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Abstract

Due to the importance of zero-shot learning, the number

of proposed approaches has increased steadily recently. We

argue that it is time to take a step back and to analyze the

status quo of the area. The purpose of this paper is three-

fold. First, given the fact that there is no agreed upon zero-

shot learning benchmark, we first define a new benchmark

by unifying both the evaluation protocols and data splits.

This is an important contribution as published results are

often not comparable and sometimes even flawed due to,

e.g. pre-training on zero-shot test classes. Second, we com-

pare and analyze a significant number of the state-of-the-

art methods in depth, both in the classic zero-shot setting

but also in the more realistic generalized zero-shot setting.

Finally, we discuss limitations of the current status of the

area which can be taken as a basis for advancing it.

1. Introduction

Zero-shot learning aims to recognize objects whose in-

stances may not have been seen during training [17, 22,

23, 30, 40]. The number of new zero-shot learning meth-

ods proposed every year has been increasing rapidly, i.e.

the good aspects as our title suggests. Although each new

method has been shown to make progress over the previous

one, it is difficult to quantify this progress without an estab-

lished evaluation protocol, i.e. the bad aspects. In fact, the

quest for improving numbers has lead to even flawed eval-

uation protocols, i.e. the ugly aspects. Therefore, in this

work, we propose to extensively evaluate a significant num-

ber of recent zero-shot learning methods in depth on several

small to large-scale datasets using the same evaluation pro-

tocol both in zero-shot, i.e. training and test classes are dis-

joint, and the more realistic generalized zero-shot learning

settings, i.e. training classes are present at test time.

We benchmark and systematically evaluate zero-shot

learning w.r.t. three aspects, i.e. methods, datasets and

evaluation protocol. The crux of the matter for all zero-

shot learning methods is to associate observed and non

observed classes through some form of auxiliary informa-

tion which encodes visually distinguishing properties of ob-

jects. Different flavors of zero-shot learning methods that

we evaluate in this work are linear [11, 2, 4, 32] and nonlin-

ear [39, 34] compatibility learning frameworks whereas an

orthogonal direction is learning independent attribute [22]

classifiers and finally others [42, 7, 26] propose a hybrid

model between independent classifier learning and compat-

ibility learning frameworks.

We thoroughly evaluate the second aspect of zero-shot

learning, by using multiple splits of several small to large-

scale datasets [28, 38, 22, 10, 9]. We emphasize that it is

hard to obtain labeled training data for fine-grained classes

of rare objects recognizing which requires expert opinion.

Therefore, we argue that zero-shot learning methods should

be evaluated mainly on least populated or rare classes.

We propose a unified evaluation protocol to address the

third aspect of zero-shot learning which is arguably the most

important one. We emphasize the necessity of tuning hyper-

parameters of the methods on a validation class split that is

disjoint from training classes as improving zero-shot learn-

ing performance via tuning parameters on test classes vi-

olates the zero-shot assumption. We argue that per-class

averaged top-1 accuracy is an important evaluation metric

when the dataset is not well balanced with respect to the

number of images per class. We point out that extracting

image features via a pre-trained deep neural network (DNN)

on a large dataset that contains zero-shot test classes also

violates the zero-shot learning idea as image feature ex-

traction is a part of the training procedure. Moreover, we

argue that demonstrating zero-shot performance on small-

scale and coarse grained datasets, i.e. aPY [10] is not con-

clusive. We recommend to abstract away from the restricted

nature of zero-shot evaluation and make the task more prac-

tical by including training classes in the search space, i.e.

generalized zero-shot learning setting. Therefore, we argue

that our work plays an important role in advancing the zero-

shot learning field by analyzing the good and bad aspects

of the zero-shot learning task as well as proposing ways to

eliminate the ugly ones.
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2. Related Work

We review related work on zero-shot and generalized

zero-shot learning, we present previous evaluations on the

same task and describe the unique aspects of our work.

Zero-Shot Learning. In zero-shot learning setting test and

training class sets are disjoint [17, 22, 23, 30, 40] which can

be tackled by solving related sub-problems, e.g. learning

intermediate attribute classifiers [22, 30, 31] and learning a

mixture of seen class proportions [42, 43, 26, 7], or by a di-

rect approach, e.g. compatibility learning frameworks [3, 4,

11, 15, 27, 32, 34, 39, 32, 12, 29, 1, 6, 24, 13, 21]. Among

these methods, in our evaluation we choose to use DAP [22]

for being one of the most fundamental methods in zero-

shot learning research; CONSE [26] for being one of the

most widely used representatives of learning a mixture of

class proportions; SSE [42] for being a recent method with

a public implementation; SJE [4], ALE [3], DEVISE [11]

for being recent compatibility learning methods with simi-

lar loss functions; ESZSL [32] for adding a regularization

term to unregularized compatibility learning methods; [39]

and CMT [34] proposing non-linear extensions to bilinear

compatibility learning framework and finally SYNC [7] for

reporting the state-of-the-art on several benchmark datasets.

Generalized Zero-shot Learning. This setting [33] gener-

alizes the zero-shot learning task to the case with both seen

and unseen classes at test time. [19] argues that although

ImageNet classification challenge performance has reached

beyond human performance, we do not observe similar be-

havior of the methods that compete at the detection chal-

lenge which involves rejecting unknown objects while de-

tecting the position and label of a known object. [11] uses

label embeddings to operate on the generalized zero-shot

learning setting whereas [41] proposes to learn latent repre-

sentations for images and classes through coupled linear re-

gression of factorized joint embeddings. On the other hand,

[5] introduces a new model layer to the deep net which es-

timates the probability of an input being from an unknown

class and [34] proposes a novelty detection mechanism. We

evaluate [34] and [11] for being the most widely used.

Previous Evaluations of Zero-Shot Learning. In the liter-

ature some zero-shot vs generalized zero-shot learning eval-

uation works exist [30, 8]. Among these, [30] proposes a

model to learn the similarity between images and seman-

tic embeddings on the ImageNet 1K by using 800 classes

for training and 200 for test. [8] provides a comparison be-

tween five methods evaluated on three datasets including

ImageNet with three standard splits and proposes a metric

to evaluate generalized zero-shot learning performance.

Our work. We evaluate ten zero-shot learning methods on

five datasets with several splits both for zero-shot and gen-

eralized zero-shot learning settings, provide statistical sig-

nificancy and robustness tests, and present other valuable

insights that emerge from our benchmark. In this sense,

ours is a more extensive evaluation compared to prior work.

3. Evaluated Methods

We start by formalizing the zero-shot learning task

and then we describe the zero-shot learning methods that

we evaluate in this work. Given a training set S =
{(xn, yn), n = 1...N}, with yn ∈ Ytr belonging to training

classes, the task is to learn f : X → Y by minimizing the

regularized empirical risk:

1

N

N∑

n=1

L(yn, f(xn;W )) + Ω(W ) (1)

with L(.) being the loss function and Ω(.) being the regu-

larization term. Here, the mapping f : X → Y from input

to output embeddings is defined as:

f(x;W ) = argmax
y∈Y

F (x, y;W ) (2)

At test time, in zero-shot learning setting, the aim is to as-

sign a test image to an unseen class label, i.e. Yts ⊂ Y
and in generalized zero-shot learning setting, the test im-

age can be assigned either to seen or unseen classes, i.e.

Ytr+ts ⊂ Y with the highest compatibility score.

3.1. Learning Linear Compatibility

Attribute Label Embedding (ALE) [3], Deep Visual Se-

mantic Embedding (DEVISE) [11] and Structured Joint

Embedding (SJE) [4] use bi-linear compatibility function

to associate visual and auxiliary information:

F (x, y;W ) = θ(x)TWφ(y) (3)

where θ(x) and φ(y), i.e. image and class embeddings, both

of which are given. F (.) is parameterized by the mapping

W , to be learned. Embarassingly Simple Zero Shot Learn-

ing (ESZSL) [32] adds a regularization term to this objec-

tive. In the following, we provide a unified formulation of

these four zero-shot learning methods.

DEVISE [11] uses pairwise ranking objective that is in-

spired from unregularized ranking SVM [20]:

∑

y∈Ytr

[∆(yn, y) + F (xn, y;W )− F (xn, yn;W )]+ (4)

ALE [3] uses weighted approximate ranking objective [37]:

∑

y∈Ytr

lr∆(xn,yn)

r∆(xn,yn)
[∆(yn, y)+F (xn, y;W )−F (xn, yn;W )]+

(5)
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where lk =
∑k

i=1 αi and r∆(xn,yn) is defined as:

∑

y∈Ytr

1(F (xn, y;W ) + ∆(yn, y) ≥ F (xn, yn;W )) (6)

Following the heuristic in [18], [3] selects αi = 1/i which

puts high emphasis on the top of the rank list.

SJE [4] gives full weight to the top of the ranked list and is

inspired from the structured SVM [36]:

[ max
y∈Ytr

(∆(yn, y) + F (xn, y;W ))− F (xn, yn;W )]+ (7)

ESZSL [32] adds the following regularization term to the

unregularized risk minimization formulation:

γ‖Wφ(y)‖2Fro + λ‖θ(x)TW‖2Fro + β‖W‖2Fro (8)

where γ, λ, β are parameters of this regularizer.

3.2. Learning Nonlinear Compatibility

Latent Embeddings (LATEM) [39] and Cross Modal

Transfer (CMT) [34] encode an additional non-linearity in

compatibility learning framework.

LATEM [39] constructs a piece-wise linear compatibility:

F (x, y;Wi) = max
1≤i≤K

θ(x)TWiφ(y) (9)

where every Wi models a different visual characteristic of

the data and the selection of which matrix to use to do the

mapping is a latent variable. LATEM uses the ranking loss

formulated in Equation 4.

CMT [34] first maps images into a semantic space of words,

i.e. class names, where a neural network with tanh nonlin-

earity learns the mapping:

∑

y∈Ytr

∑

x∈Xy

‖φ(y)−W1 tanh(W2.θ(x)‖ (10)

where (W1,W2) are weights of the two layer neural net-

work. This is followed by a novelty detection mechanism

that assigns images to unseen or seen classes. The novelty

is detected either via thresholds learned using the embed-

ded images of the seen classes or the outlier probabilities

are obtained in an unsupervised way.

3.3. Learning Intermediate Attribute Classifiers

Although Direct Attribute Prediction (DAP) [22] has

been shown to perform poorly compared to compatibility

learning frameworks [3], we include it to our evaluation for

being historically one of the most widely used methods in

the literature.

DAP [22] learns probabilistic attribute classifiers and makes

a class prediction by combining scores of the learned at-

tribute classifiers. A novel image is assigned to one of the

unknown classes using:

f(x) = argmax
c

M∏

m=1

p(acm|x)

p(acm)
. (11)

with M being the total number of attributes. We train a

one-vs-rest SVM with log loss that gives probability scores

of attributes with respect to training classes.

3.4. Hybrid Models

Semantic Similarity Embedding (SSE) [42], Convex

Combination of Semantic Embeddings (CONSE) [26] and

Synthesized Classifiers (SYNC) [7] express images and se-

mantic class embeddings as a mixture of seen class propor-

tions, hence we group them as hybrid models.

SSE [42] leverages similar class relationships both in image

and semantic embedding space. An image is labeled with:

argmax
u∈U

π(θ(x))Tψ(φ(yu)) (12)

where π, ψ are mappings of class and image embeddings

into a common space. Specifically, ψ is learned by sparse

coding and π is by class dependent transformation.

CONSE [26] learns the probability of a training image be-

longing to a training class:

f(x, t) = argmax
y∈Ytr

ptr(y|x) (13)

where y denotes the most likely training label (t=1) for im-

age x. Combination of semantic embeddings (s) is used to

assign an unknown image to an unseen class:

1

Z

T∑

i=1

ptr(f(x, t)|x).s(f(x, t)) (14)

where Z =
∑T

i=1 ptr(f(x, t)|x), f(x, t) denotes the tth

most likely label for image x and T controls the maximum

number of semantic embedding vectors.

SYNC [7] learns a mapping between the semantic class em-

bedding space and a model space. In the model space, train-

ing classes and a set of phantom classes form a weighted bi-

partite graph. The objective is to minimize distortion error:

min
wc,vr

‖wc −

R∑

r=1

scrvr‖
2
2. (15)

Semantic and model spaces are aligned by embedding real

(wc) and phantom classes (vr) in the weighted graph (scr).
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Number of Classes

Number of Images

At Training Time At Evaluation Time

SS PS SS PS

Dataset Size Detail Att Y Ytr Yts Total Ytr Yts Ytr Yts Ytr Yts Ytr Yts

SUN [28] medium fine 102 717 580 + 65 72 14K 12900 0 10320 0 0 1440 2580 1440

CUB [38] medium fine 312 200 100 + 50 50 11K 8855 0 7057 0 0 2933 1764 2967

AWA [22] medium coarse 85 50 27 + 13 10 30K 24295 0 19832 0 0 6180 4958 5685

aPY [10] small coarse 64 32 15 + 5 12 15K 12695 0 5932 0 0 2644 1483 7924

Table 1: Statistics for attribute datasets: SUN [28], CUB [38], AWA [22], aPY [10] in terms of size of the datasets, fine-

grained or coarse-grained, number of attributes, number of classes in training + validation (Ytr) and test classes (Yts), number

of images at training and test time for standard split (SS) and our proposed splits (PS).

4. Datasets and Evaluation Protocol

In this section, we provide several components of pre-

viously used and our proposed zero-shot and generalized

zero-shot learning evaluation protocols, e.g. datasets, im-

age and class encodings and the evaluation protocol.

4.1. Dataset Statistics

Among the most widely used datasets for zero-shot

learning, we select two coarse-grained, one small and one

medium-scale, and two fine-grained, both medium-scale,

datasets with attributes and one large-scale dataset without.

Here, we consider between 10K and 1M images, and, be-

tween 100 and 1K classes as medium-scale.

Attribute Datasets. Statistics of the attribute datasets are

presented in Table 1. Attribute Pascal and Yahoo (aPY) [10]

is a small-scale coarse-grained dataset with 64 attributes.

Among the total number of 32 classes, 20 Pascal classes

are used for training (we randomly select 5 for validation)

and 12 Yahoo classes are used for testing. Animals with

Attributes (AWA) [22] is a coarse-grained dataset that is

medium-scale in terms of the number of images, i.e. 30, 475
and small-scale in terms of number of classes, i.e. 50.

[22] introduces a standard zero-shot split with 40 classes

for training (we randomly select 13 for validation) and 10
for testing. AWA has 85 attributes. Caltech-UCSD-Birds

200-2011 (CUB) [38] is a fine-grained and medium scale

dataset with respect to both number of images and num-

ber of classes, i.e. 11, 788 images from 200 different types

of birds annotated with 312 attributes. [3] introduces the

first zero-shot split of CUB with 150 training (50 valida-

tion classes) and 50 test classes. SUN [28] is a fine-grained

and medium-scale dataset with respect to both number of

images and number of classes, i.e. SUN contains 14340 im-

ages coming from 717 types of scenes annotated with 102
attributes. Following [22] we use 645 classes of SUN for

training (we randomly select 65 for val) and 72 for testing.

Large-Scale ImageNet. We also evaluate the performance

of methods on the large scale ImageNet [9]. Among the

total of 21K classes, 1K classes are used for training (we

use 200 classes for validation) and the test split is either all

the remaining 21K classes or a subset of it, e.g. we deter-

mine these subsets based on the hierarchical distance be-

tween classes and the population of classes.

4.2. Proposed Evaluation Protocol

We present our proposed unified protocol for image and

class embeddings, dataset splits and evaluation criteria.

Image and Class Embedding. We extract image features

from the entire image for SUN, CUB, AWA and ImageNet,

with no image pre-processing. For aPY, as proposed in [10],

we extract image features from bounding boxes. Our im-

age embeddings are 2048-dim top-layer pooling units of the

101-layered ResNet [16] as we found that it performs better

than 1, 024-dim top-layer pooling units of GoogleNet [35].

ResNet is pre-trained on ImageNet 1K and not fine-tuned.

In addition to ResNet features, we evaluate methods with

their published image features. As class embeddings, for

aPY, AWA, CUB and SUN, we use per-class attributes. For

ImageNet we use Word2Vec [25] provided by [7] as it does

not contain attribute annotation for all the classes.

Dataset Splits. Zero-shot learning assumes disjoint train-

ing and test classes with the presence of all the images of

training classes and the absence of any image from test

classes during training. On the other hand, as deep neu-

ral network (DNN) training for image feature extraction is

actually a part of model training, the dataset used to train

DNNs, e.g. ImageNet, should not include any of the test

classes. However, we notice from the standard splits (SS)

of aPY and AWA datasets that 7 aPY test classes out of 12

(monkey, wolf, zebra, mug, building, bag, carriage), 6 AWA

test classes out of 10 (chimpanzee, giant panda, leopard,

persian cat, pig, hippopotamus), are among the 1K classes

of ImageNet, i.e. are used to pre-train ResNet. On the other

hand, the mostly widely used splits, i.e. we term them as

standard splits (SS), for SUN from [22] and CUB from [2]

shows us that 1 CUB test class out of 50 (Indigo Bunting),
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and 6 SUN test classes out of 72 (restaurant, supermarket,

planetarium, tent, market, bridge), are also among the 1K

classes of ImageNet. We noticed that the accuracy for all

methods on those overlapping test classes are higher than

others. Therefore, we propose new dataset splits, i.e. pro-

posed splits (PS), insuring that none of the test classes ap-

pear in ImageNet 1K, i.e. used to train the ResNet model.

We present the differences between the standard splits (SS)

and the proposed splits (PS) in Table 1. While in SS and PS

no image from test classes is present at training time, at test

time SS does not include any images from training classes

however our PS does. We designed the PS this way as eval-

uating accuracy on both training and test classes is crucial

to show the generalization of methods.

ImageNet with thousands of classes provides possibili-

ties of constructing several zero-shot evaluation splits. Fol-

lowing [7], our first two standard splits consider all the

classes that are 2-hops and 3-hops away from the original

1K classes according to the ImageNet label hierarchy, cor-

responding to 1509 and 7678 classes. This split measures

the generalization ability of the models with respect to the

hierarchical and semantic similarity between classes. Our

proposed split considers 500, 1K and 5K most populated

classes among the remaining 21K classes of ImageNet with

≈ 1756, ≈ 1624 and ≈ 1335 images per class on aver-

age. Similarly, we consider 500, 1K and 5K least-populated

classes in ImageNet which correspond to most fine-grained

subsets of ImageNet with ≈ 1, ≈ 3 and ≈ 51 images per

class on average. Our final split considers all the remaining

≈ 20K classes of ImageNet with at least 1 image per-class,

≈ 631 images per class on average.

Evaluation Criteria. Single label image classification ac-

curacy has been measured with Top-1 accuracy, i.e. the pre-

diction is accurate when the predicted class is the correct

one. If the accuracy is averaged for all images, high perfor-

mance on densely populated classes is encouraged. How-

ever, we are interested in having high performance also on

sparsely populated classes. Therefore, we average the cor-

rect predictions independently for each class before divid-

ing their cumulative sum w.r.t the number of classes, i.e. we

measure average per-class top-1 accuracy.

In generalized zero-shot learning setting, the search

space at evaluation time is not restricted to only test classes,

but includes also the training classes, hence this setting is

more practical. As with our proposed split at test time

we have access to some images from training classes, after

having computed the average per-class top-1 accuracy on

training and test classes, we compute the harmonic mean of

training and test accuracies:

H = 2 ∗ (accYtr ∗ accYts)/(accYtr + accYts) (16)

where accYtr and accYts represent the accuracy of images

from seen (Ytr), and images from unseen (Yts) classes re-

SUN AWA

Model R O R O

DAP [22] 22.1 22.2 41.4 41.4

SSE [42] 83.0 82.5 64.9 76.3

LATEM [39] – – 71.2 71.9

SJE [4] – – 67.2 66.7

ESZSL [32] 64.3 65.8 48.0 49.3

SYNC [7] 62.8 62.8 69.7 69.7

Table 2: Reproducing zero-shot results: O = Original results

published in the paper, R = Reproduced using provided im-

age features and code. We measure top-1 accuracy in %.

spectively. We choose harmonic mean as our evaluation cri-

teria and not arithmetic mean because in arithmetic mean if

the seen class accuracy is much higher, it effects the overall

results significantly. Instead, our aim is high accuracy on

both seen and unseen classes.

5. Experiments

We first provide zero-shot learning results on attribute

datasets SUN, CUB, AWA and aPY and then on the large-

scale ImageNet dataset. Finally, we present results for the

generalized zero-shot learning setting.

5.1. Zero­Shot Learning Results

On attribute datasets, i.e. SUN, CUB, AWA and aPY, we

first reproduce the results of each method using their eval-

uation protocol, then provide a unified evaluation protocol

using the same train/val/test class splits, followed by our

proposed train/val/test class splits. We also evaluate the ro-

bustness of the methods to parameter tuning and visualize

the ranking of different methods. Finally, we evaluate the

methods on the large-scale ImageNet dataset.

Reproducing Results. For sanity-check, we re-evaluate

methods [22, 42, 39, 4, 32, 7] 1 using provided features

and code. We chose SUN and AWA as two representative

of fine-grained and non-fine-grained datasets having been

widely used in the literature. We observe from the results

in Table 2 that our reproduced results and the reported re-

sults of DAP and SYNC are identical to the reported num-

ber in their original publications. For LATEM, we obtain

slightly different results which can be explained by the non-

convexity and thus the sensibility to initialization. Similarly

for SJE random sampling in SGD might lead to slightly dif-

ferent results. ESZSL has some variance because its al-

gorithm randomly picks a validation set during each run,

which leads to different hyperparameters. Notable obser-

vations on SSE [42] results are as follows. The published

code has hard-coded hyperparameters operational on aPY,

1[34] has public code available, but is not evaluated on SUN or AWA.
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SUN CUB AWA aPY

Method SS PS SS PS SS PS SS PS

DAP [22] 38.9 39.9 37.5 40.0 57.1 44.1 35.2 33.8

CONSE [26] 44.2 38.8 36.7 34.3 63.6 45.6 25.9 26.9

CMT [34] 41.9 39.9 37.3 34.6 58.9 39.5 26.9 28.0

SSE [42] 54.5 51.5 43.7 43.9 68.8 60.1 31.1 34.0

LATEM [39] 56.9 55.3 49.4 49.3 74.8 55.1 34.5 35.2

ALE [3] 59.1 58.1 53.2 54.9 78.6 59.9 30.9 39.7

DEVISE [11] 57.5 56.5 53.2 52.0 72.9 54.2 35.4 39.8

SJE [4] 57.1 53.7 55.3 53.9 76.7 65.6 32.0 32.9

ESZSL [32] 57.3 54.5 55.1 53.9 74.7 58.2 34.4 38.3

SYNC [7] 59.1 56.3 54.1 55.6 72.2 54.0 39.7 23.9

Table 3: Zero-shot on SS = Standard Split, PS = Proposed

Split using ResNet features (top-1 accuracy in %).
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Figure 1: Ranking 10 models by setting parameters on three

validation splits on the standard (SS, left) and proposed

(PS, right) setting. Element (i, j) indicates number of times

model i ranks at jth over all 4× 3 observations. Models are

ordered by their mean rank (displayed in brackets).

i.e. number of iterations, number of data points to train

SVM, and one regularizer parameter γ which lead to in-

ferior results than the ones reported here, therefore we set

these parameters on validation sets. On SUN, SSE uses 10
classes (instead of 72) and our results with validated param-

eters got an improvement of 0.5% that may be due to ran-

dom sampling of training images. On AWA, our reproduced

result being 64.9% is significantly lower than the reported

result (76.3%). However, we could not reach the reported

result even by tuning parameters on the test set, i.e. we ob-

tain 73.8% in this case.

Reproduced Results vs Standard Split (SS). In addition to

[22, 42, 39, 4, 32, 7, 34], we re-implement [26, 11, 3] based

on the original publications. We use train, validation, test

splits as provided in Table 1 and report results on Table 3

with deep ResNet features. DAP [22] uses hand-crafted im-

age features and thus reproduced results with those features

are significantly lower than the results with deep features

(22.1% vs 38.9%). When we investigate the results in de-

tail, we noticed two irregularities with reported results on

SUN. First, SSE [42] and ESZSL [32] report results on a

test split with 10 classes whereas the standard split of SUN

contains 72 test classes (74.5% vs 54.5% with SSE [42] and

64.3% vs 57.3% with ESZSL [32]). Second, after care-

ful examination and correspondence with the authors of

SYNC [7], we detected that SUN features were extracted

with a MIT Places [44] pre-trained model. As MIT Places

dataset intersects with both training and test classes of SUN

dataset, it is expected to lead to significantly better results

than ImageNet pre-trained model (62.8% vs 59.1%).

Results on Standard (SS) and Proposed Splits (PS). We

propose new dataset splits (see details in section 4) insur-

ing that test classes do not belong to the ImageNet1K that

is used to pre-train ResNet. We compare these results (PS)

with previously published standard split (SS) results in Ta-

ble 3. Our first observation is that the results on PS is sig-

nificantly lower than SS for AWA. This is expected as most

of the test classes in SS is included in ImageNet 1K. On

the other hand, for fine-grained datasets CUB and SUN, the

results are not significantly effected. Our second observa-

tion regarding the method ranking is as follows. On SS,

SYNC [7] is the best performing method on SUN (59.1%)

and aPY (39.7%) datasets whereas SJE [4] performs the

best on CUB (55.3%) and ALE [3] performs the best on

AWA (78.6%) dataset. On PS, ALE [3] performs the best

on SUN (58.1%), SYNC [7] on CUB (55.6%), SJE [4] on

AWA (65.6%) and DEVISE [11] on aPY (39.8%). Note

that ALE, SJE and DEVISE all use max-margin bi-linear

compatibility learning framework.

Robustness. We evaluate robustness of 10 methods to pa-

rameters by setting them on 3 different validation splits

while keeping the test split intact. We report results on SS

(Figure 2, top) and PS (Figure 2, bottom). On SUN and

CUB, the results are stable across methods and across splits.

This is expected as these datasets have balanced number of

images across classes and due to their fine-grained nature,

the validation splits are similar. On the other hand, AWA

and aPY being small and coarse-grained datasets have sev-

eral issues. First, many of the test classes on AWA and aPY

are included in ImageNet1K. Second, they are not well bal-

anced, i.e. different validation class splits contain signifi-

cantly different number of images. Third, the class embed-

dings are far from each other, i.e. objects are semantically

different, therefore different validation splits learn a differ-

ent mapping between images and classes.

Visualizing Method Ranking. We rank the 10 meth-

ods based on their per-class top-1 accuracy using the non-

parametric Friedman test [14], which does not assume a dis-

tribution on performance but rather uses algorithm ranking.

Each entry of the rank matrix on Figure 1 indicates the num-

ber of times the method is ranked at the first to tenth rank.

We then compute the mean rank of each method and or-

der them based on that. Our general observation is that the

highest ranked method on the standard split (SS) is SYNC

while on the proposed split (PS) it is ALE. These results
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Figure 2: Robustness of 10 methods evaluated on SUN, CUB, AWA, aPY using 3 validation set splits (results are on the same

test split). Top: original split, Bottom: proposed split (Image embeddings = ResNet). We measure top-1 accuracy in %.

Hierarchy Most Populated Least Populated All

Method 2 H 3 H 500 1K 5K 500 1K 5K 20K

CONSE [26] 7.63 2.18 12.33 8.31 3.22 3.53 2.69 1.05 0.95

CMT [34] 2.88 0.67 5.10 3.04 1.04 1.87 1.08 0.33 0.29

LATEM [39] 5.45 1.32 10.81 6.63 1.90 4.53 2.74 0.76 0.50

ALE [3] 5.38 1.32 10.40 6.77 2.00 4.27 2.85 0.79 0.50

DEVISE [11] 5.25 1.29 10.36 6.68 1.94 4.23 2.86 0.78 0.49

SJE [4] 5.31 1.33 9.88 6.53 1.99 4.93 2.93 0.78 0.52

ESZSL [32] 6.35 1.51 11.91 7.69 2.34 4.50 3.23 0.94 0.62

SYNC [7] 9.26 2.29 15.83 10.75 3.42 5.83 3.52 1.26 0.96

Table 4: ImageNet with different splits: 2/3 H = classes

with 2/3 hops away from 1K Ytr, 500/1K/5K most popu-

lated classes, 500/1K/5K least populated classes, All=20K

categories of ImageNet. We measure top-1 accuracy in %.

indicate the importance of choosing zero-shot splits care-

fully. On the proposed split, the three highest ranked meth-

ods are compatibility learning methods, i.e. ALE, DEVISE

and SJE whereas the three lowest ranked methods are at-

tribute classifier learning or hybrid methods, i.e. DAP, CMT

and CONSE. Therefore, max-margin compatibility learning

methods lead to consistently better results in the zero-shot

learning task compared to learning independent classifiers.

Results on ImageNet. ImageNet scales the methods to a

truly large-scale setting, thus these experiments provide fur-

ther insights on how to tackle the zero-shot learning prob-

lem from the practical point of view. Here, we evaluate 8
methods. We exclude DAP as attributes are not available

for all ImageNet classes and SSE due to scalability issues

of the public implementation of the method. Table 4 shows

that the best performing method is SYNC [7] which may

indicate that it performs well in large-scale setting or it can

learn under uncertainty due to usage of Word2Vec instead

of attributes. Another possibility is Word2Vec may be tuned

for SYNC as it is provided by the same authors however

making a strong claim requires a full evaluation on class

embeddings which is out of the scope of this paper. Our

general observation from all the methods is that in the most

populated classes, the results are higher than the least pop-

ulated classes which indicates that fine-grained subsets are

more difficult. We consistently observe a large drop in ac-

curacy between 1K and 5K most populated classes which is

expected as 5K contains ≈ 6.6M images, making the prob-

lem much more difficult than 1K (≈ 1624 images). On the

other hand, All 20K results are poor for all methods which

indicates the difficulty of this problem where there is a large

room for improvement.

5.2. Generalized Zero­Shot Learning Results

In real world applications, image classification systems

do not have access to whether a novel image belongs to a

seen or unseen class in advance. Hence, generalized zero-

shot learning is interesting from a practical point of view.

Here, we use same models trained on zero-shot learning set-

ting on our proposed splits (PS). We evaluate performance

on both Ytr and Yts, i.e. using held-out images from Yts.

As shown in Table 5, generalized zero-shot results are

significantly lower than zero-shot results as training classes

are included in the search space. Another interesting ob-

servation is that compatibility learning frameworks, e.g.

ALE, DEVISE, SJE, perform well on test classes. How-

ever, methods that learn independent attribute or object clas-

sifiers, e.g. DAP and CONSE, perform well on training

classes. Due to this discrepancy, we evaluate the harmonic

mean which takes a weighted average of training and test
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SUN CUB AWA aPY

Method ts tr H ts tr H ts tr H ts tr H

DAP [22] 4.2 25.1 7.2 1.7 67.9 3.3 0.0 88.7 0.0 4.8 78.3 9.0

CONSE [26] 6.8 39.9 11.6 1.6 72.2 3.1 0.4 88.6 0.8 0.0 91.2 0.0

CMT [34] 8.1 21.8 11.8 7.2 49.8 12.6 0.9 87.6 1.8 1.4 85.2 2.8

CMT* [34] 8.7 28.0 13.3 4.7 60.1 8.7 8.4 86.9 15.3 10.9 74.2 19.0

SSE [42] 2.1 36.4 4.0 8.5 46.9 14.4 7.0 80.5 12.9 0.2 78.9 0.4

LATEM [39] 14.7 28.8 19.5 15.2 57.3 24.0 7.3 71.7 13.3 0.1 73.0 0.2

ALE [3] 21.8 33.1 26.3 23.7 62.8 34.4 16.8 76.1 27.5 4.6 73.7 8.7

DEVISE [11] 16.9 27.4 20.9 23.8 53.0 32.8 13.4 68.7 22.4 4.9 76.9 9.2

SJE [4] 14.7 30.5 19.8 23.5 59.2 33.6 11.3 74.6 19.6 3.7 55.7 6.9

ESZSL [32] 11.0 27.9 15.8 12.6 63.8 21.0 6.6 75.6 12.1 2.4 70.1 4.6

SYNC [7] 7.9 43.3 13.4 11.5 70.9 19.8 8.9 87.3 16.2 7.4 66.3 13.3

Table 5: Generalized Zero-Shot Learning on Proposed Split (PS) measuring ts = Top-1 accuracy on Yts, tr=Top-1 accuracy

on Ytr+ts), H = harmonic mean (CMT*: CMT with novelty detection). We measure top-1 accuracy in %.
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Figure 3: Ranking 11 models on the proposed split (PS) in

generalized zero-shot learning setting. Top-Left: on unseen

cla sses (ts) accuracy, Top-Right: on seen classes (tr) accu-

racy, Bottom: on Harmonic mean (H).

class accuracy. H measure ranks ALE as the best perform-

ing method on SUN, CUB and AWA datasets whereas on

aPY dataset CMT* performs the best. Note that CMT* has

an integrated novelty detection phase for which the method

receives another supervision signal determining if the image

belongs to a train or a test class. As a summary, generalized

zero-shot learning setting provides one more level of de-

tail on the performance of zero-shot learning methods. Our

take-home message is that the accuracy of training classes is

as important as the accuracy of test classes in real world sce-

narios. Therefore, methods should be designed in a way that

they are able to predict labels well in train and test classes.

Visualizing Method Ranking. Similar to the analysis in

the previous section, we rank the 11 methods based on per-

class top-1 accuracy on train classes, test classes and based

on Harmonic mean of the two. Looking at the rank ma-

trix obtained by evaluating on test classes, i.e. Figure 3 top

left, highest ranked 5 methods are the same as in Figure 1,

i.e. ALE, DEVISE, SJE, LATEM, ESZSL while overall the

absolute numbers are lower. Looking at the rank matrix ob-

tained by evaluating the harmonic mean, i.e. Figure 3 bot-

tom, the highest ranked 3 methods are the same as in Fig-

ure 1, i.e. ALE, DEVISE, SJE. Looking at the rank matrix

obtained by evaluating on train classes, i.e. Figure 3 top

right, our observations are different from Figure 1. ALE is

ranked the 3rd but other highest ranked methods are at the

bottom of this rank list. These results clearly suggest that

we should not only optimize for test class accuracy but also

for train class accuracy when evaluating zero-shot learning.

Our final observation from Figure 3 is that CMT* is better

than CMT in all cases which supports the argument that a

simple novelty detection scheme helps to improve results.

6. Conclusion

In this work, we evaluated a significant number of state-

of-the-art zero-shot learning methods on several datasets

within a unified evaluation protocol both in zero-shot and

generalized zero-shot settings. Our evaluation showed that

compatibility learning frameworks have an edge over learn-

ing independent object or attribute classifiers and also over

hybrid models. We discovered that some standard zero-shot

splits may treat feature learning disjoint from the training

stage and accordingly proposed new dataset splits. More-

over, disjoint training and validation class split is a neces-

sary component of parameter tuning in zero-shot learning

setting. Including training classes in the search space while

evaluating the methods, i.e. generalized zero-shot learning,

provides an interesting playground for future research. In

summary, our work extensively evaluated the good and bad

aspects of zero-shot learning while sanitizing the ugly ones.
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