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Abstract. In this paper we extend the notion of interactive proofs of assertions to 
interactive proofs of knowledge. This leads to the definition of unrestricted input 
zero-knowledge proofs of knowledge in which the prover demonstrates possession 
of knowledge without revealing any computational information whatsoever (not 
even the one bit revealed in zero-knowledge proofs of assertions). We show the 
relevance of these notions to identification schemes, in which parties prove their 
identity by demonstrating their knowledge rather than by proving the validity of 
assertions. We describe a novel scheme which is provably secure if factoring is 
difficult and whose practical implementations are about two orders of magnitude 
faster than RSA-based identification schemes. The advantages of thinking in terms 
of proofs of knowledge rather than proofs of assertions are demonstrated in two 
efficient variants of the scheme: unrestricted input zero-knowledge proofs of knowl- 
edge are used in the construction of a scheme which needs no directory; a version 
of the scheme based on parallel interactive proofs (which are not known to be zero 
knowledge) is proved secure by observing that the identification protocols are 
proofs of knowledge. 
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1. Introduction 

Zero-knowledge proofs [8] are an elegant technique to limit the a m o u n t  of infor- 

mat ion  transferred from a prover A to a verifier B in a cryptographic protocol. 

As defined in the original G M R  paper  [8], the proofs refer to language membership  

problems (is input  I a member  of language L?), and  their applicabili ty to any  

language L in N P  was recently demons t ra ted  by Goldreich et al. [7]. Addi t ional  

properties of zero-knowledge proofs were investigated by Goldwasser  and  Sipser 

[10], Brassard and  Crepeau [1], C h a u m  [2], and  m a n y  others. 

The name "zero-knowledge proofs" is slightly misleading, since the prover A 

reveals one bit of knowledge to the verifier B (namely that I belongs to L). O ur  first 

objective in this paper is to show that it is possible to extend this no t ion  to "truly 

zero-knowledge proofs" which do not  even reveal this single bit. The basic idea is to 

replace "knowledge" by "knowledge abou t  knowledge": A's goal is not  to prove 
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that I belongs to L, but to prove that he knows the status of I with respect to L. 

From B's point of view, he did not get any information whatsoever about "the real 

world" (I, L, and their relationships)--only about A's state of knowledge concerning 

the real world. 

As a motivating (but technically inaccurate) example, consider a prover A who 

wants to prove to a skeptical B that he has settled Fermat's last theorem. With the 

type of proof introduced in this paper, A can convince B that he is a mathematical 

superstar without telling B anything new about the problem--not  even whether 

he has found a proof or a counterexampte! 

A related idea was presented by Galil et al. [6], who defined the notion of"result 

indistinguishable protocols." However, the two models differ in their goals: in their 

model the prover A proves either that I belongs to L or that I does not belong 

to L. B knows which claim is being proven and gets a convincing proof, while the 

passive eavesdropper C (who is not allowed to participate or meddle in the protocol) 

cannot determine from the communication tape which claim is being proven and 

whether the tape constitutes a convincing proof. The main difficulty in extending 

such a result to our model is that we want the same party B to be ignorant of what 

is being proven and yet to be convinced by the proof. 

The intuitive observation that the zero-knowledge paradigm could be used to 

prove knowledge rather than existence of witnesses is not new, and appeared 

(without proper formalization) in several parenthetical remarks by Goldwasser, 

et al. [8], Chor et al. [3], Galil et al. [6], Chaum [2], and in several other papers. 

Recently, Tompa and Woll [16] have independently addressed the same issue and 

developed formal definitions which are conceptually similar to but technically 

different from our definitions. As demonstrated in this paper, the formal definitions 

of "proofs of membership" and "proofs of knowledge" are quite different, and there 

is a fundamental philosophical difference between them. The notion of"knowledge" 

is very fuzzy, and a priori it is not clear what proofs of knowledge actually prove. 

Several researchers have investigated this notion from a different point of view 

(see, e.g., [11] and [15]), and we believe that a combined approach to knowledge and 

proofs of knowledge can have an important impact on areas outside cryptography 

(in particular logic and distributed computing). 

2. Interactive Proofs of Knowledge 

Our model differs from the original GMR model in several important aspects. We 

do not allow the prover to be infinitely powerful (such a prover knows everything 

about its inputs by definition), and restrict both the prover and the verifier to be 

polynomial-time probabilistic Turing machines. The machines, A and B, have 

a common input tape I, two communication tapes CA and CB, private work tapes 

WA and WB, and private random tapes RA and RB. In addition, each machine is 

given access to a private knowledge tape (KA and KB). 

Definition. A polynomial-time predicate P(I, S) is a predicate in which IS[ is poly- 

nomially related to ]I[, and the truth value of the predicate can be checked in 

polynomial time. 



Zero-Knowledge Proofs of Identity 79 

In proofs of knowledge A tries to convince B that he has "knowledge" tying the 

common input I with a publicly known polynomial-time predicate P(.,  -). More 

specifically, if the contents of A's knowledge tape KA happen to be an S such that 

P(I, S) is satisfied, an interactive proof of knowledge allows A to convince B of this 

fact. This model restricts A's proofs of knowledge to problems in NP, and typical 

examples of predicates are "S is a valid 3-colouring of graph I" and "S satisfies 

the CNF formula I." The role of the verifier's knowledge tape KB will be explained 

when we address zero-knowledge issues. 

In the rest of this paper we adopt the following conventions: 

1. A (straight A) represents the real prover who follows its designated protocol 

and whose knowledge tape contains S whenever it exists. 

2. A(crooked A) represents a polynomial-time cheater who can deviate from the 

protocol in an arbitrary way, and whose knowledge tape can contain a rb i t ra ry  

strings. 

3. A represents either ,4 or ,4. 

4. /~ (straight B) represents the real verifier who follows its designated protocol. 

5. /3 (crooked B) represents an arbitrary polynomial-time program (which may 

try to extract additional information from ,4). 

6. B represents either/~ or/~. 

7. (A, B) represents the execution of the two party protocol in which A is the 

prover and B is the verifier. 

To demonstrate the subtlety of interactive proofs of knowledge, consider the 

following examples in which I is the product of two primes and A claims that it 

knows its factorization S. We do not insist that the proofs should be zero knowledge, 

and we use the fact that factoring and square-root extraction are computationally 

equivalent. The question we address in each case is whether A's proof of knowledge 

should convince/~: 

Example 1. A extracts the square roots mod I of several substrings R~.. .  Rk from 

RA, and sends RA and the roots of about one-quarter of the R i to B. B should not 

be convinced since it cannot verify that A really uses his random tape. 

Example 2. /3 sends several substrings R 1 --- R~ from RB to A, and receives their 

square roots mod I in one-quarter of the cases. Even though/~ itself could not use 

the results to compute S, it is clear that a slightly modified B' could compute S with 

high probability by sending A the squares mod I of these substrings. As A cannot 

distinguish between/~ and B', B should be convinced. 

Example 3. Let f be a strong one-way function which is known to both parties. 

/~ sends several substrings R1.. .  R k from RB to A and receives the square roots of 

one-quarter of the values f(R1).. . f(Rk). The problem is not completely defined, 

but B should be wary of A's proof: even though arbitrary square roots cannot be 

extracted without knowledge of the factorization of I, the randomizing function f 

prevents even a modified/3' from getting the second square root of the same number 

it needs to factor L 
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Example 4. To show that/3's skepticism in Example 3 can sometimes be justified, 

consider the function f (x)  = x 2 (mod 1). This is probably a strong one-way function 

but it interacts badly with the problem at hand, and enables a cheating .4to extract 

square roots even when it does not know the factorization of L 

Example 5. Consider now the function f (x)  = a x  2 q- b (mod I) with nonzero a 

and b. The multiplication by a and addition of b seems to destroy the ability of 

/~' to factor I, which suggests that /~ should not be convinced. However, Pollard 

and Schnorr 1-13] prove that binary quadratic equations such as ax 2 + b = y2 

(mod I) can be solved in polynomial time, and thus/~' can prepare an x for which 

he already knows one square root y off(x) ,  but A cannot know which. As a result, 

/3 should be convinced in this case that A knows the factorization of I. 

Formalizing the concept of "interactive proofs of knowledge" is not easy. The 

GMR [8] definition of"interactive proofs of membership" is based on the language- 

recognition paradigm: some intrinsic property of the inputs I is used to define the 

subset L of "good" inputs, and then we can check the adequacy of a particular 

protocol (A, B) by verifying that for all I and ~: 

1. If I belongs to L,/~ accepts A's proof with overwhelming probability. 

2. If I does not belong to L,/~ accepts A's proof with negligible probability. 

In other words,/~ accepts exactly L in the sense that the real A can convince/~ to 

accept at least L, but even a faulty .4 cannot convince/~ to accept more than L. 

The existence of some S which satisfies P(I, S) is an intrinsic property of I which 

can be used to distinguish between "good" and "bad" inputs. However, there are 

many cases in which proofs of existence of S are meaningless, and what makes the 

proofs surprising in these cases is only their constructive nature which demonstrates 

knowledge. Consider, for example, the following predicates P(I, S): 

1. S is the complete factorization of I. 

2. S is the discrete logarithm of I modulo a prime Q. 

3. S is either a short witness for square freeness or a number larger than 1 whose 

square divides I. 

In all these examples the mere existence of S can be proved by B in advance 

(in Examples 1 and 3 the predicate is always satisfiable, and in Example 2 the 

predicate can be satisfied when I is not a multiple of Q). When S always exists, 

the original GMR [8] definition degenerates to the uninteresting "/3 should always 

accept." What we really want is to distinguish between inputs I for which an S is 

"known" and inputs I for which no S is "known." However, the subset o f / f o r  which 

S is "known" is ill-defined: the same I should sometimes be accepted and sometimes 

be rejected by/~. Since the proper decision depends on A's state of knowledge rather 

than on I's intrinsic properties, we can try to reformulate the two conditions in 

terms of A instead of I: 

1. If A is A, B should accept its proofs with overwhelming probability for all I 

for which P(I, S) is satisfiable. 

2. If A is .4 , / t  should accepts its proofs with negligible probability for all L 
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This definition is motivated by the assumption that ,4 always has S on his 

knowledge tape, whereas .4 does not. However, even if P is a difficult predicate, 

there can be infinitely many "easy" instances of I for which ,ff can compute the S 

by itself and then mimic A's proof to/7. Consequently, we have to allow/7 to accept 

X's proofs occasionally, but only when it really happens to know S (by computing 

it, guessing it, or by obtaining help from its knowledge tape). In other words, we 

require that for all I and A (which can be either ,4 or ,if): 

1. If A knows S,/3 should accept A's proof for I with overwhelming probability. 

2. If A does not know S, /~ should accept A's proof for I with negligible 

probability. 

This makes it necessary to define the set of things that a particular program 

knows. An informal definition of this concept was given in a parenthetical remark 

in [8]: 

,4 knows S if there is some polynomial-time Turing machine M with 

complete control over AT which prints S as a result of its interaction 

with ,~. 

The notion of knowledge captured by this definition is very broad, and ,4 may 

not even be "aware" of its knowledge of S. For example, S may be stored in an 

inaccessible portion of,4's code, or may appear temporarily in its work tape, or may 

be computed only as a complicated function of values derived from polynomially 

many executions of A during which M repeatedly changes the contents of A's 

random and work tapes. Unfortunately, this notion of knowledge is incompatible 

with the definition of interactive proofs of knowledge given above: in the first part 

of the definition A may "know" S in some bizarre way which cannot be detected by 

the particular/3, and on the other hand the second part of the definition becomes 

the tautology "if A cannot convince anyone that it knows S, it should not convince 

/7 that it knows S." 

Having seen the many pitfalls along the path, we finally propose our formal 

de. finition of interactive proofs of knowledge. It combines most of the ideas discussed 

so far, but blends them in a different way: 

Definition. A pair of interacting polynomial-time probabilistic Turing machines 

A~ B is called an interactive proof system of knowledge for the polynomial-time 

predicate P(I, S) if: 

1. Completeness: for all I for which P(I, S) is satisfiable, the execution of (A, B) 

on input I succeeds with overwhelming probability. More formally, 

Va, ~c, VIII > c 

if , (  is given on its knowledge tape an S such that P(I, S) and 

/] is given the empty string on its knowledge tape 

Prob((A, B) accepts I) > 1 - l/Ill a. 
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. 

As we are dealing with the real p rover /~  its knowledge tape KA contains 

an appropriate S. The verifier's knowledge tape KB is taken to be empty. 

Soundness: there exists a polynomial-time probabilistic Turing machine M 

(with complete control over A--see Remark 4 below) such that for all A, 

any initial contents of A's knowledge tape KA and random tape RA, and 

any sufficiently large I, if the execution of (A,/3) on input I succeeds with 

nonnegligible probability, then the output produced by M at the end of 

the execution of M(A, RA, KA) on input ! satisfies the predicate P with 

overwhelming probability. More formally, 

Va, ~M, Vb, VA, 3c, V]I[> c, VRA, VKA 

Prob((A,/~) accepts I) > 1/111" 

Prob(output of M(A, RA, KA) on I satisfies P) > 1 - 1/t/I b. 

Remarks. 1. The universal quantification over KA guarantees that whatever partial 

knowledge ,4 has, if this knowledge suffices in convincing/3 to accept, the same 

knowledge suffices for computing S. 

2. We want/~'s conviction that A knows S to depend only on the randomness 

of its own coin flips, and thus we universally quantify over the RA and define the 

probabilities only over the random choices of RB. 
3. The parameter a specifies the meaning of"nonnegligible" while the parameter 

b specifies the meaning of "overwhelming." The choice of M may depend on the 

former but not on the latter, since we want the asymptotic failure rate of the chosen 

M to be smaller than the inverse of any polynomial. 

4. The uniformity of the "interrogator" M which extracts S from any ,4 that 

manages to convince/~ makes it possible to distinguish between "obvious" and 

"accidental" knowledge. Since the same M should work for all A, RA, and KA, 
it makes little sense for M to try to analyze ,4's program or to meddle with its tapes. 

In fact, for our purposes it suffices to give M the power to reset and rerun 

polynomially many times without inspecting or modifying its tapes. This is similar 

to the "blackbox" simulation, as defined by Oren [12], in the context of variations 

on the GMR [8] definition of zero knowledge. 

The GMR [8] definition of zero knowledge can be stated in the following way: 

An interactive proof system of membership in L is zero knowledge, 

if, for all inputs restricted to L, for all B its view of the communication in 

( ~  B) can be recreated, by a polynomial-time (or alternatively, expected 
polynomial-time) probabilistic Turing machine M, with an indistin- 

guishable probability distribution. 

Informally, B's view of the communication is the contents of its communication 

and random tapes, and two sources are indistinguishable if no polynomial-time 

machine can tell from which of them a certain string input to it originated (for formal 

definitions see [8]). The above definition assumes uniformity of the algorithms 

executed by the verifier and by the distinguisher. We note that this definition is not 
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suitable for cryptographic purposes. (The same observation is made independently 

by Tompa and Wotl [16], Oren [12], and in later versions of the G M R  paper.) 

It does not take into account previous information the verifier gathered, either 

from previous interactions with the prover or by other means, in his attempts to 

extract knowledge from the prover. We believe that in order to state that a machine 

cannot learn anything new, we need a formal tool of stating what a machine already 

knows. This is given by the knowledge tape. Recall that the contents S of KA 

represents the knowledge a truthful prover has when executing the protocol. 

Similarly, the contents of KB represents the knowledge the verifier has when 

executing the protocol. The simulating machine M does not have any knowledge 

tape of its own, but it can use the verifier's knowledge tape indirectly in the 

simulating process. Finally, the distinguisher may have access to KB, as we do not 

want even ~ to distinguish between the communication in (,4, B) and the simulated 

communication. We reformulate the GMR definition of zero knowledge in the 

following way: 

Definition. An interactive proof system of membership in L is zero knowledge, if, 

for all inputs restricted to L, for all B and KB its view of the communication in 

(,~ B) can be recreated, by a polynomial-time probabilistic Turing machine M, 

with an indistinguishable probability distribution. 

All protocols previously proved to be zero knowledge remain so even with respect 

to this stronger definition (see [12]). But this does not mean that the change to 

the original GMR definition is merely syntactical. Feige [4] demonstrated that there 

exist protocols which are zero knowledge with respect to the GMR definition, but 

are not zero knowledge with respect to our definition. 

As demonstrated in this paper, proofs of knowledge make perfect sense even when 

the set of I for which S exists is polynomially recognizable (and in particular when 

S always exists). We exploit this extra degree of freedom by defining unrestricted 

input zero-knowledge proofs of knowledge: 

Definition. An interactive proof system of knowledge is unrestricted input zero 

knowledge, if, for all inputs, for all B and KB its view of the communication in ( ~  B) 

can be recreated, by a polynomial-time probabilistic Turing machine M, with an 

indistinguishable probability distribution. 

Remarks. 1. If the common input I is such that there is no S satisfying P(I, S), 

then KA is empty, and X refuses to participate in the protocol. Thus the first task 

of M on input I is to decide whether there is any communication to recreate. This 

implies that a predicate P(1, S) can have an unrestricted input zero-knowledge 

interactive proof system of knowledge only when the set of I for which S exists is 

recognizable in random polynomial time. This triviality of the input language 

should not be confused with triviality of assertions being proved. The knowledge 

the prover must possess may certainly be nontrivial. 

2. To prove that a particular proof system is zero knowledge in our model we 

use the GMR [8] idea of resetting the simulation whenever it gets stuck. It is 
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interesting to notice that in proofs of knowledge the resettable simulation is used in 

two very different ways: in proving the soundness property we use it to extract from 

as much information as possible about S, while in proving the zero-knowledge 

property we use it to avoid situations in which B's questions cannot be answered. 

In proofs of membership, soundness is based on A's inability to satisfy P(I, S), and 

the resettable simulation is used only to prove the zero-knowledge character of the 

protocol. 

Theorem 1. Under the assumption that secure public key encryption schemes exist, 

any polynomial-time predicate has an interactive proof system of knowledge which is 

restricted input zero knowledge. 

Proof (sketch). Under the assumption that NP reductions are one-to-one and 

efficiently invertible, it suffices to consider Blum's zero-knowledge interactive proof 

system of membership for graph Hamiltonicity. For the sake of completeness we 

sketch the protocol. The common input I is the adjacency matrix of a graph G. 

I. ,4 chooses randomly TI[ public key encryption schemes. 

2. ,4 permutes the nodes of the graph randomly. 

3. ,4 encrypts each entry in the permuted adjacency matrix using a different 

encryption scheme. He sends the encrypted matrix together with the public 

keys to B, keeping the secret trapdoor information (the private keys of the 

encryption schemes) to himself. 

4. /~ chooses randomly one bit and sends it to A. 

5. IfB returns 0, ,4 reveals all trapdoor information and the random permutation 

chosen./3 can now decrypt the whole matrix and check that its nodes constitute 

a permutation of the nodes of I. 

6. If B returns 1, ,4 reveals trapdoor information only sufficient to decrypt 

a Hamiltonian cycle, leaving the other edges encrypted. From the matrix 

structure, it is easy to verify that a set of edges constitutes a Hamiltonian cycle. 

7. If B returns anything else, X stops. 

Steps 1-7 are iterated III times. If all iterations succeed/~ accepts. 

The executions of (/~,/3) on input I and random tape RA can be described as 

an incomplete binary tree which describes ,4's responses to /~'s requests. Each 

choice of RB corresponds to a particular path in the tree, where left sons correspond 

to /3  returning 0 (step 5) and right sons correspond to /~  returning 1 (step 6). Any 

son that corresponds to a problem ,4 does not answer properly is eliminated 

along with all its descendants, and thus the successful executions correspond to 

root-to-leaf paths in the full binary tree that survive the truncation. 

The machine M we construct explores this tree by repeatedly resetting ,~ to the 

root, providing the necessary steering requests, and verifying which one of the two 

sons of each explored vertex corresponds to a correct answer. It is easy to see that 

if the truncated tree contains any vertices with degree 2, M can find at least one 

such vertex in O(lll z) time. Since a nonnegligible fraction of the exponentially many 

leaves of the full binary tree survive by assumption, the polynomial-time M is 

guaranteed to succeed. M's success implies that it witnesses both a full decryption 
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and a Hamiltonian cycle of the same permuted adjacency matrix. From this M can 

easily reconstruct S - - a  Hamiltonian cycle in I. 

To complete the proof, we observe that the above protocol can be proved to be 

restricted input zero knowledge, using techniques as in [7]. []  

Interesting cases of unrestricted input zero-knowledge proofs arise if for any I 

the predicate P(I, ") can be satisfied, but it is nontrivial to compute explicitly from 

I an S for which P(I, S) is true. 

Theorem 2. Under the assumption that secure public key encryption schemes exist, 

any language in NP c~ co-NP can form the basis of a nontrivial interactive proof 
system of  knowledge which is unrestricted input zero knowledge. 

Proof. Since the problem is in NP, it carl be represented by the boolean satisfiability 

formula PI(I, S). Since the problem is also in co-NP, its complement can be 

represented by the boolean satisfiability formula P2(I, S). Consider now the boolean 

predicate P(I, S) = PI(I, S) v P2(I, S), which is satisfiable for all 1. By Theorem 1 

it has a valid interactive proof system of knowledge. Since the assumption that S 

exists is superfluous, the two definitions of zero knowledge coincide, and thus A can 

prove that he knows whether I is in the language or in its complement without 

revealing even this single bit of knowledge. [ ]  

3. An Efficient Identification Scheme 

An identification scheme is a protocol which enables party A to prove his identity 

polynomially many times to party B without enabling B to misrepresent himself as 

A to someone else. Identification schemes are closely related to the notion of digital 

signatures, but there are no messages judges and disputes: the proof of identity is 

either accepted or rejected in real time, and as a result the requested access or service 

is granted or withheld. This is one of the fundamental problems in cryptography, 

and it has numerous practical applications. The basic problem with most of the 

current identification techniques (ID cards, credit cards, computer passwords, PIN 

numbers, etc.) is that A proves his identity by revealing a constant S in the form 

of a printed card or a memorized value. A sophisticated adversary who cooperates 

with a dishonest verifier B can use a xerox copy of the card or a recording of the 

secret value to misrepresent himself successfully as A at a later stage. 

Our goal in the next two sections is to develop a truly practical scheme, which 

can be implemented in software in a fraction of a second even on the weak micro- 

processors embedded in smart cards. For  reasonable choices of the parameters, 

our scheme is very fast and requires only few modular multiplications. If factoring 

is difficult, the new scheme is provably secure in the strong sense of the Goldwasser 

et al. [9] "paradoxical scheme." 

Our scheme uses zero-knowledge proofs of knowledge. This way A can convince 

B that A knows the constant S (A's key), without revealing S itself, nor any partial 

information about it. The scheme assumes the existence of a trusted center whose 

sole purpose is to publish a modulus n which is the product  of two large primes 
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of the form 4r + 3. Such moduli (which are known as Blum integers) are used in 

a variety of cryptographic applications, and one of their most useful properties 

is that - 1 is a quadratic nonresidue whose Jacobi symbol is + 1 (mod n). After 

publishing n, the center can be closed since it has no further role in the protocol. 

Note that unlike the RSA scheme [14], everyone can use the same universal n, 

and no one should know its factorization. 

The identification scheme is a special case of Theorem 2, in which ,4 proves to 

/3 that he knows whether a certain number is a quadratic residue or a quadratic 

nonresidue mod n without revealing even this single bit of information. It is a 

slightly modified version of the identification scheme described by Fiat and Shamir 

I'5] (which leaked nothing but this bit). It incorporates several ideas from an 

unpublished zero-knowledge proof of quadratic residuosity due to Goldwasser, 

Micali, and Rackoff, and from the Galil e t  al. [6] "result indistinguishable" re- 

siduosity protocol, but it has much lower time and communication complexities. 

This efficiency is derived primarily from the use of the multiplicative properties 

of modular square roots to prove the simultaneous knowledge of the quadratic 

residuosity character of several numbers--something we do not know how to do 

with problems which are not number theoretic. 

,( 's key generation protocol in the new scheme is: 

1. Choose k random numbers $1 . . . . .  Sk in Z,. 

2. Choose each lj (randomly and independently) as _+ 1/S 2 (mod n). 

3. Publish I = I1 , . . . ,  Ik and keep S = $ 1 , . . . ,  Sk secret. 

The S i (which are witnesses to the quadratic residuosity character of the 1i) are 

effectively hidden by the difficulty of extracting square,roots rood n, and thus A 

can establish his identity by proving that he knows these S i. By allowing I i to be 

either plus or minus a square modulo a Blum integer, we make sure that I i can 

range over all the numbers with Jacobi symbol + t rood n and thus the S i exist 

(from B's point of view) regardless of 1/s character, as required in unrestricted input 

zero-knowledge proofs of knowledge. 

To generate and verify a proof of identity, the parties execute the following 

protocol: 

Repeat steps 1-4 t times: 

1. ,4 picks a random R, and sends X = + R z (mod n). 

2. B sends a random boolean vector (El . . . . .  Ek).  

3. ,4 sends the value Y = R. I-IEj= 1 Sj (mod n). 

4. /3 verifies that X = + yz "I~ej=l 1i (mod n). 

/3 accepts the proof if and only if step 4 was carried out successfully in all t iterations. 

Let P(I ,  S) be a polynomial-time predicate, where I and S are tuples as defined 

above. The predicate's value is true if and only if for all 1 < j < k the following 

condition holds, 

IjS f = __+ l (modn). 

We formalize the information the public center publishes as a family of predicates 

C(1) which any input 1 must satisfy, and which is testable in polynomial time. In 

the context of our identification scheme, C(I)  is true if the modulo n implied by I is 
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the same n which the center publishes. This modulo is known to be a Blum integer, 
as the center is trusted to follow the specifications of the identification scheme. 

Definition. An interactive proof system of knowledge is unrestricted input zero 

knowledge (relative to a trusted center), if, for all inputs satisfying C(I), for all B and 

KB its view of the communication in (/1, B) can be recreated, by a polynomial-time 

probabilistic Turing machine M, with an indistinguishable probability distribution. 

Theorem 3. The above protocol is a proof of knowledge of P(I, S), and is un- 

restricted input zero knowledge relative to a trusted center, for k = O(log log n) and 

t = ®(log n). 

Proof (sketch). To prove that ,4's proof always convinces /3, we evaluate the 

verification condition: 

r I11j-- g 1 7  St I - I  It 
Ej=I E,=I Ej=I 

=RE YI ( s l i t )=  + R 2 =  4-X (modn). 
Ej=I 

Next we show that whenever B accepts A's proof with nonnegligible probability, 

M can print out all theS~ with overwhelming probability. Let T be the truncated 

execution tree of (A, B) for input I and r a n d o m  tape RA. Unlike the tree in 

Theorem 1,/~ may ask 2 k = (log n) °"~ possible questions at each stage, and thus 

the vertices in T may have potynomially many sons in terms of]II. A vertex is called 

"heavy" if its degree is larger than 2k/2 (i.e., if more than half the executions of 

(,if,/3) at this state are successful). Our goal in this part of the proof is to show that 

all the S t can be computed from the sons of a heavy vertex and that a polynomial- 

time M can find a heavy vertex in T with overwhelming probability. 

Let V be any heavy vertex in T and let Q be the set of queries in the form of 

boolean vectors (E 1 . . . . .  Ek) which are properly answered by ,ft. It is easy to show 

that for any 1 < j < k a set Q of more than 2k/2 boolean vectors of length k must 

contain two vectors (E'I, . : . ,  E~,) and (E'~ . . . . .  E~) in which Ej = 0, Ej' = 1, and 

E'~ = E' i' for all i # j. Since both queries were properly answered, the two verification 

conditions imply 

X ' =  + Y'Z. I"[ It (modn) 

and 

X" = 4- y,,2. I-[ II (mod n). 
E~'=I 

However, ,ff must choose X before he obtains/~'s query, and thus X' = X". By 

manipulating the equations we get 

(y,,/y,)z = 4- 1/I t (mod n), 

and thus Y"/Y'  is the desired Sj (recall that n is a Blum integer, and thus exactly 

one of + I/I t and - 1/I i has a square root). 
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Next we show that at least half the vertices in at least one of the levels in T must 

be heavy. Let ~i be the ratio between the number of vertices at level i + 1 and the 

number of vertices at level i in T. If "i < (3/4) 2k for all 1 _< i < t, then the total 

number of leaves in T (which is the product of all these ~i) is bounded by (3/4)t2 kt, 

which is a negligible fraction of the 2 k~ possible leaves. Since we assume that this 

fraction is polynomial, a~ > (3/4)2 k for at least one i, and thus at least half the vertices 

at this level must contain more than 2k/2 sons. 

To find a heavy vertex in T, M chooses polynomially many random vertices at 

each level, and determines their degrees by repeated resets and executions of ,~. 

To ensure a uniform probability distribution in spite of the uneven degrees of the 

vertices, M should explore random paths in the untruncated tree, and restart 

from the root whenever the path encounters an improperly answered query. Since 

a nonnegligible fraction of the leaves is assumed to survive the truncation, this 

blind exploration of T can be carried out in polynomial time. 

The last part of the proof deals with the zero-knowledge aspect of the protocol. 

,4can easily cheat/~ with probability 2 -k  per iteration by guessing the (El, . . . ,  Ek) 

vector, preparing X = _+ R 2 I-IEj=I Ij (mod n) in step 1, and providing Y = R in 

step 3. By using the GMR [8] idea of resettable simulation, M can mimic the com- 

munication in (,,~/~) with an indistinguishable probability distribution in O(t. 2 k) 

expected time, which is polynomial in Ill by our assumptions on k and t. Since the 

existence of S~ which satisfy IjS~ = _+ 1 (mod n) is guaranteed for any Ij with Jacobi 

symbol + 1 (recall our assumption that everybody knows that n is a Blum integer), 

and this property is checkable in polynomial time, the protocol is unrestricted 

input zero knowledge. [ ]  

An interesting modification can eliminate the public key directory and lead to 

a "keyless" identification scheme. It assumes that the trusted center (which knows 

the factorization of n) issues smart cards to users after properly checking their 

physical identity. No further interaction with the center is required either to generate 

or to verify proofs of identity. In this version of the scheme the center creates a string 

I which contains the user's name, ID number, physical description, or any other 

information provers or verifiers may want to establish. The only limitation on this 

string is that its length is logarithmic in the length of n, resulti/ag in a polynomial 

number of possible identities. Thus, the greater the amount of information needed 

in order to recognize a user uniquely, the longer n must be. (This limitation on the 

length of the string is theoretically necessary for subtle reasons which are mentioned 

in the next paragraph, but in practice it has very little significance.) The public 

keys Ij are derived from I, by applying a randomly chosen but publicly known 

deterministic transformation T(I, j), and the secret square roots Sj are computed 

and stored in the card by the center. We assume that the smart cards are built by 

some tamper-free technology, and thus the contents of their memories cannot be 

read or copied even by the users possessing the cards. When A wants to prove his 

identity, B can derive the Ij directly from A's claimed identity rather than from 

a public key directory. The actual identification protocol remains the same as in 

our original scheme, and it convinces B that A knows the Sj that correspond to 

those lj. These values could only be computed by the trusted center when the real 

A requested a card. 
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The above convenient scheme offers provable security. No outsider is expected 

to produce a smart card by his own, as there is negligible probability that the set 

of numbers to which he can extract modular  square roots intersects the set of 

possible Ijs. This claim is proved by a simple counting argument, assuming that 

the number of possible identities is polynomial  in I nl and that the transformation 

T is chosen randomly from a set of n possible transformations. The identification 

protocol, being a proof of knowledge, guarantees that provers do not cheat verifiers. 

The zero-knowledge property guarantees that no information leaks, and thus the 

users of the system gain no advantage in trying to copy or forge smartcards.  

We want to point out the role of unrestricted input zero knowledge in this scheme. 

Consider the possible choices for the transformation T. In cases of unrestricted input 

proofs of knowledge, we may choose T by randomly choosing a fixed offset m and 

constructing I i = I + j + m mod n (if the result happens to have Jacobi symbol - 1 

it can be multiplied by a standard number  with Jacobi symbol - 1). Thus there is 

no problem in chosing T, and the transformation gives out no information. On 

the other hand, if lj needs to be of some special form (quadratic residue), then the 

transformation by itself might reveal information. If we try to use the fixed-offset 

transformation as before, we run into trouble if the result happens to be a quadratic 

nonresidue with Jacobi symbol + 1. This number cannot form the basis of a restricted 

input interactive proof of quadratic residuosity, and so the trusted center must 

discard it. From this we can deduce that the result was not a quadratic residue. It 

is true that this Ij was really computed at random (as m is chosen at random), and 

so knowing that it is a quadratic nonresidue does not constitute useful information. 

But this same phenomenon is likely to occur for many different strings I, and 

as these strings are not independent among themselves, we get many quadratic 

non-residues with dependencies which are difficult to analyze. These kind of prob- 

lems were the motivation to introducing unrestricted input protocols to identity 

schemes. 

4. The Parallel Version of the Identification Scheme 

Interactive proofs are usually iterated versions of some basic protocol with a con- 

stant number of elementary operations and a constant probability of cheating. This 

can be done either by repeating the protocol as a whole (sequential execution) 

or by repeating each elementary operation by itself (parallel execution). Parallel 

executions change the direction of the communication only a constant number 

of times (which is preferable for theoretical as well as practical reasons), but 

unfortunately they are not zero knowledge for very subtle technical reasons. 

The problem of sequential versus parallel executions of protocols has attracted 

considerable attention, and was dubbed "the case where intuition fails" in the 

literature. The information/3 can compute as a result of his parallel interaction 

with A seems to be very specialized, and thus it is natural to speculate that parallel 

versions of zero-knowledge protocols release only "unusable" information. We 

formalize the above speculation and prove that our identification scheme is secure, 

even if the parallel version of the identification protocols is used. 
We observe that identification schemes are typically composed of two stages: 
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1. Initialization. In this stage a link between each user U i and its public key K i 

is established (e.g., via distribution of directories by a trusted center). 

2. Operation. In this stage any user Uj can demonstrate its identity by performing 

some identification protocol related to its public key Kj (e.g., demonstrate 

knowledge of a modular square root of Kj). 

Let h be the security parameter of the identification scheme. As we are dealing 

only with polynomial-time users (verifiers and provers), the lifetime of a system is 

limited by some polynomial in h. Likewise, the number of users is polynomial in h, 

as otherwise no directory could be created. We do not want to fix the number of 

users a priori, and so we define: 

Definition. A polynomial ensemble of users PE maps for each security parameter h 

a polynomial number (in h) of polynomial-time (in h) probabilistic Turing machines 

("users"). 

A user is called a "good" user (denoted by U), if throughout the lifetime of the 

identification system it does not deviate from the protocols dictated by the scheme. 

An ensemble of users may contain users which are good and users which are not. 

The security guarantee is given only to the good users. 

Definition. An identification system scheme is secure if for any polynomial ensemble 

of users the probability of an impersonation event in a randomly chosen identifica- 

tion system is negligible. An impersonation event is the event that at least once 

during the lifetime of the system one user impersonates some other good user. 

More formally: 

VPE, Vc, 3N such that Vh > N, VUI, Uj, i :~j, 

Prob[(Ui,/3) accepts Kj] < 1/h c. 

The probability is taken over the coin tosses of the complete history of the system 

up to the time of the attempted impersonation: the coin tosses of Ui, of Uj, of/3, 

of the trusted center (if there exists one), and of all other users. In particular, Ui is 

not expected to succeed in falsely representing himself as Uj even after verifying 

many real proofs of identity of Uj. This means that Ufs proofs of identity are 

not expected to leak any useful information. This does not mean that the proofs 

of identity are formally zero knowledge. In fact, there are two main differences 

between protocols which are zero knowledge and protocols which release no useful 

information (at least in our context of identification schemes): 

1. The communication tape resulting from zero-knowledge interactive proofs 

must not contain distinguishing features which are difficult to reproduce by 

"ignorant" polynomial-time machines. With protocols which release no useful 

information we only demand that if such distinguishing features do occur, they 

would not help the verifier in extracting the prover's secret knowledge. Note 

that we do not exclude the possibility of disclosure of partial information, but 

again, as long as this partial information is not sufficient in order to perform 

the prover's part of the protocol. 
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2. The zero-knowledge property must hold with respect to all large enough 

common inputs. With "no useful information transfer" we no longer have 

this universal quantification over the input strings. Instead, we include the 

choice of the common input in the probability space. Thus, these protocols 

protect the privacy of the prover's extra knowledge only for almost all large 

enough common inputs. This change has no significance in most cryptographic 

applications, as the formal tool cryptography uses in order to define as "secret" 

the extra information the prover has, is by letting it be chosen at random. 

The following lemma demonstrates that the parallel version of the identification 

protocol retains the completeness and soundness properties of the serial version of 

the protocol. This is a restricted analogue to Theorem 3, as we do not prove the 

zero-knowledge property. But as it turns out, this lemma is the first step toward 

proving that the parallel version releases no useful information. 

Lemma 4. The parallel identification protocol is a proof of knowledge of P(I, S) 

for k = O(log log n) and t = ®(log n). 

Proof. The proof of the completeness property is exactly the same as in the proof 

of Theorem 3. 

Soundness: we prove that A must know a modular square root S,, of each one 

of the input strings I,, in order to have nonnegligible probability of executing (A,/~). 

Without loss of generality, we only show how M can extract S 1, by playing the 

role of/~ in a polynomial number of executions (A, M). Recall that M's advantage 

over /3 in extracting knowledge from A is his ability to reset A with the same 

random tape. 

Assume that the contents of A's knowledge tape and random tape are such that 

the execution (A,/3) has probability of success e. The probability is taken over the 

contents of /3 ' s  random tape RB, which contains kt bits. Logically divide RB 
into two parts: RB1 which produces t bits for E l to E'~, and RB2 which, for each 

j, 2 < j < k, produces the bits E) to E}. The possible outcomes of the executions 

of (A,/3) can be summarized in a large boolean matrix H whose rows correspond 

to all possible choices of RB2, its columns correspond to all possible choices of RBI, 
and its entries are 0 if B rejects A's proof and 1 if/~ accepts A's proof. Note that 

this value is well defined since the executions become deterministic once RA and 

RB are chosen. 

To extract S 1, M tries to find two l's along the same row in H. M can probe H 

by executing (A, M) with properly chosen "random" strings RB 2 and RBI, and 

its goal is to minimize the number of probes. 

The fraction of l's in H is at least e, but their locations can be chosen by 

an adversary who knows the probing strategy and tries to foil it. We call a row 

"heavy" if the fraction of l's along it is at least e/2. Since the width of H is 2', 

and e > 2 -~+~ (by our assumption that the probability of success is nonnegligible), 

a heavy row contains at least two l's. 

The obvious probing strategy uses O(1/e 2) probes in the following way: 

1. Choose O(1/e) random rows. 

2. Probe O(1/e) random entries in each row. 
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Since the fraction of heavy rows in H is at least e/2 (the worst case being e/2 

rows which are all 1, and the rest of the rows with a fraction of l 's slightly less 

than e/2), the first step chooses at least one heavy row with constant probability 

and the second step finds two l's along this row with constant probability. However, 

a better probing strategy is: 

1. Probe O(1/~) random entries in H. 

2. After the first 1 was found, probe O(1/e) random entries along the same row. 

Since at least half the l's in H are located in heavy rows, this strategy succeeds 

with constant probability in just O(I/e) probes, which is polynomial in Ill by our 

assumption that e represents nonnegligible probability. 

The two successes found by this probing strategy are located in the same row, 

and so M can extract $1 by manipulating the verification conditions in a way similar 

to that used in the proof of Theorem 3. []  

Before we turn to the main theorem of this section, we sketch the intractability 

of factoring (IF) assumption: any family of boolean circuits, which can factor with 

nonnegligible probability properly chosen integers n (multiples of two primes of 

approximately equal size, each with large divisors of the order of its multiplicative 

subgroup), must grow in a rate faster than any polynomial in the size of the input. 

Theorem 5. Under the intractability of factoring assumption, the parallel version of 
the identification scheme is secure. 

Proof. The lifetime of our identity scheme is polynomial in its security parameter, 

and so is the number of users. This implies that the complete history of the system 

can be simulated by one polynomial-time procedure P. This procedure may be 

nonuniform, as it must incorporate the description of the algorithm each user runs, 

and this may change for different sizes of the security parameter. Thus P may be 

viewed as a family of boolean circuits with polynomial growth rate. By the IF 

assumption, the probability that P factorizes a large enough n which is properly 

chosen by the trusted center is negligible. 

Assume that the identification scheme is not secure. This means that we are 

expected to reach a stage where (U~,/3) has nonnegligible probability of success on 

input K i, where i # j. By Lemma 4 this implies that with overwhelming probability, 

U~ can compute modular square roots for any one of the k numbers Im comprising 

U;s public key. We prove that the square roots that U~ knows are independent of 

the square roots that ~ knows, and thus with probability 1 - 1/2 k the two users 

hold between them all modular square roots of at least one input number. This 

implies factorization of n, and contradicts the IF assumption. 

Each +Im has four square roots mod n, but only two of them are known to 

(otherwise it could have factored n by itself). We claim that even an infinitely 

powerful/~ cannot determine from the X's and Y's sent by ~ during the execution 

of (~ ,  ~g) which square roots ~ actually uses. To prove this, consider the defining 

equation for Y: 

Y = R "  1~ S, (modn). 
g l= l  
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If ~ replaces Sm by one of the other three square roots, the Y is multiplied by one 

of the three nontrivial square roots of 1. This effect can be canceled by dividing R 

by the same square root, which leaves X = + R 2 (mod n) unchanged. Since the R's 

are randomly chosen, ~ produces the same X, Y values with the same probability 

distribution in both cases. This symmetry argument proves that ~ cannot leak 

t o / ]  during the executions of (~,/~) which square root of Q he can compute from 

the Sm he knows. [ ]  

A crucial argument in the proof of Theorem 5 is that in order to execute U/s 

protocol, U~ must know (or have a good chance to compute) some square roots. 

Thus, in the proof of the security of the parallel identification scheme we reap 

the reward of having defined the notion of proofs of knowledge. 

Finally, we want to discuss improvements to the efficiency of the parallel identi- 

fication protocol. In Lemma 4 we restricted k to O(log tog n) and t to ®(log n) 

in order to emphasize the similarity between the lemma and Theorem 3. But in 

Theorem 3 the restriction k = O(log log n) was only used in the proof of the 

zero-knowledge property. As Lemma 4 does not attempt to prove this property, 

the condition on k can be relaxed to k = O(log n). Now consider the restriction 

t = f~(n). This was necessary in the proof of Lemma 4, because the goal was to 

demonstrate that the prover knows a modular square root of each one of the Ira's 

comprising the input string. But a slight change in the proof of Theorem 5 shows 

that the proof carries through even if the prover Ui knows a square root of a product 

of the numbers in just one subset of the Ira's. If we change the goal of Lemma 4 to 

proving the above, we can relax the condition on t and replace it by a joint condition 

kt = ®(log n). The proof of the lemma is only simplified, as, instead of the boolean 

matrix H used in the proof of the lemma, we have just a Boolean vector. 

The curve kt = ®(log n) essentially represents a trade between memory and 

randomness. For  larger values of k, the prover needs more memory in order to save 

square roots of more numbers. For  larger values of t, the prover needs to choose 

more random numbers R, as t corresponds to the number of iterations. Thus 

the interplay between k and t allows flexibility in the choice of parameters for the 

scheme. Additional information on the practical aspects of the identification scheme 

and its optimized implementations can be found in [5]. 
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