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ABSTRACT

Zero-resource speech processing involves the automatic analy-
sis of a collection of speech data in a completely unsupervised fash-
ion without the benefit of any transcriptions or annotations of the
data. In this paper, our zero-resource system seeks to automatically
discover important words, phrases and topical themes present in an
audio corpus. This system employs a segmental dynamic time warp-
ing (S-DTW) algorithm for acoustic pattern discovery in conjunction
with a probabilistic model which treats the topic and pseudo-word
identity of each discovered pattern as hidden variables. By applying
an Expectation-Maximization (EM) algorithm, our system estimates
the latent probability distributions over the pseudo-words and topics
associated with the discovered patterns. Using this information, we
produce acoustic summaries of the dominant topical themes of the
audio document collection.

Index Terms— Zero-resource speech processing, spoken term
discovery, speech summarization.

1. INTRODUCTION

1.1. The Zero Resource Setting

Current state-of-the-art speech recognition systems typically rely on
statistical models that require both a large amount of language spe-
cific knowledge and a sizable collection of transcribed data. These
resources are required for training statistical models that map acous-
tic observations to phonetic units, creating pronunciation dictionar-
ies mapping phonetic units to words, and estimating language mod-
els to provide constraints on the possible sequences of words. Re-
cently in the speech community, there has been a push towards de-
veloping increasingly unsupervised, data-driven systems which are
less reliant on linguistic expertise. One of the scenarios detailed
by [6] is the zero resource learning problem: spoken audio data is
available in a specific language, but transcriptions, annotations and
prior knowledge for this language are all unavailable. In this sce-
nario completely unsupervised learning techniques are required to
learn the properties of the language and build models that describe
the spoken audio.

In essence, the ultimate goal of zero-resource modeling is to
develop completely unsupervised techniques that can learn the el-
ements of a language’s speech hierarchy solely from untranscribed
audio data. This includes the set of acoustic phonetic units, the sub-
word structures such as syllables and morphs, the lexical dictionaries
of words and their pronunciations, as well as higher level informa-
tion about the syntactic and semantic elements of the language. This
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is an extremely lofty goal, but recent research has begun to investi-
gate solutions to sub-problems at various levels of the hierarchy.

One area of research focuses on the automatic discovery of re-
peated acoustic patterns in a spoken audio collection. The patterns
that are found typically correspond to commonly repeated words or
phrases observed in the data. Initial work in this area used a segmen-
tal dynamic time warping (S-DTW) algorithm search for repeated
acoustic patterns in academic lectures [18]. Improvements to this
approach were obtained when raw acoustic features were replaced
with model-based posteriorgram features derived from a Gaussian
mixture model [23]. Recent techniques for dramatically reducing
the computational costs of the basic search have made this acoustic
pattern discovery approach feasible on large corpora [13, 14, 15, 22].

Another approach is to first learn acoustic-phonetic models
from the audio data. These phonetic units are then used to repre-
sent the data before performing any higher level pattern discovery.
Approaches of this type include a self-organizing unit (SOU) recog-
nition system which learns an inventory of phone-like acoustic units
in an unsupervised fashion [5], a successive state splitting hid-
den Markov model framework for discovering sub-word acoustic
units [21], and a Bayesian nonparametric acoustic segmentation
framework for unsupervised acoustic model discovery [17]. Clus-
tered patterns from a spoken term discovery system have also been
used to help unsupervised learning of acoustic models [12].

Independent of the speech technology work being pursued in
this area, researchers in linguistics and cognitive science have been
interested in the process of language acquisition and have been de-
veloping techniques that attempt to learn words by segmenting a col-
lection of phoneme strings. Bayesian approaches have proven to be
especially successful for this task [7, 16].

The successful application of the aforementioned algorithms
opens the doors for higher level semantic analysis. In [9], n-gram
counts of unsupervised acoustic units were used to learn a latent
topic model over spoken audio documents. In [3], vector space doc-
ument modeling techniques were applied to the clustered patterns
found by a spoken term discovery algorithm. In [4, 25], similar
spoken term discovery algorithms were used to produce acoustic
summaries of spoken audio data.

1.2. Spoken Corpus Summarization

Suppose we would like to understand the major topical themes
within a collection of speech audio documents, without having to
listen to each one. If text transcripts or ASR output for each doc-
ument were available, topic models from Probabilistic Latent Se-
mantic Analysis (PLSA) [11] or Latent Dirichlet Allocation (LDA)
[1] could be used to generate a text summary of the corpus as in
[8]. In the zero resource setting, these techniques cannot be directly
applied. We instead present a method that is similar in spirit, but
aims to summarize the topical themes of the corpus by extracting
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meaningful audio snippets.
For the purpose of generating this kind of summary, we want to

associate regions of the audio signal with latent topics, analogous to
what is done with words in models such as PLSA and LDA. In this
paper, we propose a system which:

1. Searches the audio corpus for repeated acoustic patterns, of-
ten corresponding to repetitions of the same word or phrase.

2. Uses a pair of probabilistic latent variable models to associate
these acoustic patterns with latent topics and pseudo-words.

3. Summarizes the topical themes of the corpus by using the
models to extract topically meaningful acoustic patterns.

In section 2, we describe the unsupervised pattern discovery
stage; in section 3, we present the graphical models and the estima-
tion procedure; in section 4, we explain how we generate acoustic
summaries of the topics in the corpus; section 5 presents experimen-
tal results, and section 6 concludes.

2. SPOKEN TERM DISCOVERY

Let D = {d1, d2, . . . , d|D|} be a collection of spoken audio docu-
ments. The entry point for our analysis is to apply an S-DTW like
spoken term discovery algorithm to the entire collection of audio
with the aim of discovering a set of low distortion match fragments.
Ideally, each match fragment provides an alignment between two
distinct regions of the audio signal which share the same or a similar
underlying text transcription.

In our work, we utilize the fast two-pass approximate search al-
gorithm introduced by [13]. Rather than representing the acoustic
signal with posteriorgrams derived from a supervised phone classi-
fier as in [13] or an unsupervised GMM [23], we use the Self Or-
ganizing Unit (SOU) system described in [20] and [9]. The SOU
system learns a set of phone-like acoustic models in a data-driven
and completely unsupervised fashion; from start to finish, our en-
tire system requires absolutely no labeled data. For the purposes of
spoken term discovery, each 10ms audio frame of an utterance is rep-
resented by an SOU posterior vector, and pairwise frame similarities
are computed using the inner product between these vectors.

The output of the spoken term discovery step is a set of matches,
M . Each element of M is a triple consisting of a distortion score
and two matched regions of audio, (t(a)1 , t

(a)
2 ), and (t

(b)
1 , t

(b)
2 ). To

remove spurious and short matches, we filter out any match with a
distortion score greater than 0.5 or an average length of less than 0.5
seconds. We require a means of collapsing overlapping regions into
a single interval so as to resolve when one region of audio matches
multiple other regions of audio. We use a method of doing this intro-
duced in [3] that collapses overlapping regions to the same interval
whenever their fractional overlap exceeds a threshold set to 0.75.
The result is a collection of intervals, where each interval consists
of one or more match regions which overlap in time. For each inter-
val i, we choose the start time, t(i)1 , and end time, t(i)2 by averaging
the start and end times of all regions collapsed to i. Each interval i
also inherits the links associated with all match regions that overlap
it; we assign i a link set, Li = {li,1, li,2, . . . , li,|Li|}, where each
l ∈ Li takes on as its value the index of some other interval j such
that there exists a match in M linking a region of audio overlapping
i with a region of audio overlapping j. For each interval, this yields
a triple i = (t

(i)
1 , t

(i)
2 , Li). After this process, we are left with a set

of |I| intervals, I = {i1, i2, . . . , i|I|}, with the subset of intervals
appearing in document d denoted by Id. A visual representation of
a linked spoken audio document collection is shown in Figure 1.
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Fig. 1. An example of a linked audio document corpus.
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Fig. 2. Bag-of-links representation of an audio document.

3. MODELING TOPICS AND PSEUDO-WORDS

At a high level, our goal is to characterize the document collection
D in terms of a set of latent topics Z, in the same spirit as algorithms
such as PLSA and LDA applied to text documents. We draw inspira-
tion from these text-based document models, but what differentiates
our data from text is the fact that we do not know the word-level tran-
scription underlying each interval of audio discovered by the spoken
term discovery algorithm. In this section, we present two latent vari-
able models which aim to capture the topical themes of a spoken
audio document collection in the absence of any lexical knowledge.

3.1. PLSA on Bags-of-Links (PLSA-BoL)

This model treats each document as a bag-of-links vector v(d), where
the jth element of v(d) is equal to the total number of times any
interval contained in d matched the jth interval. That is,

v
(d)
j =

∑
i∈Id

1Li(j) (1)

where 1Li(j) = 1 if interval i matched the jth interval and 0 oth-
erwise. This idea for a corpus consisting of 10 match intervals is
illustrated in Figure 2. We seek to model the probability of observ-
ing a link to interval l from document d using a set of latent topic
variables Z:

Pr(l|d) =
∑
z∈Z

Pr(l|z) Pr(z|d). (2)

The graphical model in plate notation is shown in Figure 3, and is in
fact equivalent in structure to PLSA. Note that this model assumes
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|| dL
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Fig. 3. The PLSA-BoL model in plate notation

d iz iw jil ,|| iL
|| dI|| D

Fig. 4. The Latent Lexical and Topic Model in plate notation

that each link originating from d was generated by a different latent
topic variable, even if several of these links originate from the same
interval of audio within d.

The model parameters, Pr(z|d) and Pr(l|z) are estimated using
the standard Expectation-Maximization update equations for PLSA
[11]. We also apply TF-IDF based stop listing to the bag-of-links
vectors, throwing away any interval which was linked to by more
than 20% of the documents, or less than 4 other intervals. Hierar-
chical agglomerative clustering of the documents into |Z| clusters is
used in the initialization of Pr(l|z).

3.2. Latent Lexical and Topic Model (LLTM)

While the PLSA-BoL model has the capability to associate links to
particular intervals of audio with latent topics, it is not able to in-
fer which intervals of audio may be instances of the same spoken
word or phrase. We consider a second model which assumes that
each match interval has a latent word identity w ∈ W , where W
is a fixed-size vocabulary of pseudo-words to be learned. In this
model, we assume the following generative story for each link set
Li belonging to interval i in document d:

1. Draw a latent topic z from Pr(z|d).
2. Draw a latent pseudo-word w from Pr(w|z).
3. Draw a set of |Li| links to other intervals i.i.d. from Pr(l|w).

The probability of observing a link set Li given a document can be
expressed mathematically as

Pr(Li|d) =
∑
w∈W

∑
z∈Z

Pr(w|z) Pr(z|d)
∏
l∈Li

Pr(l|w). (3)

To find a local maximum of the data likelihood surface, we em-
ploy an Expectation-Maximization algorithm. In the E-step, we es-
timate the joint posterior probability distribution of the pseudo-word
variable w and latent topic variable z for interval i appearing in doc-
ument d according to

Pr(w, z|d, Li) ∝ Pr(w|z) Pr(z|d)
∏
l∈Li

Pr(l|w). (4)

In the M-step, we use the last estimate of this posterior to update the
model parameters according to the equations

Pr(l|w) ∝
∑
d∈D

∑
i∈Id

1Li(l)
∑
z∈Z

Pr(w, z|d, Li) (5)

Pr(w|z) ∝
∑
d∈D

∑
i∈Id

Pr(w, z|d, Li) (6)

Pr(z|d) ∝
∑
i∈Id

∑
w∈W

Pr(w, z|d, Li). (7)

Agglomerative clustering of the documents is again used to de-
termine the initial assignment of the topic variable associated with
each interval. The Pr(l|w) and Pr(w|z) distributions are initial-
ized by pseudo-word category assignments produced by the InfoMap
graph clustering algorithm [19] applied to the graph formed by treat-
ing the intervals as nodes and their links as edges.

4. SUMMARIZING THE TOPICS

The parameters of the models presented in section 3 provide us with
a means of summarizing the topical content of an audio corpus by
extracting a small set of audio intervals containing words or phrases
representative of the discovered latent topics. A human user could
listen to these sets of audio snippets and quickly get a gist of what
topics are discussed in the collection. For the purposes of ranking
intervals and pseudo-words against latent topics, we use a weighted
pointwise mutual information measure:

WPMI(x, z) = Pr(x, z)λ log

(
Pr(x, z)

Pr(x) Pr(z)

)
. (8)

Intuitively, the log(·) factor is large when x and z are more likely to
appear together than independently, and the Pr(x, z) factor weights
this by the overall joint probability of x and z. λ acts as a tuning
parameter to trade off between the factors.

To form a summary of latent topic z using the PLSA-BoL model,
we rank all of the match intervals according to WPMI(i, z) with
λ = 1 and extract the top 10 audio intervals. Using the LLTM, we
first rank the pseudo-word categories according to WPMI(w, z)
with λ = 0.5 to choose a representative set of 10 pseudo-words
for each latent topic. We then extract the interval of audio most
representative of each pseudo-word; to do this, we rank the intervals
according to Pr(i|w) Pr(w|d, Li). Here, Pr(w|d, Li) represents the
posterior probability that interval i belongs to pseudo-word category
w, while Pr(i|w) indicates how likely any other interval belonging
to pseudo-word category w is to generate a link to interval i.

5. EXPERIMENTS

For our summarization experiments, we use a collection of 60 tele-
phone calls from the English Phase 1 portion of the Fisher Corpus
[2]. Each call consists of a 10-minute long telephone conversation
between two speakers. At the start of each conversation the partic-
ipants were prompted to discuss a particular topic. The set of calls
we use spans 6 of these topic prompts, with 10 calls per prompt. As
an example, the prompt for the “Anonymous Benefactor” topic is:

“If an unknown benefactor offered each of you a mil-
lion dollars - with the only stipulation being that you
could never speak to your best friend again - would
you take the million dollars?”

SOU posteriorgram representations for all utterances in all 60
calls were produced by an 45-unit SOU system trained on an inde-
pendent 60-hour set of Fisher English data. S-DTW audio segment
link detection was applied to the posteriorgram representation of all
utterance pairs in the 60 call set. A total of 10,041 link pairs be-
tween 3165 unique audio intervals were discovered and used to train
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Topic Text transcripts of extracted intervals Mapping to true topics (%)
1 minimum wage, minimum wage, minimum wage, minimum wage, . . . Minimum Wage (99.7)
2 think computers, computers, of computers, computer, computer, computers, . . . Computers in Education (99.9)
3 exactly, um, country, exactly, countries, um, countries, exactly, exactly Illness (37.3), Corporate Conduct (32.2)
4 holidays, holiday, holiday is, holidays, the holidays, holidays, holiday, . . . Holidays (83.1)
5 money, situations, situations, the more money you, friend, educational, four years,

situation, situations, make money
Anonymous Benefactor (55.3)

6 weather friends, friends, friends, friends, friends, some friends, friends, Corporate Conduct (55.2),
kind of friends, to happen, major you know Anonymous Benefactor (45.3)

Table 1. Latent topic summaries generated using PLSA-BoL.

Topic Text transcripts of extracted intervals Mapping to true topics (%)
1 don’t think, weather friends, no I, situations, the lottery, very you know, and, Anonymous Benefactor (45.0),

benefactor, don’t even know who, and, economy, to happen, now um, money, so Corporate Conduct (27.3)
2 minimum wage, you, yeah I, money, out you’d be, you know, minimum wage jobs, you know

people, the, economy, in New York, an hour, five dollars, he has, people working
Minimum Wage (86.1)

3 think computers, if she uses, education, more and, computers, you ah, technical ah, know the
computerized, it’s just, information, something that’s, on there, well that that’s, different things,
school

Computers in Education (99.7)

4 sicker, C.E.O., stock market, exactly, without the, country, every sick, this guy, in uh Illness (47.7),
in, of cold, like if you, that um, greedy, Zealand you, stomach Corporate Conduct (43.5)

5 I really like, holidays, own holiday, holiday, equality, favorite holiday, considerate, and, the
key, recognized, you, new car, keys, like, you like

Holidays (78.8)

6 is actually, I’m twenty, friend, <partial>, I’ve seen it done, every day, maybe ah, that and all,
how, uh, best friend, that’s true, increased, children, lazier and

Anonymous Benefactor (72.9)

Table 2. Latent topic summaries generated using LLTM.

our latent topic models, all of which learned a set of 6 latent topics.
Additionally, the number of pseudo-word categories in the LLTM
was set to 581 by the InfoMap algorithm.

Tables 1 and 2 show summaries of the latent topics learned by
the PLSA-BoL and LLTM models, as represented by the text tran-
scripts for the top scoring audio intervals extracted for each topic.
Also shown is the mapping between latent topic z and the closest
matching true Fisher topic label t according to Pr(t|z). To evaluate
the mapping between the latent topics and the true topics, we use the
normalized mutual information (NMI) measure:

NMI(z, t) =
2 ∗ I(z; t)

H(z) +H(t)
(9)

Here I(·; ·) denotes mutual information and H(·) denotes entropy.
NMI is an information theoretic measure similar to the F-score mea-
sure used in detection problems. Its value ranges between 0 and
1, with 1 representing a perfect mapping between the true topics
and the latent topics. Table 3 shows the NMI scores for a uniform
random assignment of documents to latent topics, the hard agglom-
erative clustering used for initialization, both latent models, and a
phrase-based PLSA model applied to text transcripts of the data [10].

Both models do a surprisingly good job of learning latent topics
with a strong mapping to the true topics, given the fully unsuper-
vised nature of the system. It is interesting to note that the inter-
vals extracted by the first model tend to be repeated instances of
the same word or phrase; while the extracted intervals are almost
always topically relevant, the summaries are somewhat lacking in
variety. The second model largely overcomes this issue. Although
the LLTM summaries produced are dominated by topically indica-
tive words and phrases, some “stop words” are also present in the
summaries. Text-based topic models often utilize expertly crafted
stop-lists which alleviate this problem, and finding a comparable so-
lution in the zero resource setting is a worthy avenue for future work.

Rand. HAC PLSA-BoL LLTM PLSA-Text
NMI 0.168 0.529 0.529 0.592 0.895

Table 3. NMI scores for the various models

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a system for completely unsuper-
vised zero-resource learning of topics present in a collection of spo-
ken audio documents. We have shown how the models presented
in this paper can be used to produce extractive summaries of the la-
tent topics by choosing representative snippets of audio which often
correspond to topically meaningful words and phrases. Experiments
conducted on a set of topic-prompted telephone calls from the Fisher
Corpus have demonstrated the feasibility of the approach.

There are many avenues of future work for these methods. Par-
allelizing the model estimation procedure on a multicore system or a
graphics processor unit using techniques similar to [22] would allow
for larger audio corpora to be analyzed. The use of new unsuper-
vised and semi-supervised acoustic models [17, 24] may prove to
be useful for improving the performance of the spoken term discov-
ery procedure. Finally, reworking the models presented in this paper
into a fully Bayesian framework would expand the flexibility of the
models and allow their size to automatically scale with the amount
of data used.
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