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Abstract

.

Singularities of expansions in the symmetry breaking

i. -  .  parameters of chiral and scale asymmetric theories  are

.    .3.

studied, in tree approximation, in polynomial Lagrangian

        models. The singularitiesare related   to the appearance
-

of zero mass scalar fields, not necessarily Goldstone

4...           -

particles,   at the radius rof convergence  of the expansion.

Methods of avoiding these singularities are presented.
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I.  Introduction

Analyticity of Nambu-Goldstone symmetry realizationsl  and  the

;              ·  possibility of expansions  in symmetry breaking parameters have recently
2

3

'1

. .      been studied  in the context  of pion loop diagrams and the solution, in

-                                                                          4-7
i  · tree approximation, of specific polynomial Lagrangian models built

b.    1

1.,

tl.  on.(3,3 )0(3 ,3).fields.8  In the latter approach, with which we are

:2       concerned here, linear but spontaneously broken realizations of chiral

and scale symmetry result in partial conservation conditions with pseudo-

,                scalar masses determined quite simply by the symmetry nature of the

9-11
ground state and the form of the symmetry breaking part of the Lagrangian

whereas the scalar masses, as well as details of the spontaneously broken

solution are highly model dependent.  Such models have a wide variety of

solutions but are limited by such general considerations as those of

12
Okubo and Mathur, or, apparently equivalently in the tree approximation,

5,11
by positivity requirements on the square of the masses.  An actual

4-7,11,13
fit to all meson masses further limits the Lagrangian and its

spontaneously broken solutions by constraining the coefficients of the

various symmetric and symmetry breaking terms.     Thus  if one arranges  the

number of such terms to be small enough, all coefficients may be deter-

mined, resulting in a complete theory whose analytic properties may be

studied in various limits.  It has been suggested that the properties

found may be more general than the specific models from which they come.

Here we wish to point out some general notions regarding analyticity in

the symmetry breaking parameter of the one point function (and hence,

usually, of the n-point functions) which guide one in constructing

Lagrangians and imposing analytic structure, and apply these notions
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· to current models of chiral and scale symmetry breaking.  In general, we
t.

find that a singularity appears when a scalar mass vanishes, associated

perhaps with an infrared divergence.  (Consequently, the Nambu-G
oldstone.

r       - .:«  ·:- '  mechanism as applied to scale symmetry usually fails to have a power

· series expansion in the scale breaking parameter.)  Exceptional cas
es

i·     exist, however, which allow a smooth limit when, by careful planning,

r.

the singularity is canceled by a zero.  In particular, we wish to
 dis-

,,

cuss analytic properties of the case in which
<olu810> 2 04

where bilinear

9,11
(non-pole) terms are required in the symmetry breaking part of the

. 9,14
Lagrangian, allowing (1,8)0(8,1) contributions, and non-unique

1. . . .     
            .

.

c-parameters.

The variety of symmetry breaking structure and analytic behaviors

possible in these models suggests that while it may be very difficu
lt to

 abstract frbm them, a priori, detailed predictions on the possibili
ty of

1

-

the symmetry breaking form of the non-pole terms, they will remain use-

ful probes of chiral breakdown provided external input beyond scal
ar

'
-                                             masses   and PCAC conditions are iniposed.

.

I.

II.  Connection between Singularities and Zeros of the Mass Matr
ix

Let us consider a Lagrangian £([9],6) which is a polynomial in 
a set

of scalar and pseudoscalar fields 9i'i = 1,2... and linear in a symmet
ry

breaking parameter 6.  Then

d 3£ 3   3£ d(Pj .  8  82

dR 3*  - 3*; 3  -FE - ZE 3*I
(1)

For fields 9i (6) which are solutions of the extremum equations

,
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1 1

n
.82

(2)

. Bic,)     #,  -3*Ic{'1'},6) -0

d    82
we have -r - = 0 and thus
..       . .   au (,cpi

.:.:      32£  )    d/j       /  3    32\
0                              (3)

(89.89. ). --do +  (35 3*7)- =
.,:'.';, i -- ·   . .  J      1  9.

....

.1 9

« · t

or

1.  :  .                                                                                                         d *i                                       /    8 321 , 8  8£\
0                                                                                                                                        (4)13                                  1.-33 " IM31-i jl(35 3-9::1=Mii(35 3©1-

't

,·. i J (P .1 9

2
where    .   is   the (mass) matrix, assumed   here   to   have been trans formed

1J

-to the diagonal representation. For normal fields, pi - 0, (4) requires

ca  8£\

    \3K 39.i)*  = 0.   For
the fields we are interested in,  % (6)  0 0,

d-9,(6)
2 .  =  O  <=>·· a  singularity  in 1

unless the singularity of Mi  is
11                          d 6   '

/3  82
canceled by a zero of (25  N- - or, conversely, the singularity in

1
CP

-

dE i (6)
/    3        as                                                                                                                                                                 d 4

d 6         is   carried   by    35 3*- - Intuitively, the singularity in -
d 6

19

ii -
.associated with a zero of *12  occurs when the theory is about to

2
become unstable as a (mass)  passes from a positive to a negative value.

More specifically, suppose we characterize the leading behavior of a

15 -
vacuum solution   90(6) near a possible singulir point 6 by the power

law (i) *0(6) = ott B (6-6)11 with 71 > 0 or (ii) 9(6) = B (6-6)11, 71 0 0,

which includes the root, pole, or regular behavior possible in polynomial

f·

Lagrangians.  For case (i) 0 0 0, ·11 > 0, we have <(6) =  (6-6)9-1 .

/ 8  82\      BA      
N.1

With 2 = 2     + 6.£B' \35 3*-/1-  = Gf)-  m  E
Cp(6-6-)TIP, where N is

sym 0
90 090 P=0

the highest power of 9  in ZB' where SB is the symmetry breaking part of

2.  If C  0 0, and this is always the case if only linear breaking is
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·.    allowed so that operator PCAC conditions are exactly implemented, 
then a

- zero of / requires a singular *A and conversely. Otherwise M   =
0000

-    (p- 1)7 1
00(6-6) , where p is the lowest p for

·which C  0 0, and
M vanishes

(11>0) irrespective  of  TI  but a singularity  of  (p   is not implied .     For             -

- 9(q-2)+1

;
. case (ii), Eq. (4) requires 6100 = (6-6) where q is the lowest

r

'..':   :.. (highest) power  of  96  in the expansion of £8(ED  when  11 > 0  (TI < 0).    For

'the interesting cases q = 1,2,3,4 the requirement + 0 is equivalent
00

to 9 < 1, n unrestricted, 1 » -1, 9 > -* respectively._ Thus w
ith only

. linear breaking,  11 < 1 and (p is necessarily singular at M2   = 0, and
()C)

conversely.  M2 + constant requires TI = 1, TI = 00, TI = -1, ·TI = -* for
14·'                      00

- 1-71
I. i.. q = 1,2,3,4 respectively.  For q = 1, Moo + (6-6)    and pole

s of 40 are

.,

associated with zeros of M  , a regular i with. a non zero mass, 
and root-

00

type behavior of i with root-type vanishing of M2  for TI < 1.  For q = 2,
00

M2  + 0(6 -6.) independent of TI and there is no necessary connection.  For
00

q=3 and 4, the analysis proceeds in a similar manner.
i.

:                     To summarize, when the Lagrangian symmetry breaking i
s linear in

fields, a vanishing mass of one of these fields implies a singul
arity

1 in its vacuum expectation value and· conversely. When higher powers of

the fields are contained in the symmetry breaking part of the Lagrangian,

· it may be possible to avoid the connection between singularities
 and mass

zeros.

In the following section, we study a number of simple models.
  The

' emphasis is placed on models which have symmetry breakers with t
wo or

»          more powers of the basic fields because this type of b
reaking has re-

ceived comparatively little attention in the literature and be
cause cases

in which zero mass <4> singularity can be studied in detail.
  The SU(2)

models are, of course, for illustration only, and no physical
 applications

are implied.
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III.  Singularities in SU(2)-, Chiral SU(3)-, and Scale Breaking Models.

P:

1 '

i.'.i.
. The following examples illustrate the phenomenon discussed in Sec.II.

f.i   

i

.  1                           -Let 91,2,3 be..calar  fields with 99,9, 5,2.   Then, with       '.

1£·- 33119,3 9. - B (02-a2)2 + 6(01 + p*203) = S:s + 628
(5)

1 1.4 1

where £s has SU (2) symmetry and Z and £B have I3 symmetry. The extremum
i

condition has the Goldstone solution

91   -0,    -0

r

,                                                                                                     
           -            12   6  +   lf-(112A)2   +   4 A-   +   a2)]12

·.                                                                                      (6)
93 = 8B k:L\  4B / \2B

which is singular at 6, where

1                                                             5,     (* 57 + 4(if + a') - 0                                   (7)-

-  -,     22 T                                                     (8)
. 4<3(6'.= 8B -

The mass matrix is diagonal with

M l = M 2 = 6 (P93 + 12)

M2  = 3p 6%3 + 46 + 8Ba2                     (9)
33

1;                 M 1 = M 2 +O a s 6+O a s required by the Goldstone theorem and M2 (6)
33

/ 3  82\
= 0 as required by (4) because \35 21-     = 293 + 3pcp  does not in general

r3  3

vanish at the singular point. The special case p = 0,6 =

-21182, 43(6) = 0

behaves like



:t   !.1.
5 91  1.,

t. i

1. i

, 1\

11                                   : 41 = 0((83)08)

43=  0 (6-6)

1/

,/(3# #)- - 0(C,-T),) ..(10)
T3   (P    .. -

/ a 8£\
so that near  6, (4) requires again a zero mass because  ir.r- 1   does

joo 093' 

 

not diverge-or, conversely (4) requires a singularity in
93(6)

because

/8. 32\                            2
p.

.(3-K 3-- )   does  not
cancel thel zero of M33.  The interesting special case

6 = 0, a2 = 0 with %3(6) =
0 satisfies (4) in exactly the same way (see

below). That exceptional cases exist in which a singularity  of  *(6)  does

not imply a vanishing scalar mass is illustrated by the Lagrangian

2 =  il 'Pit'pi  -  B (02-a2)2 + 64 (11)

f.32 .which has a Goldstone
solution 91 2 0, 92 - 0, and  3(6) = 4 B-6 with

d93(6) / 3  32\            3\both
and   (3; 3--1  of .0 (6-6)-2 1  near  6  =  B  .but  with  M 33  =  4Ba2,d6       \ 0  93'4

independent of 6.

    Let us now consider the implications of (4) for qi(6) 0 0 realizations

of scale symmetry.  In this case, |M 1 + 0, whether the scale symmetry is

realized conventionally or in the Goldstone manner, when the scale break-

ing (proportional to 6) is shut off. Thus |M 1 is necessarily zero at

/ 3  32
6 = 0, requiring EP  to be singular at the symmetry point

unless  35 3IF  
i  i

carries the singularity.  Consider for example the Lagrangian (5) with

2
a  = 0.  Then S is scale invariant when 6 = 0.  A spontaneous broken

solution is 91 - 0, 92 - 0, and



..

r---'= 3p& , 11-73p6\12 ..46-1                   -  - -  "            '.
s                '  93.    84 * FL< 4[1/  1. =-1

which has a branch point at 6 = 6 = O where 43 (6) · = 0.   Here          -  .

4..   ....::;   .    ....       1                          ..Mi3  =  0 (6)

- =  0 (6-2)
d 6

·3     1
= 0(62) (12)

35 -3 

-2
·so that the zero of M

(where 93
is coupled linearly to 0 , the energy-

33

momentum stress tensor) requires a singular 93(6) and conversely.

-                                        -2
That the necessary singularity in M can be canceled, by careful

33

planning, is illustrated by the Lagrangian

S  =   #aucp. 3   9.    -   B '14  +
6933

(13)
1 11 1

-        36
which  has an asymmetric

vacuum  01   5  0,   42   5  0,   93  =  Kii  with

 43  -  0 (62)

0 -    / 3-82\       2

(35 3 ).  =0(6)                         .S        .    ...   (14)

In this case, both scale symmetry and SU(2) symmetry breakdown is realized

smoothly in the symmetry breaking parameters.

We now discuss the SU(3) a-models in the light of this analysis.  The

basis fields are the eighteen scalars and pseudoscalars (ui,vi), i = 0,...8,
0

*    .L
which span a (3,3 )0(3 , 3) representation of SU(3) X SU(3).  With I2' I 

16

and  I the usual bilinear, trilinear (positive parity), and' quartic

scalar SU(3)XSU(3) invariants, the original model of L&vy8 restricted to

SU(3)XSU(3) [but not SU(2)] linear breaking is



9

'.  . £ - euitui + *81'vit'i - 01'2 - a,14 - 1'4 - V,4 + 6.o - -   <  (15)

The extremum conditions have a solution Gi(6) = u (6)6., v. - 0 where· 0    10   1

I. .    82.     3

UO: v i 3-u- = -uo(402 + -1.9) - ui 4,/AB - uo(2«1) +
8 (16)

With al = 4B2/(02 + 4/3y), Go(6) has a branch point at      :        ·t.   .,· .'

3 F
6.=   -1/27(48B/(02  +  4/3y)    where   G (6)   =   -,/AB/3(02  +  4/3y)   =.+     46.

/ 8  3£\
At this branch point (35 3FAY  = 1 so that (4) requires a singularity of

0 0
2

M- , which is indeed the case, as a simple calculation will verify.00

, '  Suppose we now drop the BI  and Ou terms in (16) and consider the
1- 0

approach to the scale limit 5. = 0..Then we have a solution Go(oll) =      1

/   -2 5.   '
1

'=1: 1/ a24.4/3Y with a
./SI

branch point.   Here  33  3rAI  = 0 6/6 ) so that
1...

0 0

(4) requires M o to vanish like 0(5,)·  In this case, the scale limit -

is accompanied by .a singularity of the theory.

'..· Again, special cases exist in which the zero of M    does. not require
00

a singularity of Go.
Consider for

example the case al = 0 in (15), dis-

17                            4-6
cussed extensively by Carruthers and Carruthers and Haymaker. With

no-chiral SU(3)XSU(3) breaking   (6  =  0),  we  have a
solution  ui (B )   = .   --           -  ·.-

6iouo (B),  vi (B)   -  O,  with  u-0 (B)
a solution  of

/

u2(2/61' + (02 +.4/3y)uo) = 0 (17)

As pointed out by Carruthers and Haymaker,6 the u  E O solutions are
0

18
unstable against chiral perturbations. For   GI (13)   =   -2,/613 / (cr2 4/ 3y)   =   0 (13),

we   have   a non-s ingular theory because  M2      =   0 (B2) (which never develops
00

5    /8  82\       2a negative Omass) and = 0(B ) so that the necessary zero of

(3F .3 1160

M    in the scale limit is canceled by (3  3  ,1- ·
00 UU /U

0  0
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    ·  ·'  We stress.that the scale limit, because of (4), is a delicate one

 t        ·, which, barring cancelations, is singular in the scale breaking parameter.

This analysis of the relation between singularities and mass zeros

+   was motivated by and has been a useful guide  in a numerical study,  in

tree approximation, of spontaneously broken solutions of Lagrangian (15)
 

                                                  82£ 
and its generalizations.  In the simplest cases

3902-1%0 - 0 is equivalent

to the statement that    is a multiple root of the extremum condition if

' /
2 is, a polynomial.  The analysis is not, however, restricted to poly-

nomial Lagrangians, but is equally applicable to systems like

2
2

Z  =   123119.3  9·   -   e9    +   092  + 693
(18)

1  1 1

with a ground state dolution 43 = '/en (01 + 6) and M2 = M  = 26   M2   =11 --22 ' 33

4(0 +  6)  en  (0 +  6).     It is unclear whether such branch points are related

3
to those of Li and Pagels. We are currently studying this question in

the chiral SU(3) context.

We close by discussing several cases in which the expression (4)

itself fails because of an implicit dependence of £ on 6, not only through

the fields 9i' but also through the coefficients of the various terms in

£.  For example, with

Z = AL    - CY I2-BI3-YI4+6[a(uo+cu8)+d(Uo+CU8)
] (19)

-kin

* *

where  U   and  U8  are  the   (3,3   )@(3 ,3) decomposition  of the tensor product

19
of the basic multiplet with itself,   we have a solution ui(6) = u (6)6. ,10

 i 2 0, provided the constraint

8 ca - 44/t de
6,1=0 (20)
0/

is maintained, with G(6) a solution of

1.
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-1   -0-=,m10 +4.16'.20+163Yu: - 'a.- 85'.1'S-u,.        1-.-1-   -*..   1(21)
I » :

-.   .  I,i''j"se "" equations can '· regarded as determining E.(') an' ·(').   Thus  -        ,
.  /the form (4) is modified to

1

0       ...  ...  1 2 -, dc 3£1-          /82£ i  duo    /82 ga    3  6£,

35(3 /66   =       =    %72/6  -3E  r   (3Kd6         33  3--/u               .                   .      -1-.(22 )0 0

j.· ·':·... -.  or                 ·   ...

1111.   .  . »Ill»  ..1 -111*: Idu, -(: %+  3 2'1"        .         
0/ 0

d 6 . 2
00

The singularity analysis then proceeds as above, but from (23) rather

··.i  than   (4).      (In this Lagrangian, for example, there   is a spontaneously

- ' «       ' broken solution in which /0 0 0 a t the branch point of Go, and Go does

. not have a singularity at M   = 0. ) Consider now the situation in which
00

' -·'  -, .    , ':'     scale symmetry and chiral symmetry are realized S imultaneous.ly, that is

I.   ...   £ = 5 -0 T2-YI +6[a (uo+cu8)+d,(Uo+CU8)+eG8]
(24)

.;    -kin    2-2      4

where for generality we have included a (1,8)0(8,1) non-pole term

G' = d ..(u u +v v ).  The extremum equation is
8     8ij  i j  i j

16y

zir  =   0   -   -u (402   +  --3)   +   6a  +   8 - 6duo
(25)

0

subject to the constraint

6(ca - 4  Cdu  + 2e 3- u ) = 0                        (26)0

32, -1   6
which is necessary to maintain -1- .. = 0.  Thus, a =.u c  [445Cd - 24 el

au8'u,v                 0

and we have the solutions
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1...

.   .:i: 4-02 : 16.'/ i- - ''-u·.1 --a/8'9 -t':<,fed,-e)  1

f. ./.(ii) .4«2 + 16Y/3 f°, u« -0, a-0
4                     2

22. (iii) 4'5 + 16,/3 0 0 ' '0 0 0,  - 1.   .,
12

0. 1.1     1-   - ..'-u= {25'1 Id (15+4) - ecl.1 (27)

\- „

1,

In special case (i)·, there is no unique C-parameter,   is a non-zero

32 d / 3  3£\
constant and (23) is satisfied by

/00.= 0(6) and 3S 3 4.. (35 3 7-/u  E 0.'0 0

du

-d& E 0.  Special case (ii) goes through
similarlyA  The

more interesting

case (iii) satisfies (23) in the form Moo = 0(6), --35 = 0(6-2) and

1·1                   . ZS  + 3% 3u- = 06/8),  that. is,. the mass zero induces again a·singularity3£ da 3 39

0

   of the theory.   Note that solution (iii) is singular at c = 0, C 0 0.   The

following expressions isolate the effects of the bilinear breaking terms

on the pseudoscalar octet (ps) masses.  With c = C, e 0 0

21                             92 )  = 6[2·(4dc-e)/c] f 56..+cd ] (28)

i                                               ·    ijps                                i]          Bij

f              and with (0( ,e=0
i

-I

t. 1                                                        '

Ofij)ps = 86d{ [*( + 2)  -iz] 6ij + C d8ij 3 (29)

It is clear that, so far as the pseudoscalar masses are concerned, the

effects of bilinear (1,8)®(8,1) breaking terms (non-pole) are largely

* *
invisible.  This can not be said for the bilinear (3,3 )0(3 ,3) breaking

term, which is not surprising because the bilinear Ui, Vi have terms

linear  in the fields  ui,vi when expanded about the ground state solution. 9

Finally, we wish to mention a variation of the Lagrangian of Eq. (24)

:.
t·
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1 which can be used to illustrate the scheme recently proposed by Mathur.

We write

-kin- 024-YI4   +   6[a(uo+cu8)+d (Uo+cU8)   +   I l
(30)S= r.

20
which can be written in the form proposed by Mathur,   where 6I2 breaks

scale invariance but not chiral invariance and 6+0 produces the com-

21
bined sdale- and chiral-invariant limit.     (Note  that  the  TI' -Tr degeneracy,

1 'which afflicts the linear breaking
model· if I3 is absent, is lifted here

by.the bilinear breaking terms.) Requiring· u8  -  <u8     =  0,  we  have  a

solution u.(6)-= u (6) 6., v. = 0 with a contraint10   1-

60(a  -  449  AGO)   =  0 (312

.

where G (6) is a.solution of               ·,

(32)
1          .        .0   - . (4 02   +  163Y) u .-   26{Io   -    6"   -   88d,1 60:. '-' '

16Y
When 492 +-3 - 0,

a possible solution to Eqs.(31) and (32) is the following:

ui= -·2 a, independent of 6

1 jS
d  =  -6  4 2

C00

06 )
- 0(6), 012..)           -   0(6)            i   =    1...8

00 scalar 11 p S (33)

013     )             -   0 (6) , 2)00 PS
- 0(1) i = 1...8.

ii scalar

Now since



1

-

02..)  = 86df <+ cd , 1. i =·.1...8t.'.        '  I   --      . -   :     /  11  ps   .  . .    64            8ii  '

= -r        11-= -2%36 f. 3+cd  }.        _ 'E ._.-2-'  (34)  I "-
..  · 8ii '

'.    ./    - ...1 -

22
 . the usual value   for the c-parameter

11--11-111-1-111     -1111111-1 -11-1-1-1--1-  -,-1.11 - ,   ---1.25

is found.  This model contains the basic. features of the Mathur scheme

.,·.'  ' and,  as a result of the form of the constraint equation„ has a vacuum

solution with trivial dependence on ,6, insuring a smooth scale limit

1:     '   .......'. ,. ·.which avoids the singularities which usually accompany the necessary

R                    '       - zero mdss  in  the  »cale  limit.

't   .·       -   .      Investigation of extended models of this kind, especially with re-

r.·       f         : . ·    gard to expansions in symmetry breaking parameters and smoothness  of

;                   -'3    . matrix elements  o f symmetry breaking parts  of  £ in pseudoscalar states

.    ·      . is in progress.  For a discussion of how low mass scalar poles necess
arily

. : interfere with such smoothness in a-current algebra approach with pole

saturation, and a motivation for considering such models, see Ref. (23).
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