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Abstract

Text-to-image generation has traditionally fo-

cused on finding better modeling assumptions for

training on a fixed dataset. These assumptions

might involve complex architectures, auxiliary

losses, or side information such as object part la-

bels or segmentation masks supplied during train-

ing. We describe a simple approach for this task

based on a transformer that autoregressively mod-

els the text and image tokens as a single stream of

data. With sufficient data and scale, our approach

is competitive with previous domain-specific mod-

els when evaluated in a zero-shot fashion.

1. Introduction

Modern machine learning approaches to text to image syn-

thesis started with the work of Mansimov et al. (2015),

who showed that the DRAW Gregor et al. (2015) generative

model, when extended to condition on image captions, could

also generate novel visual scenes. Reed et al. (2016b) later

demonstrated that using a generative adversarial network

(Goodfellow et al., 2014), rather than a recurrent variational

auto-encoder, improved image fidelity. Reed et al. (2016b)

showed that this system could not only generate objects with

recognizable properties, but also could zero-shot generalize

to held-out categories.

Over the next few years, progress continued using a combi-

nation of methods. These include improving the generative

model architecture with modifications like multi-scale gen-

erators (Zhang et al., 2017; 2018), integrating attention and

auxiliary losses (Xu et al., 2018), and leveraging additional

sources of conditioning information beyond just text (Reed

et al., 2016a; Li et al., 2019; Koh et al., 2021).

Separately, Nguyen et al. (2017) propose an energy-based

framework for conditional image generation that obtained

a large improvement in sample quality relative to contem-
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Figure 1. Comparison of original images (top) and reconstructions

from the discrete VAE (bottom). The encoder downsamples the

spatial resolution by a factor of 8. While details (e.g., the texture of

the cat’s fur, the writing on the storefront, and the thin lines in the

illustration) are sometimes lost or distorted, the main features of the

image are still typically recognizable. We use a large vocabulary

size of 8192 to mitigate the loss of information.

porary methods. Their approach can incorporate pretrained

discriminative models, and they show that it is capable of

performing text-to-image generation when applied to a cap-

tioning model pretrained on MS-COCO. More recently, Cho

et al. (2020) also propose a method that involves optimiz-

ing the input to a pretrained cross-modal masked language

model. While significant increases in visual fidelity have oc-

curred as a result of the work since Mansimov et al. (2015),

samples can still suffer from severe artifacts such as object

distortion, illogical object placement, or unnatural blending

of foreground and background elements.

Recent advances fueled by large-scale generative models

suggest a possible route for further improvements. Specifi-

cally, when compute, model size, and data are scaled care-

fully, autoregressive transformers (Vaswani et al., 2017)

have achieved impressive results in several domains such as

text (Radford et al., 2019), images (Chen et al., 2020), and

audio (Dhariwal et al., 2020).

By comparison, text-to-image generation has typically been

evaluated on relatively small datasets such as MS-COCO

and CUB-200 (Welinder et al., 2010). Could dataset size and
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(a) a tapir made of accordion.
a tapir with the texture of an
accordion.

(b) an illustration of a baby
hedgehog in a christmas
sweater walking a dog

(c) a neon sign that reads
“backprop”. a neon sign that
reads “backprop”. backprop
neon sign

(d) the exact same cat on the
top as a sketch on the bottom

Figure 2. With varying degrees of reliability, our model appears to be able to combine distinct concepts in plausible ways, create

anthropomorphized versions of animals, render text, and perform some types of image-to-image translation.

model size be the limiting factor of current approaches? In

this work, we demonstrate that training a 12-billion param-

eter autoregressive transformer on 250 million image-text

pairs collected from the internet results in a flexible, high

fidelity generative model of images controllable through

natural language.

The resulting system achieves high quality image generation

on the popular MS-COCO dataset zero-shot, without using

any of the training labels. It is preferred over prior work

trained on the dataset by human evaluators 90% of the time.

We also find that it is able to perform complex tasks such

as image-to-image translation at a rudimentary level. This

previously required custom approaches (Isola et al., 2017),

rather emerging as a capability of a single, large generative

model.

2. Method

Our goal is to train a transformer (Vaswani et al., 2017) to

autoregressively model the text and image tokens as a single

stream of data. However, using pixels directly as image

tokens would require an inordinate amount of memory for

high-resolution images. Likelihood objectives tend to pri-

oritize modeling short-range dependencies between pixels

(Salimans et al., 2017), so much of the modeling capac-

ity would be spent capturing high-frequency details instead

of the low-frequency structure that makes objects visually

recognizable to us.

We address these issues by using a two-stage training proce-

dure, similar to (Oord et al., 2017; Razavi et al., 2019):

• Stage 1. We train a discrete variational autoen-

coder (dVAE)1 to compress each 256×256 RGB image

into a 32× 32 grid of image tokens, each element of

1https://github.com/openai/DALL-E

which can assume 8192 possible values. This reduces

the context size of the transformer by a factor of 192
without a large degradation in visual quality (see Fig-

ure 1).

• Stage 2. We concatenate up to 256 BPE-encoded text

tokens with the 32 × 32 = 1024 image tokens, and

train an autoregressive transformer to model the joint

distribution over the text and image tokens.

The overall procedure can be viewed as maximizing the

evidence lower bound (ELB) (Kingma & Welling, 2013;

Rezende et al., 2014) on the joint likelihood of the model

distribution over images x, captions y, and the tokens z
for the encoded RGB image. We model this distribution

using the factorization pθ,ψ(x, y, z) = pθ(x | y, z)pψ(y, z),
which yields the lower bound

ln pθ,ψ(x, y) > E
z∼qφ(z | x)

(

ln pθ(x | y, z) −

β DKL(qφ(y, z |x), pψ(y, z))
)

, (1)

where:

• qφ denotes the distribution over the 32 × 32 image

tokens generated by the dVAE encoder given the RGB

image x2;

• pθ denotes the distribution over the RGB images gen-

erated by the dVAE decoder given the image tokens;

and

• pψ denotes the joint distribution over the text and image

tokens modeled by the transformer.

Note that the bound only holds for β = 1, while in practice

we find it helpful to use larger values (Higgins et al., 2016).

The following subsections describe both stages in further

detail.3

2We assume that y is conditionally independent of x given z.
3In preliminary experiments on ImageNet (Deng et al., 2009),

https://github.com/openai/DALL-E
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Figure 3. Comparison of samples from our model to those from prior approaches on captions from MS-COCO. Each of our model samples

is the best of 512 as ranked by the contrastive model. We do not use any manual cherrypicking with the selection of either the captions or

the samples from any of the models.

2.1. Stage One: Learning the Visual Codebook

In the first stage of training, we maximize the ELB with

respect to φ and θ, which corresponds to training a dVAE

on the images alone. We set the initial prior pψ to the uni-

form categorical distribution over the K = 8192 codebook

vectors, and qφ to be categorical distributions parameterized

by the 8192 logits at the same spatial position in the 32×32
grid output by the encoder.

The ELB now becomes difficult to optimize: as qψ is a dis-

crete distribution, and we cannot use the reparameterization

gradient to maximize it. Oord et al. (2017); Razavi et al.

(2019) address this using an online cluster assignment pro-

cedure coupled with the straight-through estimator (Bengio

et al., 2013). We instead use the gumbel-softmax relax-

ation (Jang et al., 2016; Maddison et al., 2016), replacing the

expectation over qφ with one over qτφ, where the relaxation

becomes tight as the temperature τ → 0. The likelihood

for pθ is evaluated using the log-laplace distribution (see

we attempted to maximize the ELB with respect to φ, θ, and ψ
jointly, but were unable to improve on two-stage training.

Appendix A.3 for a derivation).

The relaxed ELB is maximized using Adam (Kingma &

Ba, 2014) with exponentially weighted iterate averaging.

Appendix A.2 gives a complete description of the hyper-

parameters, but we found the following to be especially

important for stable training:

• Specific annealing schedules for the relaxation temper-

ature and step size. We found that annealing τ to 1/16
was sufficient to close the gap between the relaxed

validation ELB and the true validation ELB with qφ
intsead of qτφ.

• The use of 1× 1 convolutions at the end of the encoder

and the beginning of the decoder. We found that reduc-

ing the receptive field size for the convolutions around

the relaxation led to it generalizing better to the true

ELB.

• Multiplication of the outgoing activations from the

encoder and decoder resblocks by a small constant, to

ensure stable training at initialization.

We also found that increasing the KL weight to β = 6.6
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promotes better codebook usage and ultimately leads to a

smaller reconstruction error at the end of training.4

2.2. Stage Two: Learning the Prior

In the second stage, we fix φ and θ, and learn the prior

distribution over the text and image tokens by maximizing

the ELB with respect to ψ. Here, pψ is represented by a

12-billion parameter sparse transformer (Child et al., 2019).

Given a text-image pair, we BPE-encode (Sennrich et al.,

2015) the lowercased caption using at most 256 tokens5

with vocabulary size 16,384, and encode the image using

32 × 32 = 1024 tokens with vocabulary size 8192. The

image tokens are obtained using argmax sampling from the

dVAE encoder logits, without adding any gumbel noise.6

Finally, the text and image tokens are concatenated and

modeled autoregressively as a single stream of data.

The transformer is a decoder-only model in which each im-

age token can attend to all text tokens in any one of its 64

self-attention layers. The full architecture is described in Ap-

pendix B.1. There are three different kinds of self-attention

masks used in the model. The part of the attention masks

corresponding to the text-to-text attention is the standard

causal mask, and the part for the image-to-image attention

uses either a row, column, or convolutional attention mask.7

We limit the length of a text caption to 256 tokens, though

it is not totally clear what to do for the “padding” positions

in between the last text token and the start-of-image token.

One option is to set the logits for these tokens to −∞ in the

self-attention operations. Instead, we opt to learn a special

padding token separately for each of the 256 text positions.

This token is used only when no text token is available. In

preliminary experiments on Conceptual Captions (Sharma

et al., 2018), we found that this resulted in higher validation

loss, but better performance on out-of-distribution captions.

4This is contrary to the usual tradeoff between the two terms.
We speculate that for smaller values of β, the noise from the
relaxation causes the optimizer to reduce codebook usage toward
the beginning of training, resulting in worse ELB at convergence.

5During training, we apply 10% BPE dropout (Provilkov et al.,
2019), whose use is common in the neural machine translation
literature.

6Strictly speaking, Equation 1 requires us to sample from
the categorical distribution specified by the dVAE encoder log-
its, rather than taking the argmax. In preliminary experiments on
ImageNet, we found that this was a useful regularizer in the overpa-
rameterized regime, and allows the transformer to be trained using
soft targets for the cross-entropy loss. We decided against this
here since the model in consideration is in the underparameterized
regime.

7We found using a single attention operation for all three inter-
actions – “text attends to text”, “image attends to text”, and “image
attends to image” – to perform better than using separate attention
operations that are independently normalized.

Figure 4. Illustration of per-resblock gradient scaling for a trans-

former resblock. The solid line indicates the sequence of opera-

tions for forward propagation, and the dashed line the sequence of

operations for backpropagation. We scale the incoming gradient

for each resblock by its gradient scale, and unscale the outgoing

gradient before it is added to the sum of the gradients from the suc-

cessive resblocks. The activations and gradients along the identity

path are stored in 32-bit precision. The “filter” operation sets all

Inf and NaN values in the activation gradient to zero. Without this,

a nonfinite event in the current resblock would cause the gradient

scales for all preceding resblocks to unnecessarily drop, thereby

resulting in underflow.

We normalize the cross-entropy losses for the text and image

tokens by the total number of each kind in a batch of data.

Since we are primarily interested in image modeling, we

multiply the cross-entropy loss for the text by 1/8 and the

cross-entropy loss for the image by 7/8. The objective is

optimized using Adam with exponentially weighted iterate

averaging; Appendix B.2 describes the training procedure

in more detail. We reserved about 606,000 images for vali-

dation, and found no signs of overfitting at convergence.

2.3. Data Collection

Our preliminary experiments for models up to 1.2 billion pa-

rameters were carried out on Conceptual Captions, a dataset

of 3.3 million text-image pairs that was developed as an

extension to MS-COCO (Lin et al., 2014).

To scale up to 12-billion parameters, we created a dataset of

a similar scale to JFT-300M (Sun et al., 2017) by collecting

250 million text-images pairs from the internet. This dataset

does not include MS-COCO, but does include Conceptual

Captions and a filtered subset of YFCC100M (Thomee et al.,

2016). As MS-COCO was created from the latter, our train-

ing data includes a fraction of the MS-COCO validation

images (but none of the captions). We control for this in the

quantitative results presented in Section 3 and find that it has
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Figure 5. Communication patterns used for distributed training.

Each parameter array in the model is sharded among the eight

GPUs on each machine. During forward propagation, we prefetch

the parameter shards for the next resblock (using all-gather) while

computing the activations for the current resblock. To conserve

memory, the parameter shards from the other GPUs are immedi-

ately discarded. Similarly, during backpropagation, we prefetch

the parameter shards for the previous resblock while computing

the activations and gradients for the current resblock. After all

GPUs have computed the gradient with respect to an all-gathered

parameter, the reduce-scatter operation leaves each GPU with only

one slice – i.e., the gradient for its parameter shard, averaged over

the eight GPUs.

no appreciable bearing on the results. We provide further

details about the data collection process in Appendix C.

2.4. Mixed-Precision Training

To save GPU memory and increase throughput, most pa-

rameters, Adam moments, and activations are stored in

16-bit precision. We also use activation checkpointing and

recompute the activations within the resblocks during the

backward pass. Getting the model to train in 16-bit preci-

sion past one billion parameters, without diverging, was the

most challenging part of this project.

We believe the root cause of this instability to be under-

flow in the 16-bit gradients. Appendix D presents a set of

guidelines we developed to avoid underflow when training

large-scale generative models. Here, we describe one of

these guidelines: per-resblock gradient scaling.

Similar to prior work (Liu et al., 2020), we found that the

norms of the activation gradients from the resblocks de-

crease monotonically as we move from the earlier resblocks

Effective Parameter Count Compression Rank Compression Rate

2.8 · 109 (dmodel = 1920) 512 ≈83%
5.6 · 109 (dmodel = 2688) 640 ≈85%
12.0 · 109 (dmodel = 3968) 896 ≈86%

Table 1. We show the relationship between model size and the

minimum compression rank for the gradients (up to a multiple

of 128) necessary to avoid a gap in the training loss during the

first 10% of training. These results suggest that in our setting,

we can achieve a compression rate of about 85%, independent of

model size.

to the later ones.8 As the model is made deeper and wider,

the true exponents of the activation gradients for later res-

blocks can fall below the minimum exponent of the 16-bit

format. Consequently, they get rounded to zero, a phe-

nomenon called underflow. We found that eliminating un-

derflow allowed for stable training to convergence.

Standard loss scaling (Micikevicius et al., 2017) is able to

avoid underflow when the range spanned by the smallest and

largest activation gradients (in absolute value) fits within

the exponent range of the 16-bit format. On NVIDIA V100

GPUs, this exponent range is specified by five bits. While

this is sufficient for training vanilla language models of

the same size, we found the range to be too small for the

text-to-image model.

Our fix, which is shown in Figure 4, involves using a sepa-

rate “gradient scale” for each resblock in the model. This

can be seen as a practical alternative to a more general frame-

work for mixed-precision training called Flexpoint (Köster

et al., 2017), with the advantage that specialized GPU ker-

nels are not required. We found that Sun et al. (2020) had

independently developed similar procedure for training con-

volutional networks in 4-bit precision.

2.5. Distributed Optimization

Our 12-billion parameter model consumes about 24 GB of

memory when stored in 16-bit precision, which exceeds

the memory of a 16 GB NVIDIA V100 GPU. We address

this using parameter sharding (Rajbhandari et al., 2019).

As shown in Figure 5, parameter sharding allows us to

almost completely hide the latency of the intra-machine

communication by overlapping it with compute-intensive

operations.

On the cluster used to train the model, the bandwidth be-

tween machines is much lower than the bandwidth among

GPUs on the same machine. This makes the cost of the

operation used to average the gradient among the machines

(all-reduce) the main bottleneck during training. We were

8It is possible that better initialization schemes (Liu et al.,
2020) might be able to avoid this, but we did not have success with
alternative schemes in our experiments.
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Figure 6. Effect of increasing the number of images for the contrastive reranking procedure on MS-COCO captions.

able to drastically reduce this cost by compressing the gra-

dients using PowerSGD (Vogels et al., 2019).

In our implementation, each GPU in a machine computes

the low-rank factors for its parameter shard gradients in-

dependently of its neighboring GPUs.9 Once the low-rank

factors are computed, each machine sets its error buffer to

the residual between the uncompressed gradient averaged

over its eight GPUs (obtained from reduce-scatter), and the

decompressed gradient obtained from the low-rank factors.

PowerSGD replaces the large communication operation

for an uncompressed parameter gradient with two, much

smaller communication operations for its low-rank factors.

For a given compression rank r and transformer activa-

tion size dmodel, the compression rate is given by 1 −
5r/(8dmodel) (see Appendix E.1). Table 1 shows that we

can achieve a compression rate of about 85%, independent

of model size.

In Appendix E.2, we describe various details that were

necessary to get PowerSGD to perform well at scale. These

include:

• Saving memory by accumulating the gradient into the

error buffers during backpropagation, rather than allo-

cating separate buffers.

9There is still intra-machine communication for other opera-
tions; what we mean is that the low-rank factors across the shards,
when concatenated, are not regarded as collectively approximating
the gradient for the full parameter matrix.

• Minimizing instances in which we zero out the error

buffers (e.g., due to nonfinite values encountered dur-

ing mixed-precision backpropagation, or when resum-

ing training from a checkpoint).

• Improving numerical stability by using Householder

orthogonalization instead of Gram-Schmidt, together

with the addition of a small multiple of the identity

matrix to the input.

• Avoiding underflow by using a custom 16-bit floating

point format for the error buffers, their low-rank factors,

and the all-reduce communication operations involving

them.

We also found the warm-start procedure for the Q matrix

described in Vogels et al. (2019) to be unnecessary: we

were able to get equivalent results by fixing Q to a random

gaussian matrix at the start of training, and never updating

it.10

2.6. Sample Generation

Similar to Razavi et al. (2019), we rerank the samples

drawn from the transformer using a pretrained contrastive

model (Radford et al., 2021). Given a caption and a candi-

date image, the contrastive model assigns a score based on

10We verified that the error in reconstructing the true gradient is
higher when Q is fixed as opposed to being updated using warm-
starting, so it is interesting that this does not affect the loss. By
contrast, resampling Q at every update causes a large performance
hit.
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Figure 7. Human evaluation of our model (evaluated zero-shot

without temperature reduction) vs prior work (DF-GAN) on cap-

tions from MS-COCO. In a best-of-five vote, our model’s sample

was chosen as the most realistic 90.0% of the time, and was chosen

as the image best matching a shared caption 93.3% of the time.

how well the image matches the caption. Figure 6 shows the

effect of increasing the number of samples N from which

we select the top k images. This process can be seen as

a kind of language-guided search (Andreas et al., 2017),

and is also similar to the auxiliary text-image matching loss

proposed by Xu et al. (2018). Unless otherwise stated, all

samples used for both qualitative and quantitative results are

obtained without temperature reduction (i.e., using t = 1)

(except for Figure 2) and use reranking with N = 512.

3. Experiments

3.1. Quantitative Results

We evaluate our model zero-shot by comparing it to

three prior approaches: AttnGAN (Xu et al., 2018), DM-

GAN (Zhu et al., 2019), and DF-GAN (Tao et al., 2020),

the last of which reports the best Inception Score (Salimans

et al., 2016) and Fréchet Inception Distance (Heusel et al.,

2017) on MS-COCO. Figure 3 qualitatively compares sam-

ples from our model to those from prior work.

We also conduct a human evaluation similar to the one used

in Koh et al. (2021) to compare our approach to DF-GAN,

the results of which are shown in Figure 7. Given a caption,

the sample from our model receives the majority vote for

better matching the caption 93% of the time. It also receives

the majority vote for being more realistic 90% of the time.

Figure 9(a) shows that our model also obtains an FID score

on MS-COCO within 2 points of the best prior approach,

despite having never been trained on the captions. Our

training data incorporates a filtered subset of YFCC100M,

Figure 8. Zero-shot samples from our model on the CUB dataset.

and we found that it includes about 21% of the images in the

MS-COCO validation set from a de-duplication procedure

described in the next section. To isolate this effect, we

compute the FID statistics for the validation set both with

these images (solid lines) and without them (dashed lines),

finding no significant change in the results.

Training the transformer on the tokens from the dVAE en-

coder allows us to allocate its modeling capacity to the

low-frequency information that makes images visually rec-

ognizable to us. However, it also disadvantages the model,

since the heavy compression renders it unable to produce

high-frequency details. To test the effect of this on the

quantitative evaluations, we compute the FID and IS in Fig-

ure 9(a) after applying a Gaussian filter with varying radius

to both the validation images and samples from the models.

Our approach achieves the best FID by a margin of about

6 points with a slight blur of radius 1. The gap between

our approach and others tends to widen as the blur radius

is increased. We also obtain the highest IS when the blur

radius is greater than or equal to two.

Our model fares significantly worse on the CUB dataset, for

which there is a nearly 40-point gap in FID between our

model and the leading prior approach (Figure 9(b)). We

found an 12% overlap rate for this dataset, and again ob-

served no significant difference in the results after removing

these images. We speculate that our zero-shot approach is

less likely to compare favorably on specialized distributions

such as CUB. We believe that fine-tuning is a promising

direction for improvement, and leave this investigation to

future work. Samples from our model for captions in this

dataset are shown in Figure 8.

Finally, Figure 9(c) shows clear improvements in FID and IS

for MS-COCO as the sample size used for reranking with

the contrastive model is increased. This trend continues up

to a sample size of 32, after which we observe diminishing
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(a) FID and IS on MS-COCO as a func-
tion of blur radius.

(b) FID and IS on CUB as a function of
blur radius.

(c) FID and IS on MS-COCO as a func-
tion of the sample size used for rerank-
ing.

Figure 9. Quantitative results on MS-COCO and CUB. Solid lines represent FID computed against the original validation sets, and dashed

lines represent FID computed against validation sets with overlapping images removed (see Section 3.2). For MS-COCO, we evaluate all

models on a subset of 30,000 captions sampled from the validation set. For CUB, we evaluate all models on all of the unique captions in the

test set. We compute the FID and IS using the DM-GAN code, which is available at https://github.com/MinfengZhu/DM-GAN.

returns.

3.2. Data Overlap Analysis

We used the deduplication procedure described in Radford

et al. (2021) to determine which images to remove. For

each validation image, we find the closest image in the

training data using a contrastive model specifically trained

for this task. We then sort the images in descending order by

closeness to their nearest matches in the training data. After

inspecting the results by hand, we determine the images

to remove by manually selecting a conservative threshold

designed to minimize the false negative rate.

3.3. Qualitative Findings

We found that our model has the ability to generalize in

ways that we did not originally anticipate. When given the

caption “a tapir made of accordion...” (Figure 2a), the model

appears to draw a tapir with an accordion for a body, or an

accordion whose keyboard or bass are in the shape of a

tapir’s trunk or legs. This suggests that it has developed a

rudimentary ability to compose unusual concepts at high

levels of abstraction.

Our model also appears to be capable of combinatorial gen-

eralization, such as when rendering text (Figure 2b) or when

probed on sentences like “an illustration of a baby hedgehog

in a christmas sweater walking a dog” (Figure 2c). Prompts

like the latter require the model to perform variable bind-

ing (Smolensky, 1990; Greff et al., 2020) – it is the hedge-

hog that is in the christmas sweater, not the dog. We note,

however, that the model performs inconsistently on the task,

sometimes drawing both animals with christmas sweaters,

or drawing a hedgehog walking a smaller hedgehog.

To a limited degree of reliability, we also find our model to

be capable of zero-shot image-to-image translation control-

lable by natural language (Figure 2d). When the model is

given the caption “the exact same cat on the top as a sketch

at the bottom” and the top 15× 32 part of the image token

grid for a photo of a cat, it is able to draw a sketch of a

similar looking cat on the bottom.

This works with several other kinds of transformations, in-

cluding image operations (e.g., changing the color of the

image, converting it to grayscale, or flipping it upside-down)

and style transfer (e.g., drawing the cat on a greeting card, a

postage stamp, or a cell phone case). Some transformations,

such as those that involve only changing the color of the

animal, suggest that the model is capable of performing a

rudimentary kind of object segmentation. We provide addi-

tional examples of zero-shot image-to-image translation in

Section G.

https://github.com/MinfengZhu/DM-GAN
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4. Conclusion

We investigate a simple approach for text-to-image gener-

ation based on an autoregressive transformer, when it is

executed at scale. We find that scale can lead to improved

generalization, both in terms of zero-shot performance rela-

tive to previous domain-specific approaches, and in terms of

the range of capabilities that emerge from a single generative

model. Our findings suggest that improving generalization

as a function of scale may be a useful driver for progress on

this task.
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