Zero-Point Spin Reduction of an Antiferromagnet

Takuma ISHIKAWA and Takehiko OgUCHI
Department of Physics, Tokyo Institute of Technology Oh-okayama, Meguro-ku, Tokyo 152

(Received February 8, 1975).
Zero-point spin reduction in the low-dimensional antiferromagnet is discussed by the spin wave theory taking into account kinematical interaction due to finite magnitude of spin. This method is applied to KCuF_{3} and the result is in good agreement with the observed one. Furthermore the values of zero-point spin reduction of several other chainstructure antiferromagnets are predicted.

§.1. Introduction

A large zero-point spin reduction in the antiferromagnet of the low dimensionality has recently been observed. In the layer-structure antiferromagnet $\mathrm{K}_{2} \mathrm{MnF}_{4}$, the observed values of zero-point spin reduction agree with those of a simple two-dimensional spin-wave theory. ${ }^{11}$ It has been found that the zero-point spin reduction in the one-dimensional antiferromagnet KCuF_{3} is nearly $45 \% .^{2}$ However, the kinematical interaction due to the restriction on the number of spin deviations possible at any given site cannot always be neglected in the antiferromagnet of the low dimensionality even at absolute zero. Especially the zero-point spin reduction of the ideal spin-wave theory diverges in the one-dimensional Heisenberg antiferromagnet. As the zero-point spin reduction should not be over the spin magnitude S, the divergence means that the spin-wave theory which does not take account of the kinematical interaction cannot be trusted.

The effect of the kinematical interaction for zero-point spin reduction was first estimated by Herbert ${ }^{3}$ for the Heisenberg antiferromagnet with each spin $S=1 / 2$, but he did not give any attention to the low-dimensional antiferromagnet. In the present paper his method is extended to the case of general S, and the effect of the kinematical interaction is taken into account in the calculation of the zero-point spin reduction, and several antiferromagnetic chain-structure compounds are discussed.

§ 2. The boson representation

For simplicity, we consider the Heisenberg ferromagnet in this section. The Hamiltonian of the system can be written as follows:

$$
H=-2 J \sum_{\langle i, j\rangle} \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{j},
$$

where \boldsymbol{S}_{i} is the spin operator at the i-th atom, the summation $\sum_{\langle i, j\rangle}$ is taken over all nearest neighbor pairs in the crystal and $J(>0)$ is the exchange integral.

At first, let us qonsider a spin space spanned by the spin operators concerned with the j-th atom. All eigenstates of the operator S_{j}^{z} forms a complete set in this space.

$$
\begin{align*}
& S_{j}^{z}\left|n_{j}\right\rangle=(S-n)\left|n_{j}\right\rangle, \quad(n=0,1,2, \cdots, 2 S) \\
& \left\langle n_{j} \mid m_{j}\right\rangle=\delta_{n m} .
\end{align*}
$$

These eigenstates can be represented by

$$
\left|n_{j}\right\rangle=\left[(2 S)^{n} n!F_{n}\right]^{-1 / 2}\left(S_{j}^{+}\right)^{n}\left|0_{j}\right\rangle
$$

where we use usual notations $S_{j}^{ \pm}=S_{j}^{x} \pm i S_{j}^{y}$ and

$$
F_{n}=1 \cdot\left(1-\frac{1}{2 S}\right) \cdots\left(1-\frac{n-1}{2 S}\right)
$$

Let $a_{j}{ }^{*}$ and a_{j} be the creation and annihilation operators labelled by the site index j, and the following orthonormal boson states are defined:

$$
\begin{align*}
& \left.\left.\mid n_{j}\right)=[n!]^{-1 / 2}\left(a_{j}^{*}\right)^{n} \mid 0_{j}\right), \\
& \left(n_{j} \mid m_{j}\right)=\delta_{n m},
\end{align*}
$$

where $\left.\mid 0_{j}\right)$ stands for the vacuum state.
Since any physical quantity can be expressed in terms of sums of products of the matrix elements $\langle n| S_{j}{ }^{\alpha}|m\rangle(\alpha=+,-, z)$, we define the boson operator $\widehat{S}_{j}{ }^{\alpha}$ corresponding to the spin operator S_{j}^{α} as follows: ${ }^{4)}$

$$
\langle n| S_{j}^{\alpha}|m\rangle=\left(n\left|f^{-1}(n) \widehat{S}_{j}^{\alpha} f(m)\right| m\right), \quad(n, m=0,1,2, \cdots, 2 S)
$$

where $f(n)$ is an arbitrary function of n provided that $f(n)$ and $f^{-1}(n)$ exist. Various representations of $\widehat{S}_{j}{ }^{\alpha}$ are possible by this arbitrariness. For simplicity, we choose the Holstein-Primakoff transformation which is given by (2.6) under $f(n)=$ const for all $n:^{4}$

$$
\begin{align*}
& \widehat{S}_{j}^{+}=(2 S)^{1 / 2}\left(1-a_{j}^{*} a_{j} / 2 S\right)^{1 / 2} a_{j} \\
& \widehat{S}_{j}^{-}=(2 S)^{1 / 2} a_{j}^{*}\left(1-a_{j}^{*} a_{j} / 2 S\right)^{1 / 2} \\
& \widehat{S}_{j}^{z}=S-a_{j}^{*} a_{j}
\end{align*}
$$

However, the representations (2.7) are restricted to the boson-state where occupation number of the boson is smaller than $2 S+1$. In order to remove this restriction, a projection operator P_{j} is introduced:

$$
P_{j}=\theta\left(2 S-a_{j}^{*} a_{j}\right),
$$

where $\theta(x)$ is the unit step function,

$$
\begin{align*}
\theta(x) & =1, \quad x \geq 0, \\
& =0, \quad x<0 .
\end{align*}
$$

It should be noted that the projection operator P_{j} commutes with $\widehat{S}_{j}{ }^{\alpha}(\alpha=+,-, z)$. Using this projection operator, the boson representation of any physical quantity $A\left(S_{j}^{+}, S_{j}^{-}, S_{j}{ }^{z}\right)$ which is the function of S_{j}^{α} can be expressed as follows:

$$
\begin{align*}
A & =A\left(P_{j} \widehat{S}_{j}^{+} P_{j}, P_{j} \widehat{S}_{j}^{-} P_{j}, P_{j} \widehat{S}_{j}^{z} P_{j}\right) \\
& =P_{j} A\left(\widehat{S}_{j}^{+}, \widehat{S}_{j}^{-}, \widehat{S}_{j}^{z}\right) .
\end{align*}
$$

At this stage, the extension of this representation to full spin space which is the tensor product of each spin space spanned by $S_{j}{ }^{\alpha}$ may be done, and the thermal average of the operator A is obtained from

$$
\langle A\rangle=\sum_{n}(n|P \hat{\rho} \hat{A}| n) .
$$

Here, $\{\mid n)\}$ is any complete set of full boson states, and

$$
\begin{align*}
& P=\prod_{j} P_{j}, \\
& \hat{\rho}=\exp \left(-\frac{1}{k_{B} T} \widehat{H}\right) / \sum_{n}\left(n\left|P \exp \left(-\frac{1}{k_{B} T} \hat{H}\right)\right| n\right),
\end{align*}
$$

where k_{B} is Boltzmann's constant and T the temperature.

§ 3. Zero-point spin reduction in antiferromagnet

The Hamiltonian of the antiferromagnet we wish to consider in this section is written by

$$
H=2 J \sum_{\langle i, j\rangle} \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{\boldsymbol{j}}+2 J^{\prime} \sum_{\langle l, m\rangle} \boldsymbol{S}_{l} \cdot \boldsymbol{S}_{m}
$$

where the summation $\sum_{\langle i, j\rangle}$ is taken over all nearest neighbor (n.n.) pairs along the z-axist and $\sum_{\langle l, m\rangle}$ over all n.n. pairs perpendicular to the z-axis, $J(>0)$ and $J^{\prime}(>0)$ are the intra-chain, and inter-chain exchange integrals, respectively.

Two sublattice model is introduced as usual. The Holstein-Primakoff representations are the following in this case:

$$
\begin{align*}
& \widehat{S}_{i}^{+}=(2 S)^{1 / 2}\left(1-a_{i}^{*} a_{i} / 2 S\right)^{1 / 2} a_{i} \\
& \widehat{S}_{i}^{-}=(2 S)^{1 / 2} a_{i}^{*}\left(1-a_{i}^{*} a_{i} / 2 S\right)^{1 / 2} \\
& \widehat{S}_{i}^{z}=S-a_{i}^{*} a_{i}
\end{align*}
$$

for a spin on the A sublattice,

$$
\begin{align*}
& \widehat{S}_{j}^{+}=(2 S)^{-1 / 2} b_{j}^{*} *\left(1-b_{j}^{*} b_{j} / 2 S\right)^{1 / 2} \\
& \widehat{S}_{j}^{-}=(2 S)^{1 / 2}\left(1-b_{j}^{*} b_{j} / 2 S\right)^{i / 2} b_{j} \\
& \widehat{S}_{j}^{z}=-S+b_{j}^{*} b_{j},
\end{align*}
$$

for a spin on the B sublattice. Here two different sets of boson operators $\left\{a, a^{*}\right\}$ and $\left\{b, b^{*}\right\}$ have been introduced.

The method of the preceding section can be applied to the calculation of the sublattice magnetization $\left\langle S_{i}{ }^{2}\right\rangle$. We define the Fourier transformations,

$$
a_{\boldsymbol{k}}=\sqrt{\frac{2}{N}} \sum_{i} e^{i \boldsymbol{k} \boldsymbol{R}_{i}} a_{i}, \quad b_{\boldsymbol{k}}=\sqrt{\frac{2}{N}} \sum_{j} e^{-i \boldsymbol{k} \boldsymbol{R}_{j} b_{j}}
$$

where N is the total number of atoms, and use the canonical transformations,

$$
a_{\boldsymbol{k}}=\alpha_{\boldsymbol{k}} \cosh \theta_{\boldsymbol{k}}-\beta_{\boldsymbol{k}} * \sinh \theta_{\boldsymbol{k}}, \quad b_{\boldsymbol{k}}=-\alpha_{\boldsymbol{k}}^{*} \sinh \theta_{\boldsymbol{k}_{\boldsymbol{k}}}+\beta_{\boldsymbol{k}} \cosh \theta_{\boldsymbol{k}}
$$

Here, $\tanh 2 \theta_{\boldsymbol{k}}=\left[\cos k_{z}+\xi\left(\cos k_{x}+\cos k_{y}\right)\right] /(1+2 \xi)$, and $\xi=J^{\prime} / J$. If the terms higher than bilinear are neglected, the boson representation of the Hamiltonian (3.1) can be written by the above transformations as

$$
H=E_{0}+\sum_{k} \varepsilon_{\boldsymbol{k}}\left(\alpha_{k_{k}}^{*} \alpha_{k_{k}}+\beta_{k_{k}} * \beta_{k}\right),
$$

where

$$
\begin{align*}
& E_{0}=-2 J S^{2} N-4 J^{\prime} S^{2} N+\sum_{k}\left\{\varepsilon_{k}-4 J S-8 S J^{\prime}\right\} \\
& \varepsilon_{k}=2 S \sqrt{\left(2 J+4 J^{\prime}\right)^{2}-\left(2 J \cos k_{z}+2 J^{\prime} \cos k_{x}+2 J^{\prime} \cos k_{y}\right)^{2}} .
\end{align*}
$$

The expectation value of a spin on the A sublattice at absolute zero can be calculated by

$$
\left\langle S_{i}^{z}\right\rangle_{T=0}=S-\frac{\left(g\left|P a_{i}^{*} a_{i}\right| g\right)}{(g|P| g)}
$$

and the zero-point spin reduction is

$$
\Delta S=\left(g\left|P a_{i}^{*} a_{i}\right| g\right) /(g|P| g),
$$

where $\mid g)$ is the ground state of the full boson Hamiltonian.
Now, the true ground state $\mid g)$ is approximated by the ground state $\mid 0$) of the free spin-wave Hamiltonian (3.6). This is defined by

$$
\left.\left.\alpha_{k} \mid 0\right)=\beta_{k} \mid 0\right)=0
$$

Futhermore the following approximation is introduced:

$$
\Delta S=\frac{\left(0\left|P a_{i}^{*} a_{i}\right| 0\right)}{(0|P| 0)} \simeq \frac{\left(0\left|P_{i} a_{i}^{*} a_{i}\right| 0\right)}{\left(0\left|P_{i}\right| 0\right)}
$$

The operator P_{i} and $P_{i} a_{i}{ }^{*} a_{i}$ can be represented as follows: ${ }^{3)}$

$$
P_{i}=\sum_{l=0}^{\infty} B_{l}\left(a_{i}^{*}\right)^{l}\left(a_{i}\right)^{l}, \quad P_{i} a_{i}^{*} a_{i}=\sum_{l=0}^{\infty} C_{l}\left(a_{i}^{*}\right)^{l}\left(a_{i}\right)^{l}
$$

where $B_{0}=1, B_{1}=B_{2}=\cdots=B_{2 S}=0$,

$$
B_{n}=(-1)^{n-2 S} \frac{(n-1)(n-2) \cdots(2 S+2)(2 S+1)}{n!(n-2 S-1)!}, \quad(n \geq 2 S+1)
$$

and $C_{1}=1, C_{2}=C_{s}=\cdots=C_{2 S}=0$,

$$
C_{n}=(-1)^{n-2 S} \frac{(n-2)(n-3) \cdots(2 S+1)(2 S)}{(n-1)!(n-2 S-1)!} . \quad(n \geq 2 S+1)
$$

From (3.4) and (3.5), we get

$$
\left(0\left|\left(a_{i}{ }^{*}\right)^{n}\left(a_{i}\right)^{n}\right| 0\right)=n!v^{n}
$$

with

$$
\begin{equation*}
v=\frac{2}{N} \sum_{k} \sinh ^{2} \theta_{k} \tag{3.14}
\end{equation*}
$$

Hence, we have

$$
\begin{gather*}
\left(0\left|P_{i}\right| 0\right)=\sum_{n=1}^{\infty} B_{n} n!v^{n}, \\
\left(0\left|P_{i} a_{i}^{*} a_{i}\right| 0\right)=\sum_{n=1}^{\infty} C_{n} n!v^{n}
\end{gather*}
$$

The zero-point spin reduction is

$$
\Delta S=v-w
$$

with

$$
w=\frac{(2 S+1) v^{2 S+1}}{(1+v)^{2 S+1}-v^{2 S+1}} .
$$

Here, v defined in (3•14) is the zero-point spin reduction obtained by the simple spin-wave theory, while w is the correction by the kinematical interaction. It is interesting that (3.17) and (3.18) agree with that obtained by the Green function method. ${ }^{5}$)

The numerical values of ΔS are shown in Table I for the case of pure two dimensional $\left(J=0, J^{\prime} \neq 0\right)$ and three dimensional ($J=J^{\prime} \neq 0$) antiferromagnets. The correction w is very small except the case of two-dimensional lattice with $S=1 / 2$. Consequently the reason why the observed values of ΔS agree with those of a simple spin-wave theory in $\mathrm{KMnF}_{3}, \mathrm{RbMnF}_{3}, \mathrm{~K}_{2} \mathrm{MnF}_{4}, \mathrm{Rb}_{2} \mathrm{MnF}_{4}(S=5 / 2)^{1)}$ can be understood.

On the other hand, w is very important for the case $J^{\prime} / J \equiv \xi \ll 1$ (one-dimen-
Table I. Zero-point spin reduction of antiferromagnetic lattices.

	Square	NaCl-type	
v (free spin-wave theory)	0.197	0.078	
	0.141	$(S=1 / 2)$	0.067
	$(S=1 / 2)$		
	0.184	$(S=1)$	0.077

Table II. Zero-point spin reduction of chain-structure antiferromagnets.

	$\boldsymbol{\xi}=J^{\prime} / J^{\prime}$	v	ΔS
KCuF_{8}	2.7×10^{-2}	0.32	$0.20(42 \%)$
CPC	$0.8 \times 10^{-3} \sim 5.8 \times 10^{-8}$	$0.75 \sim 0.5$	$0.30(60 \%) \sim 0.25(50 \%)$
CTS	$2.1 \times 10^{-3} \sim 14.4 \times 10^{-8}$	$0.63 \sim 0.35$	$0.28(56 \%) \sim 0.21(42 \%)$

sional like). If ξ is less than $6 \times 10^{-3}, v$ is even bigger than $S=0.5$, and v goes to infinity as $\xi \rightarrow 0$. On the other hand, ΔS is never over S, and it tends to S as $\xi \rightarrow 0$ thanks to the presence of w. The values of ΔS for $S=1 / 2$ are plotted against ξ in Fig. 1. However, w is so small for $S \geq 1$ and $\xi \geq 10^{-2}$, that the effect of kinematical interaction can be clearly seen only for the case $S=1 / 2$ and $\xi \leqq 0.1$.

We apply now the present method to several chain-structure antiferromagnets with $S=1 / 2$, such as $\mathrm{KCuF}_{3}, \mathrm{CuCl}_{2} \cdot 2 \mathrm{NC}_{5} \mathrm{H}_{5}$ (CPC), and $\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{SO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ (CTS). The values of ξ are estimated from the observed Curie temperature using Green function method under the following assumptions. ${ }^{2), 6)}$
(1) The structure of lattice can be approximated by a tetragonal one.
(2) The exchange integrals are isotropic.

The results are given in Table II. The experimental results for KCuF_{3} are $\xi=0.027$ at $T=39.8 \mathrm{~K},{ }^{7}$ and the spin reduction $=0.23(45 \%){ }^{2)} \mathrm{We}$ can see that ΔS is in better agreement than v with the experimental value. Furthermore, as explained already, v is not reliable in this region of ξ, becouse v gets over the spin magnitude 0.5 when $\xi<0.006$. Unfortunately there are no experimental data of the spin reduction available for CTS and CPC, but we give the theoretical values for them in Table II.

§ 4. Discussion

The zero-point spin reduction of the sublattice magnetization in the Heisenberg antiferromagnet was calculated taking into account the kinematical interaction. It
was found that the kinematical interaction acts seriously on this reduction in the case of chain-structure antiferromagnet with $S=1 / 2$. Two important approximations were introduced in our calculation. The first one is that the true ground state of the spin system is approximated by the magnon ground state. Since the full boson Hamiltonian has source terms which are products of creation operators of magnon only such as $\alpha^{*} \alpha^{*} \beta^{*} \beta^{*}$, the magnon ground state is not an eigenstate of the spin system. Especially, these source terms would be important in low-dimensional lattice. The corrections due to these source terms is one of the problems which have to be solved in future. The second is that the product of projection operators have been decoupled.so that (3.11) is obtained. The meaning of this approximation is not clear. However it should be stressed that our result is in agreement with that by the Green function method with the random phase approximation.

References

1) R. E. Walstedt, H. W. de Wijn and H. J. Guggenheim, Phys. Rev. Letters 25 (1970), 1119. See also L. J. de Jongh and A. R. Miedema, Adv. in Phys. 23 (1974), 1.
2) M. T. Hutchings, E. J. Samuelson, G. Shirane and K. Hirakawa, Phys. Rev. 188 (1969), 919.
3) D. C. Herbert, J. Math. Phys. 10 (1969), 2255.
4) J. F. Cooke and H. H. Hahn, Phys. Rev. 184 (1969), 509.
5) M. E. Lines, Phys. Rev. 135 (1964), 1336.
6) M. J. Hennessy, C. D. McElwee and P. M. Richards, Phys. Rev. B7 (1973), 930.
7) H. Ikeda and K. Hirakawa, J. Phys. Soc. Japan 35 (1973), 722.
