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Zero-point spin reduction in the low-dimensional antiferromagnet is discussed by the 
spin wave theory taking into accOtmt kinematical interaction due to finite magnitude of 
spin. This method is applied to KCuF, and the result is in good agreement with the ob
served one. Furthermore the values of zero-point spin reduction of several other chain· 
structure antiferromagnets are predicted. 

§.1. Introduction 

A large zero-point spin reduction in the antiferromagnet of the low dimen~ 
sionality has recently been observed. In the layer-structure antiferromagnet 
K 2MnF4, the observed values of zero-point spin reduction agree with those of a 
simple two-dimensional spin-wave theory.D It has been found that the zero-point 
spin reduction in the one-dimensional antiferromagnet' KCuF8 is nearly 45%.2) 

However, the kinematical interaction d,ue .to the restriction on the number of spin 
deviations possible at any given site cannot always be neglected i.n the antiferro- · 
magnet of the low dimensionality even at absolute zero. Especially the zero-point 
spin reduction of the ideal spin-wave theory diverges in the one0dimensional Heisen
berg antiferromagnet. As the zero-point spin reduction should not. be over the 
spin magnitude S, the divergence means that the spin-wave theory which does not 
take· account of the kinematical interaction cannot be trusted. 

The effect of the kinematical interaction for zero-point spin reduction was 
first estimated by Herbert8J for the Heisenberg antiferromagnet with each spin 8=1/2,, 
but he did not give any attention to the low-dimensional antiferromagnet. In the 
present paper his method is extended to the case of general S, and the effe'ct of 
the ki~ematical interaction is taken into account in the calculation of the zero-point 
spin reduction, and several antiferromagnetic chain-structure compounds are dis
cussed. 

§ 2. The boson representation 

For simplicity, we consider the Heisenberg ferromagnet in this section. The 
Hamiltonian of the system can be written as follows: 

H= -2J~ s~.-s,, 
(i, J> 

(2·1) 
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Zero-Point Spin Reduction of an Antiferromagnet 1283 

where S, is the spin operator at the i-th atom, the summation :E<•.J> is taken over 
all nearest neighbor pairs in the crystal and J(>O) is the e:x;change integral. 

At fi-rst, let us <;onsider a spin space spanned by the spin operators concerned with 
the j-th atom. All eigenstates of the operator S/ forms a complete set in this 
space. 

$/ln1)= (S-n) ln1), (n=O, 1, 2, ···, 2S) 

<nJim1)=a,.m. 

These eigenstates can be represented by 

I n1) = [(2S)"n! F,.] - 112 (8/)"101), 

where we use usual notations S1± =S/ ± ~S/ and 

( 1 ) ·( n-1) F,.=l· 1- 28 ··· 1-2S. 

(2·2) 

(2·3) 

(2·4) 

Let a/ and a1 be the creation and annihilation operators labelled by the site 
index j, and the following orthonormal boson states are defined: 

I nJ) = [n!] - 112 (a/)"101), 

(n1 lm1) =anm, 

where 101) .stands for the vacuum state. 

(2·5) 

Since any physicalquantjty can be expressed in terms of sums of products of the 
matrix elements <niSJal~> (a=+,-, z), we define the boson op~rator S/ cor-
responding to the spin operator S/ as follows: 4' 

<niS/Im)=(nlf-1 (n)S/f(m)lm), (n,m=0,1,2, ···,2S) (2·6) 

where }(n) is an arbitrary function of n provided that f(n) and f- 1 (n) exist. 
Various representations of S/ are possible by this arbitrariness. For simplicity, 
we choose the Holstein-Primakoff transformation which is given by (2 · 6) under 
f(n) =.const for ·all n:4' 

S/= (2S) 112 (1-a/a1/2S) 112a1 , 

si- '::"' (2Sr12a1* (1-a1*a1j2Sr12 , 

S/=S-a1*a1 • (2·7) 

However; the representations- (2 · 7) are restricted to the boson-state where 
occupation number of the boson is smaller than 2S + 1. In order to remove this 
restriction, a projection operator P1 is introduced: 

P1=8(2S-a1*a1), 

where 8(x) 1s the unit step function, 

8(x) =1, x>O, 

=0, x<O. 

(2·8) 

(2·9) 
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1284 T. Ishikawa and T. Oguchi 

It should be noted that the projection operator P1 commutes with S/ (a=+, -, z). 
Using this projection operator, the boson representation of any physical quantity 
A (S1 +, S1-, S/) which is the function of S/ can be expresseq as follows: 

A=A(P,S, + P" Ptst-pJ> P,S/P,) 

(2·10) 

At this stage, the extension of this representation to full spin space which 
is the tensor product of each spin space spanned by S/' may be done, and the 
thermal average of the operator A is obtained from 

<A>= I; (niPtL4:in). (2·11) 
n 

Here, {In)} is any complete set of full boson states, and 

p= exp(--1 it)/ I; (niP exp(--1 it) In), 
kBT n kBT 

(2 ·12) 

where kB is Boltzmann's constant and T -the temperature. 

§ 3. Zero-point spin reduction in antiferromagnet 

The Hamiltonian of the antiferromagnet we wish to consider in this section 
is' written by 

H=2J2:, si ·S, +2J' I; SL ·Sm' (3·1) 
(i, j) (L,m) 

where the summation L;<i,J> is taken over all nearest neighbor (n.n.) pairs aloiJ:g 
the z-axist and L;<L.m> over all n.n. pairs perpendicular to the z-axis, J(>O) and 
J' (>O) are the intra-chain, and inter-chain exchange integrals, respectively. 

Two sublattice model is introduced as usual. The Holstein-Pritnakof£ repre-
sentations are the following in this case: 

Si + = (2SY12 (1- ai * ai/2S) 112ai , 

Si- = (2S) 112a•* (1- ai * a 1/2S) 112 , 

S/=S-a.*·a., 

for a spin on the A sublattice, 

sj + = C2S') 112bj*(1-b,*b,;2s) 112 , 

sf-= C2S) 112 (1-b1*b1f2S) 112b1 • 

S/= -S+b,*bj' 

(3·2) 

(3·3) 

for a spin on the B sublattice. Here two different sets of boson operators {a, a*} 
and {b, b*} have been introduced. 
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The method of the preceding section can be applied to the calculation of the 
sublattice magnetization <S/). We define the Fourier transformations, 

ak=J ~ ~ eikR'a,' bk=J ~ ~ e->kRJbJ' (3·4) 

where N is the total number of atoms, and use the canonical transformations, 

ak=ak cosh ek-{3k *sinh ek' bk= -ak *sinh ek +f3k cosh ek. (3. 5) 

Here, tanh 20k = [cos k. + ~ (cos kx +cos ky)] I (1 + 2~), and ~ = J' I J. If the terms 
higher than bilinear are neglected, the boson representation of the Hamiltonian 
(3 ·1) can be written by the above transformations as 

(3·6) 

where 

ek = 2S ../ (2J + 4J'Y- (2J cos k. + 2J' cos k" + 2J' cos kvY . (3. 7) 

The expectation value of a spin on the A sublattice at absolute zero can be 
calculated by 

and the zerocpoint spin reduction is 

(giPa,*a,lg) 
(g!Pig) 

where I g) is the ground state of the full boson Hamiltonian. 

(3·8) 

(3·9) 

Now, the true ground state I g) is approximated by the ground state I 0) of 
the free spin-wave Hamiltonian (3 · 6). This is defined by 

Futhermore the following approximation is introduced: 

(OIPia,*a,IO) 
(O!P,IO) 

The operator P, and Pia,*ai can be represented as follows: 3> 

= = 
P,=L:;B!(a,*YCad, Piai*a, = 'E c! (at*Y (a,y' 

!=0 !=0 

Bn=(- 1t_28 (n-1)(n-2)···(2S+2)(2S+1), (n>2S+ 1) 
' n!(n-28-1)! , 

(3 ·10) 

(3·11) 

(3 ·12) 
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1286 T. Ishikawa and T. Oguchi 

C,.= ( _ 1t_28 (n-2){n-3) ··· (28+ 1)(2S). 
(n-1) !(n-2S-1)! 

From (3 · 4) and (3 · 5), we get 

(01 (ai*)"(ai)"IO) =n! v" 

with 

Hence, we have 

00 

(O]Pi]O) = :E B,.n!v", 
n=l 

00 

(O]Piai*a,]O) = :E C,.n!v". 
n=l 

The zero-point spin reduction is 

JS=v-w 

with 

(2S + 1) v 28+1 
w - --'c,----c-=--''----:-:,.---:-- (1 ·t v ys+1_ v2S+1 

(n>2S+1) 

(3·13) 

(3 -14) 

(3 ·15) 

(3 ·16) 

(3 ·17) 

(3-18) 

H;ere, v defined in (3 ·14) is the zero-point spin reduction obtained by the simple 
spin-wave' theory, while w is the correction by the kinematical interaction. It is 
interesting that (3 -17) and (3 ·18) agree with that obtained by the Greenfunction 
method.5> 

The numerical values of JS are shown in Table I for the case of pure two 
dimensional (J=O, J'~O) and three dimensional (J=J'~O) antiferromagnets. 
The correction w is very small except the case of two-dimensional lattice: with 
S=1/2. Consequently the reason why the observed values of JSagree with those 
of a simple spin-wave theory in KMnF3, RbMnF3, K 2MnF4, Rb2MnF4 (S=5/2)1l 
can be understood. 

On the other hand, w is very important for the case J' / J e:{::1 (one-dimen-

Table I. Zero-point spin reduction of lmtiferromagnetic lattices. 

Square NaCl-type 

v (free spin-wave theory) 0.197 0.078 
'· 0.141 (8=1/2) 0.067 (8=1/2) 

0.184 (8=1) 0.077 (8=1) 
118 (present me~hod) 0.194 (8=3/2) 0.078 (8=3/2) 

0.197 (8=2) 0.078 (8=2) 
0.197 (8=5/2) 0.078 (8=5/2) 
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Fig. 1. Zero-point spin reduction of the 
antiferromagnet with S=1/2. The 
solid line dS shows that obtained by 
the present method and the dashed 
line v by the free spin-wave theory . 
The solid line and the dashed line 
tend to dS=0.5 and +oo, respectively, 
as ~-'>0. The. enlarged figJ.!re is 
shown at the right upper corner. 

Table II. Z~ro-point spin reduction of chain-structure antiferromagJ?.ets. 

~=J'/J' v dS 

KCuFs 2.7xw-• 0.32 0.20 (42%) 
CPC 0:8 X 10-a "' 5.8x1o-• 0.75 "' 0.5 0.30 (60%) "' 0.25 (50%) 
CTS 2.1 X 10-• "-' 14.4X 10" 8 0.63 "' 0.35 0.28 (56%) "' 0.21 (42%) 

sional like). If.~ IS less than 6 X 1Q-3, v is even bigger than S = 0.5, and v goes 
to infinity as ~~o. On the other hand, LJS is never over S, and it tends to S as ~~0 
thanks to the presence of w. The values of LiS for S=1/2 are plotted against 
~ in Fig. 1.. However, w is so small ·for S>1 and ~;;::::10- 2, that the effect of 
kinematical interaction can be clearly seen only for the case S = 1/2 and ~::::;0.1. 

we apply now the present method to several chain-structure antiferromagnets 
with 8=1/2, such as KCuF3, CuC12 ·2NC5H 5 (CPC), and Cu(NH8)4S04·H20(CTS). 
The values of ~ are estimated from the observed Curie temperature using Green 
function method under the following assumptions. 2>. 6> 

(1) The structure of lattice can be approximated by a tetragonal one. 
(2) The exchange integrals are isotropic. 

The results are given in Table II. The .experimental results for KCuF3 are 
~=0.027 at T=39.8 K,r> and the spin. reduction =0.23 (45%).2> We can see 

. that LiS is in better agreement than v with the experimental value. Furthermore, 
as explained already, v is not reliable in this region of ~. becouse v gets over the 
spin magnitude 0.5 when ~<0.006. Unfortunately there are no experimental data 
of the spin redu~tion available for CTS and CPC~ but we give the theoretical 
values for them in Table II. 

§ 4. Discussion 

The zero-point spin reduction of the sublattice magnetization in the Heisenberg 
antiferromagnet was calculated taking -into account the kinematical interaction. It 
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1288 T. Ishikawa and T. Oguchi 

was found that the kinematical interaction acts seriously on this reduction in the 

case of chain-structure antiferromagnet with S=l/2. Two important approximations 

were introduced in our calculation. The first one is that the true ground state of 

the spin system is approximated by the magnon ground state. Since the full boson 

Hamiltonian has source terms which are products of creation operators of magnon 

only such as a*a*{3*{3·*, the magnon ground state is not an eigenstate of the spin 

system. Especially, these source terms would be important in low-dimensional lattice. 

The corrections due to these source terms is one of the problems which have to 

be solved il). future. The second is that the product of projection operators have 

been decoupled. so that (3 ·11) is obtained. The meaning of this approximation 

is not clear. However it should be stressed that our result is in agreement with. 

that by the Green function method with the random phase approximation. 
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