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Abstract

Zero-shot learning (ZSL) has been widely re-
searched and get successful in machine learning.
Most existing ZSL methods aim to accurately rec-
ognize objects of unseen classes by learning a
shared mapping from the feature space to a seman-
tic space. However, such methods did not inves-
tigate in-depth whether the mapping can precise-
ly reconstruct the original visual feature. Motivated
by the fact that the data have low intrinsic dimen-
sionality e.g. low-dimensional subspace. In this pa-
per, we formulate a novel framework named Low-
rank Embedded Semantic AutoEncoder (LESAE)
to jointly seek a low-rank mapping to link visual
features with their semantic representations. Tak-
ing the encoder-decoder paradigm, the encoder part
aims to learn a low-rank mapping from the vi-
sual feature to the semantic space, while decoder
part manages to reconstruct the original data with
the learned mapping. In addition, a non-greedy it-
erative algorithm is adopted to solve our model.
Extensive experiments on six benchmark dataset-
s demonstrate its superiority over several state-of-
the-art algorithms.

1 Introduction

In recent years, along with the explosive growth of web da-
ta, there has been significant progress in large-scale classifi-
cation with aid of conventional frameworks, e.g. Deep Neu-
ral Networks (DNN) [Krizhevsky et al., 2012]. Convention-
al frameworks mainly depend on a large number of train-
ing samples to build robust models. However, as obtaining
well-annotated training samples are labor-intensive and time-
consuming, sufficient labeled training samples are usually un-
available in many real-world situations. Meanwhile, the num-
ber of newly defined classes is ever-growing, indicating that
training a particular model for each of them is unattainable.

Zero-shot learning (ZSL) [Palatucci et al., 2009] has been
widely recognized as a feasible solution to deal with these
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problems. ZSL attempts to learn mechanism of human brain
and recognize new classes which are not observed in the
training stage. For instance, one can easily recognize a new
species of objects after being told how it is similar to or dif-
ferent from other observed objects. The main reason is that
humans can explore the relationship across different objects,
and adapt the knowledge from seen classes to unseen ones.
Likewise, ZSL aims to uncover the intrinsic relationship be-
tween seen and unseen classes. Specifically, the fundamental
idea of ZSL is to learn a general mapping from the feature
space to a semantic space using the labelled training samples
consisting of seen classes only. This mapping is then used to
project the visual representation of the unseen class images
into the semantic space. Hereafter, the task of unseen class
recognition becomes a typical classification problem which
can be realized by a simple nearest neighbour (NN) search.

However, most existing ZSL methods neglect the impor-
tance of reconstruction. They put much attention on learning
a projection only from the feature space to a semantic space
instead of considering reconstructing the original visual fea-
ture representation. This can lead to a projection domain shift
problem [Fu et al., 2015a]. Sometimes this shift will adverse-
ly affect the final classification results. Recently, [Kodirov et
al., 2017] proposed a model named Semantic AutoEncoder
(SAE) which imposes a new constraint in learning a projec-
tion from the visual space to the semantic space so that the
projection must also preserve all the information contained
in the original visual features. However, this constraint can-
not guarantee the reconstructed data has a low-rank structure,
which is important for undercomplete autoencoders [Xie et
al., 2016] like Principal Component Analysis (PCA) [Jolliffe,
1986]. In this paper, we proposed a model named Low-rank
Embedded Semantic AutoEncoder (LESAE). We assume that
the latent semantic space for unseen samples should share it-
s majority with semantic space for the seen samples, which
should be identified in the low-rank embedding space. Taking
the encoder-decoder paradigm, the encoder part tries to learn
a low-rank projection from the feature space to a semantic
space as in the existing ZSL models. The decoder part aim-
s to the learned mapping can reconstruct the original visual
features precisely.

We summarize our main contributions as follows: (1) We
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build a bridge between reconstruction and Low-rank rep-
resentation to capture shared discriminative features across
seen and unseen classes. A robust model is proposed for zero-
shot learning (ZSL) and generalized zero-shot learning (GZS-
L). (2) We formalize ZSL as the problem of learning a low-
rank semantic representation of input data that can also be
used for data reconstruction. (3) An efficient iterative algo-
rithm based on Sylvester equation is introduced to solve this
model and leads to state-of-the-art recognition performance
on six benchmark datasets for ZSL and GZSL.

2 Related Works

Low-rank embedding This technique aims to recover the
low-rank clean data from the corruption data and has been
successfully applied to many applications including image
clustering [Chen et al., 2018; Li et al., 2018], image clas-
sification [Liao et al., 2018; Liu et al., 2018], object track-
ing [Zhang et al., 2015; Yang et al., 2017], hyperspectral im-
age denoising [Fan et al., 2017] and dynamic MRI [Nakar-
mi et al., 2017]. Robust Principal Component Analysis (RP-
CA) [Candès et al., 2011] is of the most representative meth-
ods. This model was demonstrated that PCA can be made
robust to outliers if exactly recovering the low-rank represen-
tation by solving a simple convex problem. Similarly, Low-
Rank Representation (LRR) [Liu et al., 2013] aims to seek
the lowest rank representation among all the candidates that
can represent the data samples as linear combinations of the
bases in a given dictionary. [Peng et al., 2012] proposed
RASL to seek an optimal set of image domain transforma-
tions such that the matrix of transformed images can be de-
composed as the sum of a sparse matrix of errors and a low-
rank matrix of recovered aligned images. Recently, [Nie et
al., 2017] proposed a novel model named Multi-view Learn-
ing with Adaptive Neighbours (MLAN). With the reasonable
rank constrain, the obtained optimal graph can be partitioned
into specific clusters directly. Inspired by these successful
approaches, we apply low-rank embedding into zero-short
learning in the paper.

Zero-short learning A variety of approaches for zero-shot
learning have been recently proposed. To circumvent learning
independent attributes, embedding-based ZSL frameworks
are proposed to learn a projection that can map the visu-
al space to semantic space at once. The class label is then
determined in the semantic space using various relatedness
measurements [Akata et al., 2013; Socher et al., 2013; Zhang
and Saligrama, 2016]. In addition to directly using fixed se-
mantic embedding, some work tries to map them into a dif-
ferent space by sparse coding [Zhang and Saligrama, 2015;
Kodirov et al., 2015] and CCA [Fu et al., 2015a]. Recen-
t work [Long and Shao, 2017; Ding et al., 2017; Long et
al., 2017; Kodirov et al., 2017] combines the embedding-
inferring procedure into a unified framework and empirically
demonstrates better performance.

In our evaluation we choose following representative
methods for comparison on several benchmark datasets.
DAP [Lampert et al., 2014] and IAP [Lampert et al., 2014]

are two of the most fundamental methods in ZSL research.
Such models utilize semantic attributes as intermediate clues.

CONSE [Norouzi et al., 2014] is one of the most widely
used representatives of learning a mixture of class propor-
tions. SSE [Zhang and Saligrama, 2015] uses the mixture of
seen class proportions as the common space and leverages
similar class relationships both in the visual space and the se-
mantic space. SJE [Akata et al., 2015] and ESZSL [Romera-
Paredes and Torr, 2015] learn the bilinear compatibility func-
tion between the visual and the semantic space optimizing the
structural SVM loss and square loss respectively. ALE [Aka-
ta et al., 2016] and DEVISE [Frome et al., 2013] learn the
bilinear compatibility with similar ranking loss functions.
LATEM [Xian et al., 2016] gives non-linear extension to bi-
linear compatibility learning methods. CMT [Socher et al.,
2013] aims to learn a non-linear projection from visual space
to semantic space by a neural network. SYNC [Changpiny-
o et al., 2016] constructs classifiers for unseen classes by a
linear combination of base classifiers. SAE [Kodirov et al.,
2017] learns a low dimensional semantic representation of in-
put data that can be used for data reconstruction. SS-Voc [Fu
and Sigal, 2016] utilizes open set semantic vocabulary to help
train better classifiers in supervised learning. AMP [Fu et al.,
2015b] computes semantic manifold distance by a absorbing
Markov chain process.

3 Approach

For ZSL task, we aim to classify the samples from unseen
classes according to their class-level attributes, where both
the samples and labels of unseen classes are totally indepen-
dent from the training phase.

Suppose there are c seen classes with n labeled samples
S = {X,A,Y} and cu unseen classes with nu unlabeled
samples U = {Xu,Au,Yu}, where X ∈ Rm×n and Xu ∈
Rm×nu are m-dimensional visual features in the seen and
unseen data, while their corresponding class labels are Y and
Yu, respectively. The seen and unseen classes have no label
overlap, i.e., Y ∩ Yu = ∅. A ∈ Rd×n and Au ∈ Rd×nu

are d-dimensional semantic representations of instances in
the seen and unseen datasets. In the zero-shot learning task,
we aim to learn a classifier f : Xu → Yu, where the samples
in Xu are completely unavailable during training.

The intuition behind ZSL is that the classifier would be
able to capture the relationship between the visual space and
the the semantic space. Inspired by the recent work [Kodirov
et al., 2017] considering the transpose of projection matrix as
a decoder to reconstruct the original visual feature, we de-
velop an effective Low-rank Embedded Semantic AutoEn-
coder (LESAE) that integrates the merits of both low-rank
discriminative embedding and semantic representation learn-
ing. Specifically, LESAE tries to learn a Low-rank projection
matrix W ∈ Rd×m (d < m) from the feature space X to
the semantic space A. At the same time, the semantic space
can be projected back to the feature space with WT ∈ Rk×d

to reconstruct the input data exactly. This can be achieved by
optimising the following function:

min
W

∥

∥X−WTWX
∥

∥

2

F
+ βrank(W)

s.t. WX = A
(1)
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where ‖·‖
∗

denotes Frobenius norm of a matrix, β is the bal-
ance parameter, rank(·) is the rank operator of a matrix.

Rank minimization in Eq. (1) is a well-known NP hard
problem, and considerable approaches have been proposed.
One of appealing strategies is to adopt trace norm ‖W‖

∗
as a

surrogate of the term rank(W). Instead of adapting the tradi-
tional Singular Value Thresholding (SVT) [Cai et al., 2010]

to solve the objective, we exploit a regularization term that
guarantees that the low-rank feature of optimized W. Mathe-
matically, we have following equation:

‖W‖
∗
= tr((WTW)

1

2 ) = tr(WT (WWT )−
1

2W) (2)

According to Eq. (1) and Eq. (2), the new formula with
low-rank constraint can be rewritten as:

min
W,H

∥

∥X−WTA
∥

∥

2

F
+ βtr(WHWT )

s.t. WX = A
(3)

where H = (WWT )−
1

2 .
Solving the objective function (3) with a hard constrain-

t such as WX = A is difficult. Therefore, we consider to
relax the constraint into a soft one and rewrite the objective
function (3) as:

min
W,H

∥

∥X−WTA
∥

∥

2

F
+ α ‖WX−A‖2F + βtr(WHWT )

(4)

3.1 Optimization Algorithms

The objective function (4) has two unknown variables. It is
difficult to directly solve the solution. An algorithm can be
developed for alternatively updating W (while fixing H) and
H (while fixing W). Here we develop an efficient algorithm
to solve this problem.

Update H: When W is fixed, H can be computed by H =

(WWT )−
1

2 .
Update W: When H is fixed, taking the derivative of Eq.

(4) with respective to W and setting it to zero, we have:

MW +WN = C (5)

where
M = AAT

N = αXXT + βH

C = (α+ 1)AXT

(6)

Before solving Eq. (5), we first introduce one definition and
two theorems:

Definition 1 [Sylvester, 1884]: A Sylvester equation is a
matrix equation of the form:

PX+XQ = D (7)

Theorem 1 [Lancaster and Tismenetsky, 1985]: The suffi-
cient and unnecessary condition for Eq. (7) having a solution

is that the matrices

[

P 0
0 Q

]

and

[

P D
0 −Q

]

are similar.

Theorem 2 [Lancaster and Tismenetsky, 1985]: The suf-
ficient and unnecessary condition for Eq. (7) having a u-
nique solution is that the eigenvalues λ1, λ2, · · · , λn of P and

η1, η2, · · · , ηk of Q satisfy λi+ηj 6= 0; (i = 1, 2, · · · ,n; j =
1, 2, · · · ,k).

Detailed explanation of Definition 1 and proofs of Theorem
1 and Theorem 2 can refer to [Lancaster and Tismenetsky,
1985].

According to Definition 1, it is easy to know Eq. (5) is a
Sylvester equation. So Eq. (5) has a unique solution if it meets
conditions of Theorem 1 and Theorem 2, which can be easily
satisfied in the real-world zero-short learning.

Vectorizing the unknown matrix W, Eq. (5) can be trans-
formed to a linear equation:

(Im ⊗M+NT ⊗ Id)vec(W) = vec(C) (8)

where ⊗ is the Kronecker product, Im ∈ Rm×m and Id ∈
Rd×d are identity matrices, vec(C) is the vectorization of the
matrix C. Then, W can be obtained by following equation.

vec(W) = (Im ⊗M+NT ⊗ Id)
+vec(C) (9)

In MATLAB, it can be implemented with a single line of
code: sylvester1.

So far, we have build the optimization rules for two vari-
ables. Then, we iteratively update them until converge. For
clarity, Algorithm 1 lists the pseudo code of solving our mod-
el (4). In Algorithm 1, η is a small positive parameter to en-
sure H has a solution. We terminate the algorithm 1 when the
Frobenius norm of relative changes of W is below 10−6.

Algorithm 1:

Input Training set {X,A}.
Initialize W = I
repeat

1. Update H by H = ( W(W)T + ηI)−
1

2 .
2. Update W by solving the Eq. (5) and Eq. (6).
until converge
Output projection matrix W.

3.2 Zero-shot Recognition

Once we obtain the projection matrices W, the visual fea-
tures of unseen classes can be easily synthesized from their
semantic attributes Au by following equation:

Xu = WTAu (10)

It is noticeable that for image-level attributes, Xu contains
as many instances as the test set. The zero-shot recognition
task now becomes a typical classification problem. Thus, any
existing supervised classifier can be applied. Since we focus
on the quality of the synthesized features, we simply use N-
earest Neighbour (NN) in the task.

4 Experiments

In this section, we will validate our proposed method on five
small-scale datasets (SUN, CUB, AWA1, AWA2 and APY)
and one large-scale dataset (ImageNet), compared with other
state-of-the-art methods mentioned in related works.

1https://uk.mathworks.com/help/matlab/ref/sylvester.html
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method SUN CUB AWA1 AWA2 aPY

DAP 39.9 40.0 44.1 46.1 33.8
IAP 19.4 24.0 35.9 35.9 36.6

CONSE 38.8 34.3 45.6 44.5 26.9
CMT 39.9 34.6 39.5 37.9 28.0
SSE 51.5 43.9 60.1 61.0 34.0

LATEM 55.3 49.3 55.1 55.8 35.2
ALE 58.1 54.9 59.9 62.5 39.7

DEVISE 56.5 52.0 54.2 59.7 39.8
SJE 53.7 53.9 65.6 61.9 32.9

ESZSL 54.5 53.9 58.2 58.6 38.3
SYNC 56.3 55.6 54.0 46.6 23.9
SAE 59.7 53.6 65.4 66.2 34.5

LESAE 60.0 53.9 66.1 68.4 40.8

Table 1: Zero-shot learning (ZSL) results on SUN, CUB, AWA1,
AWA2 and aPY using ResNet features. The results report Top-1 ac-
curacy in %.

4.1 Datasets Descriptions

Five small-scale datasets: SUN Attribute (SUN) [Patterson
et al., 2014] is a fine-grained dataset, which contains 14,340
images coming from 717 types of scenes annotated with 102
attributes. Following [Lampert et al., 2014], 645 out of 717
classes are used for training and rest 72 classes for testing.

CUB-200-2011 Birds (CUB) [Wah et al., 2011] is a fine-
grained and medium scale dataset with respect to both num-
ber of images and number of classes, i.e. 11,788 images from
200 different types of birds annotated with 312 attributes.
[Akata et al., 2016] introduces the first zero-shot split of CUB
with 150 train classes and 50 test classes.

Animals with Attributes 1 (AWA1) [Lampert et al., 2014]

is a coarse-grained dataset, which has totally 30,475 images
and 85-dim class-level attributes, in which 40 classes are used
for training and 10 others for testing.

Animals with Attributes 2 (AWA2) [Xian et al., 2017] uses
the same 50 animal classes as AWA1 dataset, while 37,322
images are collected from the public open source. Compared
to AWA1, AWA2 dataset contains more images, e.g. horse
and dolphin among the test classes, antelope and cow among
the training classes. Same as AWA1, 40 classes are used for
training and 10 others for testing in AWA2 dataset.

A Pascal and Yahoo (aPY) [Farhadi et al., 2009] is a small-
scale coarse-grained dataset with 64 attributes. Among the
total number of 32 classes, 20 Pascal classes (we random-
ly select 5 for validation) and 12 Yahoo classes are used for
training and testing, respectively.

One large-scale dataset: ImageNet [Russakovsky et al.,
2015] has totally 218,000 images and 1000-dim class-level
attributes. In this large-scale dataset, as in [Fu and Sigal,
2016], 1,000 classes of ILSVRC2012 are used as seen class-
es, while 360 classes of ILSVRC2010, which are not included
in ILSVRC2012, for unseen classes.

4.2 Evaluations

For five small-scale datasets, we follow the settings of [Xian
et al., 2017] to make sure the absence of any image from test
classes during training. Then the 2048-dim feature of each

method ZSL results GZSL results

CONSE 15.5 -
AMP 13.1 -

DEVISE 12.8 -
SS-Voc 16.8 -

SAE 27.2 12.0

LESAE 27.6 12.4

Table 2: Zero-shot learning (ZSL) results and Generalized Zero-
shot learning (GZSL) results on ImageNet dataset. The results report
Top-5 accuracy in %.

image is extracted from the 101-layered ResNet [He et al.,
2016]. As class embeddings, we use per-class attributes. All
the features and attributes used in experiments are published
for open access2.

To evaluate the performance of methods on five small-scale
datasets, the Top-1 accuracy (the prediction is accurate when
the predicted class is the correct one) is measured. Moreover,
for GZSL task, the samples from seen/unseen classes are clas-
sified into all classes. In GZSL setting, the search space at
evaluation time is not restricted to only test classes, but in-
cludes also the training classes. In our experiments, we com-
puter the harmonic mean of seen and unseen classification
accuracies by flowing function [Xian et al., 2017]:

H =
2× accs × accu

accs + accu
(11)

where accs and accu represent the Top-1 accuracy of images
from seen, and images from unseen classes respectively.

For fair comparison with published results, we fol-
low the settings with [Kodirov et al., 2017] in ILSVR-
C2012/ILSVRC2010 dataset. In detail, we use GoogleNet
features [Szegedy et al., 2015] which is the 1024-dim acti-
vation of the final pooling layer. As an image usually con-
tains multiple objects, we measure the Top-5 accuracy in this
large-scale dataset.

4.3 Parameter Settings

Our LESAE model has two free parameters: α and β (see Eq.
(4)). Figure 1 shows that the value of α and β achieving the
best performance in different datasets are concentrated in a
small range. Specifically, from the parameter analysis on α
(see Figure 1 (a)), our model can achieve better performance
when the value of α approaches zero on SUN, CUB and aPY
datasets, while performs better around α = 2.5 on other three
datasets. From the parameter analysis on β (see Figure 1 (b)),
our model can achieve better performance when the value of
α approaches zero on SUN and CUB datasets, while performs
better around β = 20 on other four datasets. Empirically, α
can be set to 0 < α < 3, while β varies from 0 to 40.

4.4 ZSL and GZSL Results

Table 1 presents the ZSL Top-1 accuracy on five small-scale
datasets. Table 2 shows the ZSL and GZSL Top-5 accuracy

2The zero-shot learning benchmark can be found in the following
link: http://www.mpi-inf.mpg.de/zsl-benchmark
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Figure 1: The accuracy of ZSL in six datasets influenced by super-parameter α (β), while β (α) fixed.

SUN CUB AWA1 AWA2 aPY

Method ts tr H ts tr H ts tr H ts tr H ts tr H

DAP 4.2 25.1 7.2 1.7 67.9 3.3 0.0 88.7 0.0 0.0 84.7 0.0 4.8 78.3 9.0
IAP 1.0 37.8 1.8 0.2 72.8 0.4 2.1 78.2 4.1 0.9 87.6 1.8 5.7 65.6 10.4

CONSE 6.8 39.9 11.6 1.6 72.2 3.1 0.4 88.6 0.8 0.5 90.6 1.0 0.0 91.2 0.0
CMT 8.1 21.8 11.8 7.2 49.8 12.6 0.9 87.6 1.8 0.5 90.0 1.0 1.4 85.2 2.8

CMT* 8.7 28.0 13.3 4.7 60.1 8.7 8.4 86.9 15.3 8.7 89.0 15.9 10.9 74.2 19.0
SSE 2.1 36.4 4.0 8.5 46.9 14.4 7.0 80.5 12.9 8.1 82.5 14.8 0.2 78.9 0.4

LATEM 14.7 28.8 19.5 15.2 57.3 24.0 7.3 71.7 13.3 11.5 77.3 20.0 0.1 73.0 0.2
ALE 21.8 33.1 26.3 23.7 62.8 34.4 16.8 76.1 27.5 14.0 81.8 23.9 4.6 73.7 8.7

DEVISE 16.9 27.4 20.9 23.8 53.0 32.8 13.4 68.7 22.4 17.1 74.7 27.8 4.9 76.9 9.2
SJE 14.7 30.5 19.8 23.5 59.2 33.6 11.3 74.6 19.6 8.0 73.9 14.4 3.7 55.7 6.9

ESZSL 11.0 27.9 15.8 12.6 63.8 21.0 6.6 75.6 12.1 5.9 77.8 11.0 2.4 70.1 4.6
SYNC 7.9 43.3 13.4 11.5 70.9 19.8 8.9 87.3 16.2 10.0 90.5 18.0 7.4 66.3 13.3
SAE 17.8 32.0 22.8 18.8 58.5 28.5 14.2 81.2 24.1 16.7 82.5 27.8 9.9 74.7 17.5

LESAE 21.9 34.7 26.9 24.3 53.0 33.3 19.1 70.2 30.0 21.8 70.6 33.3 12.7 56.1 20.1

Table 3: Generalized Zero-Shot Learning (GZSL) results on SUN, CUB, AWA1, AWA2 and aPY using ResNet features. ts = accu , tr = accs,
H = harmonic mean (CMT*: CMT with novelty detection). We measure Top-1 accuracy in %.

on ImageNet. Table 3 shows three evaluation indicators for
the GZSL task on five small-scale datasets. Comparing the
aforementioned experiments, we have several interesting ob-
servations:

(1) For zero-short learning, our model achieves the best re-
sults on all datasets except the CUB dataset although most of
the compared methods apply complicated nonlinear models.
Specifically, the accuracies on the AWA2 dataset increase 6%
compared the strongest competitor. Our model and SAE have
a similar result on SUN and CUB datasets. This is because
our model achieve better performance when β approaches ze-
ro (see Figure 1 (b)), which means the low-rank constraint
plays a small role on SUN and CUB datasets. On the large-
scale dataset ImageNet, our model and SAE have a similar re-
sult, which increases 12.5% compared the existing best one,
i.e. SS-Voc. However, all the methods perform poorly which
indicates that there is a large room for improvement in this
large-scale dataset.

(2) For generalized zero-short learning, our approach
achieves the highest “ts” value in all small-scale datasets,
which demonstrates that a low-rank projection would benefit
the GZSL task. Moreover, it is easy to see that the “ts” value
and the “H” value for those baselines with big “tr” value are
generally very small. The main reason is that a very big “tr”
value reflects the over-fitting training for the seen classes, i.e.
the trained model in these methods cannot be generalized to
new classes. On the large-scale dataset ImageNet, same as the
ZSL result, our model increases 0.4% than SAE.

4.5 Complexity and Convergence Analysis

Figure 2 shows the algorithm 1 converges within only 5 step-
s. Moreover, the complexity of Eq. (5) depends on the size
of feature dimension O(m3) instead of the number of sam-
ples n. These demonstrate our algorithm has a good practical
application for its low complexity and good convergence.
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Figure 2: Convergence curve of LESAE on six datasets.

5 Conclusions

In this paper, a novel ZSL model named Low-rank Embed-
ded Semantic AutoEncoder (LESAE) is proposed to learn a
low-rank mapping to link visual features with their seman-
tic representations. The encoder part tries to learn a low-rank
projection from the feature space to a semantic space as in
the existing ZSL models. The decoder part aims to the learned
mapping can reconstruct the original visual features precisely.
An optimization algorithm is also given to solve our model.
Empirical results on five small-scale datasets and one large-
scale dataset showed our method is significantly better than
several well-established ZSL approaches.
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