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Abstract. It has been recently shown, using ab-initio methods, that bulk diamond is characterized by a
giant band–gap renormalization (∼ 0.6 eV) induced by the electron–phonon interaction. This result casts
doubt on the accuracy of purely electronic calculations. In this work we show that in polymers, compared
to bulk materials, due to the larger amplitude of the atomic vibrations the real excitations of the system
are composed by entangled electron–phonon states. We prove as the charge carriers are fragmented in a
multitude of polaronic states leading, inevitably, to the failure of the electronic picture. The presented re-
sults lead to a critical revision of the state–of–the–art description of carbon–based nanostructures, opening
a wealth of potential implications.
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1 Introduction

The coupling between the electronic and atomic degrees
of freedom plays a key role in several physical phenomena.
For example it affects the temperature dependence of car-
riers mobility in organic devices [1] or the position and in-
tensity of Raman peaks [2]. The electron-phonon coupling
is also the driving force that causes excitons dissociation
at the donor/acceptor interface in organic photovoltaic [3]
and the transition to a superconducting phase in molecu-
lar solids [4]. From the theoretical point of view the role of
the atomic vibrations has been treated in a semi-empirical
manner for long. Such approach, based on model hamil-
tonians, relies on parameters that are difficult to extract
from experiments. In contrast the ab-initio methods de-
scribe and in some cases predict in a quantitative man-
ner the optical and electronic properties of electronic sys-
tems, without resorting to any external parameter. This
goal is reached by benefiting of the predictivity and accu-
racy of density functional theory (DFT) [5] merged with
many body perturbation theory (MBPT) [6]. Electronic
properties are usually described within the so-called GW
approximation [7], a purely electronic theory which allows
to calculate corrections to the electronic levels with a high
level of accuracy.

Many years ago [8], however, some pioneering works
of Heine, Allen and Cardona (HAC) pointed to the fact
that, even when the temperature vanishes, the effect of
the electron-phonon coupling can induce corrections of the
electronic levels, as large as the ones induced by correla-

tion effects. The natural consequence is that a solely elec-
tronic theory may be inadequate leading to intrinsic errors
as large as the precision of the ab-initio theories. Nev-
ertheless, the enormous numerical difficulties connected
with the calculation of the electron–phonon interaction,
and the historical assumption that such interaction could
lead only to minor corrections (order of few meV), has
de-facto prevented the confirmation of the HAC predic-
tions. As phonons are atomic vibrations, the effect of the
electron-phonon coupling is usually associated to a tem-
perature effect that vanishes as the temperature goes to
zero. However this is not correct as the atoms posses an
intrinsic spatial indetermination due to their quantum na-
ture, even at zero temperature. This is the zero–point en-
ergy whose effect on the electronic properties is, generally,
neglected.
Nowadays, the advent of more refined numerical tech-
niques, has made possible to ground the HAC approach
in a fully ab-initio framework. This has been used to com-
pute the gap renormalization in carbon–nanotubes [9],
the finite temperature optical properties of semiconduc-
tors and insulators [10], and to confirm a giant zero–point
renormalization (615 meV) of the band–gap of bulk dia-
mond [11], previously calculated by Zollner using semi–
empirical methods [12]. These works are opening unpre-
dictable scenarios connected with the actual accuracy of
purely electronic theories and, thus, questioning decades
of results.
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The electronic theories ground on the concept of the
single particle state: whatever is the external perturba-
tion or internal correlation, the electron is still assumed
to be characterized by a well defined energy, width and
wave–function. As a consequence the charge–carriers are
assumed to be mainly concentrated on electronic levels.
The theoretical basis of the electronic concept is strictly
connected with the quasi–particle (QP) concept [13] which
assumes that the electron occupies a well–defined state,
even if the electronic states are renormalized by corre-
lation effects. Physically the electron is surrounded by
a correlation cloud (composed by electron–hole pairs or
phonons) whose effect, in the QP picture, reduces to an
energy correction, a broadening of the electronic level, and
a reduction of the effective electronic charge associated to
the state.

In the past it has been shown that the electron-phonon
coupling can break the quasi-particle approximation. In
particular Scalapino et al. [14] predicted that in strong
coupling superconductivity the Landau QP approxima-
tion is not valid, while Eiguren et al. [15] were able to
reproduce the band splitting on a surface by a multiple
quasi particle approximation.

More recently we have shown [16] that the quantum
zero point motion of atoms induces strong dynamical ef-
fects on the electronic properties in diamond and trans-
polyacetylene. The amplitude of the atomic vibrations and
the consequent electron-phonon interaction leads an un-
expected as well as striking result: the breakdown of the
quasi-particle approximation. This result has been obtained
by calculating the full energy-dependent spectral function
(SF) of the electronic states, as reviewed in the second sec-
tion. We interpreted the sub-gap states experimentally ob-
served in diamond [17] and the formation of strong struc-
tures in trans-polyacetylene band structures in terms of
entangled electron-phonon states. In this paper we extend
these results to another polymer: the polyethylene. We
will show that multiple structures appear in the SFs of
the electronic states at T = 0K and the bare electronic
charge is fragmented in polaronic states, coherent packets
of electrons and phonons, each corresponding to a peak in
the SF. In the conclusions we will point out as these results
represent an important step forward in the simulation of
nanostructures, with a wealth of possible implications in
the development of more refined theories of the electronic
and atomic dynamics at the nano-scale.

2 Static and dynamical approach to the

electron-phonon coupling

The HAC approach is a static theory of the electron-
phonon coupling. It assumes that the scattering between
the electrons and phonons is instantaneous. Dynamical ef-
fects are in fact connected to the retardation in the scatter-
ing between electrons and phonons and are generated by
the time dependence of the atomic oscillations, uIs. Such
retardation effects are normally neglected in the HAC the-
ory but it is worth wondering, as the authors of Ref.[11] do

in the case of diamond, if the agreement between theory
and experiment can be somewhat fortuitous.

In the HAC approach it is possible to calculate the
temperature dependent energy shift of the electronic state
| nk〉, with energy εnk, induced by a configuration of static
lattice displacements {uIs}

∆εnk(T ) =
∑

qλ

1

Nq

∑

n′

[

| gqλ
n′nk |

2

εnk − εn′k′

−
1

2

Λqλ

nn′k

εnk − εn′k

]

×

× (2B(ωqλ) + 1) .
(1)

The key quantities in Eq. 1 are the Bose function dis-
tribution B(ωqλ), the electron-phonon matrix elements

| gqλ
n′nk |

2
and the phonon frequencies ωqλ. The last two

quantities are calculated ab-initio using density functional
perturbation theory [18]. The terms in Eq. (1) correspond
to Fan and Debye-Waller corrections, in order of appear-
ance. It must be noted that when the temperature van-
ishes the energy correction is not vanishing.

In the many body perturbation theory scheme, the
electron-phonon self-energy is perturbatively calculated
at the second order in the atomic displacements [6]. The
electron-phonon self-energy is then composed of two con-
tributions: the Fan self-energy

ΣFan

nk (ω) =
∑

n′qλ

| gqλ
n′nk |

2

Nq

[

B(ωqλ) + 1− fn′k−q

ω − εn′k−q − ωqλ − i0+
+

+
B(ωqλ) + fn′k−q

ω − εn′k−q + ωqλ − i0+

]

(2)

and the frequency independent Debye-Waller term, ΣDW

nk .
More details about the Debye-Waller term can be found,
for example, in Ref. [12]. Subsequently the full frequency
dependent Green’s function Gnk (ω) is readily defined to
be

Gnk(ω) =
(

ω − εnk −ΣFan

nk (ω)−ΣDW

nk

)−1
. (3)

The single particle energies are obtained as poles ofGnk(ω).
The QP approximation is based on the assumption of a
single pole in Eq. 3 due to the smooth ω-dependence of
ℜΣFan

nk . As a consequence the QP energy is obtained by
Taylor expanding ℜΣFan

nk around the bare energy. In this
way the Green’s function is characterized by a single pole
with energy

Enk ≈ εnk + ZnkℜΣ
Fan

nk (εnk) +ΣDW

nk , (4)

and the SF Ank (ω) ≡
1
π
|ℑ [Gnk (ω)] | is a Lorentzian func-

tion centered in Enk with renormalization factor [6]

Znk =

(

1−
∂ℜΣ

Fan

nk
(ω)

∂ω

∣

∣

∣

ω=εnk

)−1

. The many body for-

mulation represents the dynamical extension of the HAC
approach, that is recovered from Eq. 2 under the condi-
tion
|εnk − εn′k−q| ≫ ωqλ and the self-energy is static, imply-
ing Znk = 1. The validity of this approximation is linked
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Fig. 1. The SFs of the Γ ′

25v and Γ15c states in bulk diamond,
corresponding to the direct gap at Γ are shown. The bare en-
ergies are also indicated by the two vertical arrows. In the
right frame the energy position of the two states are marked
with spheres of the same color of the SFs. As the state Γ ′

25v

corresponds to the top of the valence bands the energy conser-
vation forbids any relaxation mediated by the phonon modes.
As a consequence the SF is very sharp. The SF of the conduc-
tion band, instead, acquires a wealth of additional structures
besides the most prominent peak. These structures define a
direct gap equal to 4.89 eV, 670meV smaller than the bare
LDA gap. The arrow in the right frame represent a typical
relaxation process of the Γ15c that causes the appearance of
additional structures in the SF.

to the accuracy of the previous assumption or in other
words: is the static approximation always accurate ?

In order to answer to this question we start to an-
alyze the case of diamond. The static HAC theory pre-
dicts in this system a zero–point renormalization of the
direct gap as large as 620meV [19]. By using the full dy-
namical approach we calculated the SF of the Γ ′

25v (red
curve, left frame) and of the Γ15c (blue curve, left frame)
states, as shown in Fig. 1. If the static, HAC theory was
exact we should see two delta–like peaks collecting all the
electronic charge. On the other hand if the QP approxi-
mation was exact the two delta–peaks would broaden in
two Lorentzian functions collecting most of the electronic
charge, Znk.

We notice immediately that the valence SF is charac-
terized by a sharp peak shifted by 0.4 eV above the LDA
value. This peak collects the 84% of the electronic charge,
thus representing a genuine QP state. The energy correc-
tion of this state is well described in the HAC theory. The
situation for the conduction state is, in contrast, drasti-
cally different. The state Γ15c is not at the bottom of the
conduction bands, as diamond is an indirect insulator. For
this reason the electron placed in this state will undergo
real transitions relaxing to lower energy states (blue ar-
row in the right frame of Fig. 1) and emitting phonons.
As a consequence the imaginary part of the self–energy
is more structured and, more importantly, the real part
of ΣΓ15c

(left frame of Fig. 1) will be far from being fre-
quency independent: the static approximation is bound to
fail. Although a dominant peak is evident, this peak col-
lects only the 55% of the electronic charge and additional
less intense structures appear at lower energies causing
the direct gap to shrink to 4.89 eV, 670meV smaller than

the bare LDA gap. Therefore the shrinking of the gap due
to dynamical effects turns out to be 9% larger then pre-
dicted in the HAC theory and in Ref. [11].
In general in semiconductors and insulators, the QP ap-
proximation is connected to the inverse of the plasmon en-
ergy, that gives the typical screening time. In most cases
the plasmon energy is of the order of 10 eV, correspond-
ing to a screening time of the order of 100 attoseconds.
This time is shorter than the typical low–energy QP life-
times (that are of the order of femtoseconds) and, as a
consequence, the frequency dependence of the self–energy
can be treated perturbatively. The shorter is the screen-
ing time, the more accurate is the QP approximation. In
the limit of an extremely short screening time the static
limit is recovered. In the case of the phonon mediated self-
energy, Eq. 2, it is easy to show that the above arguments
do not hold. The screening time is dictated by the Debye
energy that is, at least, two orders of magnitude smaller
then the plasma frequency. As a consequence phonon oscil-
lations are much slower than the screening time, being of
the order of femtoseconds. In the next section we will ana-
lyze in more details how these effects modify the electronic
states in polymers, where coupling between electrons and
ions is particularly strong.

3 Dynamical effects in nanostructures

A key difference between nanostructures and bulk mate-
rials is the reduced dimensionality. In simple terms this
means that the atoms are more free to oscillate, thus in-
ducing a potentially larger effect on the electronic dynam-
ics. In addition, atomic vibrations are enhanced when the
nanostructure contains light atoms as hydrogen. The dif-
ferent amplitude of the atomic vibrations can be easily
visualized by using the phonon modes. Indeed, we can as-
sociate an average quantum size to each atom by using the
standard variation σs

i
of the atoms s along the direction i

in the ground–state atomic wavefunction, at zero temper-

ature. This is defined as σs
i
≈

√

∑

qλ(Miωqλ)−1 |ξi (qλ)|
2
,

with ξi (qλ) the components of the polarization vector cor-
responding to the phonon momentum q and branch λ.

The different values of σs
i
are pictorially showed in

Fig. 2. In bulk diamond the carbon atom cloud has an
isotropic wave–function and, consequently, the values of σs

i

are independent on the direction. In trans-polyacetylene
and polyethylene, the smaller distance between carbon
atoms, reduces the standard deviation along the x̂ direc-
tion. On the other hand, since hydrogen is much lighter
than carbon, its standard deviation in the polymer plane
is such that σH ≈ 0.2 a.u.. This points to a potential larger
amplitude of the atomic oscillations with, consequently, a
more pronounced electron-phonon interaction.

We investigate now the effect of such large atomic
oscillations on the direct gap renormalization in trans-
polyacetylene and polyethylene. In trans-polyacetylene the
states corresponding to the extrema of the electronic bands
are π/π∗ orbitals. Since they are orthogonal to the plane
where the polymer lies, electrons in these states are only
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Fig. 2. The trans-polyacetylene structure is shown in the typ-
ical ball and stick representation. The standard deviations of
the atomic wave–functions obtained with the harmonic approx-
imation are also showed. The Hydrogen atom, on the average,
has three times the deviation of the carbon atom, as expected
from the different mass. Nevertheless the constraint imposed
by the planar structure induces a similar ”size” of the H and
C atoms on the (x,y) plane. Compared to the bulk diamond
case the carbon atom acquires, in the nanostructure, a double
indetermination.

weakly affected by the in plane zero point atomic oscilla-
tions. An electron put at both the extrema of the bands
in trans-polyacetylene, undergoes only virtual transitions
not having any available final hole state. These transitions
renormalize the electron energy and slightly broaden the
electronic level, the SF is then dominated by a unique peak
collecting about 99% of the electronic charge, as shown in
the upper frame of Fig. 3. The distance between the two
peaks is equal to 594meV, pointing to a zero point renor-
malization of the electronic band gap of about 40meV,
with respect to the LDA value (634.5meV). This value im-
mediately reminds that one predicted by the static HAC
theory in diamond. Nevertheless it points to a correction
as large as 6% of the LDA band gap. A smaller correction
with respect to the diamond case is ascribed to the pecu-
liar electronic distribution of π/π∗ orbitals.
Now we investigate the polyethylene case. The SFs of the
states corresponding to its direct gap are shown in the
bottom frame of Fig. 3. The SF of the top of the valence
band is dominated by a sharp peak shifted of 280meV
with respect to the bare energy level. The peak of the
bottom of the conduction band SF, is instead centered on
the bare electronic energy. The resulting zero point renor-
malization of the gap is therefore 280meV, larger than the
trans-polyacetylene case. This points to the fact that when
electrons are localized along the C −C bond (in diamond
and in polyethylene) the zero point motion effect on the
renormalization of the electronic gap is sizable.

For what concerns the deeper states far from the gap,
the effect of the electron-phonon coupling is stronger. In
fact as they are in plane orbitals they are directly affected
by in plane atomic vibrations. The SFs shown in Fig. 4
exhibit a wealth of structures and, as a consequence, are
far from being assimilated to QP SFs. As we saw in dia-
mond a so structured SF implies that the real part of the
self-energy is far from being frequency independent. An
electron put in a given state scatters with electrons and
phonons in real transitions. This is correctly described by

-0.2 0 0.2 0.4 0.6

Energy [eV]

bare energy

Energy [eV]

bare energy bare energy

bare energy

Fig. 3. The SFs of the states corresponding to the direct gap at
X in trans-polyacetylene (upper frame) and at Γ in polyethy-
lene (bottom frame). Since the extrema of the bands are π/π∗

orbitals in trans-polyacetylene, the orthogonality of these or-
bitals points to a reduced electron-phonon interaction reflect-
ing in very sharp SFs. In polyethylene the orbitals correspond-
ing to the top of the valence and the bottom of conduction
are spread along the bonds, in a similar way as happens in
diamond. As a consequence the situation is different and addi-
tional structures appear in the SFs.

the dynamical theory of the electron-phonon coupling. As
we can see from the Fig. 4 a multiplicity of structures ap-
pears in the SFs. Each of them picks up a fraction of the
electronic charge Znk depriving the dominant peak of its
weight. The trend for the deeper states is common both
in trans-polyacetylene and in polyethylene. This is rea-
sonable because both polymers have phonon frequencies
of the same order of magnitude of the electronic excita-
tions. Another crucial aspect is that some SFs overlap, like
the 3rd, the 4th and the 5th band in trans–polyacetylene.
In this case it is impossible both to associate a single, well
defined energy to the electron, and to state which band
it belongs to. This is a signature of the breakdown of the
band theory.

Critically looking at a given SF, for instance the state
| n = 4,k = Γ 〉 of trans-polyacetylene, two intense struc-
tures appear (Fig. 5).

As it is originally one electronic state | nk〉, the two
structures can not be assimilated to two distinct QPs, it
would mean to associate to each peak one electron. In ad-
dition they are distant more than the Debye frequency
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Fig. 4. The SFs of deeper states in trans-polyacetylene (upper
frame) and polyethylene (bottom frame) are shown. The green
lines in the right panels mark, at fixed k point, the energy range
on which the corresponding SFs are shown. The energy position
of the states shown in the left panel is marked by spheres of
the same colour as the SFs. Since these states correspond to in
plane orbitals they are strongly affected by the in plane atomic
vibrations. The result is that the bare electronic levels are split
in several polaronic states.

(∼ 0.4 eV ) thus implies that they can not be simply in-
terpreted as a main QP peak plus a phonon replica. In-
stead the formation of two peaks implies to consider an
extended Fock space, composed of electrons and phonons.
The breakdown of the quasiparticle picture is linked to the
fact that the electron takes part in strong real transitions
being its energy close to the poles of the self-energy. These
scatterings send the bare electron into more than one of
the mixed states of the extended Fock space (EFS), com-
posed of electrons and phonons states. The stronger these
scatterings are the more dressed the electron will be. As a
consequence the electronic charge, Znk, looses its physical
meaning. The many body framework does not provide the
tools to add further information about the composition of
the “new” mixed states. The appropriate way is to remap
the structures of the many-body SF to the solution of an
eigenvalue problem in the electron-phonon EFS. In this
framework the eigenstate of the system are

| Ik〉 =
∑

n

AI

nk | nk〉+
∑

n′qλ

Bn′k−qλ | n′k− q〉⊗ | qλ〉.

(5)
with energy Enk.
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Fig. 5. The SF corresponding to the state | 4,k = Γ 〉 of
trans-polyacetylene is shown. The position of the bare energy
is indicated by a black arrow. The bare electronic level is mostly
split into two polaronic states, which are more distant than the
Debye frequency. For this reason they cannot be assimilated in
terms of one electron plus a phonon replica.

| AI

nk |2 is the probability to find the electron in the
pure electronic | nk〉 state. This reminds the physical
meaning of the Znk factors, but in this contest the residual
| AI

nk |2 can not be assimilated to the electronic charge.
| B

n
′
k−q |2 is the probability that the polaronic state is

in the mixed electron–phonon | n
′

k− q〉 ⊗ | qλ〉 state.
In this way the existence of more than one structure

in the SF can be interpreted in terms of more than one
| Ik〉 projecting on the bare | nk〉. In this way the shape
of the spectral function is reproduced by weighting each
eigenvalue of the mixed system by a Lorentzian broaden-
ing. In particular to each structure appearing in the SF
calculated within the many body approach, is associated
a precise state | Ik〉. Therefore the origin of the multiple
poles in the spectral functions shown in Fig. 5 is connected
to the existence of more than one intense state | Ik〉 be-
longing to the same state | nk〉.

4 Conclusions

In this work we have shown that the HAC approach suffers
of some limitations when we try to predict the zero tem-
perature energy correction. Moreover the quantum zero
point motion questions the reliability of the QP picture in
diamond, trans-polyacetylene and polyethylene.

The SFs in fact exhibit multiple structures at T = 0K.
The formation of additional structures suggests to con-
sider the electron-phonon interaction in an extended Fock
space composed by electrons and phonons. By mapping
the structures of the many body SFs into the solution of
an eigenvalue problem, it is possible to associate at each
structure a particular polaronic state.

Because of its non perturbative nature, each polaronic
state represents a coherent packet of electron–phonon pairs.
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The cooperative dynamics between electrons and atoms
rules out any description in terms of bare atoms, bare
electronic states or quasiparticles.

The resulting coupled electronic and atomic dynam-
ics pave the way for new investigations in polymers and
more in general in low dimensional nanostructures. The
cooperative dynamics of electrons and phonons in the po-
laronic states can have potential physical implications, as
for example, an enhancement of the electronic mobility.

More generally the breakdown of the QP picture im-
poses a critical analysis of the previous results obtained
using purely electronic theories.
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