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A key challenge in analyzing single cell RNA-sequencing data is the large number of false

zeros, where genes actually expressed in a given cell are incorrectly measured as unex-

pressed. We present a method based on low-rank matrix approximation which imputes these

values while preserving biologically non-expressed genes (true biological zeros) at zero

expression levels. We provide theoretical justification for this denoising approach and

demonstrate its advantages relative to other methods on simulated and biological datasets.

https://doi.org/10.1038/s41467-021-27729-z OPEN

1 Program in Applied Mathematics, Yale University, New Haven, CT 06511, USA. 2 Interdepartmental Program of Computational Biology and Bioinformatics,
Yale University, New Haven, CT 06511, USA. 3 Department of Immunobiology, Yale University, New Haven, CT 06511, USA. 4Howard Hughes Medical
Institute, Yale University School of Medicine, New Haven, CT, USA. 5 Department of Computer Science and Applied Mathematics, Weizmann Institute of
Science, Rehovot, Israel. 6 Department of Pathology, Yale University, New Haven, CT 06511, USA. 7Present address: Celsius Therapeutics, Cambridge, USA.
8These authors contributed equally: George C. Linderman, Jun Zhao. ✉email: yuval.kluger@yale.edu

NATURE COMMUNICATIONS |          (2022) 13:192 | https://doi.org/10.1038/s41467-021-27729-z | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-27729-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-27729-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-27729-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-27729-z&domain=pdf
http://orcid.org/0000-0002-0074-0346
http://orcid.org/0000-0002-0074-0346
http://orcid.org/0000-0002-0074-0346
http://orcid.org/0000-0002-0074-0346
http://orcid.org/0000-0002-0074-0346
http://orcid.org/0000-0002-6898-3547
http://orcid.org/0000-0002-6898-3547
http://orcid.org/0000-0002-6898-3547
http://orcid.org/0000-0002-6898-3547
http://orcid.org/0000-0002-6898-3547
http://orcid.org/0000-0002-5609-1066
http://orcid.org/0000-0002-5609-1066
http://orcid.org/0000-0002-5609-1066
http://orcid.org/0000-0002-5609-1066
http://orcid.org/0000-0002-5609-1066
http://orcid.org/0000-0003-4461-0778
http://orcid.org/0000-0003-4461-0778
http://orcid.org/0000-0003-4461-0778
http://orcid.org/0000-0003-4461-0778
http://orcid.org/0000-0003-4461-0778
http://orcid.org/0000-0002-9777-4576
http://orcid.org/0000-0002-9777-4576
http://orcid.org/0000-0002-9777-4576
http://orcid.org/0000-0002-9777-4576
http://orcid.org/0000-0002-9777-4576
http://orcid.org/0000-0002-3035-071X
http://orcid.org/0000-0002-3035-071X
http://orcid.org/0000-0002-3035-071X
http://orcid.org/0000-0002-3035-071X
http://orcid.org/0000-0002-3035-071X
mailto:yuval.kluger@yale.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


S ingle-cell RNA-sequencing (scRNA-seq) techniques measure
gene expression at the individual cell level. This requires
amplification of truly minute quantities of mRNA, resulting in

a phenomenon called “dropout” in which an expressed transcript is
not detected and hence assigned a zero expression value. As a result,
we define two types of zeros in the observed matrix: biological zeros
(genes that were not expressed at the time of sequencing) and
technical zeros (genes that were expressed at the time of sequencing
but not measured). We note that our definition of “technical zeros”
includes “sampling zeros,” which are the result of undersampling the
transcripts in each cell1,2. Roughly 15–40% of genes in bulk RNA-
seq of different tissues are not expressed3, suggesting that at least
that percentage of genes are not expressed in individual cells and are
thus biological zeros. However, due to technical zeros and cell-to-cell
heterogeneity, the fraction of zeros in a typical scRNA-seq expres-
sion matrix is much higher, even exceeding 90% with recently
developed droplet-based techniques.

Due to a large number of technical zeros, directly processing
the raw data may be detrimental to downstream analysis, such as
clustering and visualization. Imputation of the missing values has
the potential to improve these analyses. An imputation method
for scRNA-seq data should have (at least) the following two
properties: (i) it should accurately impute the data, in particular
preserving at zero true biological zeros while completing the
technical ones. We illustrate this point below using a dataset
from4, whereby detecting which matrix entries are true biological
zeros, has crucial importance for a biological understanding of the
particular system of interest. (ii) it should be able to process, in a
reasonable time, large-scale scRNA-seq datasets that contain
hundreds of thousands to millions of cells.

Over the past few years, several imputation methods have been
developed, including DCA5, MAGIC6, SAVER7, and scImpute8.
Some methods such as DCA and MAGIC treat all zeros as
“missing data” and output a matrix in which every gene is
expressed in every cell (i.e., there are no biological zeros). While
other methods such as SAVER and scImpute do preserve biological
zeros, as we show below, they either detect relatively few of them or
otherwise impute a few of the technical ones. Finally, with their
current implementations, SAVER and scImpute may be extremely
slow on scRNA-seq datasets with over 100,000 cells.

To address these challenges, we present Adaptively thresholded
Low-Rank Approximation (ALRA), a method for imputation of
scRNA-seq data. ALRA takes advantage of the non-negativity and
low-rank structure of an expression matrix to selectively impute
technical zeros (Fig. 1). Due to widespread correlations between
genes across different cells, we assume that the true expression
matrix is non-negative, low-rank, and contains many zeros (bio-
logical zeros). The matrix measured in a scRNA-seq experiment is a

corrupted version of this expression matrix where many technical
zeros are introduced by measurement error or insufficient total read
counts. The first step of ALRA is to compute a low-rank approx-
imation of the observed matrix using the singular vector decom-
position (SVD). The rank k of the approximation is automatically
determined by a simple procedure described in the Online Meth-
ods. The matrix resulting from this low-rank approximation, in
general, has no zeros. Hence, the last step of ALRA is to restore the
biological zeros in the matrix by thresholding its entries. As we
prove mathematically in the supplement, under certain assump-
tions, the entries of this matrix that correspond to the true biolo-
gical zeros are symmetrically distributed around zero. Due to this
symmetry, the negative values provide an estimate for the error
distribution of the elements corresponding to true biological zeros.
As such, we set to zero all the entries of each row (or gene) that are
smaller than the magnitude of the most negative value (see Methods
for details). This ensures that with high probability all of the entries
which correspond to biological zeros are set to zero. Our analysis
may be of independent interest to other low-rank matrix comple-
tion or denoising problems.

We emphasize the simplicity—and hence computational effi-
ciency—of our approach: it is SVD followed by a thresholding
scheme that takes advantage of the non-negativity of the true
matrix. Remarkably, as we demonstrate below with experiments
on 11 real scRNA-seq datasets, this simple approach outperforms
other more complex methods for the recovery of scRNA-seq
expression data. In addition to these empirical results, we also
give a rigorous theoretical justification for ALRA’s algorithm
(see supplement).

Results and discussion
ALRA preserves biological zeros. Using a variety of datasets
where ground truth is known, we empirically illustrate ALRA’s
ability to preserve biological zeros. We first considered scRNA-
seq of purified populations of peripheral blood mononuclear cells
(PBMCs) generated by Zheng et al. (2017)9. We merged the
purified populations into a single matrix and ran ALRA, DCA,
MAGIC, SAVER, and scImpute on the merged matrix. We then
focused our attention on B cells, natural killer cells, cytotoxic
T cells, and helper T cells. These four cell types are well char-
acterized and there are known marker genes specific to each. For
example, PAX5 (BSAP), NCAM1 (CD56), CD8A, and CD4 are
marker genes for peripheral B cells, NK cells, cytotoxic T cells,
and helper T cells, respectively10–12. The expression values of a
marker gene in a population that is known to not express that
marker gene (e.g., NCAM1 in B cells) are biological zeros. Note
that there may be further biological zeros in the marker genes due
to cell-to-cell heterogeneity (e.g., some CD8+ T cells may not

Fig. 1 Overview of the ALRA imputation scheme. A Measured expression matrix contains technical zeros (in each block) and biological zeros (outside
each block). B Low-rank approximation via SVD results in a matrix where every zero is completed with a non-zero value (i.e., biological zeros are not
preserved). C The elements corresponding to biological zeros for each gene are symmetrically distributed around 0, so the magnitude of the most negative
elements in each row is also approximately the magnitude of the most positive values assigned to biological zeros. Therefore, thresholding the values in
each row, restores almost all of the biological zeros in the imputed matrix (D).
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actually express CD8 at the time of sequencing), and for this
reason, we focus on the known biological zeros: genes for which
there is solid biological knowledge that these are not expressed in
a cell population.

After low-rank approximation, all entries in the matrix are
non-zero. However, as shown in Fig. 2A and in accordance with
our theoretical analysis, the elements of the matrix correspond to
known biological zeros (e.g., the gene PAX5 in NK cells, cytotoxic
T cells, or helper T cells) are symmetrically distributed around
zero. Thus in the second step of ALRA we threshold at the
red dotted lines, which are the symmetrical mirror image of the
0.001 quantiles of each gene (blue dotted lines). As shown in
Fig. 2B, this step recovers the known biological zeros of the

marker genes for these four purified peripheral blood mono-
nuclear cell populations. We note that some cytotoxic T cells with
NK cell markers (i.e., CD8+CD56+ cells) are known to be
present in the peripheral blood, which justifies the completion of
NCAM1 in a small fraction of cytotoxic T cells13.

In contrast, DCA, MAGIC, and SAVER output non-zero
values for many entries in the matrix that are expected to be
biological zeros. For example, both DCA and MAGIC result in a
matrix where CD8+ T cells express CD4 at nontrivial levels.
While there may be some crossover between these marker genes,
particularly during development, it would be in a small fraction
of the mature cells. Furthermore, the shapes of the distributions
obtained by these three imputation methods have no obvious

Fig. 2 Preserving biological zeros in purified PBMC populations. A After low-rank approximation, ALRA recovers biological zeros of each gene by
thresholding (red line) the expression values of that gene in all cells at the magnitude of the p= 0.001 quantile of that gene (blue line). B Preserving
biological zeros in genes known to be specific to each cell population. C Biological zeros were defined as genes which should not be expressed in a cell type
(based on bulk RNA-seq). The ratio of these biological zeros preserved (ZP) is shown alongside the ratio of total zeros completed (TC). D Percentage of
biological zeros preserved (left) and technical zeros completed (right) in a simulated scRNA-seq dataset as sequencing depth increases. DCA not shown
for (C) and (D), as it imputes every zero to a positive number.
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cut points for thresholding the biological zeros, especially
because in many cases the values that should be zero are not
small (Supplementary Fig. 1). We also note that while scImpute
preserves biological zeros, it only imputes 4–6% of the total
zeros, hence clearly underperforming in the task of imputing
technical zeros.

Next, going beyond the above illustrative example with only
four genes, we demonstrate the ability of ALRA to preserve
biological zeros in hundred of genes identified via bulk RNA-seq
of purified immune cell populations. Specifically, genes that were
not expressed in peripheral B cells, CD14+ monocytes, T cells,
and CD56+ NK cells in bulk RNA-seq of Hoek et al. (2015)14

were identified as “biological zeros.” We evaluated the ratio of
these biological zeros preserved (ZP) by the various imputation
methods. ALRA preserved more than 85% of the zeros in B cells,
CD14 monocytes, and T cells, and preserved 75% of the zeros in
CD56 NK cells. DCA does not preserve any biological zeros (it
always outputs values greater than zero), and hence is not shown
in the table. MAGIC preserved between 53 and 71% of the
biological zeros. scImpute preserved the most biological zeros, at
the cost of hardly imputing any of the zero entries in the matrix
(which includes a large number of technical zeros). SAVER
imputes fewer total zeros than ALRA but only preserves 69–73%
of the biological zeros, which is substantially lower than ALRA.

We performed a similar analysis using scRNA-seq data from
CITE-seq of a peripheral immune cell population15. In CITE-seq
data, both single-cell RNA-seq and cell surface protein expression
are measured for each of the cells. Unlike with the previous
experiment where FACS was used to separate the cells into cell
types and then sequence them, in this dataset we can identify B cells,
T cells, and monocytes based on the cell surface markers. We then
ran the imputation methods on the scRNA-seq data and evaluated
the ratio of biological zeros preserved by different imputation
methods (Supplementary Table 2). As before, ALRA preserved
substantially more biological zeros than MAGIC and SAVER.
scImpute preserved 5-8% more zeros than ALRA, but only imputes
about a fifth of the zeros that ALRA completes.

Finally, we assessed ALRA’s ability to selectively complete
technical zeros (while preserving biological zeros) using a
simulated dataset where the truth is known. We used bulk
RNA-seq of 5 T-cell populations from the ImmGen consortium16

to simulate scRNA-seq expression data. For each population,
we generated single-cell profiles by sampling counts from a
multinomial distribution as in refs. 17,18 with probabilities
proportional to expression in the bulk profile. Specifically, for a
given population, the probability vector is equal to the
corresponding bulk profile normalized to sum to one. We then
sampled from each multinomial distribution with an increasing
number of reads. The probability of recovering a technical zero as
a function of the underlying expression is shown in Supplemen-
tary Fig. 11. As shown in Fig. 2D, ALRA preserves ~97% of the
true biological zeros while completing a large proportion of the
non-zeros, even at shallow read depths. In contrast, MAGIC
preserves many fewer zeros, especially at shallow read depths.
SAVER fares better, but still incorrectly completes more
biological zeros than ALRA. Finally, scImpute preserves all the
biological zeros, but only imputes less than 25% of the technical
zeros. In these experiments, DCA was not included because it
outputs a matrix of all positive values (i.e., with no zeros), and
hence never preserves biological zeros.

The importance of preserving biological zeros. A cell type or
cellular process is often characterized by both positive marker
genes (genes expressed by the cells) and negative marker genes
(genes not expressed by the cells). Imputation methods that do

not preserve biological zeros result in a matrix where every gene is
expressed by every cell, requiring the practitioner to manually
threshold the expression values to determine which cells express
or do not express the markers. This thresholding can be arbitrary
and lead to erroneous results. In contrast, ALRA does not require
this thresholding step, as cells not expressing the gene will not be
falsely imputed to non-zero values. We demonstrate the impor-
tance of preserving biological zeros using three real-life examples.

Gupta et al.4 recently found that Wnt signalling is necessary for
hair follicle dermal condensate (DC) differentiation, an essential
step for hair follicle development. This was established in mouse
embryonic skin by conditionally knocking out beta-catenin, the
key transducer of the Wnt pathway, and comparing the
expression of DC marker genes with control using scRNA-seq.
We imputed these expression values using ALRA and compared
the ratio of cells expressing Sox2 (a marker for differentiated DC
cells) and the ratio of cells expressing Axin2/Lef1 (markers for
Wnt signaling) between the knockout and control to show that
only dermal cells that retained Wnt activity were able to acquire
DC cell fate. ALRA’s ability to preserve the biological zeros allows
us to quantitatively compare the number of cells expressing
the marker genes (Supplementary Table 1). The ratio of the
proportions of cells expressing Sox2 and Axin2/Lef1 between
the knockout and control is similar to the ratio computed from
the pre-imputed data. In particular, ALRA preserves the
conclusion that Wnt signalling was conditionally knocked out
in a proportion of cells within the mutants, and that there was a
corresponding impairment in DC differentiation caused by the
absence of Wnt signalling. In contrast, MAGIC and DCA both
output a matrix with no zeros, and hence, this proportion cannot
be evaluated (Supplementary Figs. 2 and 3). Furthermore, based
on their density plots and t-SNEs, it is not clear how to threshold
the imputed values to restore the zeros (Supplementary Figure 3).
SAVER’s results falsely suggest that the Wnt activity in the
knockout and control is identical, whereas scImpute falsely
suggests that DC differentiation is similar between knockout and
control (Supplementary Table 1). In settings where lack of
expression of a marker gene is used to characterize a population
or has other biological importance, existing methods that do not
preserve biological zeros are unsuitable.

Next, we demonstrate that ALRA allows practitioners to draw
upon a rich literature of positive and negative markers for known
cell types. In Supplementary Fig. 4, we demonstrate this
application by identifying known subtypes of PBMCs from
Zheng et al.9 using well-known markers (closely based on the
Human Blood Cell Atlas19, see methods). This is not possible
using the raw data, as very few (if any) cells would express all the
positive markers. But existing imputation methods that do not
preserve biological zeros would require an arbitrary thresholding
step to determine if a cell is “positive” or “negative” for the given
gene. Effectively, ALRA allows for automatic gating of cells based
on well-known marker genes, which can be especially useful
for distinguishing cell subtypes within a cluster (e.g., Naive B cells
and Memory B cells).

In a third example, we apply ALRA to human bronchial
epithelial cells from Lukassen et al.20. These authors sought to
identify cells that expressed three SARS-CoV-2 entry proteins,
ACE2, TMPRSS2, and FURIN. Their analysis was hampered by
dropout, as only three cells were triple-positive. Using ALRA,
we can identify 1309 of these triple-positive cells (Supplemen-
tary Fig. 5). When imputing with methods that do not preserve
biological zeros, cells that are not actually triple-positive are
imputed to express all three genes, hence requiring a thresh-
olding step to set these incorrect values to zero. This thresh-
olding is far from trivial, as different thresholds can lead to
dramatically different results.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27729-z

4 NATURE COMMUNICATIONS |          (2022) 13:192 | https://doi.org/10.1038/s41467-021-27729-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications


ALRA improves the separation of cell types. We next evaluated
ALRA’s ability to improve the separation of clusters after syn-
thetically introducing zeros. As in Huang et al., we downsampled
the reads of Zeisel et al.21, Baron et al.22, Chen et al.23, and La
Manno et al.24. We showed that after imputation, cell types are
more clearly separated in the t-SNE (Fig. 3A and Supplementary
Figs. 6 to 8). To quantitatively confirm that ALRA increases
separation, we trained supervised random forests to classify the
cells into cell types based on expression values, and we compare
the out-of-bag classification error before and after imputation.
Imputation by ALRA substantially decreased the out-of-bag error
on all four datasets, from average error of 16.4% to 8%. MAGIC,
SAVER, and DCA also improved the average error to 10.3%,
9.8%, and 9.4%, respectively, whereas scImpute increased the
error to 28%.

Additionally, we evaluate ALRA using t-SNE on two datasets
with cells that the authors classified into distinct cell types. We
applied ALRA, DCA, and MAGIC to the 65,539 mouse visual
cortex cells from Hrvatin et al. (2018)25 and 21,874 neocortical
cells from Tasic et al. (2018)26. Figure 3 compares the t-SNE
before and after imputation. After imputation by ALRA, several
cell types in the Hrvatin et al. dataset are more clearly separated.
While on the Tasic et al. dataset ALRA does not seem to
significantly improve cell-type separation, at least it does not
decrease separation, which DCA appears to do. We computed the
out-of-bag classification error as before, and found that ALRA
yielded an improved error from 6.3 to 2.3% in Hrvatin et al, and
down from 10.5 to 7.7% in Tasic et al, confirming that ALRA
improves the separation of the cell types. With their current
implementations, scImpute and SAVER do not scale well to large

Fig. 3 ALRA improves separation of cell types. A t-SNE of mouse brain cells from Zeisel et al. were computed based on the original data (Ref). The reads
were downsampled which introduced additional technical zeros and decreased the separation of different cell types (Obs). t-SNE after imputation by ALRA
and other algorithms. To quantitatively compare separation of cell types, a random forest was trained to predict cell class based on expression values, and
the out-of-bag classification error is shown in each plot. B The effect of imputation on separation of previously annotated cell types in mouse visual cortical
cells from Hrvatin et al. and in mouse neocortical cells (C) from Tasic et al. Unlike in (A), the datasets were not downsampled prior to imputation as they
already had high dropout rates.
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datasets and hence were not run on these matrices (see later for
scalability benchmarks).

Further validation of ALRA’s imputation. Having shown that
ALRA successfully preserves biological zeros and improves the
separation of cell types, we further validated ALRA performance
with several additional analyses. First, we used the CITE-seq cord
blood mononuclear cell (CBMC) dataset of Stoeckius et al. to
show that after imputation, the RNA measurements of each gene
are more consistent with the corresponding protein measure-
ments (measured as antibody-derived tag (ADT)). We computed
the k nearest neighbors of each cell (for k= 50, 100, 1000) in the
ADT space and also in the RNA space before and after imputa-
tion. ALRA nearly doubled the number of nearest neighbors that
are consistent between the RNA and protein measurements
(Supplementary Table 3). We also computed the pairwise dis-
tances between cells on the gene expression and on the protein
expression data. We plotted the normalized distances between
cells in gene expression data before and after imputation against
the distances between cells in the protein expression data to show
that ALRA improved their Spearman’s correlation (Supplemen-
tary Fig. 9) from 0.36 to 0.64.

As in Huang et al., we further evaluated our approach by
comparing ALRA’s completion of Drop-seq data to RNA
florescence in situ hybridization (FISH) of the same population
of cells. In Torre et al. (2018), 8498 cells from a melanoma cell
line were sequenced by Drop-seq27. RNA FISH was also used to
measure the expression of 26 markers in cells of the same cell line.
Although the gene expression profiles of individual cells cannot
be compared across these two datasets, the distribution of gene
expression should be consistent, because the cells were sampled
from the same cell line. Huang et al. (2018) applied SAVER to the
Drop-seq data and demonstrated that, as compared to the raw
data, the estimated distribution of expression values is more
consistent with the FISH distributions7. Their analysis computes
the Gini coefficient of each gene, a measure of gene expression
variability, which should be consistent across the Drop-seq and
FISH technologies. Specifically, they showed that the Gini
coefficients of a subset of marker genes in the FISH dataset
were more consistent (correlation 0.6) with the SAVER estimates
than either the raw Drop-seq data (correlation 0.3) or other
completion methods (Supplementary Fig. 12). Our approach
outperforms all other methods on this metric, obtaining a
correlation of 0.8.

Next, we further evaluated ALRA using the downsampled
datasets from before (Baron et al., Chen et al., La Manno et al.,
and Zeisel et al.). We computed the correlation of each gene/cell
in the original dataset with the same gene/cell in the down-
sampled dataset before and after imputation by ALRA. We found
that despite improving the clustering (see above), ALRA does not
increase this correlation (Supplementary Fig. 15B). We attribute
this to the presence of strong noise in the raw data which is not
present after denoising using ALRA. To check if ALRA is
preserving the signal, we computed the top k PCs (where k was
chosen using the jackstraw method, see methods) of the original
dataset with the top k PCs of the downsampled dataset before and
after imputation. We found that ALRA decreases the subspace
angle between these signal PCs, from 0.34 to 0.25 for Baron et al,
0.30 to 0.17 for Chen et al, 0.36 to 0.24 for La Manno et al, and
0.21 to 0.15 for Zeisel et al. Thus ALRA effectively increases the
correlation between the signals of the subsampled data and the
original data. Additionally, the correlation of the imputed data
with the original raw data (Supplementary Fig. 15B) is not a
useful metric as it has a strong dependence on the noise of the
original data.

We next focused on ALRA’s ability to preserve subtle
differences in expression values. A recent study uncovered the
existence of two major lineages of fibroblasts in the intestine
characterized by differential Pdgfra gene expression levels:
PdgfraHigh and PdgfraLow fibroblasts28. We tested whether
ALRA would preserve this expression pattern by performing an
independent scRNA-seq experiment and sequencing fewer cells,
thus generating a scarcer dataset to be completed by ALRA and
other methods. We isolated mesenchymal/lamina propria cells
from the colon of PdgfraEGFP/+ knock-in mice and used flow
cytometry to confirm the presence of two major populations
with non-zero Pdgfra-EGFP expression: PdgfraLow cells and
PdgfraHigh cells (Supplementary Fig. 16). After imputation by
ALRA, a Pdgfra expression pattern very similar to that observed
by flow cytometry can be clearly seen. In contrast, other
methods do not show two distinct levels of Pdgfra expression
(Supplementary Fig. 17).

Finally, using the same simulated dataset as before, we computed
the correlation between each cell’s expression profile and the bulk
RNA-seq profiles for the 9 immune cell populations they were
generated from. If the correlation between a cell and its
corresponding bulk RNA-seq sample is larger than the others,
we say it is correctly classified. We would expect that after
imputation, the correlation between a cell and its corresponding
bulk RNA-seq sample would be clearly larger than its correlation to
the other samples, and hence the classification rate would improve.
As shown in Supplementary Fig. 10A, most cells are classified
correctly in the original data. ALRA successfully increases the
correlation of each cell with its corresponding bulk RNA-seq
sample more than with the other cell-type bulk profiles. DCA,
MAGIC, scImpute, and SAVER, in contrast, do not improve the
correlations; in fact, the misclassification error is higher after
matrix completion using these methods.

We also noticed that ALRA appears to perform best on
datasets that include a diversity of cell types. In the presence of
diverse cells, the leading singular values, corresponding to
biological variation, are large relative to the technical noise.
Consequently, the corresponding singular vectors can be more
accurately estimated, resulting in better imputation results. When
we applied ALRA to the individual purified PBMC populations
from above (Fig. 2), it did not preserve the biological zeros as
effectively as when we applied ALRA to the merged matrix. In the
mouse intestine cells, we similarly found that when ALRA is
applied to a biological replicate that had the epithelial cells
removed, the two populations of fibroblasts did not have as
clearly distinguishable Pdgfra expression (Supplementary Fig. 18).
For this reason, we recommend using ALRA on the full dataset, as
opposed to purified subsets.

ALRA is highly scalable. ALRA only requires a single rank-k
SVD of the observed matrix, which is very fast to compute.
Furthermore, it can scale to huge matrices with modern algo-
rithms and software. In Fig. 4A we compare the runtime of
ALRA, MAGIC, SAVER, DCA, and scImpute on subsets of
mouse visual cortex cells from Hrvatin et al. The resulting
matrices ranged from 1000 to 50,000 cells, each with 19,155
genes, and all methods were restricted to using only a single core.
ALRA and MAGIC are significantly faster than the other meth-
ods, taking ~40 min on 50,000 cells. DCA requires about 4 h to
run on the same number of cells, whereas scImpute and SAVER
both take over 10 h for 10,000 cells and were not attempted on
larger matrices. We emphasize that these are single-core times,
several of the above methods can multithread, substantially
improving performance on machines with multiple cores. ALRA
also supports multithreading via the Intel Math Kernel Library
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(MKL) by passing the ‘use.mkl’ flag to the ALRA function, but we
do not compare multithreaded performance here. ALRA’s scal-
ability is especially crucial for the imputation of modern scRNA-
seq datasets, which can exceed 1 million cells (e.g., ref. 29).

In this paper, we present ALRA, an efficient imputation
method for scRNA-seq data. ALRA’s ability to preserve the vast
majority of biological zeros rest on a solid theoretical foundation
and its overall performance has been validated across simulated
and real scRNA-seq datasets. ALRA improves the separation of
cell types in both t-SNE and the original high dimensional space,
imputes values consistent with external measurements, and
computationally scales better than other methods. We also note
that ALRA has only one parameter, the approximate rank k of the
matrix, which is selected automatically based on statistics of the
spacings between consecutive singular values.

Methods
ALRA procedure. Given a measured expression matrix, as outlined in Algorithm 1,
ALRA consists of the following steps. First, as commonly done with scRNA-seq
data, the first step is standard pre-processing of the expression matrix by library
normalization and log-transformation. Specifically, we normalize each column to
α= 10,000 transcripts per cell, add 1 to every entry (i.e., a “pseudocount”), and take
the logarithm of each entry to obtain the normalized expression matrix. It has been
noted that different values of α can affect downstream results30, but we show that
ALRA’s preservation of biological zeros is not dependent on this choice (Supple-
mentary Tables 6 to 9, Supplementary Fig. 19). As discussed in the Appendix, a
variance stabilizing transform is necessary for good downstream results, and we
chose the log-transform due to its widespread use. Other kinds of normalization
can also likely be used.

After normalization, the next three steps are as follows: (i) Estimate the rank k
(ii) compute the rank-k SVD using randomized SVD and (iii) threshold each gene
of the rank-k SVD by the absolute value of that gene’s p= 0.001 quantile. Finally,
we rescale the resulting values such that the mean and standard deviation of the
non-zero values of each gene in the resulting matrix match those of the normalized
matrix (prior to low-rank approximation). A small number of non-zero values in
the normalized matrix may be smaller than the threshold and may thus get set to
zero by the thresholding operation in step (iii) of ALRA. For improved consistency
with the observed matrix, we restore these entries to their original normalized
values. We note that this process not only imputes technical zeros, but also
denoises the originally non-zero values. An intuitive measure of how much the
non-zero values were adjusted is the Pearson’s correlation between these values
before and after ALRA (e.g., for the purified PBMCs and Hrvatin et al. datasets, the
correlations were 0.56 and 0.23, respectively).

Implementing ALRA using standard SVD procedures in common software may
be rather slow and not scale to large matrices. To allow ALRA to scale to matrices
with hundreds of thousands to millions of cells, we apply recently developed
methods for randomized SVD31. Randomized SVD can be used to compute the
leading singular values and singular vectors of large matrices with high accuracy yet
at a fraction of the computing time and memory requirements. By default, ALRA
uses the single-threaded implementation from the R package rsvd32. For Linux and
OS X users, we also developed a multithreaded implementation based on Intel

Math Kernel Library (MKL) that can be installed with one command and enabled
by the ‘use.mkl’ argument of the alra function. When imputing data using
randomized SVD, we set the parameter for the number of additional power
iterations to 10, for increased accuracy.

Algorithm 1. Adaptively thresholded Low-Rank Approximation

Rank estimation. As described above, the only parameter in ALRA is the rank k of
low-rank approximation. Estimating the rank of a matrix, given a noisy and/or
corrupted version of it, is a classical and well-studied problem, see for example
refs. 33–36. Most works on rank estimation, however, assume that all entries of the
matrix are observed, often with each entry corrupted by additive noise. In ref. 37, in
an econometric context, an estimator was based on the spacing of eigenvalues.
Specifically, the estimated rank is the largest value of k for such that λk− λk−1 > δ
for an appropriate threshold δ, computed in a data-driven manner.

Motivated by this work, here we also propose a similar approach. Noise
typically manifests as a long tail of singular values whose singular vectors point to
random directions in space with no scientific significance. The goal is to choose k
such that the singular values σ1, . . . , σk correspond to biological variability of
interest or signal, whereas the remaining values are noise. We assume an upper
bound k < 100, and thus first use rsvd to compute the top 100 singular values. For
this computation to be fast, we apply rsvd with the default setting of only q= 2

Fig. 4 Runtime of ALRA versus other imputation methods using expression matrices of N cells and ~19,000 genes. All experiments performed on a
single core.
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additional power iterations. Next, we compute the spacings between consecutive
singular values, denoted as si= σi− σi−1 for i= 2, . . . , 100. As can be seen in the
plots of si for two different datasets (Fig. 5), for large values of i, the gap between
consecutive eigenvalues becomes very small, whereas the first few gaps are
significantly larger. This is consistent with studies in random matrix theory
considering spiked matrices containing signal+noise. Our aim is thus to choose the
largest k for which sk is significantly different from typical spacings between noise
eigenvalues. To this end, we compute the mean μ and standard deviation σ of the
“noise” spacings s80, . . . , s100. Next, our estimated value for the rank k is the largest
index for which the gap sk > μ+ 6σ. A detailed theoretical justification for this
procedure is beyond the scope of this manuscript. Yet, empirically, this method
appears to be quite effective. Finally and importantly, we note that ALRA is not
sensitive to the specific choice of a rank k: the number of biological zeros preserved
does not significantly change with k (Supplementary Table 4). Similarly, ALRA’s
improved separation of cell types is also robust to the exact value of the rank
(Supplementary Fig. 13).

Excess zeros. After low-rank approximation, ALRA restores biological zeros by
thresholding each gene based on the distribution of negative values. This allows the
user to be confident that any imputed values do not correspond to biological zeros.
However, values corresponding to technical zeros will inevitably be below the
threshold and hence kept as zeros. This is why we consider ALRA to be a con-
servative method for imputation: zeros are only imputed if we have strong evidence
that they are not biological zeros.

However, we can use the symmetry assumption to determine how many
technical zeros are still missing after imputation. Given that the biological zeros are
symmetrically distributed around zero, asymmetry in this distribution is due to
technical zeros. This allows us to determine the number of excess zeros for a gene i
with threshold τi as

ψi ¼ jfj : 0<yij<τi and xij ¼ 0gj � jfj : yij<0 and xij ¼ 0gj;
where xij and yij denote the expression values before and after low-rank
approximation, respectively, for the ith gene and jth cell. That is, the number of
positive values set to zero in excess of the number of negative values set to zero. If
there are no technical zeros below the threshold, then the number of positive values
below the threshold (first term) will be the same as the number of negative values
(second term), and hence ψi will be close to zero. Conversely, if there are more
positive values below the threshold than negative values, this suggests that a large
number of technical zeros are also below the threshold will be set back to zero, as
they cannot be distinguished from the biological zeros. To demonstrate this
measure, we plot six genes with low ψ and six genes with high ψ (Supplementary
Figs. 20 and 21). The ALRA package includes a function that can be used to
calculate the number of excess zeros for genes of interest.

Assumptions, theory, and relation to low-rank matrix completion. The key
assumption underlying ALRA is that the true scRNA-seq data matrix is low-rank,
with the expression values lying in a linear subspace of dimension significantly
lower than the number of cells or genes. It has long been appreciated38–41 that
genes do not act independently, but rather in concert, forming groups of highly
correlated genes often referred to as gene modules. Therefore, the true expression
matrix is often modelled as a low-rank matrix. Due to this assumed low-rank
structure, indeed nearly every scRNA-seq pipeline first reduces dimensionality to
the top few principal components (e.g., ref. 42).

At first sight, imputing an scRNA-seq data matrix containing many zeros and
assumed to be of low rank, may look like a particular instance of a low-rank matrix
completion (LRMC) problem. This may seem a promising venue as over the past
10 years, a rich theory and several methods have been developed to complete
missing values in low-rank matrices (e.g., refs. 43–45). However, as we now explain,
imputing scRNA-seq data are a different problem. Specifically, in the low-rank
matrix completion literature, the assumption is that the set of indices of the
observed entries are perfectly known, and have been sampled either uniformly at
random, or as in ref. 46, with probability proportional to the leverage scores of the
matrix. Under this sampling model, and some additional delocalization and
incoherence assumptions, LRMC methods can exactly recover the true low-rank
matrix with high probability. In scRNA-seq, in contrast, the precise indices where
the values of the matrix were sampled are not perfectly known, since some of the
observed zeros are true zeros of the underlying data matrix. Namely, the missing
entries are some unknown subset of the observed zeros. Direct application of an
LRMC method to scRNA-seq data (e.g., as in refs. 47,48) while treating all the zeros
as missing implies a highly biased sampling, which consequently may lead to
incorrect imputation of the matrix. Moreover, the theoretical guarantees found in
the LRMC literature do not apply to this biased sampling scheme.

To perform accurate imputation for scRNA-seq data, our method thus relies on
a different yet simple observation: In datasets where the biological zeros were
known, the non-zero values recovered by a low-rank SVD reconstruction of the
observed matrix were symmetrically distributed around zero. In the supplement,
we present the rigorous theoretical foundation for this empirical observation,
relying on a perturbation analysis together with results from random matrix
theory. Specifically, we prove that under certain assumptions, the distribution of
these entries is indeed Gaussian with mean zero. Therefore, for each gene, any

element larger in magnitude than the p= 0.001 quantile is unlikely to be a
biological zero. Conversely, values smaller in magnitude than this threshold may be
biological zeros, so we set them to zero. The result is a completed matrix where the
biological zeros are preserved, with high probability, and where every imputed
value is unlikely to be a biological zero. We note that ALRA is not as sensitive to
the magnitude of p (Supplementary Fig. 14).

We remark that in our theoretical analysis, we assumed that the singular values
of the low-rank matrix are sufficiently large to be detected by our rank estimation
procedure, even in the presence of a significant number of technical zeros. In the
theory of high dimensional statistics concerning signal+noise matrices, there is a
well-studied phase transition, whereby weak signals cannot be reliably detected by
SVD (or PCA), and then the sample eigenvectors bear no relation to the true
population ones49,50. In our context, in scRNA-seq experiments involving several
types of cells, we expect the top eigenvectors to capture the differences between
different cell types, and thus leading to large singular values, relative to the noise. In
contrast, in scRNA-seq data containing only a single type of cell, the often smaller
cell-to-cell heterogeneity between cells of the same type may lead to weak signals
that due to a large number of technical zeros, cannot be discovered by SVD. In
such a case, ALRA may consequently fail to correctly detect and preserve the
biological zeros.

Purified PBMC analysis. Filtered expression matrices were obtained for FACS
purified B cells, CD14 monocytes, CD34+ cells, CD4 helper T cells, regulatory
T cells, naive T cells, memory T cells, CD56 natural killer cells, cytotoxic T cells,
and naive cytotoxic T cells from the 10X Genomics website. The matrices were
merged, resulting in an expression matrix with 94,655 cells and 32,738 genes. The
matrix was filtered so that cells expressing more than 400 genes and genes
expressed in more than 100 cells were retained, resulting in a matrix with 83,992
cells and 12,776 genes. We applied DCA, SAVER, and scImpute to this count
matrix (as these methods take the raw data and perform their own normalization),
and for SAVER we sampled from the estimated posterior distribution using the
function ‘sample.saver’. We ran ALRA and MAGIC on the library and log nor-
malized the expression matrix. The outputs for DCA and scImpute were log and
library normalized. The output of SAVER was log normalized but not library
normalized, as it was not run on all genes (see below). The rank for ALRA was
estimated to be k= 26 using the procedure described above. For MAGIC, we set
the negative values to be zero.

Due to computational constraints, we cannot run SAVER and scImpute on all
the genes. Using SAVER’s ‘pred.genes’ argument, we only imputed the genes
identified as containing biological zeros, making it computationally feasible.
scImpute does not have such an argument, so to compute the proportion of zeros
preserved and completed, we ran scImpute on a random set of 10,000 cells. To
compute the proportion of total zeros completed (TC) in Fig. 2C for SAVER, we
also ran SAVER again on all genes using the same random subset of 10,000 cells as
before.

Simulated scRNA-seq data. To evaluate ALRA’s performance, we simulated
scRNA-seq data based on deep-sequenced bulk RNA-seq data of S samples. The
simulation is based on a multinomial model, as in refs. 17,18. Enumerating the bulk
RNA-seq expression profiles as i= 1, . . . , S and genes as j= 1, . . . ,m, let nij denote
the read counts of gene j in the ith sample. Normalizing, we parameterize the
multinomial distribution with an m-dimensional probability vector pi, where

piðjÞ ¼ nij
∑m

k¼1 n
i
k
.

To generate the gene expression profile for the ℓth cell, we randomly choose one
of the cell types with equal probability and denote the chosen cell type by
cℓ∈ {1, . . . , S}. The associated probability vector is then pc‘ . In order to obtain a
realistic distribution of read counts, we randomly sample a cell from the purified
PBMC dataset, and let Nℓ be the read count in that cell. Finally, we sample an m-
dimensional vector of counts from the multinomial distribution parameterized by
Nℓ and pc‘ . The process is then repeated for as many cells as specified by the
simulation.

This simulation data enables us to distinguish true biological zeros and
technical zeros based on whether or not the gene is actually expressed in the
corresponding bulk RNA-seq sample. For Fig. 2D, we used 5 spleen T-cell types
(Treg, CD4 conventional T cells (TConv), CD8 T, gamma delta T cells (gdT), and
Natural Killer T cells). To determine the imputation methods’ performance as a
function of increasing read depth, we varied read counts as αNℓ, where
α= 0.25, 0.5, 0.75, 1.0.

For the correlation study in Supplementary Fig. 10 we used a similar
multinomial-based sampling approach, but we used all nine cell types (CD4
conventional T cells (TConv), CD8 T, gamma delta T cells (gdT), neutrophil, NK,
NKT, and Treg cells).

Evaluation of zero preservation with bulk RNA-seq data. To comprehensively
evaluate the ability of various imputation methods to preserve biological zeros, we
used bulk RNA-seq data to define biological zeros. In ref. 14, several different types
(B cells, monocytes, T cells, and NK cells) of peripheral blood mononuclear cells
(PBMCs) were analyzed with bulk RNA-seq, with two biological replicates for each.
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For each cell type, genes with zero counts in both replicates were defined as
“biological zero genes” for this specific cell type. In the scRNA-seq data of the
corresponding cell type, we calculate the zero preservation rate as a number of zero
entries in all biological zero genes after imputation, divided by a number of zero
entries in all biological zero genes before imputation.

CITE-seq data analysis. Cellular Indexing of Transcriptomes and Epitopes by
sequencing (CITE-seq)15 is a method for simultaneous epitope and transcriptome
measurement in single cells. We obtained the PBMC dataset from GEO
(GSE100866 [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE100866])
and proceeded to identify cell types based on their surface protein markers. After
filtering cells for which more than 90% of the UMIs came from mouse genes and
removing genes that had expression in less than 10 cells, there were 7667 cells and
13,458 genes. Surface protein markers are measured by counting antibody-derived
tags (ADT) on each cell, and gene expression is measured in the same cells using
scRNA-seq. We used the ADT counts to determine cell type by “gating” the cells by
their marker epitopes. We used markers CD3, CD19, and CD14 to define T cells, B
cells, and monocytes, respectively. Specifically, we applied k-means with k= 2 to
transformed ADT counts for each marker individually in order to classify cells as
expressing a marker epitope or not. Then, we classify cells into types as follows:
CD3+CD19−CD14− T cells, CD3−CD19+CD14− B cells, and
CD3−CD19−CD14+ monocytes. We ran ALRA and the other imputation
methods on the scRNA-seq data; the rank for ALRA was estimated to be k= 22
using the procedure described above.

We obtained the cord blood mononuclear cell (CBMC) dataset from the same
paper and imputed the data using ALRA and the other imputation methods. After
filtering cells for which more than 90% of the UMIs came from mouse genes, there
were 8005 cells and 20,400 genes. For ALRA, the rank was estimated to be k= 25.
We used CLR-transformed epitope ADT counts and calculated the correlation
between each protein marker and its corresponding gene, before and after
imputation. We also calculated the correlation between each protein marker and
1000 random genes and compared the correlation of each protein marker and its
corresponding gene to this “null distribution”. We also computed the Euclidean
distances between each pair of cells in the ADT space and then in the gene
expression space, and compared the correlation of these distances before and after
imputation.

Processing of mouse dermal cells. Raw count scRNA-seq data of E14.5 Wild
Type (WT: two replicates) and Loss of Function (LOF: one replicate) was obtained
from4. For each sample, we used Seurat to perform data normalization, scaling,
variable gene selection, PCA, clustering, and t-SNE embedding calculation. Cells
with expression in less than 1000 genes were filtered out. The Col1a1 gene was used
to select dermal clusters, and only cells in clusters with high expression (>85%
expressing cells) of Col1a1 were retained for further analysis. The resulting matrix
had 11,121 dermal cells and 28,000 genes. After the selection of dermal cells, we
first merged the two biological replicates for the WT samples, then used canonical
correlation analysis (CCA) to merge data from WT and LOF and removed batch
effect. The top 15 CCA components were used for t-SNE calculation. The
expression matrices were normalized as in the Purified PBMC analysis detailed
above. The rank for ALRA was estimated to be k= 49 using the procedure
described above.

Identification of PBMCs using known markers. The 68k peripheral blood
mononuclear cell dataset was downloaded from 10X Genomics website9. Cells with
expression in less than 400 genes were filtered out, and genes with expression in
less than 6 cells were filtered out. The resulting dataset had 58,674 cells and 16,137
genes. The rank for ALRA was estimated to be k= 19 using the procedure
described above, and ALRA was run on the dataset. Positive and negative markers
were determined based on ref. 19 and supplemented with expert knowledge
(Supplementary Table 5). If a cell expressed all positive markers and no negative

markers after imputation, then it was identified as belonging to that
corresponding class.

Processing of data on human bronchial epithelial cells. Count matrices after
filtering were downloaded from Lukassen et al. As described in the original paper,
Seurat (Version 3)51 was used to perform library and log normalization, scaling,
integration, variable gene selection, PCA, and UMAP embedding calculation with
default parameters. Cell-type information was also obtained from the original
work. ALRA was applied on the merged and normalized data matrix.

Improved separation of cell populations. The scRNA-seq expression matrix of
mouse visual cortex cells from ref. 25 was obtained and filtered as in Huang et al., so
as to compare with SAVER’s result. Specifically, genes with a mean expression less
than 0.00003 and non-zero expression in less than 4 cells were excluded, resulting
in an expression matrix with 19,155 genes and 65,539 cells. ALRA was run with
k= 48 (as estimated by the procedure described above) on the subset of 48,244 cells
that were classified into cell types in the original study. Variable genes were
identified for both the observed and ALRA-completed data using Seurat52. The fast
t-SNE implementation of ref. 53 (FIt-SNE) was then used to compute the
embedding of the top 48 principal components of the observed and ALRA-
completed data.

Next, the scRNA-seq data26 of neocortical cells were obtained and analyzed.
We filtered cells labeled with ‘Low Quality’, ‘Doublet’, ‘Batch Grouping’, or ‘High
Intronic’, based on the metadata provided by the authors, and there were 21,874
cells left. ALRA, DCA, and MAGIC were run on the data. The rank k for ALRA
was estimated to be k= 53. On each method, we then used Seurat to scale the data,
identify variable genes, compute PCA, and computed t-SNE using the top 53 PCs.

We also used the downsampled scRNA-seq datasets21–24 from ref. 7. Cell
identity was based on the metadata provided by the original authors. Baron et al.
had 1076 cells, Chen et al. had 7712 cells, La Manno et al. had 947 cells, and Zeisel
had 1799 cells. When running ALRA on the four datasets, the ks for ALRA were
automatically chosen to be 12, 21, 15, and 16 respectively. After imputation with
each method, the number of PCs to retain for each was chosen by the jackstraw
method as implemented in Seurat. PCs with an assigned p-value of 1 × 10−5 or
smaller were retained.

We then sought to quantify the separability of cell types after imputation. For
each dataset, we trained a random forest to classify cell type based on expression
values (using the raw expression matrices obtained from ref. 7). The classification
error is then a surrogate for separability, as better separated cell types are easier to
classify. We used the R package ranger54 with default settings and compared the
out-of-bag error before and after imputation.

Similarly to ref. 25, for the four matrices in the downsampling experiment, we
computed the Spearman’s correlation between the genes/cells in the imputed
matrix and genes/cells in the original (i.e., not downsampled) matrix. Instead of
Pearson’s rho, we used Spearman’s correlation as it is more robust to the presence
of strong outliers that we observed. We then computed PCA for each of the
datasets, and retained the leading PCs, which were chosen using Seurat’s jackstraw
command on the original matrix. Finally, we computed the subspace angle between
the PCs of each original dataset and the PCs of the downsampled matrix before and
after imputation. The subspace angle was calculated using the subspace function in
the R library pracma55.

FISH experiments. We obtained the Drop-seq and RNA FISH datasets from27.
The drop-seq data consists of 8640 cells and 32,287 genes. The RNA FISH consists
of 26 genes across 7000–88,000 cells (depending on the gene). To directly compare
with analysis published by the authors of SAVER, we followed their same filtering
procedure, removing cells with library size greater than 20,000 or less than 500, and
also removing genes with mean expression less than 0.1. The resulting dataset
contains 8498 cells and 12,241 genes, with 16 genes shared between Drop-seq and
FISH. As in Huang et al., cells in the bottom and top tenth percentiles of the
housekeeping gene GAPDH were filtered out, and all genes were then normalized

Fig. 5 Differences between consecutive singular values. A the rank was set to k= 26 in the purified PBMCs experiment. B Rank was set to k= 48 for the
mouse visual cortex cells experiment.
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by GAPDH expression. We then computed the Gini coefficient of each of the other
15 genes (excluding GAPDH) in RNA FISH, original Drop-seq, and Drop-seq after
imputation, using this filtered subset (Supplementary Fig. 12). The rank selected by
ALRA was k= 14.

Runtime comparison. We sampled random subsets of sizes 5000, 10,000, 20,000,
30,000, 40,000, and 50,000 cells from Hrvatin et al. and compared the runtime of
ALRA and other imputation methods on each subset. All experiments were per-
formed on a single core, with default parameters. Notably, SAVER’s option of
‘do.fast’ was set to true.

Intestinal fibroblast experiments. PdgfraEGFP/+ mice56 were obtained from the
Jackson Laboratory and bred in the facilities of the Yale Animal Resources Center
and maintained on a C57BL/6J genetic background. Mice were housed in standard
cages, on a 12 h day/night cycle and were fed a standard rodent chow. All animal
experimentation was performed in compliance with Yale Institutional Animal Care
and Use Committee protocols.

Isolation of mouse intestinal mesenchymal cells. The intestine was dissected, flushed,
opened longitudinally, and then cut into 1 cm pieces. The tissues were incubated in
HBSS containing 1 mM EDTA, 1 mM DTT, 0.2% FBS, 4–5 times, 10 min each, at
37 °C, 200 rpm. Epithelial cells were released by vigorous shaking. After epithelial
cell removal, the remaining stromal part of the intestine was incubated in DMEM
10% FBS containing Collagenase XI (300 units/ml, Sigma, C7657), Dispase II
(0.1 mg/ml, Sigma, D4693), and DNase II Type V (50 units/ml, Sigma, D8764) for
1 h, at 37 °C, 200 rpm. Cells released after vigorous shaking were passed through a
70 μm strainer and washed with 2% sorbitol. Such cell preparations were directly
processed by Drop-seq or by flow cytometry.

Flow cytometry in intestinal mesenchymal cells. Flow cytometry analysis was per-
formed at the Yale Flow Cytometry Facility. Freshly isolated intestinal mesenchymal
cells from PdgfraEGFP/+ mice56 were analyzed for direct EGFP fluorescence with a BD
LSRII cytometer equipped with FACSDiva software. Cells isolated from the intestine
of WT mice were used as a non-fluorescent control. Data analysis was performed with
the FlowJo software. Single cells were selected first by a FSC-H vs FSC-A and then by
a SSC-H vs SSC-A gate and then a FSC-A vs SSC-A gate was applied.

Drop-seq in intestinal mesenchymal cells. Mesenchymal cells were isolated from the
intestine of WT C57BL/6J mice (n= 2). The cells were diluted to a concentration of
100 cells/μl and 1 ml aliquots were used as input to the Drop-seq protocol which
was performed as described previously42,57 with minor modifications. The beads
were purchased from ChemGenes Corporation, Wilmington MA (catalog number
Macosko201110) and the PDMS co-flow microfluidic droplet generation device
was generated by Nanoshift, Emeryville CA. For both conditions, the 1 ml DropSeq
collection was performed. Samples were processed for cDNA amplification within
~15 min of collection. Populations of 5000 beads (~150 cells) were separately
amplified for 15 cycles of PCR (conditions identical to those previously described)
and pairs of PCR products were co-purified by the addition of 0.6x AMPure XP
beads (Agencourt). The cDNA from an estimated 1500 cells was prepared and
tagmented by Nextera XT using 1000 pg of cDNA input, and the custom primers
P5_TSO_Hybrid657 and Nextera XT primers, N701 and N702 (Illumina). Both
libraries were sequenced on the Illumina NextSeq 500 using 2.0 pM in a volume of
1.3 ml HT1, and 2 ml of 0.3 μM Read1CustomSeqB657 for priming of read 1. Read
1 was 20 bp; read 2 (paired-end) was 60 bp. Single-cell RNA-seq data were pro-
cessed as described by Macosko et al. to generate a digital expression matrix with
transcript count data. This matrix was filtered retaining cells with more than 1000
transcripts and less than 10% mitochondria transcripts. The expression matrices
were normalized as in the Purified PBMC analysis detailed above, except that
SAVER was applied to all genes, and hence it was also library normalized (unlike in
the purified PBMC analysis).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The mouse colonic mesenchyme Drop-seq data generated in this study have been
deposited in the Gene Expression Omnibus database under accession code GSE185638
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE185638. All other datasets are
publicly available. Specifically, the purified PBMCs of Zheng et al. can be downloaded
from 10x genomics website (https://www.10xgenomics.com/resources/datasets/). Bulk
RNA-seq data from ImmGen (Heng et al.) can be downloaded from NCBI BioProject
PRJNA281360. Other datasets can be downloaded from NCBI Gene Expression
Omnibus: Hoek et al. (GSE64655), Stoeckius et al. (GSE100866), Gupta et al.
(GSE122043), Hrvatin et al. (GSE102827), Tasic et al. (GSE115746), Torre et al.
(GSE99330). The datasets from Chen et al. (GSE87544), Baron et al. (GSM2230757), La
Manno et al. (GSE76381), Zeisel et al. (https://linnarssonlab.org/cortex) were used as
preprocessed by Huang et al. and can be downloaded from https://github.com/
mohuangx/SAVER-paper.

Code availability
An R implementation of ALRA is freely available at https://github.com/KlugerLab/
ALRA58. The codes for analyses this paper are available at https://github.com/KlugerLab/
ALRA-paper59.
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