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Resource Efficient Zero Noise Extrapolation with Identity Insertions

Andre He,1, ∗ Benjamin Nachman,1, † Wibe A. de Jong,2, ‡ and Christian W. Bauer1, §
1Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

2Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
(Dated: March 12, 2020)

In addition to readout errors, two-qubit gate noise is the main challenge for complex quantum
algorithms on noisy intermediate-scale quantum (NISQ) computers. These errors are a significant
challenge for making accurate calculations for quantum chemistry, nuclear physics, high energy
physics, and other emerging scientific and industrial applications. There are two proposals for
mitigating two-qubit gate errors: error-correcting codes and zero-noise extrapolation. This paper
focuses on the latter, studying it in detail and proposing modifications to existing approaches. In
particular, we propose a random identity insertion method (RIIM) that can achieve competitive
asymptotic accuracy with far fewer gates than the traditional fixed identity insertion method (FIIM).
For example, correcting the leading order depolarizing gate noise requires ncnot + 2 gates for RIIM
instead of 3ncnot gates for FIIM. This significant resource saving may enable more accurate results
for state-of-the-art calculations on near term quantum hardware.

I. INTRODUCTION

Gate and readout errors currently limit the efficacy of
moderately deep circuits on existing noisy intermediate-
scale quantum (NISQ) computers [1]. Readout errors can
be mitigated with unfolding techniques [2]. Two-qubit
gates are the most important source of gate noise and the
most basic two-qubit gate is the controlled not operation
(‘cnot’). One strategy for mitigating these errors is to
build in error correcting components into the quantum
circuit. Quantum error correction [3–7] is non-trivial
because qubits cannot be cloned [8–10]. As a result, there
is a significant overhead in the additional number of qubits
and gates requires to make a circuit error-detecting or
error-correcting. This has been demonstrated for simple
quantum circuits [11–20], but is currently infeasible for
current qubit counts and moderately deep circuits.
Another strategy for mitigating multigate errors is to

find a way to vary the size of the error, measure the result
at various values of the error, and then extrapolate to the
zero-error result (Zero Noise Extrapolation or ZNE). With
hardware level control of qubit operations, one can enlarge
the size of the errors by the gate operation time [21].
Such precise hardware level control, however, is often
not feasible. Instead, one can try to increase the error
algorithmically by modifying the circuit operations. If
the noise model is known, one can insert random Pauli
gates to a circuit [22]. For Hamiltonian evolution with
some general assumptions on the noise, one can rescale
time [23] to amplify the noise by a desired amount. An
approach that does not require knowledge of the noise
model is to replace the ith cnot with

ri = 2ni + 1 (1)
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cnot gates, for ni ≥ 0. The focus here is on the cnot,
but the method generalizes to any unitary operation with
arbitrary U†U insertions for unitary operation U . Iden-
tity insertion is illustrated in Fig. 1. Since cnot2 is the
identity, the addition of an even number of cnot oper-
ations should not change the circuit output, but does
amplify the noise. When ni = n for all i, this is the
fixed identity insertion method (FIIM). The application
of FIIM was first proposed in Ref. [24] using a linear fit
and an exponential fits were studied in Ref. [25]. Linear
superpositions of enlarged noise circuits were also studied
in Ref. [23], which will be similar to our results on higher
order fit ZNE with FIIM. One challenge with FIIM is that
it requires a large number of gates. We propose a new
solution to this challenge by promoting the ni from Eq. 1
to random variables to construct the random identity
insertion method (RIIM).

|0〉 • • U4

|0〉 U1 U2 U3

↓

2n1 + 1 2n2 + 1
• · · · • • · · · • U4

U1 · · · U2 · · · U3

FIG. 1. An illustration of identity insertion for a generic
controlled unitary operation with two qubits. The Ui represent
unitary matrices and the ni are non-negative integers.

This paper is organized as follows. Section II reviews
linear ZNE in the presence of depolarizing noise. The
RIIM technique is introduced in Sec. III. The potential of
non-linear fits is discussed in Sec. IV. Sections V and VI
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extend the discussion to include other sources of quan-
tum noise as well as statistical uncertainties, respectively.
Numerical results with a simple two-qubit circuit and the
quantum harmonic oscillator are presented in Sec. VII.
The paper ends with conclusions and outlook in Sec. VIII.

II. LINEAR FIT USING FIIM IN THE
DEPOLARIZING NOISE MODEL

One can build an intuition for the impact of identity
insertions analytically using a depolarizing noise model.
In the density matrix formalism, the noisy cnot operation
between two quibits k and l in the state ρ is given by [7]:

ρ→

1−
∑

ij

ε
(kl)
ij

16

U
(kl)
C ρU

(kl)
C

+
3∑

i,j=0

ε
(kl)
ij

16 σ
(k)
i σ

(l)
j ρ σ

(k)
i σ

(l)
j , (2)

where U (kl)
C is the cnot operation controlled on qubit k

and targeting qubit l, ε(kl)
ij � 1 quantifies the amount

of noise, and σ(k,l)
i is the set of single qubit Pauli gates

acting on qubits k and l.
The depolarizing noise model corresponds to the case

where all noise parameters ε(kl) ≡ ε
(kl)
ij are equal to one

another, in which case Eq. (2) becomes

ρ 7→
(

1− ε(kl)
)
U

(kl)
C ρU

(kl)
C + ε(kl)

(
I

(kl)
4
4 ⊕ ρ 6kl

)
, (3)

where I(kl)
4 is the 4× 4 identity matrix on qubits k and l,

and ρ 6kl is all of ρ aside from the kl qubits. Equation (3)
has the clear interpretation that with probability ε(kl), ρ
is equally likely to be in any of the four possible states:
|kl〉 ⊕ ρ 6kl ∈ {|00〉 , |01〉 , |10〉 , |11〉} ⊕ ρ 6kl.

Suppose that two cnot operations are applied sequen-
tially on the same two qubits k and l. The impact on the
state is given by:

ρ 7→
(

1− ε(kl)
)2
ρ

+
[
1−

(
1− ε(kl)

)2
](

I
(kl)
4
4 ⊕ ρ 6kl

)
. (4)

Note that in the noiseless limit ε(kl) → 0, Eq. (4) cor-
rectly reproduces the fact that the two cnot gates form
the identity, such that the density matrix is unaffected.
Adding a third cnot gate, one finds

ρ 7→
(

1− ε(kl)
)3
U

(kl)
C ρU

(kl)
C

+
[
1−

(
1− ε(kl)

)3
](

I
(kl)
4
4 ⊕ ρ 6kl

)
. (5)

Extending the pattern of Eq. (3)-(5), applying the same
cnot ri = 1 + 2ni times in a row has the same effect as
applying it once with the noise amplified by ri

ρ 7→ (1− εi)ri U i
C ρU

i
C

+ [1− (1− εi)ri ]
(
I

(kl)
4
4 ⊕ ρ 6kl

)
, (6)

where the ith cnot gate connects qubits k and l and to
simplify notation, εi = ε(kl). The Taylor expansion of
Eq. (6) around εi = 0 to O(εi) is given by

ρ 7→ (1− riεi)U (kl)
C ρU

(kl)
C + riεi

(
I

(kl)
4
4 ⊕ ρ 6kl

)
. (7)

Thus, the action of ri cnot gates in a row is the same
as the action of a single cnot gate, but with the noise
parameter amplified by a factor of ri. In FIIM, all of the
ri are set to the same value r.

Let M be an observable and in a circuit containing i =
1 . . . Nc cnot gates, consider performing a measurement
of the expectation value of M : 〈M〉 = Tr(Mρ). Using
Eq. (6) results, the expectation value in the presence of
depolarizing noise is given by

〈M〉(r) =
(

1− r
Nc∑
i=1

εi

)
〈M〉ex + r

Nc∑
i=1

εi〈M〉depi

+O
((

r

Nc∑
i=1

εi

)2
)
, (8)

where 〈M〉ex is the expectation value of the observable
in the absence of noise, 〈M〉depi

denotes the expectation
value of the observable if the cnot i is replaced with the
depolarizing channel, and r = 1, 3, . . . is the same factor
for every cnot gate in the circuit.
From Eq. (8), the noiseless value of the expectation

value is given by the measurement at r = 0

〈M〉ex = 〈M〉(0) . (9)

Of course, it is not possible to directly perform a mea-
surement at r = 0, since all circuits have noise. The idea
of ZNE is to extract the noiseless limit by measuring the
result of 〈M〉(r) for various values of r and extrapolating
to the value at r = 0. By construction, a linear fit is
effective when the O(ε2) terms in Eq. (8) are subdomi-
nant (the ‘linear regime’). In this regime, one expects to
remove the dominant O(ε) terms with a linear fit so that
after linear FIIM

〈M〉FIIM = 〈M〉ex +O
((

rmax

Nc∑
i=1

εi=1

)2
)
, (10)

where rmax is the maximum r value so that the circuit is
still in the linear regime.
To provide further insight, it is useful to consider an

explicit example where the density matrix is easy to com-
pute for arbitrary r. Consider the simple circuit presented
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in Fig. 2. Due to the small number and simple orientation
of gates, this model can be solved completely analytically.

|0〉 •

|0〉 •

FIG. 2. An illustration of the the simple double gate circuit
described in Sec. II.

Letting r = r1 = r2 = 1 + 2n and ε = ε1 = ε2, applying
Eq. (6) to Fig. 2 results in the following mapping

ρ→ (1− ε)NcrU
(12)
C U

(21)
C ρU

(21)
C U

(12)
C

+
[
1− (1− ε)Ncr

] I4
4 , (11)

where Nc = 2 denotes the total number of cnot gates in
the circuit and one needs to remember that r is an odd
integer

r = 1 + 2n . (12)

Thus, starting from the initial state |00〉 one measures
each of the four possible states with probability

P (|00〉) = 1− 3
4x P (|ij〉 6= |00〉) = x

4 (13)

where

xFIIM(ε, n) = 1− (1− ε)Nc(1+2n). (14)

Suppose that one wants to measure 〈q0 + q1〉, where qi

is the ith qubit in Fig. 2. The result of this measurement
gives

〈q0 + q1〉 = xFIIM(ε, 0)
= 1− (1− ε)Nc

= Nc ε+O(ε2), (15)

and is therefore linear in Nc ε, as expected from Eq. (8).
Using cnot noise mitigation, one can remove the linear
term in Nc ε. In the linear FIIM method, one performs
the measurement for various values of n = 0, ..., nmax and
then extrapolates to the value n = −1/2 (r = 0). A linear
fit with these data is a solution to the equation

Y = Xβ, (16)

where

Y =


xFIIM(ε, 0)
xFIIM(ε, 1)

...
xFIIM(ε, nmax)

 X =


0 1
1 1
...

...
nmax 1

 β =
(
β1
β0

)
.

(17)

The least-squares solution to Eq. (17) is β =
(XTX)−1XTY . This results in the fitted values β̂:

β̂1 =
∑n

i=1
(
i− n

2
)
xFIIM(ε,Nc(1 + 2i))

1
2n(n+ 1)

( 1
3 (2n+ 1)− n

2
) (18)

β̂0 =
∑n

i=1
( 1

6n(2n+ 1)− ni
2
)
xFIIM(ε,Nc(1 + 2i))

1
2n(n+ 1)

( 1
3 (2n+ 1)− n

2
) .

(19)

Taylor expanding Eq. (18) and (19) to O(ε2) gives

β̂1 = 2(Ncε) + (−2n− 2 +N−1
c )(Ncε)2 +O(Ncε

3) (20)

β̂0 = Ncε+
(
n(n− 1)

3 − 1−N−1
c

2

)
(Ncε)2 +O(Ncε

3) .

(21)

The resulting equation is then

〈q0 + q1〉FIIM[lin,nmax] = β̂0 + β̂1x , (22)

where the subscript FIIM[lin, nmax] denotes a linear fit
performed with the first nmax values of n. Inserting
Eq. (20) and Eq. (21) into Eq. (22) and evaluating at
x = −1/2 results in

〈q0 + q1〉FIIM[lin,nmax] =
(

2n2
max + 4nmax + 3

6

)
(Ncε)2

+O(Ncε
3) . (23)

Using more data points makes the extrapolated re-
sult worse, rather than better. This can be understood
by the fact that using more data points requires more
cnot gates, pushing the measurement into the non-linear
regime. One should therefore expect that the error grows
with the largest number of cnot gates used, which is
given by rmaxNc. This can clearly be seen by rewriting
the result of Eq. (23)

〈q0 + q1〉FIIM[lin,nmax]
rmax→∞−−−−−−→ 1

12(rmaxNcε)2

+O(Ncε
3) . (24)

The best result is therefore obtained using a linear fit
with 2 points, giving

〈q0 + q1〉FIIM[lin,1] = 3
2(Ncε)2 +O(Ncε

3) . (25)

A main drawback of linear FIIM is that it requires

rmax

Ncnot∑
i=1

εi ∼ rmaxNc ε� 1 . (26)

While this works well for circuits for which Ncnot ε is
small enough that even after multiplication with (1 + 2n)
it is still a valid expansion parameter, for moderately deep
circuits this condition can easily be invalid, in the sense
that while one might trust an expansion in Ncnot ε, the
expansion breaks down for 3Ncnot ε or 5Ncnot ε. This im-
plies that a linear fit is no longer adequate to extrapolate
to the noiseless (r = 0) limit.
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III. LINEAR FIT USING RIIM IN THE
DEPOLARIZING NOISE MODEL

The main challenge with the linear fit in the FIIM
method is that the extrapolated zero noise result is only
accurate to O((rmaxNCNOTε)2), with rmax having to be
at least equal to 3. Thus, for deep enough circuits where
3Ncnot ε ∼ 1 this method completely fails to give an
accurate result for the zero-noise extrapolation.

Since the accuracy of the ZNE depends on the maximum
number of cnot gates required, a method that uses less
total cnot gates should perform much better. Instead of
inserting the same number of identity operators for every
cnot gate, suppose instead that identities were randomly
inserted. This gives raise to the random identity insertion
method (RIIM). For this approach, one generalizes Eq. (8)
such that each CNOT gate gets an independent factor ri:

〈M〉(r1, ..., rNc
)

=
(

1−
Nc∑
i=1

ri εi

)
〈M〉ex +

Nc∑
i=1

ri εi〈M〉depi

+O
(( Nc∑

i=1
ri εi

)2
)
, (27)

Next, the ri = 1 + 2ni in Eq. 1 are promoted to random
variables. For example, one could choose ni ∼ Poisson(ν).
As ν → 0, a given circuit will have at most one cnot gate
replaced. We will show that even in this case, one can
still perform a linear fit and thus remove the O(ε) term
with only Ncnot + 2 gates instead of 3Ncnot as in linear
FIIM.

Using Eq. (6) similarly to Eq. (8), one can compute the
expectation value of M for RIIM over both the quantum
and classical (from sampling n) sources of stochasticity:

〈〈M〉〉(ν) =
∞∑

n1=0
· · ·

∞∑
nNCNOTS=0

Nc∏
i=1

Pr(ni|ν)

×

{[
1−

∑
i

εi(1 + 2ni)
]
〈M〉ex

+
∑

i

εi(1 + 2ni)〈M〉depi

+O
((∑

i

(1 + 2ni)εi
)2
)}

. (28)

Since each gate is independently sampled, one can replace

∞∑
ni=0

Pr(ni|ν)ni = ν , (29)

which immediately reduces Eq. (28) to

〈〈M〉〉(ρ) =
[

1− ρ
∑

i

εi

]
〈M〉ex + ρ

∑
i

εi〈M〉depi

+O
((

ρ
∑

i

εi

)2
)
, (30)

where ρ = 1 + 2ν. Thus, Eq. (30) has the same feature
as FIIM, only the integer n is now replaced by the non-
integer value ν ≥ 0. By performing measurements at
various values of ν and extrapolating to ν = −1/2, one
can extract the noiseless value. However, since the value
ν is not restricted to be integer as in the FIIM case, the
expansion does not have to hold for 3Ncnot ε, 5Ncnot ε,
etc., but only for ρNcnot ε, where one can choose different
values of ν to get a reasonable fit region without making
ρ too far from unity.

IV. NON-LINEAR FITS IN THE
DEPOLARIZING NOISE MODEL

So far we have only discussed linear fits and showed
that they can eliminate the O(ε) noise contribution to a
given observable, leaving only quadratic dependence on
the noise. In this section we will generalize this result and
show that one can in principle eliminate the depolarizing
noise to all orders. This can be done for both the FIIM
and RIIM method, which we now discuss in turn.

A. FIIM method

We begin by revisiting the linear fit in the FIIM method,
by writing it in a different way. Starting again from
Eq. (8), and setting all ε ≡ εi to be equal to one another
we can write

〈M〉(1) = 〈M〉ex +Ncnotε

[∑
i

〈M〉depi
− 〈M〉ex

]
+O(ε2)

〈M〉(3) = 〈M〉ex + 3Ncnotε

[∑
i

〈M〉depi
− 〈M〉ex

]
+O(ε2) . (31)

One can immediately see that the linear combination

3
2 〈M〉(1)− 1

2 〈M〉(3) = 〈M〉ex +O(ε2) . (32)

This is of course exactly what the linear fit to r = 0 using
the two points at r = 1, 3 would give.

Generalizing these results one can immediately obtain
linear combinations that remove higher order terms in ε
as well. This fact has been observed before [23], and is
an application of the Richardson extrapolation [26, 27].
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We will still review the results here, since they have not
been used in ZNE using CNOT multiplication as a way
to increase noise, and will prove useful later. Taking
a particular linear combination of the terms with r =
1, 3, . . . , rmaxone can eliminate all terms up to O(εnmax+1)
with

nmax = rmax − 1
2 . (33)

We begin by writing a general linear combination of mea-
surements 〈M〉(r) with different values of r and require
that this linear combination eliminates all terms up to
O(εnmax+1)

nmax∑
n=0

a(n)〈M〉(1 + 2n) = 〈M〉ex +O
(
εnmax+1) . (34)

Ensuring that for any choices of a(r) the coefficient of
〈M〉ex is equal to one gives the constraint

nmax∑
n=0

a(n) = 1 . (35)

The expression for 〈M〉(r) in the depolarizing noise model
to all orders in ε can be obtained from Eq. (6) and one
finds

〈M〉(r) =(1− ε)Ncr〈M〉ex

+ (1− ε)(Nc−1)r [1− (1− ε)r]
∑

i

〈M〉depi

+ (1− ε)(Nc−2)r [1− (1− ε)r]2
∑
i1,i2

〈M〉depi1i2

+ . . .

+ [1− (1− ε)r]Nc
∑

i1,...iNc

〈M〉depi1,...iNc

=〈M〉ex − fNc(r, ε)〈M〉ex

+ [fNc(r, ε)− fNc−1(r, ε)]
∑

i

〈M〉depi

+ [fNc(r, ε)− fNc−2(r, ε)]
∑
i1,i2

〈M〉depi1i2

+ . . .

+ fNc(r, ε)Nc
∑

i1,...iNc

〈M〉depi1,...iNc
, (36)

where

fn(r, ε) = 1− (1− ε)nr . (37)

It is important to remember that the values of 〈M〉ex,
〈M〉depi , 〈M〉depi1,...iNc

etc. are the results of observables
measured in a noiseless circuit, which one does not have
access to. This means that when taking linear superpo-
sition of the form Eq. (34) the all terms up to O(εnmax)
have to cancel for each line separately.

This means that the requirement on the coefficients
a(n) must satisfy the general equation

nmax∑
n=0

a(n)fk(1 + 2n, ε) = 1 +O
(
εnmax+1) , (38)

for all values of k. After some lines of algebra, one can
show that this is indeed possible with the coefficients [23]

a(i) =
nmax∏

j=0,j 6=i

(1 + 2j)
2(j − i)

= 2−2nmax

i!
(−1)i

1 + 2i
(1 + 2nmax)!

nmax!(nmax − i)!
, (39)

for all i ∈ 1 . . . nmax. Note that the coefficient for i ∼
nmax/2 is the largest, and satisfies the scaling

maxi[a(i)] ∼ a(nmax/2) ∼ 2nmax+1

nmax
(40)

To summarize, by using values 〈M〉(r) with
r = 1, 3, . . . , rmax and taking the linear combination∑nmax

n=0 a(n)〈M〉(1 + 2n), one obtains the noiseless value
of the observable up to corrections given by O(εnmax+1).

One alternative approach with a natural interpretation
is performing a polynomial fit with degree nmax − 1 to
measurements of 〈M〉(r) with r = 1, 3, . . . , rmax. A poly-
nomial fit uses the same setup for the linear fit, with
Eq. (16), only now X and β are augmented:

X =


0nfit . . . 0 1
1nfit . . . 1 1
...

...
nnfit
max . . . nmax 1

 β =


βnfit
...
β1
β0

 , (41)

where nfit is the order of the polynomial. One can show
that extrapolating the resulting fit

〈M〉FIIM[nfit,nmax] =
nfit∑
i=1

β̂ix
i , (42)

to x = − 1
2 removes the O(εnmax) component of the de-

polarizing error when nfit = nmax. Both the polynomial
fit and the superposition from Eq. (39) give rise to the
same linear combinations of the values measured at vari-
ous values of r. One can show this with some symbolic
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manipulation:

〈M〉FIIM[nfit,nmax] =
nfit∑
i=0

β̂i

(
−1

2

)i

=
nfit∑
i=0

nmax∑
j=0

((XTX)−1XT )ijYj

(
−1

2

)i

=
nmax∑
j=0

[
nfit∑
i=0

((XTX)−1XT )ij

(
−1

2

)i
]
Yj

=
nmax∑
n=0

[
nfit∑
i=0

((XTX)−1XT )in

(
−1

2

)i
]
〈M〉(1 + 2n)

≡
nmax∑
n=0

ã(n)〈M〉(1 + 2n) . (43)

We have verified that the ã(n) in Eq. (43) are equivalent
to the a(n) in Eq. (39).

B. RIIM method

The RIIM method one uses a different value of ri

for each cnot gate. Applying Eq. (6) with the full ε-
dependence leads to the analog of Eq. (36) from FIIM:

〈M〉(r1, . . . , rNc) (44)

=
∏

j

(1− ε)rj

[
〈M〉ex

+
∑

i

f1(ri, ε)
(1− ε)ri

〈M〉depi

+
∑

i1>i2

f1(ri1 , ε)
(1− ε)ri1

f1(ri2 , ε)
(1− ε)ri2

〈M〉depi1i2

+ . . .

+
∑

i1>...>iNc

f1(ri1 , ε)
(1− ε)ri1

. . .
f1(riNc

, ε)
(1− ε)riNc

〈M〉depi1...iNc
.

To eliminate all terms up to order εnmax , one needs
to include all possible combinations of r1, . . . , rNc

with∑
i ri = Nc + 2nmax. To write a generic solution we re-

quire a bit of new notation. Denote by O({e1, . . . en}) the
sum of all operators with the ri given by permutations of
1 and the various values of ei = 3, 5, 7, . . .. So

O({}) = O(1, . . . , 1) (45)
O({e1}) = O(e1, 1, . . . , 1) +O(1, e1, . . . , 1) + . . .

O({e1, e2}) = O(e1, e2, 1, . . . , 1) +O(e1, 1, e2, . . . , 1) + . . .

and so on.
To eliminate all terms up to εnmax one include all oper-

ators O({e1, . . . en}) with
∑

i ei ≤ 2nmax + n, each with
its own coefficient. One then determine the coefficients by

demanding that all terms up to εnmax vanish. So for exam-
ple, to eliminate the linear term in ε one include include
the operator O({}) and O({3}). Solving the equations

a{}O({}) + a{3}O({3}) = 0 +O(ε2) (46)

with

a{} = 1− a{3}Nc (47)

Solving this equation, one finds

a{3} = −1
2 , (48)

which again reproduces the result of the linear fit discussed
in Section III. To eliminate the linear and quadratic term
in ε once includes the operators O({}), O({3}), O({5})
and O({3, 3}), and solves the equation

a{}O({}) + a{3}O({3}) + a{5}O({5}) + a{3,3}O({3, 3})
= 0 +O(ε3) , (49)

again with the constraint

a{} = 1− a{3}Nc − a{5}Nc − a{3,3}

(
Nc

2

)
. (50)

Solving the resulting set of equations gives

a{3} = −Nc + 4
4 , a{5} = 3

8 , a{3,3} = 1
4 . (51)

While we have not been able to derive a closed form
expressions for the coefficients yet, we report valid choices
for the various coefficients with nmax = 1, 2, 3, 4 in Ta-
ble II. These results allow to remove depolarizing noise
with corrections arising at εnmax+1 using Nc +2nmax gates.
This should be compared with the FIIM method where
the same noise reduction requires (2nmax + 1)Nc gates.
For relatively shallow circuits, one could feasibly per-

form the measurements for all permutations required for
O({e1, .., en}). For example, to remove the O(ε) error,
one would need to perform Nc + 1 sets of measurements.
However, this quickly becomes impractical. This can
be circumvented by randomizing: for each measurement
that goes into O({e1, .., en}), randomly pick one of the
N{e1,...,en} operations.

Table I provides an overview of the gate count requires
for FIIM and RIIM in the removal of depolarization noise
at a given order in ε.

Method Remainder # of CNOTs
FIIM O(εn) (2n− 1)ncnot

RIIM O(εn) ncnot + 2(n− 1)

TABLE I. A comparison of the gate count needed for a given
order of depolarization error correction for FIIM and RIIM.
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V. BEYOND THE DEPOLARIZING NOISE
MODEL

Equation (2) introduced the full Krauss representation
of a noisy cnot gate. Let εij = ε+ δij . The depolarizing
error model is the case where δij = 0 and is what has been
considered thus far. In reality, there will be some non-
zero δij , though the non-depolarizing error has been less
studied in the literature and less-characterized on current
hardware platforms. While the methods studied in the
previous sections are able to suppress the depolarizing
error toO(εnmax), they do not remove theO(δ) term. This
means that it is not useful to go beyond O(ε2), unless
δ < ε2.
There are many other sources of noise, important ex-

amples being amplitude damping and decoherence noise.
The latter can be well-approximated as an exponential
random variable per operation, where the gate has some
fidelity (time constant) and requires some finite time to
perform. We leave the study of such noise to future in-
vestigations, but we anticipate that methods similar to
those studied here can be used to remove noise other than
depolarizing noise as well. In fact, in [23] it was argued
that similar methods also apply to amplitude damping
noise.

VI. STATISTICAL UNCERTAINTY

All results presented so far were in the limit where one
can measure the value of an observable with arbitrary pre-
cision. This is of course not true, since any measurement
on a quantum computer is probabilistic in nature, such
that most measurements have a statistical uncertainty
associated with them, which depends inversely on the
square root of the number of runs used to perform the
measurement.
Using the results of the previous sections, one can

quantify the impact of the statistical uncertainty. Recall
that the noiseless value 〈M〉ex is obtained by taking linear
combinations of measurements with different values of r,
and that in the limit of zero statistical uncertainty the
final uncertainty on the noiseless value is given by the
maximum of δ and εnmax+1. In the presence of statistical
uncertainty, each measurement of 〈M〉ex(r) can only be
determined up to a statistical uncertainty

∆(r) ∼ 1
√
nmeas

, (52)

where nmeas denotes the number of measurements that
are performed in the measurement of each value 〈M〉(R).
Adding the various contributions arising from the linear
superposition in quadrature, one finds that the error from

statistical uncertainties is given by

∆stat = 1
√
nmeas

√√√√nmax∑
n=0

[a(n)]2

∼ 1
√
nmeas

2nmax

nmax
, (53)

where the last line is only true in the limit of large nmax,
since we have used that the sum is dominated by its
largest values, given in Eq. (40).

This means that the final uncertainty in the FIIM and
RIIM methods are given by

∆FIIM/RIIM[ε, δ;nmax, nmeas] ∼ max [δ, εnmax ,∆stat]
(54)

VII. NUMERICAL RESULTS

We use qiskit [28] to simulate the quantum circuits
described below and demonstrate FIIM and RIIM. Sec-
tion VIIA studies the simple cnot only circuit from Fig. 2
and Sec. VII B examines a more complicated case of time
evolution for the quantum simple harmonic oscillator.

A. Simple Circuit

The simple circuit shown in Fig. 2 was particularly
useful because of its analytical tractability. In particular,
because one can compute the expectation values analyti-
cally, it is possible to consider the nshots →∞ limit. In
this section, we use a slight modification of this simple
circuit, which uses 4 cnot gates, which are started in the
initial state |10〉. In the noiseless limit, the final state is

|1〉 • •

|0〉 • •

FIG. 3. A simple circuit with 4 cnot gates used in this
section.

given by |11〉. Four gates are used in order to demonstrate
the potential for removing depolarization errors up to ε5,
and we use a different initial state such that decoherence,
discussed later in the section, is not driving the result
towards the final expectation.

Fig. 4 illustrates the scaling of the error and gate count
for RIIM and FIIM for this circuit. As desired, the error
decreases with the order of the error correction. The
number of qubits required for RIIM is much lower than
FIIM for a fixed order of error correction. For example,
correcting the O(ε4) requires 8 total gates for RIIM but
FIIM requires 36. In fact, for a fixed correction order,
the coefficient of the subleading depolarizing error is also
smaller for RIIM than for FIIM.
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FIG. 4. Numerical results based on the higher-order fits
described in Sec. IV using the four cnot gate version of the
model presented in Fig. 2. The horizontal axis is the order of
the depolarizing error that is being removed. The left axis is
the error on 〈

∑Nc

i=0 qi〉 as ε is extrapolated to zero. The right
axis is the number of gates requires to make the correction.
Only depolarizing noise is considered and nshots =∞.

qiskit can be used to study the impact of other sources
of noise, such as thermal relaxation. A full noise model
from the IBMQ device is used, which includes depolarizing
and decoherence errors.

In Fig. 5, we show the result where the measured observ-
able is the expected value of the output string, converting
from binary numbers to integers (00→ 0, 01→ 1, 10→
2, 11→ 3). In the noiseless limit, the expectation value
is 3, corresponding to |11〉 Fixed identity insertions (but
no corrections yet) are applied up to rmax = 31. The
observable decays at a quicker rate in the case with the
full noise model as expected, as the circuit feels the effect
of thermal relaxation (which drives the system towards
the |00〉 state) as well as the depolarizing noise, which
drives the system to the completely mixed state.

Fig. 6 compares the extrapolation error obtained from
FIIM and RIIM under the action of full and purely depo-
larizing noise models. The extrapolation error for both
FIIM and RIIM are higher in the case of a full noise model
which has non-depolarizing elements. RIIM performs as
well or better than FIIM in both noise models. The min-
imum extrapolation error is achieved at nfit = 2. This
can be understood in the context of Eq. (54) in Section
VI with the parameters of ε = 1% and nmeas = 107. At
nfit = 1, the dominant error ∆FIIM/RIIM is determined
by ε rather than the statistical uncertainty. However, as
nfit = 2, the statistical error ∆stat begins to exceed ε2,
and by nfit = 3 the dominant error becomes the statistical
error, which prevents further reduction of extrapolation

0 5 10 15 20 25 30
1 + 2n

1.6

1.8

2.0

2.2

2.4

2.6
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3.0

Bi
ts

tri
ng

 V
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Noiseless
Full Noise Model
Depolarizing Model

FIG. 5. Numerical results from simulating the 4-cnot circuit
in noiseless and noisy simulators using qiskit. The vertical
axis shows the expectation value of the measured observable.
The horizontal axis displays r, or 1 + 2n. Noisy simulations
include both full and purely depolarizing cases. The number
of shots for each point is 107, with a standard deviation of
10−3.

error and leads the the exponential scaling of the error as
nfit is increased further. Note that RIIM is only used to
eliminate errors up to O(ε4), as the circuit only contains
4 cnots.

B. Hamiltonian Evolution

Trotterized time evolution is a useful technique for the
simulation of Hamiltonians on digital quantum comput-
ers. For the one-dimensional simple harmonic oscillator
Hamiltonian, time evolution is given by

|ψ(t)〉 = e−iHt |ψ(0)〉 , (55)

where

H = 1
2(x̂2 + p̂2) ≡ Hx +Hp . (56)

The Hamiltonian in Eq. (56) can be implemented on
a digital quantum computer by discretizing the possible
values of x to be −xmax,−xmax + δx, · · · , xmax− δx, xmax,
where δx = 2xmax/(2nqubits − 1) and nqubits is the num-
ber of qubits. This system has been recently studied in
the context quantum field theory as a benchmark 0 + 1
dimensional non-interacting scalar field theory [29–36].
As discussed in these studies, the momentum operator
p̂2 can be effectively implemented with quantum Fourier
transforms. Since [Hx, Hp] 6= 0, one can approximate the
time evolution of the Hamiltonian by using the first-order
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FIG. 6. Numerical results from simulating the 4-cnot circuit
and applying FIIM and RIIM extrapolation in a noisy simu-
lator. The lower plot displays a reduced range of the data in
the upper plot for detail. Extrapolation error is 0 for noiseless
simulation. The number of shots for each point is 107.

Suzuki-Trotter expansion [37–39]:

e−i(Hx+Hp)t ≈
[
e−iHx

t
n e−iHp

t
n

]n

≡
[
U (H)

n (t/n)
]n

(57)

The approximation in Eq. (57) can be efficiently repre-
sented as a quantum circuit block which is repeated n
times to the desired number of Trotter steps, as illustrated
in Fig. 7.

Rz
UQF T

Rz
U †

QF T• • • •

FIG. 7. Circuit diagram for a single Trotter step of the
time evolution of the harmonic oscillator hamiltonian for two
qubits. The total number of cnot operations for the quantum
Fourier transform UQFT on 2 qubits is 5, giving a total of 14
cnotoperations. However, one cnot operation from each of
the UQFT is cancelling a cnot from the rest of the circuit,
giving a total of 10 cnot operators per Trotter step.

Time evolution of the ground state of the Harmonic

oscillator gives

|ψ0(t)〉 = e−iHt |ψ0(0)〉 = e−iE0t |ψ0(0)〉 , (58)

where E0 = 1/2. Thus, the time evolution produces a
pure phase and one finds

〈ψ0(0)|ψ0(t)〉 = 1 . (59)

The ground state of the harmonic oscillator is a Gaussian
distribution in the variable x, which can be generated
through the action of a unitary circuit on the state |0〉.
UState is implemented with 2 cnot gates.

|ψ0(0)〉 = UState |0〉 . (60)

Thus, the overlap can be written as

lim
n→∞

〈0|U†State
[
U (H)

n (t/n)
]n

UState |0〉 = 1 . (61)

For finite values of n the deviation of the overlap from
unity will grow with time t/n and one achieves higher
accuracy for larger n

〈0|U†State
[
U (H)

n (t/n)
]n

UState |0〉 = 1 +O
(
t2/n2) .

(62)

On the other hand, more Trotter steps requires deeper
circuits, and therefore larger errors from the gate noise,
in particular the cnot noise.
We choose to simulate the harmonic oscillator with a

total of 2 qubits, corresponding to 4 discrete values of x.
In this case the cnot count is given by

Nc = 4 + 10n . (63)

The accuracy of the approximation increases with the
number of Trotter steps n. FIIM has been used to in-
crease the accuracy of Trotterized simulation of the time
evolution of Hamiltonians, but is less accurate when the
depth of a single Trotter step becomes too large, as in-
troducing three or more times as many cnot operations
as there are in the nominal circuit does not allow for the
accurate extrapolation of the observable [40].

Fig. 8 presents the result of one and two Trotter steps,
corrected with RIIM and with FIIM up to O(ε2). For
both one and two steps, the RIIM extrapolations are
closer to the noiseless lines than the FIIM extrapolations,
indicating that the RIIM error is smaller than the FIIM
one.

Fig. 9 compares the error obtained from the FIIM and
RIIM extrapolations over different values of nmax. The
extrapolated error from RIIM up to O(ε2) is lower than
any of the errors obtained through FIIM for all values of
nfit in the 1-step case and in the 2-step case.

VIII. CONCLUSIONS

We have performed a detailed study of zero noise ex-
trapolation for correcting gate errors in quantum circuits.
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using FIIM plotted against nmax. The dashed lines indicate
the error using second-order RIIM.

The first aspect of this study was the formalization of the

fixed identity insertion method (FIIM), which increases
the circuit error by inserting pairs of gates after each
cnot in the circuit. This method has been studied in the
past, but we derived analytic results for removing higher-
order depolarizing noise. These analytic results were
previously known in the context of Hamiltonian evolution
and are connected with the identity insertion formalism.
We also make the observation that these extended fits are
equivalent to higher-order polynomial extrapolations.

A key challenge with FIIM is that it requires a signifi-
cant inflation in the gate count to achieve high precision.
We propose a new method whereby identities are randomly
instead of deterministically inserted. A careful choice of
insertion probabilities can result in the same formal ac-
curacy as FIIM but with far fewer gates [(2n− 1)ncnot
versus ncnot + 2(n− 1)]. This method will provide access
to moderately deep circuits where FIIM is not applicable
for near-term devices.
Finally, we have discussed the impact of other impor-

tant sources of noise. In particular, ZNE does not remove
generic non-depolarizing noise. Furthermore, large shot
noise can spoil the high-order depolarizing noise cancella-
tion. New techniques may be required to mitigate these
sources of noise within the ZNE framework.

In the era of NISQ hardware, zero noise extrapolation
will continue to play an important role for enhancing the
precision of quantum algorithms. Identity insertions pro-
vide a practical error-model agnostic and software-based
approach for enhancing errors in a controlled way. The
new RIIM method has extended this methodology for
finer control over the error scaling and will extend the
efficacy of zero noise extrapolation to moderate-depth
circuits. Combined with readout error mitigation, these
techniques will provide a complete package for improv-
ing the accuracy of near term calculations on quantum
devices.
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nmax a{3} a{5} a{3,3} a{7} a{5,3} a{3,3,3} a{9} a{7,3} a{5,5} a{5,3,3} a{3,3,3,3}

1 − 1
2

2 −Nc+4
4

3
8

1
4

3 −N2
c +10Nc+24

16
3(Nc+6)

16
Nc+6

8 − 5
16 − 3

16 − 1
8

4 −N3
c +18N2

c +104Nc+192
96

3N2
c +32Nc+154

64
N2

c +14Nc+59
32 − 45

32 −
3Nc+29

32 −Nc+8
16

35
128 0 29

64
3

32
1

16

TABLE II. Table giving the coefficients for higher order RIIM fits.
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