Based on this execution, the prover prepares the views
V1, . . . , Vn of the n players; she separately commits to each of these n
views.

2. Verifier picks at random t distinct player indices i1, . . . , it ∈ [n] and
sends them to the prover.

3. Prover opens the commitments corresponding to the t views Vi1 , . . . , Vit .
4. Verifier accepts if and only if

(a) the prover successfully opened the t requested views,
(b) the outputs of all players in these views are 1, and
(c) for each 1 ≤ j, h ≤ t, the views Vij and Vih

are consistent with each
other (with respect to x and Πf).

Fig. 4.1. Zero-knowledge protocol ΠR,t.

Theorem 4.1. Suppose that Πf realizes the n-party functionality f with per-
fect t-robustness (in the malicious model) and perfect, statistical, or computational
t-privacy (in the semihonest model), where t = Ω(k) and n = ct for some constant
c > 1. Then ΠR,t, described in Figure 4.1, is a zero-knowledge proof protocol for the
NP-relation R in the commitment-hybrid model, with soundness error 2−Ω(k).

Proof. The arguments for completeness and zero-knowledge are as in the proof of
Theorem 3.1, and only the soundness requires a new proof. The intuition that under-
lies the soundness proof is as follows. Consider the views V1, . . . , Vn committed to by
the prover. If all inconsistencies between these views can be resolved by eliminating
at most t views (in other words, if there are n− t views which are consistent with each
other), then the protocol execution committed to via V1, . . . , Vn could be realized by
an adversary corrupting at most t players. (We do not require the t excluded views
to be consistent with the other n − t views; the excluded views can be thought of
as being reported by the adversary.) By the perfect t-robustness of Πf , in such an
execution on an input x �∈ L all uncorrupted players must output 0. This implies that
there are at least n− t committed views Vi such that the output of Pi is 0. Since t is a
constant fraction of n, the verifier will open at least one of these views (and therefore
reject) except with negligible probability in n. On the other hand, if resolving all
inconsistencies requires eliminating more than t views, then the t opened views will
reveal to the verifier, with overwhelming probability, at least one inconsistency.

To formally argue the soundness, consider the following inconsistency graph G,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1140 ISHAI, KUSHILEVITZ, OSTROVSKY, AND SAHAI

defined based on the n committed views V1, . . . , Vn. The graph G has n vertices
(corresponding to the n views), and there is an edge (i, j) in G if the views Vi, Vj

are inconsistent (with respect to Πf and x). That is, the incoming messages from Pj

in the view Vi are different from the outgoing messages to Pi implicit in Vj , or vice
versa. We analyze the soundness according to two cases, showing that the verifier
rejects any x /∈ L with overwhelming probability in both cases.

Case 1. There exists in G a vertex cover set B of size at most t. We argue that
in this case, the output in all views Vi, for i /∈ B, must be 0. (The intuition is that
a “small” vertex cover can “explain” all the inconsistencies among the views.) To
see this, consider an execution of the protocol Πf where the adversary corrupts the
set of players B and behaves in a way that the views of any player Pj , for j /∈ B,
is Vj . Such an execution is obtained by choosing all the messages from Pi ∈ B to
Pj /∈ B as in the view Vj ; since B is a vertex cover, every pair of views Vi, Vj with
i, j ∈ B̄ is not connected in the graph G and hence consistent. Finally, by the perfect
t-robustness of Πf , such a corruption should not influence the output of the honest
players, which must be 0. Hence, if in all views Vj with j /∈ B the output is 0, it
suffices that the verifier, among his t choices, will pick at least one player not in B.
By the choice of parameters, the probability that this does not happen is at most
(t/n)t = 2−Ω(t) = 2−Ω(k).

Case 2. min-VC(G) > t. (Here and in the following we denote by min-VC(G)
the size of a minimum vertex cover of G.) We would like to argue that in such a
graph, a random choice of a constant fraction of the vertices will hit an edge with
overwhelming probability. For this we use the well-known connection between the
size of a minimum vertex cover and the size of a maximum matching. (The advantage
of considering a matching is that we get independence between the edges.) In more
detail, the graph G must have a matching of size > t/2 (otherwise, if the maximum
matching contains ≤ t/2 edges, the vertices of this matching form a vertex cover of
size ≤ t). If the verifier picks at least one edge of G, he will reject. The probability
that the t vertices (views) that the verifier picks miss all the edges of G is smaller
than the probability that he misses all edges of the matching, which is again at most
2−Ω(t) = 2−Ω(k). (Indeed, suppose that the first t/2 vertices ij1 , ijt/2 do not hit an
edge of the matching; then their t/2 matching neighbors will have Ω(t/n) = Ω(1)
probability of being hit by each subsequent vertex ij .)

The proof of Theorem 4.1 illustrates why we cannot rely on t-privacy alone and
need the MPC protocol to be t-robust against a malicious adversary. Indeed, in
a t-private protocol it may be the case that a single malicious player Pi causes all
honest players to have an incorrect output by simply sending incorrect messages.
This corresponds to an inconsistency graph G in which Pi alone forms a vertex cover.
In such a case the verifier will detect an inconsistency only if Pi is randomly picked,
which happens with constant probability.

We will delay addressing how to realize the commitments in the above protocol
until we reach the final protocol of this section (see below).

4.1. Changing the MPC model. A final change that we will need in order to
eliminate the soundness amplification overhead of the basic construction is to avoid
the secret sharing of w among the n players. Instead, we will use an MPC protocol
Πf for the following modified functionality f . The functionality takes the entire input
w from a special player I, called an “input client” (following the terminology of [13]),
and outputs R(x,w) to all n players Pi. (The NP statement x, as before, is known to
all players, but no player other than I has a private input.) The protocol Πf can be

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ZERO-KNOWLEDGE FROM SECURE MULTIPARTY COMPUTATION 1141

assumed to be secure in the malicious model against an adversary who may corrupt I
and at most t players Pi. As before, we only need the protocol to satisfy the t-privacy
and (perfect) t-robustness requirements from Definitions 2.5 and 2.6, except that t-
robustness allows the adversary to corrupt I in addition to at most t players Pi. We
note that the MPC protocol from [13] which we will use later is already presented in
this “input clients” framework.

The zero-knowledge protocol, denoted ΠR,I,t, proceeds in this case in the same
way as the protocol ΠR,t from Figure 4.1, except for the following changes: (1) instead
of secret-sharing w between n players, w is directly used by the prover as an input
to I when invoking Πf ; (2) the verifier asks to see the views of t randomly selected
players Pi (excluding the input client I) and checks that they all output 1 and are
consistent with each other. The view of I cannot be opened (and hence need not be
committed), as this would reveal w.

Theorem 4.2. Let f be the following functionality for an input client I and n
players P1, . . . , Pn. Given a public input x and a private input w received from I,
the functionality delivers R(x,w) to all players Pi. Suppose that Πf realizes f with
perfect t-robustness (in the malicious model) and perfect, statistical, or computational
t-privacy (in the semihonest model), where t = Ω(k) and n = ct for some constant
c > 1. Then ΠR,I,t, described above, is a zero-knowledge proof protocol for the NP-
relation R in the commitment-hybrid model, with soundness error 2−Ω(k).

Proof. The completeness and zero-knowledge properties are argued in essentially
the same way as for ΠR,t. (For the zero-knowledge property, the MPC simulator does
not need to feed the simulated players Pi with inputs wi, since these players now have
no private inputs.)

The soundness proof needs to be slightly modified to account for the different
MPC network and zero-knowledge protocol. Specifically, the difference from the proof
of Theorem 4.1 is that the view of one player, I, is never opened. However, this is
already accounted for by the fact that the modified definition of t-robustness allows
I along with up to t additional players to be corrupted. For completeness, we sketch
the modified argument for soundness in the current, slightly modified MPC model.

Suppose that x is a false statement, and consider the inconsistency graph G (on
the n vertices P1, . . . , Pn) defined by the views committed to by a malicious prover.
We distinguish between the following two cases:

1. min-VC(G) ≤ t. Similarly to Case 1 of the previous analysis, the committed
views can be explained by an execution of the protocol in which I and at most
t players Pi are corrupted. By perfect t-robustness, in such an execution all
remaining n− t players should output 0, which will be detected by the verifier
except with 2−Ω(k) probability.

2. min-VC(G) > t. Similarly to Case 2 of the previous analysis, the graph
must have a minimal matching of size bigger than t/2. Thus, an inconsis-
tency between a pair of players Pi, Pj will be detected except with 2−Ω(k)

probability.

4.2. Coping with statistical robustness. In this section we describe a vari-
ant of the previous protocol from section 4.1 that applies to the case where Πf is
only statistically robust. This is motivated by the application to constant-rate zero-
knowledge, which is described in section 4.4.

If Πf is only statistically t-robust, a malicious adversary corrupting I and at most
t players Pi can have a negligible probability of cheating, namely making some players
output 1 when x is a false statement. Interestingly, in this case the coin-flipping–based

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1142 ISHAI, KUSHILEVITZ, OSTROVSKY, AND SAHAI

modification of the basic protocol presented in section 3.1 does not suffice to achieve
the desired level of soundness. This is because the prover, while being committed to
random inputs on which she has no control, is allowed to generate the views V1, . . . , Vn

after she is given the random inputs of all players. (This should be contrasted with
real executions of Πf , in which the adversary knows the randomness only of corrupted
players.) In such a case, even a single malicious player may suffice for making all
outputs incorrect with high probability. If this particular player is not picked by the
verifier, no inconsistency is revealed, but still the outputs may be incorrect.

To get around this difficulty, it is convenient to separate the random inputs ri
that are used for the privacy of the protocol from those that are used to ensure its
robustness. Below we describe a construction that works for protocols that are broken
into two phases, Phase 1 and Phase 2, where following Phase 1, the players obtain a
public random string r of length � that is used in Phase 2. This can be generalized
to protocols that have more than two phases; however, the crucial point is that each
string r generated in the middle of the protocol must be unpredictable during previous
phases. The robustness of the two-phase protocol should hold also with respect to
an adaptive adversary that may choose (some of) the t corrupted players after seeing
the random string r. More precisely, we make the following adaptive t-robustness
requirement.

Definition 4.3 (adaptively t-robust two-phase protocol). Let Π be a two-phase
MPC protocol as above (involving an input client I and n players Pi), and let f be
as in Theorem 4.2. We say that Π realizes f with adaptive statistical t-robustness
if it is statistically correct as in Definition 2.4, and furthermore any computationally
unbounded adversary can only win the following game with negligible probability in
k. First, the adversary picks a false statement x (such that R(x,w) = 0 for all
w), a set T1 of at most t corrupted players, and random inputs ri for all uncorrupted
players. Now the adversary runs Phase 1 of Π, arbitrarily controlling I and players in
T1. After Phase 1 terminates, a coin-flipping oracle is invoked, generating a random
challenge r. Based on r, the adversary can corrupt at most t− |T1| additional players
and continues to interact with the honest players during Phase 2 of the protocol. The
adversary wins if some player that was never corrupted outputs 1.

This adaptive robustness property, which will be satisfied by the concrete MPC
protocol we will employ in section 4.4, is crucial for the soundness analysis to go
through.

The zero-knowledge protocol Π′
R,I,t obtained from such a two-phase MPC protocol

Πf is described in Figure 4.2. For convenience, we assume here that the prover and
the verifier have access not only to an ideal commitment but also to an ideal coin-
flipping oracle. However, the latter oracle can be easily implemented in our setting
based on the former.

Theorem 4.4. Let f be as in Theorem 4.2. Suppose that Πf is a two-phase pro-
tocol which realizes f with adaptive statistical t-robustness (in the malicious model;
see Definition 4.3) and perfect, statistical, or computational t-privacy (in the semi-
honest model), where t = Ω(k) and n = ct for some constant c > 1. Then Π′

R,I,t,
described in Figure 4.2, is a zero-knowledge proof protocol for the NP-relation R in
the commitment and coin-flipping hybrid model with soundness error 2−Ω(k) + δ(k),
where δ(k) is the robustness error of Πf .

Proof. The completeness and zero-knowledge properties are argued as before. We
argue soundness by assigning to any cheating prover’s strategy in the zero-knowledge
protocol a corresponding adversarial strategy in the MPC protocol that generates the
same views. Such a simulation is possible only when the zero-knowledge prover does

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ZERO-KNOWLEDGE FROM SECURE MULTIPARTY COMPUTATION 1143

Zero-knowledge protocol Π′
R,I,t in the commitment and coin-flipping

hybrid model.
1. Prover picks a random input rI for I and a random input ri for every

player Pi. She computes the views of the players up to the end of
Phase 1, denoted by (V 1

1 , . . . , V
1
n), and commits to all of them. Any

messages broadcasted in this phase of the MPC protocol are directly
sent from P to V .

2. The prover and the verifier invoke a coin-flipping oracle to generate a
random challenge string r of length �.

3. Prover continues to run the protocol in her head, using the string r
generated in the previous step, and produces the views (V 2

1 , . . . , V
2
n) of

Phase 2. The prover commits to these n views. Again, any messages
broadcasted in Phase 2 of the MPC protocol are directly sent from P
to V .

4. Verifier picks at random distinct i1, . . . , it ∈ [n] and sends them to the
prover.

5. Prover opens the corresponding 2t commitments V 1
i1 , . . . , V

1
it
, V 2

i1 , . . . , V
2
it

.
6. Verifier accepts if and only if the prover successfully opened the 2t

requested views, the opened views are all consistent (given the public
values x, r and the broadcast messages sent by the prover), and the
output in all these views is 1.

Fig. 4.2. Zero-knowledge protocol Π′
R,I,t.

not create too many inconsistent views; however, when she does, the zero-knowledge
verifier will detect an inconsistency and reject with overwhelming probability.

We now formalize this argument. Fix a false statement x. Let P ∗ be a (determin-
istic, computationally unbounded) prover strategy in the zero-knowledge protocol on
input x. Denote by V 1

P∗ the views V 1
1 , . . . , V

1
n which P ∗ commits to in step 1, and by

V 2
P∗(r) the views V 2

1 , . . . , V
2
n which P ∗ commits to in step 3 in response to the random

challenge r. Finally let GP∗(r) be the inconsistency graph defined by the complete
set of views VP∗(r) = (V 1

P∗ , V 2
P∗(r)).

We define a corresponding (deterministic, computationally unbounded) MPC ad-
versary A∗ that will attempt to generate the same views as P ∗ by corrupting I and at
most t players Pi in the MPC protocol. (Recall that we allow the MPC adversary to
determine the random input ri of all players, even ones it does not corrupt. However,
it cannot predict the random challenge r generated between the two phases.)

The MPC adversaryA∗ starts by considering the inconsistency graph G1
P∗ defined

by the partial views V 1
P∗ . Note that this is a subgraph of the final inconsistency graph

GP∗(r), which is yet unknown to A∗. If the graph does not have a vertex cover T1 of
size t/2, A∗ gives up. Otherwise, A∗ corrupts all players in T1. It sets the input w of I
and the private random inputs rI , r1, . . . , rn as specified in V 1

P∗ . Now A∗ interacts with
Phase 1 of the MPC protocol, sending messages on behalf of corrupted players that
make the views of all uncorrupted players consistent with V 1

P∗ . (This is possible by
the assumption that T1 forms a vertex cover.) Next, A∗ obtains the random challenge
r. The r it receives defines the final inconsistency graph GP∗(r). Again, if the graph
does not have a vertex cover T2 of size t/2, A∗ gives up. Otherwise, it corrupts all
uncorrupted players in T2 and interacts with Phase 2 of the MPC protocol. (Note
that overall at most t players were corrupted, so this is indeed an admissible adaptive

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1144 ISHAI, KUSHILEVITZ, OSTROVSKY, AND SAHAI

corruption strategy for A∗.) As before, A∗ sends messages on behalf of corrupted
players that make the final views of all uncorrupted players consistent with VP∗(r).
The final MPC views VA∗(r) are defined as the actual views of uncorrupted players,
together with the views appearing in VP∗(r) for corrupted players.

Lemma 4.5. For every r, if GP∗(r) has a vertex cover of size at most t/2, then
VA∗(r) = VP∗(r).

Proof. Since G1
P∗ is a subgraph of GP∗(r), the assumption implies that both T1

and T2 as required exist, and thus A∗ doesn’t give up. The lemma follows by noting
that any message sent to an uncorrupted player throughout the two phases of the
protocol is consistent with VP∗(r).

The following lemma is proved similarly to the soundness analysis in the case of
perfect robustness.

Lemma 4.6. For every r such that GP∗(r) does not have a vertex cover of size
t/2, the zero-knowledge verifier rejects except with probability 2−Ω(k).

We are now ready to prove the desired 2−Ω(k) + δ(k) bound on the soundness
error of the zero-knowledge protocol. We consider three events that cover all possible
choices of r:

1. r makes A∗ break the t-robustness of Πf . By the assumption on Πf , this
event occurs with at most δ(k) probability.

2. The previous event does not occur, and moreoverGP∗(r) has a vertex cover of
size at most t/2. By Lemma 4.5, there are at least n−t views in VP∗(r) whose
output is 0. Thus, conditioned on this event, the verifier will open at least
one of these views, and consequently reject, except with 2−Ω(k) probability.

3. GP∗(r) does not have a vertex cover of size at most t/2. By Lemma 4.6,
conditioned on this event, the verifier accepts with probability at most 2−Ω(k).

Overall, the verifier’s acceptance probability is at most 2−Ω(k) + δ(k), as required.
This concludes the proof of Theorem 4.4.
We note that the gap between the size t/2 of the vertex cover and the MPC

corruption threshold t is related to the “on-line” nature of adaptive corruptions. In
the end of Phase 1, the MPC adversary cannot predict the set of players that will
serve as a minimal vertex cover in the final graph.

4.3. Implementing the commitment and coin-flipping. The proofs of zero-
knowledge given for our previous protocols in the plain model all relied on the verifier
making one of only a polynomial number of choices for his challenge about which
views he will see. Here, the choices that the verifier makes are from a much larger set
and therefore cannot simply be guessed by the zero-knowledge simulator. Instead, we
employ the standard technique (cf. [18, 2, 51, 46]) of having a “preamble” in which
the verifier commits in advance to his choices using a statistically hiding commitment
scheme ComSH so as to preserve soundness. In this preamble the verifier also needs to
“prove knowledge” of his choices.

Using the recent result of [27], the statistically hiding commitment scheme ComSH

can be based on any one-way function. As in previous protocols, we will also make
use of a standard statistically binding commitment scheme ComSB.

The resulting protocol is described in Figure 4.3.
Theorem 4.7. Let f be as in Theorem 4.2. Let ComSH be a statistically hid-

ing commitment scheme, and ComSB be a statistically binding commitment scheme.
Suppose that Πf is a two-phase protocol which realizes f with adaptive statistical
t-robustness (in the malicious model; see Definition 4.3) and perfect, statistical, or
computational t-privacy (in the semihonest model), where t = Ω(k) and n = ct for

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ZERO-KNOWLEDGE FROM SECURE MULTIPARTY COMPUTATION 1145

Zero-knowledge protocol Π′Com
R,I,t in the plain model.

1. Verifier picks at random distinct i1, . . . , it ∈ [n]. He encodes these
choices into a string ζ of length q = O(t logn). The verifier then chooses
at random strings τ1,0, . . . , τk,0, each of length q, and sets τi,1 = τi,0 ⊕ ζ
for each i. The verifier invokes ComSH to commit to each of the 2k
strings {τi,0, τi,1} separately.

2. For i = 1 to k, the following protocol ensues:
(a) The prover sends a random bit bi.
(b) The verifier opens his commitment to τi,bi .

3. Prover picks a random input rI for I and a random input ri for every
player Pi. She computes the views of the players up to the end of
Phase 1, denoted by (V 1

1 , . . . , V
1
n), and commits to all of them using

ComSB. Any messages broadcast in this phase of the MPC protocol are
directly sent from P to V .

4. The prover and the verifier invoke the following coin-flipping protocol
Πcoin to generate a random challenge string r of length �: For i = 1 to �,
(a) Prover commits using ComSB to a randomly chosen bit ψP .
(b) Verifier sends a randomly chosen bit ψV to the prover.
(c) Prover opens her commitment to ψP . At this point, we define the

ith bit of r, denoted ri, to be ψV ⊕ ψP .
5. Prover continues to run the protocol in her head, using the string r

generated above, and produces a vector (V 2
1 , . . . , V

2
n) of the views of

Phase 2. The prover commits using ComSB to these n views. Again, any
messages broadcasted in Phase 2 of the MPC protocol are directly sent
from P to V .

6. Verifier opens all commitments made using ComSH made in step 1. The
prover checks consistency (aborting if there is an inconsistency) and
extracts the set i1, . . . , it ∈ [n].

7. Prover opens the corresponding 2t commitments V 1
i1
, . . . , V 1

it
, V 2

i1
, . . . , V 2

it
.

8. Verifier accepts if and only if the prover successfully opened the 2t
requested commitments, the opened views are all consistent (given the
public values x, r and the broadcast messages sent by the prover), and
the output in all these views is 1.

Fig. 4.3. Zero-knowledge protocol Π′Com
R,I,t.

some constant c > 1. Then Π′Com
R,I,t, described in Figure 4.3, is a zero-knowledge proof

protocol for the NP-relation R with negligible soundness error.
Proof. We note that the proof of completeness and soundness is essentially the

same as in the proof of Theorem 4.4, since steps 1 and 2 keep the verifier’s selections
statistically hidden.

We need only provide a proof of the zero-knowledge property. The simulator M∗

of a dishonest (and, without loss of generality, deterministic) verifier V ∗ on input
(k, x) is described below. The correctness of the simulation is straightforward.

1. The simulator acts as the honest prover in step 1 and receives the verifier’s
commitments according to the ComSH protocol.

2. In step 2, for each i, the simulator proceeds as follows:
(a) The simulator saves the state σi of the verifier, then picks bi at random

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1146 ISHAI, KUSHILEVITZ, OSTROVSKY, AND SAHAI

just as the honest prover would, sends it, and obtains the response from
the verifier.

(b) If the decommitment response is invalid, the simulator halts (just as
the honest prover would have done) and outputs the partial view of the
verifier so far. If the response is valid, then the simulator saves the
current state σ′

i and rewinds the verifier to state σi. It then sends 1− bi
instead.

(c) If the verifier responds with a valid decommitment, then the simulator
has obtained both τi,0 and τi,1 and can thus reconstruct the verifier’s
choices of i1, . . . , it ∈ [n]. Regardless of whether it received a valid
response, the simulator rewinds the state of the verifier back to σ′

i and
continues.

3. If the simulator was never able to obtain both τi,0 and τi,1 for any i, then the
simulator aborts and outputs ⊥. Note that if the simulator aborts, then the
probability of the verifier completing step 2 of the protocol conditioned on its
step 1 messages is 2−k, and thus the probability of the simulator aborting is
negligible.8 Otherwise, the simulator continues.

4. The simulator now invokes the MPC simulator Sim, providing Sim with the
list of indices {ij} extracted from the verifier above. In turn, Sim provides the
simulator with the simulated views {Vij} of these parties, together with any
broadcasted messages during the MPC protocol and the random challenge r.
For all h /∈ {ij}, the simulator prepares random views Vh. Each of these views
Vi is split into two parts V 1

i and V 2
i corresponding to the view in Phase 1

and Phase 2, respectively, of the MPC protocol.
5. For step 3, the simulator commits to all the Phase 1 views (V 1

1 , . . . , V
1
n) and

sends all the broadcasted messages of Phase 1.
6. For step 4, the simulator invokes Scoin as guaranteed by the coin-flipping

lemma repeatedly, and uses it to guarantee that each bit of r is set to be the
random challenge specified by the MPC simulator above.

7. For step 5, the simulator commits to all the Phase 2 views (V 2
1 , . . . , V

2
n) and

sends all the broadcasted messages of Phase 2.
8. For step 6, the simulator acts as the honest prover would and verifies that

all commitments that are opened by the verifier are opened in a manner
consistent with the extraction above. If not, then the simulator aborts. Note
that if this kind of simulator abort happens with noticeable probability, it
can directly be used to break9 the computational binding property of the
commitment scheme ComSH.

9. For step 7, the simulator opens the 2t commitments {V 1
ij
, V 2

ij
} corresponding

to the set {ij} of indices requested by the verifier, and outputs the view of
the verifier resulting from the successful interaction.

4.4. Application: “Constant-rate” zero-knowledge proofs. In this sec-
tion, we describe the construction of zero-knowledge protocols whose communication
complexity is linear in the circuit size s, by applying the general construction from

8Here we make use of the fact that, without loss of generality, we may assume that ComSH has a
noninteractive decommitment phase, and therefore the verifier’s actions are completely deterministic
based only on the sequence of query bits bi received from the prover. For more details, see [17,
Chapter 4] for similar arguments regarding “strong proofs of knowledge.”

9For more details, see [17, Chapter 4] for similar arguments that arise in the (slightly more
complicated) context of “constant-round zero-knowledge proofs.”

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ZERO-KNOWLEDGE FROM SECURE MULTIPARTY COMPUTATION 1147

section 4.2 on top of a variant of the MPC protocol from [13].
The protocol from [13] conforms to the requirements of a two-phase protocol,

as defined in section 4.2, with t = Ω(n) and with a random challenge r of size � =
poly(k, log s). Thus, the general construction from section 4.2 can be applied. In fact,
Phase 2 can take the degenerate form of only involving broadcast messages. Thus, in
step 3 of the general construction the prover can send these messages to the verifier
instead of committing.

The communication complexity of the MPC protocol from [13] in the case where
the inputs originate from a constant number of clients is poly(k) · logn · s+
poly(k, n, log s).10 We now describe how to reduce this complexity to O(s)+
poly(k, n, log s) for the type of functionalities f required by our application.

The source of the multiplicative poly(k) overhead in [13] is the need to deal with
circuits of an arbitrary depth. However, in the context of proof verification, one
may assume without loss of generality that the witness is of size s (and includes the
intermediate values in the computation of C(w) in addition to w itself) and that R
has s output bits, each verifying the consistency of the output of one gate of C with
its two inputs. (An output of 1s of the augmented R is interpreted as an output of 1
of the original R; every other output of the augmented R is interpreted as 0.)

Note that each of the s output bits of R depends on only three of the s input
bits. In this setting the total communication complexity of the protocol from [13] is
only O(log n · s) + poly(k, n, log s). Here the O(log n) multiplicative overhead results
from the use of Shamir’s secret-sharing [52] (more precisely, the variant of this secret-
sharing due to Franklin and Yung [15]), which requires the field size to be larger than
the number of players. As a final optimization, one can implement the secret-sharing
of [15] over fields of constant size by basing the secret-sharing on algebraic-geometric
codes [9]. This results in an additional fractional decrease in the security threshold,
which does not affect the asymptotic complexity of the zero-knowledge protocol.

The following lemma summarizes the properties of the MPC protocol we use to
obtain constant-rate zero-knowledge protocols.

Lemma 4.8 (see [13, 9]). Let f be a functionality which takes its input w from
an input client I and delivers its output f(w) to n players P1, . . . , Pn. Suppose that f
can be computed by a circuit of size s with bounded fan-in and constant depth. Then,
f can be realized by a perfectly t-private and adaptively statistically t-robust two-phase
MPC protocol Πf with t = Ω(n) and the following efficiency features:

• Phase 1 involves a total of O(s) + poly(k, n, log s) bits sent from I to the n
players Pi.

• The random challenge r between the two phases is of length poly(k, n, log s).
• Phase 2 involves broadcast messages whose total length is O(s)+

poly(k, n, log s).
Combining Lemma 4.8 with the general transformation of Theorem 4.7, we get

the following result.
Corollary 4.9. Suppose that one-way functions exist. Then, for any NP-

relation R(x,w) that can be verified by a circuit Cx(w) of size s (using gates of bounded
fan-in), there exists a zero-knowledge proof protocol with communication complexity
O(s) + poly(k, log s), where k is a cryptographic security parameter.

Proof. Combining Lemma 4.8 and Theorem 4.4 directly yields a protocol as re-
quired in the commitment-hybrid model. To derive the desired result in the plain

10Here we count each broadcasted bit as a single bit of communication. This allows the protocol
to deliver the output to all n players with no asymptotic efficiency overhead.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1148 ISHAI, KUSHILEVITZ, OSTROVSKY, AND SAHAI

model from Theorem 4.7, we need to base efficient instantiations of the commit-
ment protocols invoked by Π′Com

R,I,t on an arbitrary one-way function. The statisti-
cally hiding commitment protocol ComSH is applied only to strings of total length
poly(k, log s) and therefore does not form an efficiency bottleneck. It thus suffices to
present a statistically binding commitment protocol Com in which commitment and
decommitment on a message of length � can be done with communication complexity
O(�)+poly(k). Such a commitment protocol Com can be obtained in a standard way
from an arbitrary statistically binding commitment protocol Com′ and a pseudoran-
dom generator G (hence also from any one-way function [29, 44]): to commit to a
message m, the sender in Com applies Com′ to a random seed r ∈ {0, 1}k and then
sends m⊕G(r).

5. Concluding remarks. This work establishes a new general connection be-
tween zero-knowledge proofs and MPC. In particular, we have demonstrated that
MPC protocols for the case of an honest majority can serve as a useful building block
in the design of efficient and conceptually simple zero-knowledge proofs, including the
first construction of “constant-rate” zero-knowledge proofs for all of NP. The idea of
making a general use of MPC with honest majority in the context of secure two-party
computation and MPC with no honest majority is likely to find additional applica-
tions beyond those considered in this work. Evidence in this direction was recently
given in [28, 33].

We conclude by noting that while MPC is a conceptually attractive and very well
studied notion, it is not necessarily the most general abstraction of the combinatorial
object required by our zero-knowledge protocols. One may view the MPC component
in these protocols as implementing a zero-knowledge variant of probabilistically check-
able proofs (PCPs) over large alphabets. Other kinds of proof systems—interactive
PCPs [35] and interactive proofs with quasi-linear-time verifiers [23]—were recently
exploited to construct efficient zero-knowledge protocols, and particularly to improve
over the results of section 3.2. It would be interesting to obtain a better understanding
of the relations between these proof systems, zero-knowledge proofs, and MPC.

Appendix. Approaching the witness length in the noninteractive set-
ting. In this section we describe a realization of the protocol from section 3.2 in a
model of noninteractive zero-knowledge (NIZK) with preprocessing, previously con-
sidered in [34] and [40].

In the description below, it is assumed that the preprocessing phase is run by a
trusted dealer who sends randomized messages to the prover and the verifier (before
the input x is available) and then disappears.

A first idea for obtaining a noninteractive protocol is to replace the (interactive)
commit-and-challenge approach by the following implementation of noninteractive
2-out-of-n OT. In the preprocessing step, the dealer sends to the prover n random
encryption keys and to the verifier a random subset of two of these keys (whose identity
is unknown to the prover). In the online phase, the prover generates n views as in the
interactive protocol and sends the encryption of each view Vi using the corresponding
key. The verifier learns a random pair of views and, as in the basic protocol, verifies
their consistency. (This can be repeated in parallel to amplify soundness.)

The statistical correctness of the underlying MPC protocol Π poses an additional
difficulty. Picking the randomness to be used in the protocol Π during the prepro-
cessing step is problematic because the prover may choose for some x /∈ L its input w
after getting to see this randomness. Here, however, we can use a simple modification
of [1] that gives a family of protocols Πρ, ρ ∈ {0, 1}mk·polylog(s), such that each Πρ

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ZERO-KNOWLEDGE FROM SECURE MULTIPARTY COMPUTATION 1149

has roughly the same complexity as Π, and a random protocol from this family is
perfectly correct and private except with 2−k probability over the choice of ρ. The
protocol can now proceed as in the perfect case, except that a random ρ is given to
both the prover and the verifier during the preprocessing step, and ρ is used to define
a protocol Πρ to be used in the proof. (If the choice of x can depend on ρ, the length
of ρ should be increased roughly by |x|.)

Fact A.1 (modified from [1]). Let C be a constant-depth circuit, as in Fact 3.6.
Then there exists a family of (2, n)-secure MPC protocols {Πρ}ρ∈{0,1}mk·polylog(s) , with
parameters n,m as in Fact 3.6 and communication complexity and randomness com-
plexity of m · polylog(s). Moreover, with overwhelming probability over the choice of
ρ, the protocol Πρ computes C(·) with perfect correctness and privacy.

(Using the terminology and notation of [1], we need to get an RPC (randomizing
polynomials collection) pρ(x, r) with public randomness ρ of size mk ·polylog(s) that,
with overwhelming probability over the choice of ρ, is perfectly correct. This can be
achieved by repeating the basic RPC construction from [1] O(mk) times, reducing the
error probability on any fixed input w ∈ {0, 1}m to 2−km, and then applying efficient
degree-3 randomizing polynomials for a threshold function on the output. By a union
bound argument, an overwhelming fraction of the ρ will be good for all inputs w.)

Given such a family Πρ, the zero-knowledge protocol ΠR in the noninteractive
model proceeds as follows:

1. (Preprocessing phase) The trusted dealer chooses a random protocol index
ρ and sends it to both the prover and the verifier. It also picks n random
symmetric encryption keysK1, . . . ,Kn that it sends to the prover, and it picks
at random two distinct indices i, j ∈ [n] and sends to the verifier (i, j,Ki,Kj).

2. (Proof) The prover picks at randomw1, . . . , wn ∈ {0, 1}m such that w1⊕· · ·⊕
wn = w, as well as randomness r1, . . . , rn for Πρ. She emulates the execution
of Πρ on inputs (x,w1, . . . , wn) and random inputs r1, . . . , rn. Based on this
execution, the prover prepares the views V1, . . . , Vn of the n players in Πρ. She
separately encrypts each view Vi using the key Ki given to it in the prepro-
cessing phase, and sends e1 = Encrypt(V1,K1), . . . , en = Encrypt(Vn,Kn)
to the verifier.

3. (Verification) Verifier decrypts Vi, Vj using ei, ej and the keys Ki,Kj he
got in the preprocessing phase, and accepts if and only if the output of both
Pi and Pj (as follows from their views) is 1 and the two views are consistent
(according to Πρ).

Due to its similarity to our previous constructions, we only sketch the properties of
the protocol. The completeness of the protocol is easily verifiable. For the soundness,
since we assume that the preprocessing phase is carried out by a trusted party, then
i, j are completely hidden from the prover. If the randomly chosen protocol Πρ is not
perfectly correct, then protocol ΠR provides no guarantees; this, however, happens
with negligible probability. Otherwise (i.e., Πρ is perfectly correct), if the views are
not all consistent, then this is detected with probability at least 1/n2, and if the views
are consistent, then, by the perfect correctness, the output is always correct (i.e., 0).
Regarding zero-knowledge, by the semantic security of Encrypt the verifier cannot
distinguish between the message actually sent by the prover and a message which
contains an encryption of the actual views Vi, Vj for which it has the encryption keys
along with encryptions of random values for the remaining n − 2 views. Thus, this
message can be simulated by using the MPC simulator to generate the views Vi, Vj .

The soundness of the above protocol relies on the assumption that the input x
is picked independently of ρ. (Otherwise it is not guaranteed that a random Πρ will

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1150 ISHAI, KUSHILEVITZ, OSTROVSKY, AND SAHAI

be perfectly correct with high probability.) An adaptive choice of x can be handled
by increasing the length of ρ (roughly by |x| or, more generally, the description size
of x).

Acknowledgments. We thank Amos Fiat and Yishay Mansour for suggesting
the variant of the basic construction that uses 1-private MPC. We also thank Salil
Vadhan and the anonymous referees for helpful comments and suggestions.

REFERENCES

[1] O. Barkol and Y. Ishai, Secure computation of constant-depth circuits with applications to
database search problems, in Proceedings of the 25th Annual International Cryptology
Conference (CRYPTO 2005), Santa Barbara, CA, 2005, Springer-Verlag, Berlin, 2005, pp.
395–411.

[2] M. Bellare, S. Micali, and R. Ostrovsky, The (true) complexity of statistical zero knowl-
edge, in Proceedings of the 22nd Annual ACM Symposium on Theory of Computing
(STOC), Baltimore, MD, ACM, New York, 1990, pp. 494–502.

[3] M. Ben-Or, S. Goldwasser, and A. Wigderson, Completeness theorems for non-
cryptographic fault-tolerant distributed computation, in Proceedings of the 20th Annual
ACM Symposium on the Theory of Computing (STOC), ACM, New York, 1988, pp. 1–10.

[4] M. Blum, Coin flipping by telephone - a protocol for solving impossible problems, in COMP-
CON’82, Proceedings of the 24th IEEE Computer Society International Conference, San
Francisco, CA, 1982, IEEE Computer Society Press, Piscataway, NJ, 1982, pp. 133–137.

[5] J. Boyar, G. Brassard, and R. Peralta, Subquadratic zero-knowledge, J. ACM, 42 (1995),
pp. 1169–1193.

[6] J. Boyar, I. Damg̊ard, and R. Peralta, Short non-interactive cryptographic proofs, J. Cryp-
tology, 13 (2000), pp. 449–472.

[7] R. Canetti, Security and composition of multiparty cryptographic protocols, J. Cryptology, 13
(2000), pp. 143–202.

[8] D. Chaum, C. Crépeau, and I. Damg̊ard, Multiparty unconditionally secure protocols (ex-
tended abstract), in Proceedings of the 20th Annual ACM Symposium on Theory of Com-
puting (STOC), ACM, New York, 1988, pp. 11–19.

[9] H. Chen and R. Cramer, Algebraic geometric secret sharing schemes and secure multi-party
computations over small fields, in Proceedings of the 26th Annual International Cryptology
Conference (CRYPTO 2006), Santa Barbara, CA, Springer-Verlag, Berlin, 2006, pp. 521–
536.

[10] R. Cramer and I. Damgård, Linear zero-knowledge—A note on efficient zero-knowledge
proofs and arguments, in Proceedings of the 29th Annual ACM Symposium on Theory of
Computing (STOC), El Paso, TX, ACM, New York, 1997, pp. 436–445.

[11] R. Cramer and I. Damgård, Zero-knowledge proofs for finite field arithmetic; or: Can zero-
knowledge be for free?, in Advances in Cryptology (CRYPTO ’98), Lecture Notes in Com-
put. Sci. 1462, Springer, New York, 1998, pp. 424–441.

[12] I. Damg̊ard and Y. Ishai, Constant-round multiparty computation using a black-box pseudo-
random generator, in Proceedings of the 25th Annual International Cryptology Conference
(CRYPTO 2005), Santa Barbara, CA, Springer-Verlag, Berlin, 2005, pp. 378–394.

[13] I. Damg̊ard and Y. Ishai, Scalable secure multiparty computation, in Proceedings of the
26th Annual International Cryptology Conference (CRYPTO 2006), Santa Barbara, CA,
Springer-Verlag, Berlin, 2006, pp. 501–520.

[14] S. Even, O. Goldreich, and A. Lempel, A randomized protocol for signing contracts, Comm.
ACM, 28 (1985), pp. 637–647.

[15] M. K. Franklin and M. Yung, Communication complexity of secure computation, in Pro-
ceedings of the 24th Annual ACM Symposium on Theory of Computing (STOC), Victoria,
BC, Canada, ACM, New York, 1992, pp. 699–710.

[16] O. Goldreich, Foundations of Cryptography: Basic Tools, Cambridge University Press, Cam-
bridge, UK, 2001.

[17] O. Goldreich, Foundations of Cryptography: Basic Applications, Cambridge University Press,
Cambridge, UK, 2004.

[18] O. Goldreich and A. Kahan, How to construct constant-round zero-knowledge proof systems
for NP, J. Cryptology, 9 (1996), pp. 167–190.

[19] O. Goldreich and J. Håstad, On the complexity of interactive proofs with bounded commu-
nication, Inform. Process. Lett., 67 (1998), pp. 205–214.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

ZERO-KNOWLEDGE FROM SECURE MULTIPARTY COMPUTATION 1151

[20] O. Goldreich, S. Micali, and A. Wigderson, How to prove all NP-statements in zero-
knowledge, and a methodology of cryptographic protocol design, in Advances in Cryptology
(CRYPTO ’86), Lecture Notes in Comput. Sci. 263, Springer, New York, 1987, pp. 171–185.

[21] O. Goldreich, S. Micali, and A. Wigderson, How to play any mental game (extended
abstract), in Proceedings of the 19th Annual ACM Symposium on Theory of Computing
(STOC), New York, NY, 1987, ACM, New York, 1987, pp. 218–229.

[22] O. Goldreich and Y. Oren, Definitions and properties of zero-knowledge proof systems, J.
Cryptology, 7 (1994), pp. 1–32.

[23] S. Goldwasser, Y. T. Kalai, and G. Rothblum, Delegating computation: Interactive proofs
for muggles, in Proceedings of the 40th Annual ACM Symposium on Theory of Computing
(STOC), Victoria, BC, Canada, ACM, New York, 2008, pp. 113–122.

[24] S. Goldwasser, S. Micali, and C. Rackoff, The knowledge complexity of interactive proof
systems, SIAM J. Comput., 18 (1989), pp. 186–208.

[25] J. Groth, R. Ostrovsky, and A. Sahai, Perfect non-interactive zero knowledge for NP, in
Proceedings of the 25th International Cryptology Conference (EUROCRYPT 2006), Saint
Petersburg, Russia, 2006, Lecture Notes in Comput. Sci. 4004, Springer, New York, 2006,
pp. 339–358.

[26] I. Haitner, semihonest to malicious oblivious transfer—The black-box way, in Proceedings of
the 5th IACR Theory of Cryptology Conference (TCC 2008), New York, NY, 2008, pp.
412–426.

[27] I. Haitner and O. Reingold, Statistically-hiding commitment from any one-way function, in
Proceedings of the 39th Annual ACM Symposium on Theory of Computing (STOC), San
Diego, CA, ACM, New York, 2007, pp. 1–10.

[28] D. Harnik, Y. Ishai, E. Kushilevitz, and J. B. Nielsen, OT-combiners from secure com-
putation, in Proceedings of the 5th IACR Theory of Cryptology Conference (TCC 2008),
New York, NY, 2008, pp. 393–411.

[29] J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby, A pseudorandom generator from any
one-way function, SIAM J. Comput., 28 (1999), pp. 1364–1396.

[30] R. Impagliazzo and S. Rudich, Limits on the provable consequences of one-way permutations,
in Advances in Cryptology (CRYPTO’88), Lecture Notes in Comput. Sci. 403, Springer,
New York, 1990, pp. 8–26.

[31] Y. Ishai, E. Kushilevitz, Y. Lindell, and E. Petrank, Black-box constructions for secure
computation, in Proceedings of the 38th Annual ACM Symposium on Theory of Computing
(STOC), Seattle, WA, ACM, New York, 2006, pp. 99–108.

[32] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, Zero-knowledge from secure mul-
tiparty computation, in Proceedings of the 39th Annual ACM Symposium on Theory of
Computing (STOC), San Diego, CA, ACM, New York, 2007, pp. 21–30.

[33] Y. Ishai, M. Prabhakaran, and A. Sahai, Founding cryptography on oblivious transfer—
efficiently, in Proceedings of the 28th Annual International Cryptology Conference
(CRYPTO 2008), Santa Barbara, CA, Springer-Verlag, Berlin, 2008, pp. 572–591.

[34] Y. T. Kalai and R. Raz, Succinct non-interactive zero-knowledge proofs with preprocessing
for LOGSNP, in Proceedings of the 47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), Berkeley, CA, IEEE Computer Society Press, Piscataway, NJ,
2006, pp. 355–366.

[35] Y. T. Kalai and R. Raz, Interactive PCP, in Proceedings of the 35th International Colloquium
on Automata, Languages and Programming (ICALP), Reykjavik, Iceland, Springer, New
York, 2008, pp. 536–547.

[36] J. Kilian, Founding cryptography on oblivious transfer, in Proceedings of the 20th Annual
ACM Symposium on Theory of Computing (STOC), ACM, New York, 1988, pp. 20–31.

[37] J. Kilian, A note on efficient zero-knowledge proofs and arguments (extended abstract), in Pro-
ceedings of the 24th Annual ACM Symposium on Theory of Computing (STOC), Victoria,
BC, Canada, ACM, New York, 1992, pp. 723–732.

[38] J. Kilian, E. Kushilevitz, S. Micali, and R. Ostrovsky, Reducibility and completeness in
private computations, SIAM J. Comput., 29 (2000), pp. 1189–1208.

[39] J. Kilian and E. Petrank, An efficient noninteractive zero-knowledge proof system for NP
with general assumptions, J. Cryptology, 11 (1998), pp. 1–27.

[40] J. Kilian, S. Micali, and R. Ostrovsky, Minimum resource zero-knowledge proofs, in Pro-
ceedings of the 30th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), Research Triangle Park, NC, IEEE Computer Society Press, Piscataway, NJ,
1989, pp. 474–479.

[41] E. Kushilevitz, S. Micali, and R. Ostrovsky, Reducibility and completeness in multi-party
private computations, in Proceedings of the 35th Annual IEEE Symposium on Foundations

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1152 ISHAI, KUSHILEVITZ, OSTROVSKY, AND SAHAI

of Computer Science (FOCS), Santa Fe, NM, IEEE Computer Society Press, Piscataway,
NJ, 1994, pp. 478–489.

[42] U. Maurer, Secure multi-party computation made simple, in Proceedings of the Third Con-
ference on Security in Communication Networks (SCN 2002), Almafi, Italy, Lecture Notes
in Comput. Sci. 2576, Springer, New York, 2002, pp. 14–28.

[43] S. Micali, Computationally sound proofs, SIAM J. Comput., 30 (2000), pp. 1253–1298.
[44] M. Naor, Bit commitment using pseudorandomness, J. Cryptology, 4 (1991), pp. 151–158.
[45] R. Ostrovsky and A. Wigderson, One-way functions are essential for non-trivial zero-

knowledge, in Proceedings of the Second Israel Symposium on Theory of Computing and
Systems (ISTCS), Natanya, Israel, IEEE Computer Society Press, Piscataway, NJ, 1993,
pp. 3–17.

[46] M. Prabhakaran, A. Rosen, and A. Sahai, Concurrent zero-knowledge with logarithmic
round complexity, in Proceedings of the 43rd Annual IEEE Symposium on Foundations
of Computer Science (FOCS), Vancouver, BC, Canada, IEEE Computer Society Press,
Piscataway, NJ, 2002, pp. 366–375.

[47] M. Rabin, How to Exchange Secrets by Oblivious Transfer, Technical Memo TR-81, Aiken
Computation Laboratory, Harvard University, Cambridge, MA, 1981.

[48] T. Rabin and M. Ben-Or, Verifiable secret sharing and multiparty protocols with honest
majority, in Proceedings of the 21st Annual ACM Symposium on Theory of Computing
(STOC), Seattle, WA, ACM, New York, 1989, pp. 73–85.

[49] A. Razborov, Lower bounds for the size of circuits of bounded depth with basis (AND, XOR),
Math. Notes Acad. Sci. USSR, 41 (1987), pp. 333–338.

[50] O. Reingold, L. Trevisan, and S. P. Vadhan, Notions of reducibility between cryptographic
primitives, in Proceedings of the 1st Theory of Cryptology Conference (TCC), Cambridge,
MA, 2004, pp. 1–20.

[51] A. Rosen, A note on constant round zero knowledge proofs for NP, in Proceedings of the 1st
Theory of Cryptology Conference (TCC), Cambridge, MA, 2004, pp. 191–202.

[52] A. Shamir, How to share a secret, Comm. ACM, 22 (1979), pp. 612–613.
[53] R. Smolensky, Algebraic methods in the theory of lower bound for Boolean circuit complexity,

in Proceedings of the 19th Annual ACM Symposium on Theory of Computing (STOC),
New York, NY, ACM, New York, 1987, pp. 77–82.

[54] A. C. Yao, How to generate and exchange secrets, in Proceedings of the 27th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), Toronto, Canada, IEEE Com-
puter Society Press, Piscataway, NJ, 1986, pp. 162–167.

