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Abstract. Some zero-one laws are proved for Gaussian processes defined on

linear spaces of functions. They are generalizations of a result for Wiener measure

due to R. H. Cameron and R. E. Graves. The proofs exploit an interesting relation-

ship between a Gaussian process and its reproducing kernel Hubert space. Applica-

tions are discussed.

1. Introduction. In their 1951 paper [2], R. H. Cameron and R. E. Graves

have proved a remarkable property of the Wiener process, that every measurable

r-module in Wiener space can only have Wiener measure either zero or one. The

proof, which relies heavily on analysis connected with the Fourier-Hermite

development of functionals on Wiener space, would lead one to wonder whether

this result is a peculiarity of the Wiener process. It is the aim of this paper to show

that the zero-one law mentioned above is true for all Gaussian stochastic processes

with a continuous covariance function. The precise assumptions on the probability

space of such a process are given in the next section.

The statement of our first main result (Theorem 1) and the completion of its

proof are given in §4. Preparatory lemmas which carry the major burden of the

proof, and bring out its basic ideas are given in §3.

In Theorem 2 we give a different version of a zero-one law also valid for general

Gaussian processes and pertaining to groups instead of /--modules.

Some interesting consequences of Theorem 1 are discussed in §6. Specifically,

Theorem 3 is a generalization of a zero-one law for Wiener processes recently

derived by L. A. Shepp [12] and subsequently extended by D. E. Varberg [13].

Theorem 4 provides information—new as far as we know—concerning the uniform

convergence with probability one, of the orthogonal expansion of a Gaussian

process.

The author wishes to thank Professor Robert Cameron for his helpful discussions

on these questions. It was his seminar talk on his own paper that was the starting

point of the present work.

2. Notation and preliminaries. Let £0 be a Gaussian probability measure given

on the measurable space iX, £(A")), where A' is a family of real valued functions x
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200 G. KALLIANPUR [May

defined on set T and B(X) is the w-field of subsets of X generated by sets of the

form

(2.1) E = {xeX: [x(r»),..., x(Q] e B»)

(tx,..., tneTand Bn is an n-dimensional Borel set). We shall denote the convari-

ance function of P0 by R and assume the mean function to be zero, i.e.,

(2.2) [ x(t)P0(dx) = 0       (teT)

and for each t and s in T

(2.3) f x(t)x(s)P0(dx) = R(t, s).

Let H(R) denote the reproducing kernel (rk) Hubert space determined by R.

It is a Hubert space of real valued functions k on T with the following properties :

(2.4) R(-,t) belongs to H(R) for each t in T;

if < ,  > is the inner product in H(R), then for every k in H(R)

(2.5) <k,R(-,t)> = k(t).

For a discussion of r-k Hubert spaces see [1]. Their application to the study of

Gaussian stochastic processes is to be found in many recent papers, notably [11 ].

The Gaussian process considered in this paper will be represented by the triplet

(X, B0(X), P0), where B0(X) is the completion of B(X) under P0 and where the

following basic assumptions will be made.

(2.6) T is a complete separable metric space.

X is a linear space of functions under the usual operation

of addition of functions and multiplication by real scalars.

(2.8) R is a continuous function on TxT.

(2.9) H(R) c X.

Assumption (2.8) implies that the elements of H(R) are continuous functions on T

and also that H(R) is separable [11].

For me X, the transformation am: X-=>- Xdefined by

(2.10) amx = x+m

clearly sends B(X)-sets into 5(A>sets. The measure Pm given by

(2.11) Pm(F) = P0(a- *F)       (F e B(X))

is Gaussian with mean function m and the same covariance R as P0. We shall

use the well-known fact, [11], that under (2.6) and (2.8)

(2.12) Pn = P0

relative to B(X), if and only if

(2.13) meH(R).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1970] ZERO-ONE LAWS FOR GAUSSIAN PROCESSES 201

The notation Pm=P0 means that Pm and £0 are mutually absolutely continuous.

If 777 is in HiR) it follows from (2.12) that the completion £m(Z) of BiX) under Pm

coincides with B0iX). Hence for all 777 in £(£) the transformation am of (2.10) is

B0iX) measurability preserving and the family of complete Gaussian measures

{£m, m e HiR)} is given on the same measurable space iX, B0iX)).

We shall write £2(£0) for L\X, B0iX), P0), the Hubert space of ^(^-measur-

able, real valued functions square integrable with respect to £0. Two subspaces of

£2(£0) will be of special interest for us : (i) &0iX) the subspace of a.e. constant

random variables in £2(£0), and (ii) -^(X), the closed linear subspace of £2(£0)

spanned by all finite linear combinations of the form 2?= 1 CjX(/i) where the cf's

are real constants, tt e T and xe X.

The proof of Theorem 1 is achieved by means of a series of auxilliary results

which have been arranged to bring out the ideas underlying the main result and

also to indicate the possibility of generalizations to non-Gaussian processes.

3. Lemmas. Let us denote the Radon-Nikodym derivative of £m with respect

to £0 by pm. Note that p0 = l a.s. (£0). In what follows we shall write ( , ) and

|| and < , >, I • ¡I for the inner product and norm of the two spaces £2(£0) and

HiR) respectively.

Lemma 1. For every m e HiR)

(3.1) PmzL\P0);

and ifmx, m2 e HiR)

(3.2) (pmi, pm2) = exp «TM!, 7772».

Proof. (3.1) and (3.2) are almost immediate consequences of the following two

facts [11 ]. There is an inner product preserving isomorphism between 3?xiX) and

HiR) which we shall denote by <->. If t/(x) e ¿PfX) and u<-+ m then pm is given by

the expression

(3.3) pm(x) = exp{i/(x)-i|H||2}   a.s. £„■

The validity of (3.1) and (3.2) now becomes clear from the following steps. If

u¡ e 3?xiX), ut <-> t??, (/= 1, 2) we have

fx Pmi(x)Pm2(x)Po(dx) = £ exp iuxix)-i\\\mx\f) exp («,(*)-ilRIIIVofrk)

= J   exp (mx(x) + u2(x) -%nx+m2\\\2 + <jnx, m2»P0idx)

(3.4) = exp «mi, T772» J   pmi+m2ix)P0idx)

= exp «ttji, m2»£mi+m2(A0

= exp «777i, m2».
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202 G. KALLIANPUR [May

Lemma 2. pm is a continuous Junction from H(R) to L2(PQ).

The proof is obvious from (3.2).

The next lemma occurs in the literature on Gaussian processes in contexts not

very different from our own (see, e.g., [7], [8]). The form of the lemma suitable

for our purpose is as given by R. LePage in his thesis [10].

Lemma 3. The family {pm, m e H(R)} spans L2(P0).

Proof. Let g e L2(P0) be such that

(3.5) (g, Pm) = 0

for all m e H(R). Fix a finite subset S'={r1,..., tn} of T and choose m in H(R) of

the following form

(3.6) m(-)=  2 CiKi-'tJ-
1=1

Then the random variable 2jL i cix(tj) is the element of 3?x(X) which corresponds

to m given by (3.6). It then follows from (3.3), (3.5) and (3.6) that

(3.7) £ g(x) exp ( 2 Cix(t^Po(dx) = 0.

Let BS(X) be the sub a-field of B(X) generated by the random variables {x(r), t e S}.

From (3.7) and the fact that the conditional expectation relative to BS(X)

E^g(x) exp ( 2 <*#/>)  W)} = E{g(x)\Bs(X)} exp ( ¿ 'Ati)

we obtain

(3.8) j h[x(tx),..., x(Q] exp ( ¿ c,x(t¿ \ P0(dx) = 0.

Here h[x(tx),..., x(tn)] = E{g(x)\Bs(X)}, so that h[ax,..., an] is a Borel function

of the n real variables (ax,..., an). Further n satisfies equation (3.8) for all real

numbers c¡,j= 1,..., n. Using the property that P0 is a Gaussian measure it can be

deduced from (3.8) that

(3.9) n = 0   a.s. P0.

The details of the argument leading from (3.8) to (3.9) can be found in [9, p. 132].

Thus

(3.10) E{g(x)\Bs(X)} = 0   a.s.P0

for every finite subset S of T. From the definition of B(X) [3, p. 604] and (3.10)

we have

(3.11) E{g(x)\B(X)} = 0   a.s.P0.
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Since g is measurable with respect to B0iX) it follows from (3.11) that g(x) = 0

a.s. £0 and the lemma is proved.

Lemma 4. Let g e £2(£0). Then

(3.12) ge&oiX)

if and only ifi

(3.13) (g, Pm) = (g, Po)

for each m e HiR).

Proof. It is obvious that (3.12) implies (3.13). Conversely, writing pm = ipm — p0)

+ Po, noting that p0= 1 spans áf0iX) and that

(pm-Po, Po) =  f Pmix)P0idx)- f Poix)PQidx) = £m(A-)-£0(A0 = 0
Jx Jx

we have

(3.14) Pm-Po = ^L\pa)QSea(X)Pm

where 3PE denotes the projection operator onto the subspace £ of L2(£0). Hence

from (3.13) and (3.14)

(3.15) ig, ^.v„)e^o«)Pm) = 0,

i.e.,

(3.16) (0i'iPB>e*oijag, Pm) = 0

for all m in HiR). From Lemma 3 and (3.16) it follows that

(3.17) 3*p0>e*o«>S = 0.

which implies that g e f?0iX).

The following two lemmas which together form the kernel of the proof of

Theorem 1, generalizes the approach of Cameron and Graves (see, e.g., Lemma 3

and Theorem 2 of [2]).

Definition. A subset M of X is said to be a module over the rationals (or an

r-module) if for every xx and x2 in M and rational numbers rx and r2,

(3.18) rxxx + r2x2 e M.

Lemma 5. Let M be an r-module such that

(3.19) MeB0iX)

and

(3.20) P0iM) > 0.
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Then

(3.21) M contains H(R).

Proof. First we make the following observation. For any B0(X) measurable set

F and real number a write

(3.22) Fa = {xeX: x = y + am, y e F}

where misa fixed element in H(R). Then since —ame H(R) and Fa = a^}am)F, we

have

W«) = Pi-amlF)  =  j   Pi-am)(x)Po(dx).

Hence, from the Schwartz inequality

(3.23) \Po(F«)-P0(F)\ Ú ¡Pt-ant-Pol

We conclude from (3.23) and Lemma 2 that

(3.24) lim P0(Fa) = P0(F).
a-»0

To prove the lemma, suppose (3.21) does not hold. If r is any rational number let

M=F and Mr denote the set defined in (3.22) with a = r and m in H(R) such that

m$ M. The fact that M is an /--module and m$ M implies that the sets Mri and

Mr2 are disjoint whenever rj^^. Hence the sets M1/n (n = 1, 2,...) are mutually

disjoint. We then have

2 PoiMxm) = Po ( Ü Mlln) S 1,

so that

(3.25) P0(Mxm) -> 0   as n -^ oo.

But this is impossible since from (3.24), P0(Mxin) ^~ P0(M) which is positive by

(3.20). Hence H(R)^M.

Lemma 6. Let {e,)f be a complete orthonormal system (C.O.N.S.) in H(R) and

g a B0(X)-measurable real function such that for each x in X and every rational r

(3.26) g(x + re,) = g(x)       (j=l,2,...).

Then

(3.27) g(x) = constant a.s. P0.

Proof. We shall first assume that g e L\P0). Let m be an arbitrary element of

H(R). Then, using the separability of H(R) it is easy to find a sequence {m(p)},

m(p) e H(R) such that

(3.28) mM =  2 cTe»
1=1
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where cjp> are rationals, the sum in (3.28) is finite and

(3.29) |||t77<p) - tm||| -> 0   as p -» co.

By repeated application of (3.26) we obtain

(3.30) gix+m™) = gix)

for every x in X and p = 1, 2,.... Hence from (3.30) and the standard formula for

change of variable under a measurable transformation (see Halmos [6, p. 163]) we

find that for every positive integer p,

(3.31) f g(x)P0idx) =  f gix + m<p))P0idx)
Jx Jx

= J   g(x)/v->(x)£0(</x).

As /7->co, the right-hand side of (3.31) converges to J"x g(x)pm(x)£0(i7x) because

of Lemma 2 and (3.29). The resulting relation from (3.31) can then be written as

(3.32) ig, p0) = ig, Pm).

Since (3.32) holds for every m in HiR) it at once follows from Lemma 4 that

g e 3?o(X)- In other words, gix) = constant a.s. £0.

Next suppose that g is £0(<T)-measurable. If N is any positive integer define

gn(x)=g(x) if |g(x)| £N, and = 0 if \gix)\ >N. Then since gN e£2(£0) and satisfies

(3.26) it follows from the first part of the proof that gNix) = constant a.s. £0.

Since N is arbitrary we have g(x) = constant a.s. £0.

4. A zero-one law for /-modules. We are now in a position to state and prove

our first main theorem.

Theorem 1. If M is a B0iX)-measurable r-module then

(4.1) P0iM) = 0 or 1.

Proof. If £0(A£)>0, then Af^//(£) by Lemma 5. Let {ef}? be a C.O.N.S. in

HiR). Then e, e M. Since M is an r-module it is easy to see that x + re, e M if and

only if x e M. Letting IM be the characteristic function of M it then follows that

(4.2) IMix + re) = IMix)       (j=l,2,...)

for all x in X and every rational r. Applying Lemma 6 to the £0(^0 measurable

function IM(x) we have

(4.3) Im(x) = constant a.s. £0.

Finally since /M(x) = 0 or 1 and P0(M) is positive, (4.3) implies that £0(A£) = 1.

This completes the proof of the theorem.

Before we proceed further some remarks on the scope of assumptions (2.6)-

(2.9) seem desirable. In most applications (Example 4 given below is an exception)
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Fis either the real line or an interval of the real line, so that (2.6) is fulfilled. Assump-

tion (2.8) concerning the continuity of the covariance R (which is equivalent to the

continuity in quadratic mean of the process x(t)) is a reasonable restriction. Only

the assumptions (2.7) and (2.9) invite specific comment. We hope that the following

examples will show that for nearly every Gaussian process it is possible to find a

realization in a space X for which (2.7) and (2.9) are satisfied.

Example 1. X=RT, the set of all real valued functions on T. (2.7) and (2.9)

obviously hold.

Example 2. Let T=(—co, oo) or a finite interval [a,b], and let X=C(T) the

space of real continuous functions on T. This case covers all Gaussian processes

with (almost all) continuous sample functions including, of course, the special case

of the Wiener process. The validity of (2.7) and (2.9) is again obvious.

Example 3. As above let T=(—oo, oo) or [a, b] and let/(i, co) be a measurable,

Gaussian process defined on a probability space (O, si, p). Letting P0 be the Gaussian

measure induced on (RT, B(RT)) it is easy to verify that X, the set of all real

Lebesgue measurable functions on T, is a subset of RT of outer P0 measure one.

The probability space (X, B(X), P0) where P0 is defined appropriately on sets of

B(X), then defines a Gaussian process equivalent to/(r, co). Zis obviously a linear

space. Also H(R) is contained in X since all the functions in H(R) are continuous.

Example 4. This example shows that the results of this paper are applicable to

certain Gaussian generalized stochastic processes, e.g., those studied in [7]. Let

T= O, where <1> is a countably Hilbertian nuclear space and let X= <!>', the dual

space of O. Let P0 he a Gaussian measure on B(<S>') with continuous covariance R.

It can then be shown that

(4.4) O c H(R) c <D'.

Thus all the assumptions (2.6), (2.7) and (2.9) are seen to hold. For the verification

of (4.4), definitions of terms not explained here and other details concerning nuclear

spaces and Gaussian measures on them we refer the reader to the book by I. M.

Gel'fand and N. Ja. Vilenkin [5, Chapter 1, p. 138].

5. A zero-one law for subgroups. We shall now consider extending the zero-one

law of the last section to groups. If instead of being an r-module the set M of

Theorem 1 is merely a subgroup of the additive group X, the proof of Lemma 5

as given above does not work. In the lemmas that follow the essential differences

between the proofs of Theorem 1 and Theorem 2 are noted. There is, however, one

respect in which the result for subgroups does not generalize Theorem 1. For the

latter, we have to consider subgroups G which are measurable with respect to

B(X) and not with respect to B0(X), the completion of B(X) under P0. The reason

for this is that Lemma 10 fails to hold if B(X) is replaced by its completion (e.g.,

if X is the space of continuous functions on [0, 1] and P0 is standard Wiener

measure).
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In the following we shall assume that the reader is familiar with the terminology

and facts from elementary number theory and group theory. The use of these

ideas as well as Lemmas 8 and 9 are suggested from the book on abelian groups

by L. Fuchs [4]. In fact the proof of Lemma 9 essentially follows [4, p. 158], but is

given here because it is simpler to prove it here than to give a direct reference.

Let p be any prime and let Qp be the ring of all rational numbers r = mjn where

77 and p are relatively prime. (It is always assumed that m and n have no common

factors.) Since by (2.7) A" is a linear vector space of functions, X is a group under

addition. Now suppose that G is a subgroup of X and define

(5.1) a - u (H
aeJp    \a     J

where Jp is the set of all integers which are relatively prime to p. Note that it makes

sense to define the sets ilja)G = {y : _y(/) = (l/a)x(/), xeG} and that GpcJ again

an account of (2.7).

Lemma 8. Gp is a module over Qp. That is, ifi x and y are in Gp and rx, r2 e Qp

then

(5.2) rxx + r2y e Gp.

Proof. Let x, y, rx and r2 be as given above. Then for some a and b e Jp, x = xxja,

y=yxjb where xx, yx e G. If ri = mijni (/= 1, 2) we have

(5.3) rxx + r2y = ivxxx + v2yx)jL,

where vx and v2 are integers and £ is the l.c.m. of nxa and n2b. Since G is a group

and vx and v2 are integers,

(5.4) vxxx + v2yx = x' eG.

Since the integers a, b, nx, n2 are all relatively prime to p it follows that £ is also

relatively prime to p. Hence from (5.3) and (5.4)

(5.5) rxx + r2y = x'jL

where £ ejp, i.e., rxx + r2y e GP.

Lemma 9. Let n denote the set of all primes. Then

(5.6) H Gp = G.
pen

Proof. Suppose x belongs to the left-hand side of (5.6). Then x=yja, where

y e G and a is relatively prime to p. Let

(5.7) a =/*•• •/*

be the prime factorization of a. Now xeGPj (J=l,...,s), so that there exist

integers a¡ prime to p¡ such that

(5.8) a¡x e G.
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From (5.7) it follows that the integers a, ax, ■.., as are relatively prime. Hence

there are integers m, m,,..., ms such that ma + mxOx+ ■ ■ ■ +msas=l. From (5.8)

and since ax e G we have x = (ma + mxüx + ■ ■ ■ + msas)x e G. Thus we have shown

that

(5.9) fi Gp <= G.
pen

Conversely let xeG. If/? is any prime and a ejp, then x e Gp since x=(l/a)(ax),

ax e G. Hence

(5.10) G c  D Gp.
pen

Thus (5.6) is established.

Lemma 10. G e B(X) implies Gp e B(X).

Proof. The transformation Tx = ax, (a^O) maps A'into itself and furthermore,

since the inverse image under T of a cylinder set in B(X) of the form

{xeX : a¡ -¿ x(t¡) = b¡, j = 1,..., n}

is again in B(X) it follows that T~1A e B(X) for all A e B(X). Hence G e B(X)

implies that (l/a)G=T-1G e B(X). It follows therefore that

GP=   U   £g)
aeJp    \a     /

is B(X) measurable.

Lemma 11. Let G be a B(X)-measurable subgroup such that

(5.11) P0(G) > 0.

77zÉ?«

(5.12) Gp contains H(R).

Proof. First, it follows from Lemmas 8, 9 and 10 that Gv is a jB(A>measurable

module over Qp with P0(GP) > 0. Now suppose there exists an m e H(R) and £ Gp.

For each positive integer n write kn=p(p + l)- ■ (np) and define the sequence of

sets

(5.13) Mn = {x : x = y+k~xm, y e Gp).

We shall show that ifn^v the sets M„ and Mv are disjoint. If Mn and Mv have an

element in common, then for some Xj, x2 in Gp,

(5.14) Xx + k~1m = x2+k^xm,

so that

(5.15) m = knkv(x2-Xx)l(kv-kn).
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We may assume, obviously, that v>n. Then kv — kn = kn-q, where

(5.16) q = (np+l)(np + 2)- ■ (vp)-l.

(5.15) becomes

(5.17) m = kv(x2-Xx)lq.

Now /¿v(x2—Xx) e Gp since k, is an integer and GP is a group. Also it is easy to

verify from (5.16) that »¿7 and p are relatively prime. Hence /¿v(x2 — x».) = x'\r, for

some x' e G and r eJp, and from (5.17) m = x'\rq, where it is easy to see that rq

is relatively prime to p, i.e., that rq eJp. This proves m e Gp, which is a contra-

diction. Hence Mn and Mv are disjoint. Clearly, the sets M„ are Ä(Ar)-measurable

and as in Lemma 2 P(Mn) ->■ P(GP) as n (and hence kn) -»■ 00. But since P(GP) > 0

and 2™= 1 P(Mn) ál we have a contradiction as in the proof of Lemma 5. Thus

(5.12) is proved.

Theorem 2. If G is a B(X)-measurable subgroup of X, then

(5.18) P0(G) = 0 or 1.

Proof. Suppose Po(G)>0. Then by Lemma 11, for every prime p Gp contains

H(R). Let {ey}J° be a C.O.N.S. in H(R). From the fact that Gp is a group and

H(R)<=GP it follows that x e Gp if and only if x+re¡ e Gp for all rational numbers

r and j = 1, 2,.... In other words for each integer7 and rational r we have

(5.19) /0,(*+re,) = h,(x)

for all xeI Lemma 6 now applies without any essential change to the B(X)-

measurable function g(x)=Iafx) and we have

(5.20) lafx) = constant   a.s. P0.

Since P0(GP) is positive, (5.20) implies that

(5.21) P0(GP) = 1.

Finally, from Lemma 9 and (5.21) we have P0(G)= 1, and the proof of the theorem

is complete.

6. Some applications of the zero-one law. The following application of Theorem

1 was suggested by R. H. Cameron. In [12] L. A. Shepp has proved a zero-one law

for a Wiener process to the effect that if x(t) denotes the sample function of a Wiener

process defined on C[a, b] and/(r) is a nonrandom Lebesgue integrable function on

[a, b] then either J* |/(r)|x2(f)</f <oo a.s. or =00 a.s. Recently D. Varberg has

shown that this result holds for any sample continuous Gaussian process [13].

We shall show that the zero-one law of Shepp and Varberg, in fact an extension

of it, follows as an immediate consequence of Theorem 1.

Theorem 3. Let x(t), (a^t^b) be a sample continuous Gaussian stochastic

process with zero mean function, and let f(t) be an arbitrary measurable function
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andp a positive number. Then either

(6.1) fit)[xit)YeD[a,b],a.s.,

or

(6.2) /(/)[x(/)]p££1[a,Ha.¿.

Proof. Let the Gaussian process be given by iX, B0iX), P0) where X=C[a, b]

is the space of real continuous functions on [a, b], P0 the probability measure

induced by the continuous convariance £, and the random variables of the

process are given by the coordinate variables x(f), x e X. Define the set

(6.3) M = jx e X : j" \f(t)\ ■ |x(/)|p dt < co}.

M is obviously £(AT-measurable. Further, let x and y be in M and let rx, r2 be any

two rational numbers. From the elementary inequalities

\rxx + r2y\p á |ri|p|x|p+|T-2|p|j|p   if 0 < p g 1,

and

^2p-1(k1x|p+|r2j|p)   if/7 > 1

it follows that t^x + r2y e M. Hence M defined by (6.3) is an r-module and Theorem

1 immediately yields the result P0iM) = 0 or 1. Theorem 3 is thus proved.

For the next application of Theorem 1 let x(f) be a Gaussian process as in

Theorem 3. Define the random variables

(6.4) £.(*) = (AJ-1/a f xit)Ut)dt
Ja

where {Xn}x and {<pn}? are the eigenvalues and eigenfunctions of the continuous

covariance £. Then (£„(x)} are independent Gaussian random variables with zero

mean and unit variance. The series

(6.5) 2 XÏ'*Ux)U0
n = l

which for each /, converges almost surely is called the orthogonal or Karhunen-

Loève expansion associated with the process x(/). The conditions under which

(6.5) converges uniformly with respect to / almost surely have been discussed re-

cently in the literature (see e.g., [14]). Without additional assumptions on x(/) we

can deduce from Theorem 1 the following zero-one law.

Theorem 4. Let iX, BQiX), £0), iX=C[a, b]) be the probability space of the

Gaussian process x(i) whose mean is zero and covariance function is R. Then the

Po-probability that the series (6.5) converges uniformly with respect to t in [a, b]

is either zero or one.
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Proof. Write

M = < x e X : 2 An2in(x)4>n(t) converges uniformly with respect
(6.6) l

to t in [a, b] >.

Since from (6.4)

£n{riXi + r2x2) = rxen(xx) + r2t;n(x2),       (xlt x2 e X, and ru r2 rationals),

it is obvious that the measurable set M is an r-module. The desired conclusion

then is an immediate consequence of Theorem 1.
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