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Zero-Shot Learning on Semantic Class
Prototype Graph

Zhenyong Fu, Tao Xiang, Elyor Kodirov, and Shaogang Gong

Abstract—Zero-Shot Learning (ZSL) for visual recognition is typically achieved by exploiting a semantic embedding space. In

such a space, both seen and unseen class labels as well as image features can be embedded so that the similarity among

them can be measured directly. In this work, we consider that the key to effective ZSL is to compute an optimal distance

metric in the semantic embedding space. Existing ZSL works employ either Euclidean or cosine distances. However, in a high-

dimensional space where the projected class labels (prototypes) are sparse, these distances are suboptimal, resulting in a

number of problems including hubness and domain shift. To overcome these problems, a novel manifold distance computed

on a semantic class prototype graph is proposed which takes into account the rich intrinsic semantic structure, i.e., semantic

manifold, of the class prototype distribution. To further alleviate the domain shift problem, a new regularisation term is introduced

into a ranking loss based embedding model. Specifically, the ranking loss objective is regularised by unseen class prototypes to

prevent the projected object features from being biased towards the seen prototypes. Extensive experiments on four benchmarks

show that our method significantly outperforms the state-of-the-art.

Index Terms—Zero-shot learning, semantic embedding, class prototype graph, hubness, semantic manifold, absorbing Markov

chain process

✦

1 INTRODUCTION

A recent trend in visual recognition research is to scale up

the number of object categories. However, most existing

recognition models are based on supervised learning and

require a large number (at least 100s) of training samples to

be collected and annotated for each object class to capture

its intra-class appearance variations. This severely limits

their scalability – collecting images of common objects

such as chairs is easy, but many other categories are rare,

e.g. a newly identified specie of beetles on a remote pacific

island. None of these models can work with few or even no

training samples for a given class. This is one of the reasons

why the popular large-scale visual recognition challenge

(ILSVRC) [54] mainly focuses on the task of recognising

1K classes, a rather small subset of the ImageNet dataset of

which there are in total 21,814 classes with 14M images.

The difficulty is that many object classes of the larger

ImageNet dataset are only composed of a handful of images

including 296 classes with only one image. In this wider

context, scalability poses a critical challenge to large-scale

visual recognition.

Humans can identify approximately 30,000 basic object

categories [7] and many more sub-classes, e.g. breeds of

dogs and combination of attributes and objects. Importantly,

humans are very good at recognising objects without seeing

any visual samples. In machine learning, this is considered

as the problem of zero-shot learning (ZSL). For example, a
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child would have no problem recognising a zebra if he/she

has seen horses before and read somewhere that a zebra

is but a horse with black-and-white stripes. Inspired by

humans’ ZSL ability, recently there is a surge of interest in

machine ZSL for scaling up visual recognition [20], [34],

[46], [51], [44], [3], [52], [29], [31], [26], [36], [66], [64],

[9].

The reason why humans can perform ZSL is be-

cause there exist language knowledge bases, e.g. books,

Wikipedia, which provide high-level/semantic description

of a new/unseen class (zebra) and make connection between

it and seen classes and visual concepts (horse, stripe). Sim-

ilarly machine zero-shot recognition relies on the existence

of a labelled training set of seen classes and the knowledge

about how each unseen class is semantically related to the

seen classes. Seen and unseen classes are usually related in

a high dimensional vector space, which is called semantic

embedding space. Such a space can be a semantic attribute

space [34], [19] or a semantic word vector space [22],

[44], [59]. In the semantic embedding space, the names

of both seen and unseen classes are embedded as vectors

called class prototypes [23]. The semantic relationships

between classes can then be measured by a distance, e.g. the

prototypes of zebra and horse should be close to each

other. Importantly, the same space can be used to embed

a feature representation of an object image, making visual

recognition possible.

Specifically, almost all existing ZSL methods adopt a

Semantic Embedding (SE) approach (Fig. 1(a)). First, a

projection function between the visual feature space and

the semantic embedding space is learned using the labelled

training visual data consisting of seen classes only. This

function is then used to project/embed the visual repre-
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Fig. 1: A semantic manifold distance model unifies Semantic Embedding (SE) and Semantic Relatedness (SR) based

methods for ZSL. Given an unseen class image, x and Px are the visual feature vector and its projection in the embedding

space respectively. The seen and unseen class prototypes are denoted as y and z respectively.

sentation of each unseen class image into the space where

the unseen class prototypes also reside. The final step of

recognition is typically based on simple nearest neighbour

(NN) – the class is determined by the nearest unseen class

prototype1. Although rarely used recently, there exists a

second approach called Semantic Relatedness (SR) [34]

(Fig. 1(b)). Taking this approach, a n-way discrete classifier

for the seen classes is first learned, which is then used to

compute a visual similarity vector between an image of

unseen class and those of the seen classes [4], [51]. The

semantic relatedness between the seen and unseen classes

is measured by the distance between their prototypes. The

resultant semantic relatedness (similarity) vector is then

compared with the visual similarity vector and the image is

classified to an unseen class if the two types of similarities

match as the closest by NN.

For either SE or SR, measuring the similarity between

prototype vectors in the semantic embedding space for NN

search is the key. However, most existing works on ZSL

focus on learning the best semantic embedding space or

the projection function from the feature to the embedding

space. When it comes to computing distance/measuring

similarity in the embedding space, they simply use Eu-

clidean or cosine distance. This results in two major prob-

lems: (1) Hubness – in a high dimensional space, nearest

neighbour suffers from the existence of hubs, i.e. the class

prototypes which are the nearest neighbours of many test

data points, regardless which classes they belong to [47].

The problem is intrinsic to a high-dimensional vector space

when NN search is performed. Although the semantic space

used in ZSL may not have a particularly high dimension,

the number of unseen class prototypes is normally small

therefore aggravating the hubness problem. (2) Domain

shift – for a SE-based approach, this is the projection

domain shift problem [24]; that is, since the projection for

visual feature embedding is learned from the seen classes,

the projected unseen class data points would be biased

towards the seen classes. As a result, they could be far away

from their corresponding unseen class prototypes, making

hubs easier to emerge and directly measuring similarity

1. DAP [34] and PST [49] are notable exceptions.

using Euclidean/cosine distance less meaningful. Although

this bias does not occur for a SR-based approach, by which

no explicit feature embedding is necessary, another form

of domain shift, the visual-semantic domain shift takes its

place – visually similar objects may not be semantically

similar, e.g., an orange and a tennis ball are visually similar

but semantically distinct. A NN search based on a simple

distance such as Euclidean or cosine would thus suffer from

both types of domain shift.

Food

Invertebrate

Canine

Bird

Instrument

Vehicle

Structure

Covering

Fig. 2: An example of semantic manifold: The class proto-

types of object classes from the ImageNet 2012 1K dataset

are grouped into eight superclasses (food, invertebrate,

canine, bird, instrument, vehicle, structure and covering)

according to [13] and visualised by the 1,000D word2vec

embedding [42] in a 2D space using t-SNE [38].

In this work, we explore the semantic manifold structure

of class prototypes distributed in an embedding space and

define a new semantic manifold distance for ZSL. Our

approach is motivated by the inadequacies of Euclidean

or cosine distance elaborated above and the fact that the

distribution of class prototypes in the semantic embedding

space usually has a rich semantic manifold structure. In

particular, visual object classes often form groups or super-

classes and the object classes from the same super-class lie

on the same sub-manifold. Such a structure is illustrated

clearly in Fig. 2. With the existence of such manifold struc-

ture, it is natural to conjecture that a more optimal distance

would be a manifold distance which takes into account the

distribution of class prototypes. The advantage of using a
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Fig. 3: The advantage of semantic manifold distance:

Without considering the distribution of class prototypes

captured by the semantic manifold structure, a test image

x is classified as an unseen class z1 using the Euclidean

distance. When considering the prototype distribution, x is

classified to z2 by being on the same class manifold in the

semantic embedding space.

semantic manifold distance over Euclidean distance is illus-

trated in Fig. 3. By providing a more meaningful similarity

measure to the unseen class prototypes, such a semantic

distance also offers a solution to the hubness and domain

shift problems. For the former, the distance is computed

over a manifold which reduces the dimensionality therefore

hubness; for the latter, being biased towards the seen class

prototypes is less detrimental as the entire manifold defined

by all prototypes is used to compute the distance.

However, computing a semantic manifold distance for

class prototypes is non-trivial. Specifically, different from

class data samples, there is only one prototype per class;

they are thus sparse, in relation to the dimensionality of

the embedding space. This renders most explicit manifold

learning methods unsuitable as they assume dense data dis-

tributions. In the work, we propose to model the manifold

structure implicitly using a semantic class prototype graph

where each prototype is a graph node and the connectivity

on the graph is determined by the semantic relatedness be-

tween classes. ZSL is thus cast into a distance computation

problem on the semantic graph. Our class prototype graph

consists of two different types of graph nodes, i.e., seen

and unseen prototypes, which should be treated differently.

However, existing graph-based distance methods do not

distinguish different nodes. To overcome this problem, we

propose a new semantic distance metric on the graph based

on an Absorbing Markov chain Process (AMP) specifically

designed for ZSL, in which seen class prototypes are

viewed as the transient states whilst unseen class prototypes

the absorbing states. A test image is connected to a set of

seen class nodes as a transient state on the graph, which is

achieved by either a n-way seen class classifier (SR like)

or the semantic embedding of the visual feature vector (SE

like) as shown in Fig. 1(c). For measuring the semantic

similarity distance between the image and any unseen class

on the semantic graph, the Markov chain process starts from

the test image node (transient node) and ends (absorbed)

in one of the absorbing states (unseen class nodes). The

absorbing probabilities from the test image node to unseen

class prototypes are treated as the final semantic manifold

distances between them.

The proposed AMP semantic distance has a number of

attractive characteristics: (1) It has a closed-form solution

that is very efficient to compute. (2) Importantly it is now

straightforward to combine the SE and SR approaches as

well as different embedding spaces. This is useful to combat

the domain shift problem because as mentioned earlier

each approach is susceptible to one type of domain shift

but not the other. To further alleviate the domain shift

problem, we introduce a regularisation term in the feature-

to-semantic space project/embedding model to project an

object feature vector into the semantic embedding space.

The objective of the embedding model is based on a max-

margin ranking loss as in [22], [1] with a new regularisation

term that requires a visual sample from a seen class not

only to project tightly around its seen class prototype, but

also to have the chance of being close to semantically

related unseen prototypes. By doing so, when the learned

projection function is applied to an unseen class image, it

is less likely to be biased towards the seen class prototypes.

This embedding model is closely related to the AMP

distance described above in that ZSL is performed by first

projecting visual features into the embedding space using

the proposed embedding model, followed by AMP-based

recognition in that space.

Our contributions are: (1) To overcome the limitation of

existing ZSL methods from relying on simplistic distance

metric for NN search, we model the semantic embedding

space by a rich manifold structure represented by a seman-

tic class prototype graph. (2) A novel semantic manifold

distance is formulated by exploring an Absorbing Markov

chain Process (AMP) on the semantic graph, which leads

to a closed-form highly efficient ZSL algorithm. (3) A new

embedding model is introduced to incorporate unseen class

prototypes therefore alleviate the domain shift problem in

ZSL. (4) Given the new AMP model, existing SE and

SR-based approaches are readily combined to complement

each other. Extensive experiments on the widely used

Animal with Attribute (AwA) dataset [35], the CUB-200-

2011 Birds (CUB) dataset [63], the aPascal-aYahoo (aP&Y)

dataset [19], and the large-scale ImageNet dataset [13]

show that the proposed method outperforms significantly

the state-of-the-art.

A preliminary version of this work was presented in [26].

In contrast [26], this work adds (1) an unseen prototype

regularised semantic embedding (UPR-SE) model; (2) a

detailed analysis of various manifold-based distances for

ZSL; (3) additional evaluations on CUB and aPascal-

aYahoo datasets; (4) additional discussion and evaluation

on hubness problem in ZSL; (5) an additional generalised

zero-shot learning experiment; and (6) new n-shot learning

experiments.

2 RELATED WORK

Semantic embedding space: Various semantic embedding

spaces have been employed for zero-shot visual recognition.

Earlier works used primarily semantic attributes [34], [19].

Given a defined attribute ontology, each class name is em-

bedded in to an attribute space as a binary attribute vector.
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More recently, embedding based on semantic word vector

space has started to gain popularity especially in large-scale

zero-shot learning [22], [44], [59], [23]. Better scalability

is typically the motivation as no manually defined ontology

is required and any class name can be embedded for free

(vs. costly labelling of attributes and ontology thereof).

Beyond semantic attribute or word vector [17], [36] pro-

posed directly learning from the rich textual descriptions of

categories, such as Wikipedia articles, for ZSL. Reported

results [2], [65], [35], [3], [52] seem to suggest that (1)

attribute space is the most effective space which is hardly

surprising as additional attribute annotations are required;

and (2) combining attribute with word vector spaces often

leads to improved performance. Both spaces are exploited

in this work. Besides the semantic attribute and word vector

spaces, context-based embedding is another popular se-

mantic embedding model [39], in which the co-occurrence

statistics of visual concepts in images is exploited for

knowledge transfer. A context-based embedding is usually

more robust than the embedding in a semantic space such

as attribute or word vector spaces.

Projection to embedding space: Given an embedding

space, most existing approaches (SE-based) also differ in

the projection functions used for embedding feature vectors

and can be categorised into two groups: (1) learning a

projection function by regression with pre-extracted fea-

tures [46], [35], [31] or end-to-end deep neural network

regression [59], [22], [44]; or (2) implicitly learning the

relationship between the visual and semantic spaces through

a common intermediate space [36], [2], [52], [23]. The SE

part of our model is based on direct projection/regression.

Specifically, our project function uses a max-margin rank-

ing loss; it is thus related to those in [22], [2], [52],

[65]. What distinguishes our projection function from the

existing ones is the introduction of the novel regularisation

term to prevent the projected unseen class data to be biased

towards the seen class prototypes in order to alleviate the

projection domain shift problem.

The domain shift problem: The projection domain shift

problem in ZSL was first identified by Fu et al. [24].

In order to overcome this problem, a transductive multi-

view embedding framework was proposed together with

label propagation on graph which requires the access of

all test data at once. This assumption is often invalid in

the context of ZSL because new classes typically appear

dynamically and recognition needs to be done immediately.

Similar transdutive approaches are proposed in [49], [31].

Instead of relying on accessing the test unseen class data

as a whole by transductive learning, we tackle the domain

shift problem using the proposed semantic distance as well

as the new embedding model, neither of which requires

the availability of the complete unseen test data set as

in [24], [49], [31]. This makes our method more generally

applicable in practice.

The hubness problem: The phenomenon of the presence

of ‘universal’ neighbours, or hubs, in a high-dimensional

space for nearest neighbour search was first studied by

Radovanovic et al. [47]. They show that hubness is an

inherent property of data distributions in a high-dimensional

vector space, and a specific aspect of the curse of di-

mensionality. A couple of recent studies [15], [57] noted

that SE-based zero-shot learning methods suffer from the

hubness problem and proposed solutions to mitigate this

problem. Among them, the method in [15] relies on the

modelling of the global distribution of test unseen data

ranks w.r.t. each class prototypes to ease the hubness prob-

lem. It is thus transductive. In contrast the method in [57] is

inductive: It argued that least square regularised projection

functions make the hubness problem worse and proposed to

perform reverse regression, i.e., embedding class prototypes

into the low-level feature space. In our work, a ranking

loss is adopted to learn the projection function, to avoid

the unwanted hubness-worsening property of least square-

based losses. In addition, the hubness is further mitigated

by computing a semantic distance instead of a simple

Euclidean or cosine distance to exploit the rich manifold

structure of class prototype distributions.

Manifold learning: Our ZSL model is based on a new

semantic manifold distance defined on the class proto-

type graph in the semantic embedding space. It is thus

relevant to manifold learning, a well-studied field with

many models proposed including linear models (such as

principal components analysis (PCA) [28] and multidimen-

sional scaling (MDS) [56]), and nonlinear models (such

as Isomap [61], locally linear embedding (LLE) [53] and

Laplacian Eigenmaps [6]). Most of these models learn

a manifold space explicitly where a simple Euclidean

distance is computed. However, in the context of ZSL, the

sparse class prototypes and high-dimensional embedding

space make these conventional manifold learning models

inappropriate. More relevant to our semantic distance are

the distance metrics computed on a discrete graph without

explicit manifold space computation. These include the

shortest path distance [21] and diffusion maps distance [33].

However, not designed for ZSL, they are unable to dis-

tinguish different types of nodes (transient and absorbing

nodes in our case) corresponding seen and unseen class

prototypes respectively. Furthermore, our distance considers

all possible paths probabilistically on the graph using a

random walk process which is particularly suitable for

sparse graphs at hand. More detailed analysis (Sec. 3.4)

and experimental evaluations (Sec. 4.3) on the advantages

of the proposed manifold distance are provided later.

Label relationship on graph: We should point out that

the idea of exploiting the class label relationship as a graph

is not entirely new, e.g., the WordNet has been exploited

widely for transfer learning in visual recognition [51].

More recently, a specific type of label relation graph, the

Hierarchy and Exclusion (HEX) graph [12] was employed

for large-scale visual recognition tasks including ZSL. The

HEX is a hierarchical graph of class labels, while our

semantic graph is an graph of class prototypes in a semantic

embedding space, designed for representing the manifold

structure in that space. [18] is another relevant work, in

which the image distance is measured through embedding

in a semantic manifold. However, in [18], the semantic



5

(image) manifold is constructed using the labelled training

images, while in this work, the semantic (class) manifold

is constructed only using the class prototypes in a semantic

embedding space.

3 ZSL SEMANTIC MANIFOLD DISTANCE

3.1 Problem Definition

Let Y = {y1, . . . , yp} denote a set of p seen class labels,

and Z = {z1, . . . , zq} a set of q unseen class labels. These

two sets of labels are disjoint, i.e. Y ∩ Z = ∅. We are

given a labelled training dataset XY = {(xj , yj)} where

xj is a d-dimensional feature vector extracted from the j-

th labelled image and yj ∈ Y . In addition, a test dataset

XZ = {(xi, zi)} is provided where xi is a d-dimensional

feature vector extracted from the i-th unlabelled test image

and the unknown zi ∈ Z . The goal of zero-shot learning

is to learn a classifier f : XZ → Z to predict the unseen

class label zi.

3.2 Unseen Prototype Regularised Semantic Em-

bedding (UPR-SE)

The first step of a ZSL method is to choose a semantic em-

bedding space. This space is used for two purposes: (1) To

measure the distance between an embedded test image and

an unseen class prototype in a semantic embedding (SE)

based method, and (2) to measure the semantic relatedness

between different classes by computing a distance between

their corresponding prototypes in a semantic relatedness

(SR) based method. In this work, two of the most widely

used spaces are considered: attribute space and semantic

word vector space. For an attribute space, a manually

defined attribute ontology is required, with which each class

label is represented in the attribute space (its dimension is

the number of attributes) as an attribute vector. For a word

vector space, similar to [59], [22], [23], [2], [64], we adopt

the skip-gram text model introduced in [41], [42]. This

language sentence model learns from a large text corpus

to represent each English word or bi-gram (class name in

the context of ZSL) as a fixed-length continuous embedding

vector, so that semantically related words (e.g. horse and

zebra) are adjacent in this embedding space. For notation

conciseness, we denote the semantic embedding vector or

class prototype of a class label yj as ȳj , regardless which

embedding space is used.

Next, if a SE approach is taken, an embedding model is

required to project an object feature vector to a semantic

vector in the semantic embedding space. The proposed se-

mantic embedding model, termed as Unseen Prototype Reg-

ularised Semantic Embedding (UPR-SE), adds a domain

shift repellent regularisation term to a max-margin ranking

loss formulation. Margin-based ranking loss has been used

in structured SVMs [62], [45] and recently employed for

learning a ZSL visual feature embedding model [2], [22].

With a standard ranking loss, the embedding function is

a linear transformation with a trainable parameter matrix

M from a visual feature space to a semantic space, i.e.,

for a visual feature x, its embedding in the semantic space

z1z2

z3

y1

(a) Ranking loss embed-
ding

z1z2

z3

y1

(b) UPR-SE

Fig. 4: (a) The conventional ranking loss objective will

force the projected visual feature vectors (yellow circle)

from the same seen class to be tightly around their corre-

sponding prototype in the semantic embedding space. (b)

By considering the unseen class prototypes, our UPR-SE

model will generalise better from seen to unseen classes.

is Mx. As in [2], [22], [1], the dot-product similarity in

the semantic embedding space is applied and for a class

prototype ȳ, its similarity with respect to the embedding

of x is ȳTMx. During training, the ranking loss objective

requires the correct label/prototype to be ranked higher than

any of wrong prototypes. This learning objective essentially

aims to push the projection of a seen training image feature

vector to be close to the prototype of its corresponding seen

class as well as being simultaneously far away from all

other seen prototypes, as illustrated in Fig. 4(a). Concretely,

for a pair of training data (xj , yj), the ranking loss objective

is defined as:

loss(xj , yj) =
∑

yk 6=yj

max[0, l(xj , yj , yk)], (1)

where

l(xj , yj , yk) = margin− ȳTj Mxj + ȳTk Mxj . (2)

In this work the margin is set to be 1 and 0.1 for the

attribute and word vector space respectively.

If the objective of learning the embedding model M was

to recognise test seen class data, this standard ranking loss

makes sense: it will project each seen class image tightly

around its corresponding seen class prototype. However,

the objective of ZSL is to use this embedding model to

project the unseen class data points to be close to their

(unknown) unseen class prototypes. Since those unseen

class prototypes were not considered in the embedding

model in Eq. (1), there is no guarantee that this will happen.

In fact, as shown in [24], the projected unseen class data

points are often biased towards some seen class prototypes

and far away from the unseen class prototypes they belong,

resulting in poor recognition performance. To rectify this

problem and importantly to do it in an inductive manner,

we propose to use the unseen class prototypes to regularise

the ranking loss objective.

More specifically, we introduce an additional regularisa-

tion term to the standard ranking loss in Eq. (1). As shown

in Fig. 4(b), with this additional regularisation term, our

new learning objective requires that if an unseen class zr
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is semantically related (i.e., has a small Euclidean distance

in the embedding space2) to a seen class yj , the embedding

of a seen class data point xj from yj should be close to

both the prototype vectors of yj and zr. The intuition is

that if during testing, an unseen class data point of zr is

projected using the embedding model, it will not be pulled

too close to yj , i.e., being biased. Instead, it will have a

better chance to be close to the correct prototype zr rather

than some arbitrary hubs. Formally, the loss function for

UPR-SE is:

loss(xj , yj) =
∑

yk 6=yj

max[0, l(xj , yj , yk)]

+ λ
∑

zr∈Nyj

wjr[ȳ
T
j Mxj − z̄Tr Mxj ]

2,
(3)

where Nyj
is a prototype set consisting of K neighbouring

unseen class prototypes of the seen class prototype ȳj , and

wjr is the similarity/distance between ȳj and zr used to

weight the pulling power of each unseen prototype in this

neighbourhood for the projection Mxj . The regularisation

term is weighted by λ which is set to λ=0.1 in this work.

Our final embedding model M is learned by minimising

the loss objective in Eq. (3), through Stochastic Gradient

Descent (SGD).

3.3 Absorbing Markov Chain Process (AMP)

We propose to measure the distance/similarity between a

projected unseen class data point and an unseen class pro-

totype using a semantic manifold distance. To represent the

manifold structure of the distribution of class prototypes,

we first construct a class prototype graph. Such a graph is

essentially a nearest neighbour graph, that is, on the graph,

each class prototype (regardless seen or unseen) will have

a corresponding graph node. This node is connected with

a set of K1 other class prototype nodes that correspond to

the most semantically related classes. Again the semantic

relatedness/similarity between classes is measured using

the Euclidean distance between their prototypes in the

semantic embedding space. Note, in this graph, the unseen

class prototype nodes are only connected to the seen class

prototype nodes, with reasons to be explained below. Each

edge connecting two graph nodes has a weight wij which

is computed out of the Euclidean distance between the two

nodes in the embedding space.

To compute the distance between an unseen class data

point and an unseen class prototype, we define an absorbing

Markov chain process on the class prototype graph. More

specifically, each seen class prototype node is viewed as

a transient state and each unseen class prototype node an

absorbing state, whilst the transition probability from node

i to node j is computed as pij = wij/
∑

j wij , i.e. the

normalised similarity. An absorbing state means that for

2. Note that we assume that Euclidean distance is sufficient for mea-
suring semantic relatedness between two prototypes but inadequate for
that between visual feature embedding and a prototype especially unseen
prototype due to hubness and domain shift problems explained earlier,
hence the proposed semantic distance on prototype graph.

z1

z2

zq

y1

y2

y3

yi

yj

x ...

semantic graph

1

1

1

Fig. 5: After incorporating a test image into a semantic

class prototype graph, zero-shot learning can be viewed as

an extended absorbing Markov chain process (AMP) on the

graph.

each unseen class prototype node i, we set pii = 1 and

pij = 0 for i 6= j. Note that since all of the unseen

class nodes are absorbing states, any path generated by the

absorbing Markov chain process will not include more than

one unseen class node.

We re-number the class nodes (as states in a Markov

process) so that the seen class nodes (transient states) come

first. Then, the transition matrix P of the above absorbing

Markov chain process defined on the class prototype graph

has the following canonical form:

P =

(

Qp×p Rp×q

0q×p Iq×q

)

. (4)

In Eq. (4), Qp×p describes the probability of transition-

ing from a transient state (seen class) to another, Rp×q

describes the probability of transitioning from a transient

state (seen class) to an absorbing state (unseen class). In

addition, 0q×p and the identity matrix Iq×q denote that the

absorbing Markov chain process cannot leave the absorbing

states once it arrives.

For zero-shot learning, i.e., predicting the label zi of an

unseen test image represented as a feature vector xi, we

first need to incorporate/ingest xi into the class prototype

graph. This is followed by applying an extended absorbing

Markov chain process (see Fig. 5). Specifically, xi is

connected with a subset of K2 seen class nodes3 selected

in two ways, depending on whether a semantic relatedness

(SR) strategy or a visual feature semantic embedding (SE)

strategy is adopted. More concretely, if a SR strategy is

taken, we utilise the training dataset XY to learn a n-way

probabilistic classifier in the visual feature space for seen

classes. For a test image xi /∈ XY , the classifier can provide

a probability pr(yj |xi) of image xi belonging to the seen

class yj . If a SE strategy is adopted, the test image xi

is projected into the embedding space using the proposed

UPR-SE model (Sec. 3.2), and the seen class nodes with

3. This means that each Markov chain process always starts from xi,
goes through a number of seen class prototypes and end up in an unseen
class prototype.
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the highest similarities are selected. More precisely, the

similarity between the embedding of xi, i.e. Mxi, and

the prototype of the seen class j, ȳj can be computed as

sij = ȳTj Mxi. The similarities of the edges connecting the

seen classes and the test image are then normalised as a

probability pe(yj |xi) = sij/
∑

j sij and used to select the

K2 seen class prototypes to connect. In addition, with the

proposed semantic class prototype graph, the two strategies

can be easily combined by simply averaging the probability

pr from semantic relatedness and the probability pe from

semantic embedding, which gives pc = (pr + pe)/2. Given

the probabilities, we have Ti = [tij ]1×p as a row vector of

p elements. Each element is tij = p(yj |xi) which can be

computed using either pr, pe or pc depending on whether

a SR, SE, or SR+SE strategy is adopted.

Note that each test image xi is incorporated into the

semantic graph as a transient state. Specifically, for xi,

there is no stepping in probabilities and the Markov process

can only step out from xi to other seen class nodes. The

stepping out probabilities from xi to seen class nodes are

Ti, which are the probabilities computed using the seen

class classifier scores or embedding similarities as described

above. Now the transition matrix P̃ of the extended ab-

sorbing Markov chain process has the following canonical

form:

P̃ =





Qp×p 0p×1 Rp×q

(Ti)1×p 01×1 01×q

0q×(p+1) Iq×q



 . (5)

In the meantime, the extended transition matrix on all

transient states, including all seen class nodes and one extra

test image node xi, are written as

Q̃(p+1)×(p+1) =

(

Qp×p 0p×1

(Ti)1×p 01×1

)

, (6)

and the extended transition matrix between transient states

and absorbing states is

R̃(p+1)×q =

(

Rp×q

01×q

)

. (7)

Our semantic manifold distance is computed as the ab-

sorbing probability from xi to zj . The intuition is that if

the test image xi belongs to an unseen class zj , it should

be connected to a number of semantically related seen

class prototypes. Being semantically related, there should

exist some short paths between the seen class prototypes

and the unseen prototype z̄j following the Markov chain

process, resulting in high absorbing probability or low

manifold distance. Of course none of these is certain: xi

could be connected to a wrong seen class prototype; part

of the manifold structure could be badly represented in

the graph due to the sparseness of the nodes. However,

since we are taking a global approach, allowing multiple

entry points for xi and exhausting all the possible paths

to compute a global distance using the entire manifold

structure, the proposed semantic distance is robust against

the imperfections of either the graph construction or the

ingestion of the test images. Further discussion on this in

the context of alternative manifold learning models will be

presented later.

Formally, the absorbing probability bij is the probability

that the absorbing Markov chain will be absorbed in the

absorbing state sj if it starts from the transient state si [30].

The absorbing probability matrix B̃ = [bij ](p+1)×q can be

computed as follows:

B̃ = Ñ × R̃, (8)

in which Ñ is the fundamental matrix of the extended

absorbing Markov chain process and is defined as follows:

Ñ(p+1)×(p+1) = (I−Q̃)−1 =

(

Ip×p −Qp×p 0p×1

−(Ti)1×p 1

)−1

.

(9)

We use the following block matrix inversion formula [27]

to compute Ñ .

(

A B
C D

)−1

=

(

E F
G H

)

, (10)

in which we have
{

G = −(D − CA−1B)−1CA−1

H = (D − CA−1B)−1.
(11)

Since we only care about the absorbing probabilities for

the absorbing Markov chain process starting from the test

image node xi, we only need to compute the last row of

B̃, denoted as B̃p+1,· for xi (xi corresponds to the last

transient state in the extended canonical form in Eq. (5)).

In particular, we can apply the above block matrix inversion

formula to compute the last row of Ñ first as

Ñ(p+1),· =
(

(Ti)(I −Q)−1, 1
)

1×(p+1)
(12)

and then we further compute B̃p+1,· as

B̃p+1,· = (Ñ(p+1),·)× R̃ = Ti × (I −Q)−1R. (13)

For the whole test dataset with n images, we use a

matrix Sn×q to store the computed absorbing probabilities,

in which the i-th row Si,· of S equals to the absorbing

probabilities of xi. If we stack the results of all test images

together, we have the final matrix S as follows:

S = T (I −Q)−1R. (14)

In Eq. (14), T is a n×p matrix and (I−Q)−1R is a p×q
matrix that is only related to the semantic graph structure

and can be pre-computed. The only dimension variable

in Eq. (14) is the number of test images n. Therefore,

our method is linear with respect to the number of test

images. Moreover, since the seen class number p and

unseen class number q are usually much smaller than the

instance number, the matrix (I −Q)−1R can be computed

very efficiently and computed only once.

Finally, for the test image xi, we assign it to the unseen

label that has the maximum absorbing probability when
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Algorithm 1: Semantic manifold distance based on

absorbing Markov chain process (AMP) for ZSL

Input: The seen/unseen prototypes and a test data xi.

Output: The label of xi.

1 Construct the transition matrix Q and R respectively;

2 Compute the transition probabilities Ti from xi to the

seen class prototypes;

3 Compute the absorbing probabilities

Si = Ti(I −Q)−1R

from xi to the unseen class prototypes;

4 Choose the unseen class as the label of xi with the

highest absorbing probability as in Eq. (15).

the absorbing Markov chain starts from xi. Our final ZSL

classifier is

f(xi) = argmax
zj

Si,j (15)

Note, although we use the graph-based formulation, un-

like [24], [49], [31] our AMP distance model is not a trans-

ductive method. Once the class label graph is constructed, it

is fixed and used in the subsequent zero-shot classification

process. Consequently, we only need to access a single

test image to perform recognition. Our ZSL algorithm is

summarised in Algorithm 1.

3.4 Alternative Manifold-based Distances

Numerous manifold learning models have been proposed in

the literature. In this section, we discuss why the proposed

semantic distance computed on a class prototype graph

in an embedding space using the absorbing Markov chain

process (AMP) is advantageous over the alternative models

for ZSL.

Existing manifold-based distances can be roughly cate-

gorised into two groups:

Explicit manifold space learning Most manifold learn-

ing models belong to this group, which construct explic-

itly a low-dimensional semantic manifold space where

standard Euclidean distance can then be deployed. A

large variety of models exist, which can be either linear

(e.g. principal components analysis (PCA) [28]) or nonlin-

ear (e.g. Isomap [61], locally linear embedding (LLE) [53]

and Laplacian Eigenmaps [5], [6]), and differ in whether

the local (e.g. LLE and Laplacian Eigenmaps) or global

(e.g. PCA and Isomap) manifold structure is to be preserved

in the manifold space. With explicit dimensionality reduc-

tion these models naturally alleviate the hubness problem.

However, there is a serious problem when they are applied

to the ZSL problem: Instead of using data samples to learn

the manifold space, the input to these models are class

prototypes in a semantic embedding space. Consequently

we have a handful of data points in a high dimensional

space. None of the existing explicit manifold space learn-

ing models are designed for this sparse data setting and

all of them would therefore struggle as validated in our

experiments (see Sec. 4.3).

Manifold distance on graph Alternatively one could

model the manifold structure implicitly using a data graph

and define a manifold structure on the graph. This group of

methods obviously are more closely related to the proposed

AMP distance. The most popular graph-based manifold

distance is the shortest path distance (SPD) [61]. SPD

aims to compute a manifold distance by approximating

the geodesic distance using the shortest distance on the

graph. Several algorithms can be applied to compute the

shortest distance including the Floyd’s algorithm [21] and

the Dijkstra’s algorithm [14]. In contrast to our AMP-based

distance, the main shortcoming of the SPD distance is that

it only considers one possible path between a test image

and each unseen class prototype, whist our AMP distance

computes all possible paths exhaustively and combines

them in a probabilistic manner. Our distance is thus much

more robust against noise or errors incurred by either the

process of ingesting a test image into the graph (visual

feature embedding) or the process of constructing the label

prototype graph (class label embedding). By exploiting the

manifold structure globally and probabilistically, The AMP

distance is also less susceptible to the hubness problem.

This shortcoming of SPD is partially addressed by existing

global graph distances such as diffusion maps distance

(DD) [11], [33] which also considers all possible paths.

Specifically, diffusion maps distance defines a distance

family through a Markov chain process on graph [11],

[33] and can provide a multi-scale (long-term) analysis

to the graph structure through the time (scale) parameter.

However, similar to SPD, diffusion maps distance is not

designed for ZSL, specifically not for the extended label

prototype graph where the seen class prototypes and unseen

class prototypes have different meanings in the context

of ZSL and thus play different roles in computing the

distance (i.e. unseen class prototypes are absorbing states

and always terminate the Markov process). As a result

these alternative graph-based manifold distances lead to

inferior performance compared to the proposed AMP-based

distance (see Sec. 4.3).

4 EXPERIMENTS

4.1 Datasets and Settings

Datasets: We use four datasets for our evaluations. The An-

imals with Attributes (AwA) dataset4 was introduced by

Lampert et al. [34], [35]. It consists of 50 classes of animals

(30,475 images), and 85 associated class-level attributes.

The AwA dataset also provides a pre-defined seen/unseen

split for ZSL with 6,180 images of 10 classes held out for

testing and the rest as seen classes for training. The same

split is used in our evaluation for fair comparisons against

published results. The CUB-200-2011 Birds (CUB) [63]

contains 11,788 images of 200 fine-grained bird species. We

use the same split as in [2] with 150 classes for training

and 50 disjoint classes for testing. The aPascal-aYahoo

(aP&Y) [19]5 consists of a 12,695-image subset of the

4. http://attributes.kyb.tuebingen.mpg.de/

5. http://vision.cs.uiuc.edu/attributes/.
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TABLE 1: A summary of the four datasets

Dataset AwA CUB aP&Y ImageNet

# Classes 50 200 32 1,000
# Images 30,475 11,788 15,339 1.2 million
# Attributes 85 312 64 –
# word2vec dimension 100 – – 1,000

PASCAL VOC 2008 dataset6 and 2,644 images that were

collected using the Yahoo image search engine. The class

sets in the PASCAL part (20 classes) and in the Yahoo part

(12 classes) are disjoint, which makes them ideal for zero-

shot learning. As in most previous works, the PASCAL part

is used as training data, and the Yahoo part as test data. In

aP&Y, 64 binary attributes are annotated at instance-level

and they are transformed to class-level attribute vectors

through averaging the instance-level annotations from each

class. Compared to AwA and CUB, since the seen and

unseen class data are from two different datasets, aP&Y

provides an additional challenge of the cross-dataset bias.

AwA, CUB and aP&Y are all widely used in existing

ZSL works. However, they are not really large-scale thus

somewhat contradictory to the original motivation of ZSL

for scaling up visual recognition. We thus select the Ima-

geNet dataset [13] as the fourth dataset. In particular, we

use the ImageNet 2010 1K dataset, which consists of 1,000

categories and more than 1.2 million images. We use the

same training/test (seen/unseen) split as [40], [22] for fair

comparison, which gives 800 classes for training and 200

classes for testing. We summarise the characteristics of the

four datasets in Table 1.

Visual features: Earlier ZSL works used hand-crafted

feature representations for objects. They have been replaced

by deep Convolutional Neural Network (CNN) extracted

features in the past two years. CNN features are thus used

in our experiments for all four datasets. In order to better

compare with published results, different CNN models are

used in our experiments on different datasets for feature

extraction. Specifically, on AwA and aP&Y, given that all

recent works are tested using either VGG-19 (4096D) [58]

or GoogleNet (1024D) [60] CNN features, we report our

results using the same VGG-19 and GoogleNet features on

AwA and aP&Y. On CUB, the GoogleNet (1024D) feature

is adopted due to its advantages in ZSL over other CNN

features [2], [9]. On the ImageNet dataset, AlexNet [32] is

adopted for fair comparison because all published results

on this dataset used this CNN model. More specifically, we

trained the AlexNet from scratch using 800 seen classes.

After training, for each test image, the 4,096 dimensional

top-layer hidden unit activations (fc7) of the CNN are used

as the features.

Semantic embedding space: For AwA, both attribute

space and word vector space are used as the semantic

embedding space. For the word vector space, we train the

skip-gram text model to obtain the word2vec space7 [42],

[41] on a corpus of 4.6M Wikipedia documents. As for

6. http://www.pascal-network.org/challenges/VOC/.

7. https://code.google.com/p/word2vec/

TABLE 2: Evaluation on AwA in classification accuracy

(%). Different types of CNN features are used: FD for

decaf [16], FO for overfeat [55], FV for VGG-19 [58]

and FG for GoogleNet [60] (* indicates the transductive

methods).

Method F SI Result

Deng et al. [12] FD A 44.2
HAP [29] FD A 45.6
Kodirov et al. [31]* FO A+W 75.6
TMV-BLP [24]* FO A+W 80.5
SS-Voc [25] FO A 78.3
DAP [35] FV / FG A 57.2 / 60.1
ESZSL [52] FV / FG A 75.3 / 76.3
SSE-ReLU [65] FV A 76.3
MLZSC [8] FV A 77.3
JLSE [66]* FV A 80.5
DeViSE [22] FG A 59.0
Socher et al. [59] FG A 60.8
ConSE [44] FG A 63.3
RRZSL [57] FG A 66.4
Ba et al. [36] FG A 69.3
SJE [2] FG A+W+H 73.9
HAT [3] FG A 74.9
Xian et al. [64] FG A+W+H 76.1

SynCstruct [9] FG A+W 76.3
Deep-SCoRe [43] FG A+W 78.3

Ours FV / FG A+W 82.9 / 86.5

the dimensionality of the obtained word2vec space, we set

it to 100 for AwA in order to compare with the recent

results in [23], [2], [31]. For CUB and aP&Y, only the

attribute space is used. For ImageNet, there are no attribute

definitions, so only word vector space can be used. With

much more classes, 100D is not sufficient; we thus adopt

an 1000D word2vec space as in [40], [22], [50].

Parameters settings: There are a number of free param-

eters in the proposed UPR-SE model and the AMP-based

semantic distance. For learning the UPR-SE embedding,

we use Stochastic Gradient Descent (SGD) with the step

parameter set to 0.05 on all four datasets. The regularisation

term in our UPR-SE model is computed over a neighbour-

hood of size K (Sec. 3.2). Similarly when we construct the

semantic graph, two more neighbourhood sizes need to be

determined: Each seen/unseen class prototype is connected

to K1 nearest neighbours, and a given test image is ingested

into the graph by connecting to K2 seen class prototypes

(Sec. 3.3). Since the ZSL problem has no validation set

available (the train/test labels are disjoint), we use 20%

of the seen classes in the training sets as validation sets

and perform a 5-fold cross-validation to choose the optimal

values of K, K1 and K2. Finally, when the semantic

relatedness (SR) strategy is adopted, a n-way seen class

classifier needs to be learned from the training data. A linear

SVM classifier is used in the experiments.

4.2 Comparison to the State-of-the-Art

4.2.1 Evaluation on AwA

Competitors: For AwA, we select 20 representative ZSL

methods for comparison with an emphasis on the most

recent and competitive methods, as shown in Table 2.

These 20 models differ in various aspects: (1) Features (F):
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TABLE 3: Evaluation on CUB in classification accuracy

(%).

Method F SI Result

DAP [35] FG A 36.7
DeViSE [22] FG A 33.5
ConSE [44] FG A 36.2
RRZSL [57] FG A 45.4
ESZSL [52] FG A 47.2
SJE [2] FG A 50.1
DS-SJE [48] FG A 50.4

SynCstruct [9] FG A 54.4

Ours FG A 50.2

Although the AwA dataset provides the low-level features,

recently the CNN features have been used [12], [2], [65],

[24], [31]. The state-of-the-art performance of ZSL reported

so far was mostly achieved by either using VGG-19 [58]

or GoogleNet [60] features. (2) Side information (SI): This

refers to what semantic information extracted from human

knowledge is used. In addition to embedding each class

label into either an attribute space (A) or word vector space

(W), the Wordnet hierarchy (H) is used in [1], [2], [64].

(3) Most of them are based on the SE approach, with the

exception being ConSE [44] which uses the SR strategy.

(4) Three compared methods including TMV-BLP [23],

Kodirov et al. [31] and JLSE [66] are transductive thus

require all test data to be used as a whole for inference,

which gives them an advantage over the other inductive

learning-based models including ours.

Comparison: From the results in Table 2, we can make the

following observations: (1) Our method outperforms all 20

compared methods. Compared to the inductive learning-

based methods, our model beats the closest competitor

Deep-SCoRe [43] by 8.2%. (2) As expected, the three

transductive methods (Kodirov et al. [31], JLSE [66] and

TMV-BLP [24]) are very competitive. However our method

still yields superior performance despite of using less

information for being inductive. (3) Many of the compared

methods (e.g. [2], [52], [65]) focus on learning advanced

embedding models. However, once the test image of an

unseen class is projected into the embedded space, nearest

neighbour search based on Euclidean distance is applied.

In contrast, our model explores the semantic manifold

structure in the semantic embedding space and replaces the

suboptimal Euclidean distance with the semantic manifold

distance computed on a class prototype graph, leading to

better performance. (4) Note that our results are obtained

using a manifold modelled by 50 class prototypes in AwA,

which is clearly insufficient to capture the rich intrinsic

structure of a semantic embedding space. Yet the result

shows that our manifold distance remains effective in this

embedding space sparsely populated with class prototypes.

It should be noted that the results in Table 2 are evalu-

ated in mean per-image accuracy. However, as the image

samples per class on AwA are imbalanced, a mean per-

class accuracy metric is more appropriate. We compare the

performance our model against that of six alternative mod-

els with publicly available codes using the mean per-class

TABLE 4: Evaluation on aP&Y in classification accuracy

(%).

Method F SI Result

DAP [35] FG A 35.5
ESZSL [52] FG A 38.2
RRZSL [57] FG A 38.8
HAT [3] FG A 45.4
Long et al. [37] FV A 42.3
SSE-ReLU [65] FV A 46.2
JLSE [66] FV A 50.4
MLZSC [8] FV A 53.2

Ours FV / FG A 62.0 / 63.3

accuracy and found that the same set of conclusions can

be drawn. Detailed results on all datasets and a discussion

can be found in the Supplementary Material.

4.2.2 Evaluation on CUB

Competitors: Eight existing ZSL models are compared

with our model on the CUB dataset. All the methods are

evaluated using the same GoogleNet feature (FG) and the

semantic attribute space (A) for fair comparison.

Comparison: The results in Table 3 show that our ap-

proach outperforms DAP [35], DeViSE [22], ConSE [44],

RRZSL [57] and ESZSL [52]. It yields very similar per-

formance as SJE [2] and DS-SJE [48] but is slightly

inferior to SynCstruct (50.2% vs. 54.4%). Importantly,

these results show clearly the advantage of using the AMP

distance over the Euclidean distance-based methods, such

as DeViSE. It is also evident that given the initial low

performance of both the SE method DeViSE and the SR

method ConSE, by combining these two strategies in the

proposed semantic manifold distance model, it improves

significantly the performance.

4.2.3 Evaluation on aPascal-aYahoo

Competitors: With fewer methods reporting results on

aP&Y, the number of competitors available are limited.

In Table 4, our method is compared against eight alterna-

tive methods: Lampert et al.’s DAP [35], Romera-Paredes

and Torr’s ESZSL [52], RRZSL [57], the HAT model

from [3], Long et al.’s method [37], Zhang and Saligrama’s

semantic similarity embedding [65] (SSE-ReLU), their im-

proved model called Joint Latent Similarity Embedding

(JLSE) [66] and the recent MLZSC [8]. Note that for these

experiments, since all existing methods reported results

using attribute space only, our model also only uses the

attribute space for fair comparison. Since four of the

compared methods used GoogleNet features and three of

them used VGG-19 features, we evaluate our approach

using both of them on aP&Y.

Comparison: The zero-shot learning results on aP&Y are

shown in Table 4. Similar observations can be made. First,

after considering the semantic manifold structure, our ZSL

model can achieve the state-of-the-art zero-shot learning

result of 63.3% using GoogleNet, 10.1% higher than the

nearest competitor MLZSC [8]. Note that with only 32

classes, the class prototype graph has even fewer nodes
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TABLE 5: The hit@5 classification accuracy (%) of com-

pared methods on ImageNet 2010 1K.

Method Result

ConSE [44] 28.5
DeViSE [22] 31.8
Mensink et al. [40] 35.7
Rohrbach et al. [50] 34.8
PST [49] 34.0
ESZSL [52] 28.2

Ours 43.3

than that of AwA. However, even bigger margin is achieved

using our method, further validating that the semantic

distance computed using AMP is particularly effective for

sparse manifold modelling. Second, compared to the results

in Table 2, these results also suggest that existing ZSL

methods also suffer from having fewer seen classes during

training as the learned embedding model would generalise

more poorly to the unseen classes.

4.2.4 Evaluation on ImageNet

Competitors: Even fewer works reported results on the

large-scale ImageNet dataset. For comparison, we choose

six state-of-the-art alternatives. Among them, Norouzi et

al.’s convex semantic embedding ZSL (ConSE) [44] is a

SR-based method. As in our method, it learns a n-way

probabilistic classifier for the seen classes. The result for

ConSE is based on our own implementation so the same

n-way classifier is used with the same AlexNet features. In

contrast, DeViSE [22] and Mensink et al.’s metric learning-

based method [40] are end-to-end deep embedding models

which directly project an input image into the output

1,000D word vector space with the convolutional layers of

the model identical to that of AlexNet. Different from other

models, PST [49] is a transductive ZSL method, which

learns using the full test dataset. Finally, we also compare

the Romera-Paredes and Torr’s ESZSL method [52] by

using the author provided code and the same features8. Note

that we could compare with more state-of-the-art methods

which provide codes. However, we found that none of

them, including SSE-ReLU [65] and Kodirov et al. [31],

is tractable on this large-scale dataset: On a reasonably

powerful computer server with 512G memory, the codes

could not run due to insufficient memory. This reveals a

serious problem of many existing ZSL methods: when their

embedding models have a least square-based loss, rather

than a margin-based one, the computation typically involves

large matrix manipulation which makes them intractable for

large-scale problems.

Comparison: The performance of different methods, evalu-

ated using the flat hit@5 classification accuracy9 as in [40],

[22], [50], is compared in Table 5. The result shows

that our method clearly outperforms the state-of-the-art

8. Note that the kernalised version could not run on a server with 512G
of memory due to the ‘out of memory’ issue. We thus used the linear
version.

9. Each image is deemed to be classified correctly if the correct label
is among the top 5 predicted labels.

TABLE 6: Evaluating different manifold-based distances

for ZSL (%).

Method AwA CUB aP&Y ImageNet

Euclidean 59.0 33.5 43.5 31.8

PCA 55.2 30.5 42.3 30.1
Isomap 59.2 23.3 42.3 7.9
LLE 72.4 37.3 45.4 39.1
Eigenmaps 73.7 36.5 50.7 42.5

SPD 20.0 12,6 15.2 0.9
DD 59.0 31.3 41.3 34.8

Ours 86.5 50.2 63.3 43.3

alternatives. This superior performance can be explained by

our semantic manifold-based distance metric and the ability

to combine both the semantic relatedness and semantic

embedding strategies in a unified framework.

4.3 Further Analysis

Comparison to alternative manifold distances: As men-

tioned in Sec. 3.4, our AMP-based distance on the class

prototype graph is advantageous over existing explicit

manifold space learning methods and alternative graph-

based manifold distances. To validate this, six represen-

tative manifold-based distances are selected together with

the non-learning-based Euclidean distance for comparison.

Among the six manifold distance models, four learn a mani-

fold space explicitly followed by Euclidean distance-based

NN in the learned space. They are principal components

analysis (PCA) [28], Isomap [61], locally linear embedding

(LLE) [53] and Laplacian Eigenmaps [5], [6]. The other two

are graph-based distances including shortest path distance

(SPD) [61] and diffusion maps distance (DD) [11], [33].

For fair comparison, for all compared methods, the same

embedding space, visual feature representation and embed-

ding model are used as in our method. The difference is

thus only in how the manifold-based distance is computed.

From Table 6, it is clear that our class prototype graph-

based manifold distance achieves significantly better per-

formance on all four datasets. It is noted that among four

manifold learning methods, the globally nonlinear method

Isomap performs the worst and its performance is even

worse than that of the linear manifold learning method

PCA and the Euclidean distance. This is due to the fact

that Isomap is based on the shortest path distance which is

sensitive to the noisy connections on the semantic graph.

In contrast, the two locally nonlinear manifold learning

methods, i.e. LLE and Laplacian Eigenmaps, perform bet-

ter than the Euclidean distance. Especially, on ImageNet

with a class prototype number of 1,000, the performance

of LLE and Laplacian Eigenmaps is quite competitive.

However, on AwA, CUB and aP&Y with smaller number

of class prototypes (50, 200 and 32 respectively), LLE

and Laplacian Eigenmaps are much less effective than our

AMP distance. This is expected because both LLE and

Laplacian Eigenmaps need enough samples to learn a good

low-dimensional semantic manifold space, while our AMP

distance is computed using an absorbing Markov chain
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TABLE 7: ZSL results (%) obtained using AwA 40 seen

classes, ImageNet 1K classes and AwA 40 plus ImageNet

1K classes to construct the semantic graph on AwA. Only

the 1000D word2vec space is used for embedding due to

the use of ImageNet prototypes.

AwA 40 ImNet 1K AwA 40 + ImNet 1K

Ours 64.0 55.9 60.9

process on the semantic graph, thus much less constrained

by the sparsity of the prototype distribution.

As for the two alternative graph distances, it can be seen

from Table 6 that the shortest path distance (SPD) is the

worst among all compared manifold-based distances, and

is even much worse than the Euclidean distance. Similar

to Isomap, it is mainly because SPD only considers one

possible path from a test data to an unseen class prototype

and thus is vulnerable to the noisy connections on the

semantic graph. In comparison, the diffusion maps distance

(DD) performs better; however, it still struggles to beat the

Euclidean distance and is worse than the locally nonlin-

ear explicit manifold space methods LLE and Laplacian

Eigenmaps. As analysed in Sec. 3.4, the main shortcoming

of DD is that it cannot treat the seen and unseen class

prototypes as different types of nodes in the graph which

is important for the ZSL problem at hand: the goal is

to measure the similarity between a test image and an

unseen class prototype; there is thus no point continuing

the random walk process once it reaches the unseen class

prototype.

One may wonder if the data sparsity is the main problem

for existing manifold learning methods, can we simply in-

troduce more class prototypes into the semantic embedding

space, which do not belong to either the seen and unseen

classes? After all, it is free to embed arbitrary number

of English words into the word2vec space used in our

experiments. To find out whether it is the case, we carry

out an experiment on AwA using word2vec space only

and our AMP distance. We compare our original distance,

computed using 40 seen class prototypes (AwA 40) with

two alternatives: ImNet 1K: in this model, the 1,000 Im-

ageNet classes are used as the seen class prototypes to

ingest the test images; AwA 40 + ImageNet 1K: in this

model, the 1,000 class prototypes are used to augment

the original 40 seen class prototypes. Table 7 shows that

introducing the additional 1K prototypes would not help.

Similar results are obtained for the other six alternative

manifold distances compared in Table 6. The main reason

still lies with the embedding model: the projection function

learned in the embedding model is trained using the 40

seen classes in AwA. Adding more seen class prototypes

may enrich the manifold structure, but it will also introduce

more projection domain shift problems which neutralise the

benefit of having a densely populated semantic space for

manifold learning.

Effectiveness of unseen prototype regularisation: Table 8

compares our model with the proposed unseen proto-

TABLE 8: Evaluating the unseen prototype regularisation

(UPR) (%).

Method UPR AwA CUB aP&Y ImageNet

Ours
without 82.1 46.5 62.9 41.0
with 86.5 50.2 63.3 43.3

type regularisation term for semantic embedding (UPR-SE)

(Eq. (3)) and without UPR (Eq. (1), i.e., standard ranking

loss). The results show that the proposed new embedding

model benefits from the regularisation term on all four

datasets. This suggests that reducing the projection domain

shift by regularising the project function using unseen class

prototypes helps.

Hubness reduction: One of the motivations of the proposed

semantic graph distance is to reduce hubness: with one

unseen class represented by a single class prototype only,

nearest neighbour (NN) search is the only option; however

in a high dimensional space, any NN search would suffer

from the existence of hubs: prototypes that are neighbours

to many test images regardless which class they come from.

We found that the hubness problem is much alleviated

after our AMP-based distance is used in comparison with

the conventional Euclidean distance. For example, on Im-

ageNet, among the 200 unseen class prototypes, the worst

hub appears in the top-10 neighbours of 29.1% of all test

images using an Euclidean distance-based NN. After using

the AMP distance, this number is reduced to 10.2%.

TABLE 9: Comparative evaluation measured in AUSUC

(the higher the better) for generalised zero-shot learning on

AwA.

Method AUSUC

DAP [35] 0.366
IAP [35] 0.394
ConSE [44] 0.428
ESZSL [52] 0.449

SynCstruct [9] 0.583

Ours (NN + calibration) 0.621
Ours (SVM + threshold) 0.683

Generalised zero-shot learning: Another ZSL test set-

ting emerged recently is the generalised zero-shot learning

(GZSL) test setting, under which the test data set contains

images from both seen and unseen classes. We follow the

same setting of [10]. Specifically, 20% of the images from

the seen classes are held out and mixed with the test

images from unseen classes. As in [10], the Area Under

Seen-Unseen accuracy Curve (AUSUC) is adopted as the

evaluation metric. AUSUC measures how well a zero-shot

learning method can trade-off between recognising images

from seen classes and that of unseen classes.

Two strategies are applied to our AMP approach for

GZSL: (1) NN+calibration and (2) SVM+threshold. In the

NN+calibration strategy, the initial GZSL result is given

by a nearest neighbour classifier. Such classification scores

are then calibrated per [10]. For a test image classified as

unseen classes, our AMP model is further deployed to re-

classify the image into one of the unseen classes. In the
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SVM+threshold strategy, a n-way seen class classifier based

on SVM is first used to classify the test images into the seen

classes. After thresholding the seen class SVM scores, those

test images with scores below the threshold will be further

re-classified into unseen classes using our AMP model. In

this experiment, the AMP model is compared against five

alternatives on AwA and the results are shown in Table 9.

It is evident that our model significantly outperforms the

competitors, more so with the SVM+threshold strategy.

It should be pointed out that in both strategies, if a

test data is classified to an unseen class, we assume that

it must belong to one of a fixed set of unseen classes.

Such an assumption is unrealistic in a practical application

scenario, even though it is made by almost all existing ZSL

methods. A more generalised ZSL setting would thus be

considering a much larger pool of unseen classes labels,

most of which have no corresponding test data samples.

Developing solutions to GZSL under this more generalised

setting is beyond the scope of this paper and part of our

ongoing work.

More experimental results can be found in the Sup-

plementary Material document, where a n-shot learning

evaluation is given, comparative results in the mean per-

class accuracy are presented, the effectiveness of combining

SR and SE is evaluated, the computational cost of the

proposed model is reported, and some qualitative results

are also included.

5 CONCLUSION

We have introduced a novel zero-shot learning approach

based on measuring a manifold distance between a test

image and an unseen class prototype on a semantic class

prototype graph. This approach is designed to overcome the

hubness and domain shift problems suffered by existing

ZSL methods by exploiting the manifold structure of the

class prototype distribution in a semantic embedding space.

The sparsity problem of the distribution is overcome by

introducing a novel absorbing Markov chain process for

computing a manifold distance directly on the graph rather

than explicitly learning the manifold space. The proposed

model also has the advantage of enabling easy fusion

of existing semantic relatedness (SR) based and semantic

embedding (SE) based approaches for ZSL. Extensive

experiments have been carried out to demonstrate that our

method outperforms the state-of-the-art methods for ZSL on

four benchmarks. Ongoing work includes developing a deep

end-to-end embedding model that is regularised by unseen

class prototypes which can be further extended to integrate

the learning of the semantic embedding space (word space)

also as part of the model.
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