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Abstract Zero-shot learning for visual recognition, e.g.,

object and action recognition, has recently attracted a lot

of attention. However, it still remains challenging in bridg-

ing the semantic gap between visual features and their un-

derlying semantics and transferring knowledge to semantic

categories unseen during learning. Unlike most of the ex-

isting zero-shot visual recognition methods, we propose a

stagewise bidirectional latent embedding framework to two

subsequent learning stages for zero-shot visual recognition.

In the bottom-up stage, a latent embedding space is first

created by exploring the topological and labeling informa-

tion underlying training data of known classes via a proper

supervised subspace learning algorithm and the latent em-

bedding of training data are used to form landmarks that

guide embedding semantics underlying unseen classes into

this learned latent space. In the top-down stage, semantic

representations of unseen-class labels in a given label vo-

cabulary are then embedded to the same latent space to pre-

serve the semantic relatedness between all different classes

via our proposed semi-supervised Sammon mapping with

the guidance of landmarks. Thus, the resultant latent embed-

ding space allows for predicting the label of a test instance

with a simple nearest-neighbor rule. To evaluate the effec-

tiveness of the proposed framework, we have conducted ex-

tensive experiments on four benchmark datasets in object

and action recognition, i.e., AwA, CUB-200-2011, UCF101

and HMDB51. The experimental results under comparative

studies demonstrate that our proposed approach yields the

state-of-the-art performance under inductive and transduc-

tive settings.
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1 Introduction

Visual recognition refers to various tasks for understanding

the content of images or video clips. Object recognition and

human action recognition are two typical visual recogni-

tion tasks studied extensively in computer vision commu-

nity. In the last decade, substantial progresses have been

made in object and human action recognition (Andreopou-

los and Tsotsos 2013). As a result, we witness a boost of

various benchmarks released with more and more classes,

which poses greater challenges to computer vision. For ex-

ample, the number of classes in object recognition bench-

marks has increased from 256 in Caltech-256 (Griffin et al.

2007) to 1000 in ImageNet ILSVRC (Russakovsky et al.

2015), while the number of classes in human action recog-

nition has increased from 51 in HMDB51 (Kuehne et al.

2011) to 101 in UCF101 (Soomro et al. 2012). Despite the

increasing number of classes in consideration, they are still a

small portion of all classes existing in real world. According

to (Lampert et al. 2014), humans can distinguish approxi-

mately 30,000 basic object classes, and much more subor-

dinate ones. Nowadays, new objects emerge rapidly. Practi-

cally, it is impossible to collect and annotate visual data for

all the classes to establish a visual recognition system. This

leads to a great challenge for visual recognition.

To fight off this challenge, zero-shot learning (ZSL)

was recently proposed and applied in both object and hu-

man action recognition with promising performances, e.g.,

(Akata et al. 2014; 2013; 2016; 2015; Al-Halah and Stiefel-

hagen 2015; Changpinyo et al. 2016a;b; Fu et al. 2015;
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Gan et al. 2016; Kodirov et al. 2015; Lampert et al. 2014;

Mensink et al. 2014; Norouzi et al. 2014; Romera-Paredes

and Torr 2015; Xian et al. 2016; Xu et al. 2015b; Zhang

and Saligrama 2015; 2016a;b). Unlike the traditional meth-

ods that can only recognize classes appearing in the train-

ing data, ZSL is inspired by the learning mechanism of hu-

man brain and aims to recognize new classes unseen dur-

ing learning by exploiting intrinsic semantic relatedness be-

tween known and unseen classes. In general, three fun-

damental elements are required in ZSL; i.e., visual repre-

sentation conveying non-trivial yet informative visual fea-

tures, semantic representation reflecting the relatedness be-

tween different classes (especially between known and un-

seen classes), and learning model properly relating visual

features to underlying semantics.

Visual representations play an important role in visual

recognition. In particular, the visual representations learned

with deep Convolutional Neural Networks (CNNs) have im-

proved the performances of object recognition, e.g., (Chat-

field et al. 2014; He et al. 2016; Simonyan and Zisserman

2015; Szegedy et al. 2015), and human action recognition,

e.g., (Simonyan and Zisserman 2014; Wang et al. 2016; Wu

et al. 2016; Zhao et al. 2015). Benefitting from deep learn-

ing, zero-shot visual recognition performances have also

been boosted, e.g., (Akata et al. 2014; Al-Halah and Stiefel-

hagen 2015; Reed et al. 2016). In addition, it has been re-

ported that the joint use of multiple visual representations

can improve the performances and the robustness of visual

recognition, e.g., (Fu et al. 2015; Shao et al. 2016).

Semantic representations aim to model the semantic re-

latedness between different classes. A variety of semantics

modelling techniques (Elhoseiny et al. 2015; Frome et al.

2013; Jiang et al. 2014; Lampert et al. 2014; Liu et al. 2011;

Mensink et al. 2014; Mikolov et al. 2013) have been devel-

oped, e.g., semantic attributes (Jiang et al. 2014; Lampert

et al. 2014; Liu et al. 2011) and word vectors (Frome et al.

2013; Mikolov et al. 2013). Semantic attributes are usually

manually defined for semantic labels that describe objects

and actions contained in images and video streams, while

word vectors are automatically learned from unstructured

textual data in an unsupervised way.

Given the low-level visual representations of images or

video streams and their underlying high-level semantics, the

central problem in zero-shot visual recognition is how to

transfer knowledge from the visual data of known classes

to those of unseen classes. A variety of zero-shot visual

recognition methods have been proposed, e.g., (Akata et al.

2014; 2013; 2016; 2015; Al-Halah and Stiefelhagen 2015;

Changpinyo et al. 2016a;b; Fu et al. 2015; Gan et al. 2016;

Kodirov et al. 2015; Lampert et al. 2014; Mensink et al.

2014; Norouzi et al. 2014; Romera-Paredes and Torr 2015;

Xian et al. 2016; Xu et al. 2015b; Zhang and Saligrama

2015; 2016a;b). A brief review on zero-shot visual recog-

nition will be described in the next section.

In zero-shot visual recognition, the semantic gap is the

biggest hurdle; i.e., the distribution of instances in visual

space is often distinct from that of their underlying seman-

tics in semantic space as visual features in various forms

may convey the same concept. This semantic gap results in a

great difficulty in transferring knowledge on known classes

to unseen classes. Apart from the semantic gap issue, the

hubness (Radovanović et al. 2010) is recently identified as

a cause that accounts for the poor performance of most ex-

isting ZSL models (Dinu et al. 2015; Shigeto et al. 2015;

Xu et al. 2015b). “Hubness” refers to the phenomenon that

some instances (referred to as hubs) in the high-dimensional

space appear to be the nearest neighbors of a large number

of instances. When nearest-neighbour based algorithms are

applied, test instances are likely to be close to those “hubs”

regardless of their labels and hence incorrectly labeled as

labels of “hubs”. In ZSL, the “hubness” phenomenon be-

comes more severe. Apart from the intrinsic property of

high-dimensional space (Radovanović et al. 2010), the hub-

ness is exacerbated by a lack of training instances belong-

ing to unseen classes in visual domain and the domain shift

problem, where the distribution of training data is different

from that of test data, which often occurs in ZSL (Fu et al.

2015; Zhang and Saligrama 2016b).

In this paper, we propose a novel zero-shot visual recog-

nition framework towards bridging the semantic gap and

tackling the hubness issue. Unlike most of existing methods,

our framework consists of two subsequent stages: bottom-up

and top-down stages. In the bottom-up stage, a latent space

is learned from a visual representation via supervised sub-

space learning that preserves intrinsic structures of visual

data and promotes the discriminative capability. We expect

that the latent space resulting from such subspace learn-

ing captures the intrinsic structures underlying visual data

and narrows the semantic gap between visual and seman-

tic spaces. After the bottom-up learning, in the latent space,

the mean of projected points of training data in the same

class forms a landmark specified as the embedding point of

the corresponding class label. In the top-down stage, the se-

mantic representations of all unseen-class labels in a given

vocabulary are then embedded in the same latent space (cre-

ated in the bottom-up stage) by retaining the semantic relat-

edness of all different classes in the latent space via the guid-

ance of the landmarks. By exploring the intrinsic structure of

visual data in the bottom-up projection and preserving the

semantic relatedness in the top-down projection, we demon-

strate that the latent representation works effectively towards

bridging the semantic gap and alleviating the adversarial ef-

fect of the hubness phenomenon (Shigeto et al. 2015). In ad-

dition, the existing transductive post-processing techniques,

e.g., (Fu et al. 2015; Zhang and Saligrama 2016b), are easily



Zero-Shot Visual Recognition via Bidirectional Latent Embedding 3

incorporated into our proposed framework to address the do-

main shift issue. Whenever multiple diversified visual and/or

semantic representations are available, our proposed frame-

work can further exploit the synergy among multiple repre-

sentations seamlessly.

Our main contributions in this paper are summarized as

follows: a) we propose a novel stagewise bidirectional la-

tent embedding framework for zero-shot visual recognition

and explore effective and efficient enabling techniques to ad-

dress the semantic gap issue and to lessen the catastrophic

effect of the hubness phenomenon; b) we extend our frame-

work to scenarios in presence of multiple visual and/or dif-

ferent semantic representations as well as the transductive

setting; and c) we conduct extensive experiments under a

comparative study to demonstrate the effectiveness of our

proposed framework on several benchmark datasets.

The rest of this paper is organized as follows. Section 2

reviews related works. Section 3 presents our bidirectional

latent embedding framework. Section 4 describes our exper-

imental settings, and Section 5 reports experimental results.

The last section draws conclusions.

2 Related Work

In this section, we review existing works in zero-shot vi-

sual recognition and particularly outline connections and

differences between our proposed framework and the related

methods. We first provide a taxonomy on zero-shot visual

recognition to facilitate our presentation and then briefly re-

view relevant subspace learning methods that could be en-

abling techniques used to realize our proposed framework.

2.1 Zero-Shot Visual Recognition

There are a number of taxonomies for zero-shot visual

recognition. For example, Akata et al. (2016) proposed a

taxonomy that highlights two crucial choices in ZSL, i.e.,

the prior information and the recognition model, while the

taxonomy provided by Changpinyo et al. (2016a) is from a

perspective of knowledge transfer. To facilitate our presen-

tation in this paper, we would divide the existing zero-shot

visual recognition methods into three categories from a per-

spective on how the existing methods bridge the semantic

gap, namely, direct mapping, model parameter transfer and

common space learning.

Direct mapping is a typical ZSL methodology. Its ul-

timate goal is learning a mapping function from visual

features to semantic representations directly or indirectly

(Akata et al. 2014; 2016; 2015; Al-Halah and Stiefelha-

gen 2015; Gan et al. 2016; Jayaraman and Grauman 2014;

Kodirov et al. 2015; Lampert et al. 2009; 2014; Romera-

Paredes and Torr 2015; Shigeto et al. 2015; Xian et al. 2016;

Xu et al. 2015a;b). Such a mapping is carried out via ei-

ther a classifier or a regression model depending upon an

adopted semantic representation. As the relatedness between

any class labels are known in semantic space or its own

embedding space, a proper label may be assigned to a test

instance in an unseen class by means of semantic related-

ness in different manners, e.g., nearest neighbors (Xu et al.

2015a) and probabilistic models (Lampert et al. 2009). How-

ever, direct mapping may not be reliable in attribute predic-

tions (Gan et al. 2016; Jayaraman and Grauman 2014). This

issue has been addressed by different strategies. Jayaraman

and Grauman (2014) use the random forests based post-

processing to handle the uncertainties of attribute predic-

tions, while Gan et al. (2016) propose to learn a representa-

tion transformation in visual space to enhance the attribute-

level discriminative capacity for attribute prediction. Alter-

natively, Al-Halah and Stiefelhagen (2015) explore the addi-

tional underlying attributes by constructing the hierarchy of

concepts for reliability. When the semantic representations

are continuous, regression models are used to map visual

features to semantic representations. A variety of loss func-

tions along with various regularization terms have been em-

ployed to establish regression models. For example, Akata

et al. (2014), Akata et al. (2015), Akata et al. (2016) and

Xian et al. (2016) use structured SVM to maximize the com-

patibility between estimated and ground-truth semantic rep-

resentations. Kodirov et al. (2015) formulate the regression

as a dictionary learning and sparse coding problem. Romera-

Paredes and Torr (2015) make a distinction by minimising

the multi-class error rather than the error of the semantic

representation prediction and adding further constraints on

the model parameters. In direct mapping, however, the gen-

eralization of learned mapping models is considerably lim-

ited by high intra-class variability. Furthermore, it does not

address the domain shift problem well when the training and

test data are of different distributions. According to Shigeto

et al. (2015), a regression model tends to project the in-

stances closer to the origin than its ground-truth semantic

representation, which exacerbates the domain shift problem.

Model parameter transfer is yet another ZSL methodol-

ogy that estimates model parameters with respect to unseen

classes by combining those model parameters learned from

known classes via exploiting the inter-class relationship be-

tween known and unseen classes in semantic space (Chang-

pinyo et al. 2016a; Gan et al. 2015; Mensink et al. 2014;

Norouzi et al. 2014). Unlike direct mapping, the zero-shot

visual recognition in model parameter transfer takes place in

visual space where the model parameters for unseen classes

are usually obtained by a convex combination of base clas-

sifiers trained on known classes (Gan et al. 2015; Mensink

et al. 2014; Norouzi et al. 2014). More recently, Changpinyo

et al. (2016a) proposed a novel approach that gains model

parameters for unseen classes by aligning the topology of
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all the classes in both semantic and model parameter spaces.

As a result, model parameter transfer is carried out by ex-

ploring base classifiers corresponding to “phantom” classes,

which are artificially created and not associated with any

real classes, to enhance the flexibility of the model. Since the

inter-class relationship among unseen classes is not taken

into account, model parameter transfer might be subject to

limitation due to a lack of sufficient information for knowl-

edge transfer.

Common space learning is a generic methodology to-

wards bridging the semantic gap and has been applied in

ZSL (Changpinyo et al. 2016b; Fu et al. 2015; Zhang and

Saligrama 2015; 2016a) as well as other computer vision

applications such as image retrieval (Gong et al. 2014) and

automatic image description generation (Karpathy and Fei-

Fei 2015). This methodology learns a common represen-

tation space into which both visual features and semantic

representations are projected for effective knowledge trans-

fer. Consequently, zero-shot visual recognition is obtained

in this learned common representation space, which is dif-

ferent from direct mapping, where the recognition is ob-

tained in semantic space or its own embedding space that

differs from visual embedding space in some direct map-

ping methods (Akata et al. 2016; 2015), and model pa-

rameter transfer, where the recognition takes place in vi-

sual space. A learned common space may be either inter-

pretable (Zhang and Saligrama 2015) or latent (Changpinyo

et al. 2016b; Fu et al. 2015; Zhang and Saligrama 2016a).

Zhang and Saligrama (2015) come up with a semantic sim-

ilarity embedding method, which leads to semantic space

where similarity can be readily measured for zero-shot vi-

sual recognition. This method works on viewing any in-

stance in unseen classes as a mixture of those in known

classes. More recently, Zhang and Saligrama (2016a) fur-

ther propose a probabilistic framework for learning joint

similarity latent embedding where both visual and semantic

embedding along with a class-independent similarity mea-

sure are learned simultaneously. As a result, zero-shot visual

recognition is obtained via optimization in the joint similar-

ity latent space. Fu et al. (2015) use the canonical correla-

tion analysis (CCA) to project multiple views of visual data

onto a common latent embedding space to address the do-

main shift issue. When we prepared this manuscript, one lat-

est zero-shot recognition method (Changpinyo et al. 2016b)

emerged, which involves two subsequent learning stages.

Nevertheless, the generalization capability of the aforemen-

tioned common space learning models is generally limited

as the intra-class variability is not tackled effectively.

Our proposed framework can be viewed as a common

space learning approach as zero-shot recognition is obtained

in the learned common representation space (c.f. Section 3).

While all common space learning methods share the same

ultimate goal to bridge the semantic gap, their strategies and

enabling techniques for attaining this goal may be quite dif-

ferent. To this end, our proposed framework consists of two

subsequent learning stages, while most of other common

space learning methods fulfil the joint embedding from both

visual and semantic spaces simultaneously, e.g., (Fu et al.

2015; Zhang and Saligrama 2015; 2016a). Furthermore, our

framework tackles the intra-class and inter-class variabil-

ity in the common space and knowledge transfer explicitly

with proper enabling techniques, while other common space

learning methods address such issues implicitly, e.g., (Zhang

and Saligrama 2015; 2016a) or do not take into account

intra-class and inter-class variability in the latent space, e.g.,

(Changpinyo et al. 2016b). In terms of enabling techniques,

other common space learning methods (Changpinyo et al.

2016b; Fu et al. 2015; Zhang and Saligrama 2015; 2016a)

employ different parametric learning models for common

space learning with their formulated objectives, while we

address this issue by using both parametric (bottom-up) and

non-parametric (top-down) learning models. The use of non-

parametric model in our proposed framework allows for car-

rying out knowledge transfer explicitly, which readily dis-

tinguishes ours from all the existing common space learn-

ing methods that realize knowledge transfer implicitly with

a parametric model that relies on the capacity in interpola-

tion and extrapolation for generalization.

2.2 Subspace Learning

Subspace learning aims to find a low-dimensional space for

high-dimensional raw data to reside in by preserving and

highlighting useful information retained in the data in the

high-dimensional space. In ZSL tasks, both the visual and

semantic representation spaces could be of a very high di-

mensionality. To deal with the “curse of dimensionality”,

subspace learning is often employed to address this issue in

ZSL (Akata et al. 2016). In particular, it is essential for com-

mon space learning (Fu et al. 2015; Fu and Huang 2010;

Zhang and Saligrama 2015; 2016a). In general, subspace

learning models are either parametric or non-parametric.

A parametric model learns a projection from a source

high-dimensional space to a target low-dimensional sub-

space via optimizing certain objectives of interest. For ex-

ample, principle component analysis (PCA) (Jolliffe 2002)

learns a projection that maps data points to a set of uncorre-

lated components accounting for as much of the variability

underlying a data set as possible. Locality preserving projec-

tion (LPP) (Niyogi 2004) learns a projection for preserving

the local neighborhoods in the source space. In a supervised

learning scenario, a discriminative subspace can be learned

by using label information. For example, linear discrimi-

nant analysis (LDA) (Cai et al. 2007) leads to a projection

that maximizes the separability of projected data points in
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the LDA subspace. LPP has also been extended to its super-

vised version by taking the label information into account

(Cheng et al. 2005). In our work, we apply the supervised

LPP algorithm as an enabling technique for learning a low-

dimensional latent space from visual space.

Unlike the aforementioned parametric models, a non-

parametric subspace model often learns projecting a set of

high-dimensional data points onto a low-dimensional sub-

space directly to preserve the intrinsic properties in source

space. Non-parametric models are suitable especially for

a scenario that all the data points in the source space are

known or available and the embedding task needs to be un-

dertaken on a given data set without the need of extension to

unseen data points during learning. This is a salient char-

acteristic that distinguishes between parametric and non-

parametric subspace learning. As a typical non-parametric

subspace learning framework, multi-dimensional scaling

(MDS) (Cox and Cox 2000) refers to a family of algo-

rithms that learn embedding a set of given high-dimensional

data points into a low-dimensional subspace by preserving

the distance information between data points in the high-

dimensional space. Sammon mapping (Sammon 1969) is an

effective non-linear MDS algorithm. In our work, we extend

the Sammon mapping to a semi-supervised scenario that for

a given dataset the embedding of some data points in the

subspace is known or fixed in advance and only remaining

data points need to be embedded via preserving their dis-

tance information to others. To the best of our knowledge,

this is a brand new problem that has never been considered

in literature but emerges from our proposed framework for

knowledge transfer between known and unseen classes.

3 Bidirectional Latent Embedding

In this section, we propose a novel framework for zero-

shot visual recognition via bidirectional latent embedding

learning (BiDiLEL). We first provide an overview on our

basic ideas and the problem formulation. Then, we present

the bottom-up and the top-down embedding learning with

proper enabling techniques, respectively. Finally, we de-

scribe the learning model deployment for zero-shot recogni-

tion as well as two post-processing techniques for the trans-

ductive setting. To facilitate our presentation, Table 1 sum-

marizes the notations used in this paper.

3.1 Overview

The motivation behind our proposed framework is two-fold:

a) to narrow the semantic gap, a latent space is learned from

visual representations of training data in a supervised man-

ner by preserving intrinsic structures underlying visual data

and promoting the discriminative capability simultaneously

and b) for knowledge transfer, the semantic representations

of unseen-class labels are then embedded into the learned

latent space of favorable properties by taking into account

both the embedding of training-class labels and the semantic

relatedness between all different classes; i.e., not only the re-

lationships between known and unseen classes but also that

between unseen classes. Based on our motivation described

above, we propose a framework of a sequential bidirectional

learning strategy: the bottom-up learning for creating the la-

tent space from visual data and then the top-down learning

for embedding all the unseen-class labels in the learned la-

tent space, as illustrated in Fig. 1.

In the bottom-up stage, the visual representations of

training examples are extracted. A proper supervised sub-

space learning algorithm is employed to learn a projection

P for preserving the intrinsic locality of instances within

the same class and promoting the separability of instances

in different classes. As a result, a discriminative latent space

Y is created. Then, we estimate the mean of projections

of training instances for every training class. All the es-

timated means of training classes in Y are designated for

their latent embedding of training-class labels specified in

Cl . As a result, we expect that the the bottom-up learning

creates the latent embedding of training-class labels that bet-

ter reflects the semantic relatedness among them and low-

ers the intra-class variability simultaneously. Thus, we des-

ignate all the estimated means of training classes as land-

marks in the latent space and would use them to guide the

embedding of unseen-class labels specified in Cu into the

same latent space. The bottom-up latent space learning is

carried out by a supervised subspace learning algorithm,

supervised locality preserving projection (SLPP) (Cheng

et al. 2005), which is presented in Section 3.2. The motiva-

tion behind this choice is to deal with intra-class and inter-

class issues along with preserving the intrinsic structure un-

derlying visual data. Locality preserving projection (LPP)

(Niyogi 2004) is an algorithm that preserves intrinsic struc-

ture underly data, as shown in (Niyogi 2004). Its supervised

version, SLPP, further exploits the labeling information to

lower the intra-class variability and hence improves the sep-

arability between different classes, as shown in (Cheng et al.

2005; Zhang et al. 2010; Zheng et al. 2007).

As no training examples in unseen classes are available

in ZSL, we have no information on their properties in visual

space but clearly know the semantic relatedness between

different class labels by means of their semantic represen-

tations. In the top-down stage, we thus embed unseen-class

labels into the latent space by preserving the semantic relat-

edness between all different class labels, including training-

class to unseen-class as well as unseen-class to unseen-class,

guided by the landmarks. Such top-down learning requires

a proper enabling technique. To the best of our knowledge,

no existing algorithm meets this requirement. Therefore, we
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Fig. 1 The proposed bidirectional latent embed-

ding learning (BiDiLEL) framework for zero-shot

visual recognition. The BiDiLEL framework con-

sists of two subsequent learning stages.

In the bottom-up stage (left plot), visual represen-

tations in X are first extracted from the labeled vi-

sual data of different training classes marked by

△, © and ✷, respectively. Then a projection P is

learned with a proper supervised subspace learn-

ing algorithm to create a latent space Y . The la-

tent embedding of training-class labels are formed

by using the mean of the projections of their cor-

responding training instances in Y , named land-

marks, marked by N, and �, respectively.

In the top-down stage (middle plot), the unseen-

class labels in the semantic space S, marked by

� and H, are embedded into Y with a landmark-

based learning algorithm in order to preserve the

semantic relatedness between all different classes.

For zero-shot recognition (right plot), the visual

representation of a test instance in X , marked

by
⊗

, is projected into the latent space Y via

P learned in the bottom-up stage. For decision-

making, the nearest-neighbor rule is applied by

finding out the unseen-class embedding that has

the least distance to this instance in Y . That is, the

unseen-class label marked by � is assigned to this

test instance marked by
⊗

.

S  : Semantic space 

Y  : Latent space 

X   : Visual rep. space 

P : Projection 

Notation 

X  

Bottom-up 

Y 

Projection Learning 

Feature Extraction 

Y 

S  

Unseen-Class Embedding 

Top-down 

 

 

 

 

 

 

 

 

 

 

 

 

Zero-shot 

Recognition 

X 

Y 

Projection 

Feature Extraction 

P P 

Table 1 Nomenclature.

Notation Description

nl , nu number of labelled (training) and unlabelled (test) instances

dx, dy, ds dimensionality of visual, latent and semantic spaces

X l ∈ R
dx×nl , xxxl

i visual representation matrix of all the labelled instances, a column corresponding to an instance

Xu ∈ R
dx×nu , xxxu

i visual representation matrix of unlabelled instances, a column corresponding to an instance

Y l ∈ R
dy×nl , yyyl

i projections of X l in the latent subspace Y , a column corresponding to an instance

Y u ∈ R
dy×nu , yyyu

i projections of Xu in the latent subspace Y , a column corresponding to an instance

W ∈ R
nl×nl , L ∈ R

nl×nl similarity and Laplacian matrices of a given data set of nl instances

P ∈ R
nl×dy projection matrix learned in the bottom-up stage

Cl , Cu, |Cl |, |Cu| known and unseen class label sets and the number of known and unseen classes in two sets

Bl ∈ R
dy×|Cl |,bbbl

i latent embedding for known class labels, a column corresponding to one class

Bu ∈ R
dy×|Cu|,bbbu

i latent embedding for unseen class labels learned in the top-down stage, a column corresponding to one class

propose a semi-supervised MDS algorithm based on the

Sammon mapping (Sammon 1969), named landmark-based

Sammon mapping (LSM), as our enabling technique to learn

the latent embedding of unseen-class labels, which is pre-

sented in Section 3.3.

Once the two subsequent learning tasks are carried out,

zero-shot visual recognition is easily obtained in the latent

space with a nearest-neighbor rule presented in Section 3.4.

Now, we formulate the general problem statement for

zero-shot visual recognition. Given a set of labelled in-

stances X l = {xxxl
1,xxx

l
2, ...,xxx

l
nl
} ∈ X , xxxi ∈ R

dx , their labels are

denoted by Zl = {zl
1,z

l
2, ...,z

l
nl
}, zl

i ∈ Cl , where Cl is the set

of known class labels. For any given unlabelled instance set

Xu ∈ R
dx×nu , the zero-shot visual recognition problem is to

predict their labels in Cu that properly describe the test in-

stances by assuming {zu
i } ∈ Cu and Cl ∩ Cu = /0. Here, nl

and nu are the number of labelled (training) and unlabelled

(test) instances, respectively, and dx is the dimensionality of

a visual representation.

3.2 Bottom-up Latent Space Learning

The bottom-up latent space learning aims to find a projec-

tion matrix P that maps instances from their visual space X
to a latent space of a lower dimension Y to preserve the in-

trinsic locality of instances within the same class and to pro-

mote the separability of instances in different classes. While

there are a number of candidate techniques to learn such a
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latent space, we employ the (SLPP) (Cheng et al. 2005) as

the enabling technique since it generally outperforms other

candidate techniques, as validated in Section 5.

In SLPP, a graph is first constructed with all the train-

ing data in X l to characterize the manifold underlying this

data set in the visual representation space X . Following the

original settings used in the LPP algorithm (Niyogi 2004), k

nearest neighbors (kNN) of a specific data point are used to

specify its neighborhood for the graph construction. Train-

ing instances xxxl
i ∈ X l are represented by the nodes in the

graph, and an edge is employed to link two nodes when

one is in the other’s kNN neighborhood. Unlike the unsu-

pervised LPP algorithm, we further take into account the la-

belling information of the instances when constructing the

graph (Cheng et al. 2005). As a result, the edge between two

nodes is removed when they do not share the same class la-

bel. Therefore, we have a similarity matrix containing all the

weights of edges as follows:

Wi j =





exp(−||xl
i −xl

j||/2), xl
i ∈Nk(x

l
j) or xl

j ∈Nk(x
l
i),

zl
i = zl

j

0, otherwise

(1)

where Nk(xxx) denotes the set of k nearest neighbours of xxx.

In order to preserve the intrinsic local structure, we use

the following cost function for learning a projection P:

L(P;W,X l) = ∑
i, j

||PTxxxl
i −PTxxxl

j||
2
2Wi j, (2)

where xxxl
i is the i-th column of the input data matrix X l , cor-

responding to the feature vector of the i-th training example.

Minimizing the cost function in Eq.(2) enables the

nearby instances of the same class label in the visual space to

stay as close as possible in the learned latent space. Hence,

the intra-class variability is decreased and the inter-class

variability is increased reciprocally. For the sake of robust-

ness in numerical computation, the above optimization prob-

lem is converted into the following form with the mathemat-

ical treatment (Niyogi 2004):

max
P

Tr(PT X lDX lT
P)

Tr(PT X lLX lT
P)

, (3)

where L = D−W is the laplacian matrix and D is a diagonal

matrix with Dii = ∑ j Wi j.

To penalize the extreme values in the projection matrix

P, we further employ a regularization term Tr(PT P). Thus

the cost function in Eq. (2) is now in the following form:

max
P

Tr(PT X lDX lT
P)

Tr(PT (X lLX lT
+αI)P)

(4)

Finding the optimal projection P is simply boiled down to

solving the generalized eigenvalue problem:

X lDX lT
ppp = λ (X lLX lT

+αI)ppp, (5)

and the analytic solution is obtained by setting P =
[ppp1, ...,pppd ] where ppp1, ...,pppd are those eigenvectors corre-

sponding to the largest d eigenvalues.

Motivated by the treatment proposed by Akata et al.

(2013; 2016) for binary label embedding, we further ap-

ply two normalization strategies, centralization and l2-

normalization, to the latent representations of training exam-

ples, Y l , to avoid unfavorable situations in zero-shot recog-

nition. Our motivation behind the treatment is different from

theirs (Akata et al. 2013; 2016). For the sake of readability,

we have to describe our motivation at the end of Section 3.3

as it concerns not only bottom-up but also top-down learning

stages. By using the centralization, the latent representations

Y l are centralized to make all the features (i.e., rows) have

zero mean. Furthermore, l2-normalization is applied on each

column of Y l to make all the instances have unit norms, i.e.,

ŷyyl
i = yyyl

i/||yyy
l
i ||2 for i = 1,2, ...,nl . After the centralization and

l2-normalization, the latent embedding of i-th training class,

bbbl
i , is estimated by

bbbl
i =

1

ni
∑
zl

j=i

ŷyyl
j, i = 1, · · · , |Cl |, (6)

where ni is the number of training instances in the i-th train-

ing class, and |Cl | is the number of training classes. Like-

wise, all mean points of |Cl | known classes estimated from

training instances, bbbl
1, · · · ,bbb

l
|Cl |

, are l2-normalized to have

unit norms. We specify all |Cl | normalized mean points as

landmarks to provide the guidance for embedding unseen

classes into the learned latent space (c.f. Section 3.3).

3.3 Top-down Latent Embedding learning

The top-down algorithm aims to learn latent embedding of

unseen classes. With the guidance of landmarks, i.e., the la-

tent embedding of known classes, all the unseen-class la-

bels are embedded into the same latent space learned in the

bottom-up stage via preserving their semantic relatedness

pre-defined by an existing semantic representation of class

labels (c.f. Section 4.3).

Let Bl = {bbbl
1,bbb

l
2, ...,bbb

l
|Cl |

} ∈ R
dy×|Cl | collectively denote

the latent embedding of all the training classes where dy

is the dimension of the latent space formed in the bottom-

up stage. Similarly, the latent embedding of |Cu| unseen

classes are collectively denoted by Bu = {bbbu
1,bbb

u
2, ...,bbb

u
|Cu|} ∈

R
dy×|Cu|. In order to preserve the semantic relatedness be-

tween all the classes, the distance between two classes in
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Algorithm 1 Landmark-based Sammon Mapping (LSM)

Input: The semantic representations for training and unseen classes,

Sl and Su, (or the semantic distance matrix ∆ = {δi j(sssi,sss j)}), the

training-class latent embedding Bl , learning rate η .

Output: The latent unseen-class embedding Bu∗.

1: Initialize Bu
0 for t = 0 randomly;

2: repeat

3: Calculate gradient gt = ∇Bu
t
E(Bu

t ) (c.f. Appendix A);

4: Update Bu
t+1 := Bu

t +ηgt ;

5: t := t +1;

6: until Stopping criteria are satisfied.

the latent space should be as close to their semantic dis-

tance in the semantic space as possible but the embedding of

known classes are already settled with Eq. (6) in the bottom-

up learning stage. Hence, this leads to a brand new semi-

supervised MDS problem. By means of the Sammon map-

ping (Sammon 1969), we propose a landmark-based Sam-

mon mapping (LSM) algorithm to tackle this problem.

By using a proper semantic representation of all class

labels, we achieve the semantic representations of training

and unseen classes, Sl ∈ R
ds×|Cl | and Su ∈ R

ds×|Cu|, where

their i-th columns are sssl
i and sssu

i , respectively, and ds is the

dimensionality of the semantic space. Then, the LSM cost

function is defined by

E(Bu) =
1

|Cl ||Cu|

|Cl |

∑
i=1

|Cu|

∑
j=1

(d(bbbl
i ,bbb

u
j)−δ (sssl

i ,sss
u
j))

2

δ (sssl
i ,sss

u
j)

+
2

|Cu|(|Cu|−1)

|Cu|

∑
i=1

|Cu|

∑
j=i+1

(d(bbbu
i ,bbb

u
j)−δ (sssu

i ,sss
u
j))

2

δ (sssu
i ,sss

u
j)

,

(7)

where d(xxx,yyy) and δ (xxx,yyy) are the distance metrics in the la-

tent space and the semantic space, respectively. Intuitively,

the first term of Eq. (7) concerns the semantic relatedness

between known and unseen classes and the second term of

Eq. (7) takes into account the semantic relatedness between

unseen classes in the top-down learning. Minimizing E(Bu)

leads to the solution: Bu∗ = argminBu E(Bu).

Following Sammon (1969), we derive the LSM algo-

rithm by using the gradient descent optimization procedure.

As a result, our LSM algorithm is summarized in Algorithm

1, and the derivation of gradient ∇BuE(Bu) used in Algo-

rithm 1 is described in Appendix A. Applying Algorithm 1

to the semantic representations of |Cu| unseen classes results

in their embedding in the latent space: bbbu
1, · · · ,bbb

u
|Cu|.

Now we described our motivation underlying two nor-

malization strategies presented at the end of Section 3.2. In

general, our motivation underlying two normalization strate-

gies aims to facilitate the embedding of unseen-class labels

in the top-down stage. As advocated by (Akata et al. 2016),

the instance-level l2-normalization of binary attributes of

class labels to the unit magnitude and zero-mean center-

ing facilitate zero-shot recognition. For embedding unseen

classes in the latent space, our LSM algorithm has to take

into account the distance information between known and

unseen classes in both the semantic and the latent spaces.

Applying the l2-normalization to the embedding of training

instances thus ensures that the distances measured in two

spaces are in the same scale. Applying the centralization is

due to the l2-normalization. All the l2-normalized training

instances in the latent space may concentrate in a small re-

gion (on the one surface side of the unit hyper-sphere). This

phenomenon may cause no sufficient room or a difficulty

to accommodate the embedding of unseen-class labels in

the top-down learning. The zero-mean centralization ame-

liorates the detrimental effect of this phenomenon by scat-

tering training instances in a larger region to facilitate the

unseen class label embedding.

3.4 Zero-Shot Recognition in the Latent Space

Once all the class labels are embedded in the latent space

by our Algorithm 1, zero-shot visual recognition is gained

in the learned latent space. Given a test instance xxxu
i , its label

is predicted in the latent space via the following procedure.

First of all, we apply projection P obtained in the bottom-up

learning stage to map it into the latent space:

yyyu
i = PTxxxu

i . (8)

After being subtracted by the mean estimated on all

the training instances in the latent space, yyyu
i is then l2-

normalized in the same manner as done for all training in-

stances. Thus, its label, l∗, is assigned to the class label of

which embedding is closest to yyyu
i ; i.e.,

l∗ = argmin
l

d(yyyu
i ,bbb

u
l ), (9)

where bbbu
l is the latent embedding of l-th unseen class, and

d(xxx,yyy) is a distance metric in the latent space. In our exper-

iments, the Euclidean distance metric is used for measuring

the distance due to the nature of manifold learning in the

LPP algorithm (Niyogi 2004).

A recent study (Shao et al. 2016) suggests that the use of

multiple visual representations can improve the robustness

in action recognition. As a result, we have extended our pro-

posed framework to the joint use of multiple complimentary

visual representations for robust zero-shot visual recogni-

tion, which is presented in Appendix B. To promote robust-

ness, we also come up with a visual representation comple-

mentarity measurement, as described in Appendix C.

3.5 Post-processing Techniques

The post-processing in ZSL refers to those techniques that

exploit the information conveyed in test instances to im-
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prove the ZSL performance. In our work, two existing post-

processing techniques, self-training Xu et al. (2015b) and

structured prediction (Zhang and Saligrama 2016b), are in-

corporated into our proposed framework.

3.5.1 Self-training

The self-training (ST) is a post-processing technique pro-

posed by Xu et al. (2015b) in order to alleviate the domain

shift problem. The general idea behind the self-training is

adjusting the latent embedding of unseen classes according

to the distribution of all the test instance projections in the

latent space. It is straightforward to incorporate this post-

processing technique into our zero-short visual recognition

framework. Given the i-th unseen class (i= 1,2, ..., |Cu|), Xu

et al. (2015b) adjust the latent embedding bbbu
i to b̂bb

u

i , where

b̂bb
u

i :=
1

k

k

∑
yyyu∈Nk(bbb

u
i )

yyyu. (10)

Here, Nk(bbb
u
i ) is a neighborhood of the latent embedding bbbu

i

containing the k nearest test instances. In other words, this

nearest neighbour search in the self-training is confined to

only test instances. As all the test instances have to be used

in the self-training, this leads to a transductive learning set-

ting. Unlike their treatment in (Xu et al. 2015b), in our ex-

periments, we adjust bbbu
i to the arithmetic average between b̂bb

u

i

and bbbu
i , (b̂bb

u

i +bbbu
i )/2, for a trade-off between preserving their

semantic relatedness and alleviating the domain shift effect.

3.5.2 Structured Prediction

Structured prediction is yet another option for post-

processing recently proposed by Zhang and Saligrama

(2016b). Similar to self-training, structured prediction also

takes advantage of the batch of test instances under the

transductive setting. This method was originally proposed

for their own zero-shot recognition algorithm (Zhang and

Saligrama 2016a). In our work, we adapt it for our proposed

framework, which is a simplified version of their structured

prediction algorithm (Zhang and Saligrama 2016b) by us-

ing only its first step and dropping out the rest steps due to

incompatibility to our approach.

In this simplified version, we update the latent embed-

ding of unseen classes Bu by clustering analysis on the

batch of test instances. First of all, a number of clusters

are generated for all the test instances by the K-means al-

gorithm where the number of clusters is chosen the same

as that of unseen classes |Cu|. In our experiments, we al-

ways initialize the cluster centers with the latent embedding

of unseen-class labels learned in the top-down stage1. Af-

1 Our empirical study suggests that the random initialization in the

K-mean clustering may lead to better performance but causes struc-

tured prediction to be unstable.

ter the K-mean clustering, structured prediction needs to es-

tablish a one-to-one correspondence between a cluster and

a unseen class so that the sum of distances of all possible

pairs of cluster center and the unseen-class embedding can

be least. Let A ∈ {0,1}|C
u|×|Cu| denote the one-to-one cor-

respondence matrix where Ai j = 1 indicates that cluster i

corresponds to unseen class j. The correspondence problem

is formally formulated as follows:

min
A

|Cu|

∑
c=1

|Cu|

∑
k=1

Akc ·d(mmmk, bbbu
c)

s.t. ∀k,∀c, ∑
k

Akc = 1,∑
c

Akc = 1, (11)

where mmmk is the center of k-th cluster, bbbu
c is the c-th unseen-

class latent embedding and d(·, ·) is Euclidean distance met-

ric. This optimization problem in Eq. (11) can be solved by

linear programming (Zhang and Saligrama 2016b).

For zero-shot recognition, a test instance falling into a

specific cluster is assigned to the label of its corresponding

unseen class based on the correspondence matrix A.

4 Experimental Settings

In this section, we describe our experimental settings includ-

ing the information of benchmark datasets, the visual and

the semantic representations used in our experiments, the in-

vestigation of different factors that may affect the zero-shot

visual recognition accuracy and our comparative study.

4.1 Dataset

In our experiments, we employ four publicly accessi-

ble datasets to evaluate our proposed framework. The

first two are benchmarks for zero-shot object recognition,

namely animal with attributes (AwA) (Lampert et al. 2014)

and Caltech-UCSD Birds-200-2011 (CUB-200-2011) (Wah

et al. 2011). As both are among those most commonly used

datasets used to evaluate ZSL algorithms in literature, we

can directly compare the performance of our approach to

that of those state-of-the-art zero-shot visual recognition

methods. Other two datasets are UCF101 (Soomro et al.

2012) and HMDB51 (Kuehne et al. 2011), which are bench-

marks widely used to evaluate the performance of a human

action recognition algorithm in presence of a large number

of classes. To evaluate the performance in zero-shot human

action recognition, we use the same class-wise data splits on

UCF101 and HMDB51 as suggested by Xu et al. (2015a;b)

in our experiments, which allows us to compare ours to

theirs explicitly.

Table 2 summarizes the main information of four

datasets used in our experiments. The specific setting for

zero-shot visual recognition is highlighted as follows:
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Table 2 Summary of datasets used in our experiments

Number AwA CUB-200-2011 UCF101 HMDB51

Attributes 85 312 115 -

Known classes 40 150 51/81 26

Unseen classes 10 50 50/20 25

Instances 30,475 11,788 13,320 6,676

• AwA: there are 30,475 animal images belonging to

50 classes. The 40/10 (known/unseen) class-wise data

split has been originally set by the dataset collectors

(Lampert et al. 2014).

• CUB-200-2011: this is a fine-grained dataset of

11,788 images regarding 200 different bird species,

collected by Wah et al. (2011). The class-wise data

split is often 150/50 (known/unseen) on this dataset

in previous works. In our experiments, we follow

the same 100/50/50 class-wise data split for train-

ing/validation/test used in (Akata et al. 2015; Reed

et al. 2016; Xian et al. 2016).

• UCF101: it is a human action recognition dataset col-

lected from YouTube by Soomro et al. (2012). There

are 13,320 real action video clips falling into 101 ac-

tion categories. In our experiments, we use 51/50 and

81/20 (known/unseen) class-wise data splits. We use

the same 30 independent 51/50 splits2 randomly gen-

erated by Xu et al. (2015a). Regarding 81/20 splits,

we randomly generate 30 independent splits as this

setting does not appear in their work (Xu et al. 2015a).

• HMDB51: it contains 6,766 video clips from 51 hu-

man action classes, collected by Kuehne et al. (2011).

Once again, we use the same 30 independent 26/25

splits randomly generated by Xu et al. (2015a).

4.2 Visual Representation

The latest progresses in computer vision suggest that fea-

tures learned by using deep convolutional neural networks

(CNNs) significantly outperform any of hand-crafted coun-

terparts in object recognition (Simonyan and Zisserman

2015; Szegedy et al. 2015). Features learned by deep

CNNs have also been applied in zero-shot visual recogni-

tion (Akata et al. 2014; Al-Halah and Stiefelhagen 2015; Fu

et al. 2015). In our experiments, we use two different pre-

trained deep CNN models to generate visual representations

of images in AwA and CUB-200-2011. For a direct compar-

ison with state-of-the-art methods, we follow their settings

by using the top fully connected layer of GoogLeNet of 1024

dimensions (Szegedy et al. 2015) and the top pooling layer

2 The dataset of all 30 splits are available online:

http://www.eecs.qmul.ac.uk/ xx302/.

of VGG19 of 4096 dimensions (Simonyan and Zisserman

2015) to generate feature vectors of images. In particular,

MatConvNet (Vedaldi and Lenc 2015) has been employed

to extract the aforementioned deep features.

There are many different visual representations that

characterize video streams regarding human actions. After

investigating the existing visual representations for human

action video streams, we employ two kinds of state-of-the-

art visual representations for human action video streams in

our experiments, i.e. the improved dense trajectory (IDT)

(Wang and Schmid 2013) and the convolutional 3D (C3D)

(Tran et al. 2015). Our empirical studies described in Ap-

pendix C along with those reported in literature suggest

that two selected visual representations not only outper-

form a number of candidate representations but also are

highly complementary to each other. The IDT is a class of

state-of-the-art hand-crafted visual representations proposed

by Wang and Schmid (2013) for human action recogni-

tion. Four different types of visual descriptors, HOG, HOF,

MBHx and MBHy, are extracted from each spatio-temporal

volume, and their dimensions are reduced by a factor of two

with PCA. Then the representations of a video stream are

generated by the Fisher vector derived from a Gaussian mix-

ture model of 256 components. Thus, the video represen-

tations have 24,576 features for HOG, MBHx, MBHy and

27,648 for HOF (Peng et al. 2016; Wang and Schmid 2013),

respectively. For computational efficiency, we further apply

PCA on those video representations to reduce their dimen-

sions down to 3,000 in our experiments. Note that the visual

representation, IDT(MBH), in our experiments refers to a

feature vector formed by concatenating MBHx and MBHy.

C3D (Tran et al. 2015) is an effective approach that uses

deep CNNs for spatio-temporal video representation learn-

ing. In our experiments, we use the model provided by Tran

et al. (2015). This model was pre-trained on the Sports-1M

dataset. Following the settings in (Tran et al. 2015), we di-

vide a video stream into segments in length of 16 frames

and there is an overlap of eight frames on two consecu-

tive segments. As a result, the fc6 activations are first ex-

tracted for all the segments and then averaged to form a

4096-dimensional video representation.

In our experiments for multiple visual representations,

different visual representations described above are jointly

used via our proposed combination approach described in

Appendix B.

4.3 Semantic Representation

To evaluate our proposed framework thoroughly, we em-

ploy two widely used semantic representations, attributes

and word vectors, in our experiments.

As shown in Table 2, AwA and CUB-200-2011 self-

contain 85 and 312 class-level continuous attributes that
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Table 3 Exemplification of typical attributes used in different datasets.

Dataset Attribute

AwA colours(black, brown, red, etc.), stripes, furry, hair-

less, big, small, paws, longneck, tail, chewteeth, fast,

smelly, bipedal, jungle, water, cave, group, grazer, in-

sects

CUB-200-

2011

bill shape(curved, dagger, hooked, needle, etc.),

wing color(blue, yellow, etc.), upperparts color,

tail shape(forked, rounded, pointed, squared, etc.)

UCF101 object(ball like, rope like, animal, sharp, etc.),

bodyparts visible(face, fullbody, onehand, etc.),

body motion(flipping, walking, diving, bending, etc.)

characterize each class label, respectively. UCF101 class

labels have been manually annotated with 115 binary at-

tributes by Jiang et al. (2014). To our knowledge, however,

there are no attributes for those class labels appearing in

HMDB51. Hence, we cannot report attribute-based results

on this dataset. Table 3 exemplifies some typical attributes

used in different datasets. Following the suggestion made

by Akata et al. (2016), Changpinyo et al. (2016a) and Zhang

and Saligrama (2015), we also apply l2-normalization to

each of attributes vectors to facilitate their latent embed-

ding. In our experiments, we use Euclidean distance metric

to measure the semantic distance between attributes of two

class labels during the top-down latent embedding learning.

Unlike attribute-based semantic representations,

Mikolov et al. (2013) propose a continuous skip-gram

model to learn a distributed semantic representation, word

vectors, in an unsupervised way. In our experiments, we

employ the skip-gram model (well known as Word2Vec)

(Mikolov et al. 2013), trained on the Google News dataset

containing about 100 billion words for AwA, UCF101

and HMDB51, where the word embedding space is of

300 dimensions. However, there are a number of out-

of-vocabulary words in CUB-200-2011. As a result, we

employ 400-dimensional word vectors trained on English-

language Wikipedia (Akata et al. 2015; Xian et al. 2016) for

CUB-200-2011. Following the existing works, we use the

“cosine” distance metric to measure the semantic distance

between two class labels in a word embedding space during

the top-down latent embedding learning.

4.4 On Hyper-Parameters

It is well known that hyper-parameters in a learning

model may critically determine its performance. Thus, we

investigate the impact of different hyper-parameters in-

volved in our proposed framework to search for “optimal”

hyper-parameter values. In general, there are four hyper-

parameters; i.e., the number of nearest neighbors (kG) for

the graph construction in SLPP, the trade-off factor (α) ap-

plied to the regularization in SLPP and the dimensionality of

a learned latent space (dy) during the bottom-up latent em-

bedding learning as well as the number of nearest neighbors

(kST ) when the self-training (Xu et al. 2015b) is used.

In our experiments, we use the classwise cross-

validation to seek the optimal hyper-parameter values and

investigate how each hyper-parameter affects the perfor-

mance. We strictly follow the procedure suggested by Akata

et al. (2016); Zhang and Saligrama (2016a) to do the cross-

validation on all the datasets apart from CUB-200-2011 that

has a standard training/validataion/test split. In a trial, we

randomly reserve 20% training classes as validation data and

the rest of training classes are used as training data. In our

experiments, we repeat such a cross-validation experiment

for multiple trials and report the averaging performance on

validation data. For AwA, five trials were conducted in our

cross-validation based on its default training/test split. For

two human action datasets, UCF101 and HMDB51, each

has 30 different training/test splits provided by Xu et al.

(2015a). For each of 30 splits, we conducted three-trial

cross-validation to achieve the optimal hyper-parameter val-

ues for this split only. Hence, our cross-validation experi-

ment on a human action dataset had to be repeated for 30

times on all the splits respectively.

Without considering the post-processing of self-training,

our approach has three hyper-parameters, α , dy and kG. It

would be extremely expensive computationally if an ex-

hausted grid search is conducted. In our experiments, we

adopt a two-stage procedure to find out optimal hyper-

parameters for different visual representations respectively.

We first conducted a coarse grid search with α = 0.1,10,

dy = 10,100,500, and kG = 1,10,50. Then, we further fine-

tune each of hyper-parameters sequentially by fixing the re-

maining two hyper-parameters.

In our fine-tuning stage, we conduct the cross-validation

experiments for each of four hyper-parameters sequen-

tially based on the information (on how sensitive a hyper-

parameter is to the performance) obtained from the coarse

grid search. Thus, our fine-tuning stage performs in the fol-

lowing order:

• ααα: First of all, we investigate the impact of α in

Eq.(4). In our experiment, we fix the initial op-

timal value of dy and kG resulting from the grid

search to look into the impact of α by setting it to

0.001,0.01,0.1,1,10,100 and 1000.

• dddy: As training class labels are used in the bottom-up

latent embedding learning, the proper value of dy may

depend on the number of training classes that varies

across different datasets. To investigate the zero-shot

recognition accuracy with different dy values in a

large range, we use the optimal values of α found in

the previous step and fix the initial optimal value kG
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resulting from the grid search. In our experiment, we

look into dy = 50,100,150,200,250 and 300.

• kkkG: By making use of the optimal α and dy values

achieved from two previous steps, we look into the

impact of kG defined in Eq.(1) for each dataset in

the same manner by fixing other hyper-parameters

and allowing only kG to change in a large range:

kG = 5,10,15,20,25 and 30, respectively, to see how

kG affects the zero-shot recognition accuracy on dif-

ferent datasets.

• kkkST : For this post-processing, we fix the optimal val-

ues of three hyper-parameters found as described

above and evaluate the zero-shot recognition accuracy

with a large range of kST in Eq.(10) from 20 to 200

with an interval of 20 on each dataset, as suggested in

Xu et al. (2015b).

As a result, the set of hyper-parameter values leading to

the best accuracy in the above fine-tuning process are treated

as “optimal” and used in test to yield the performance for

unseen classes.

4.5 On Enabling Techniques

This experimental setting aims to explore the proper en-

abling techniques for our proposed framework and inves-

tigate the role played by two subsequent learning stages. As

stated in Section 3.1, there are a number of candidate sub-

space learning techniques that could be used in the bottom-

up learning as reviewed in Section 2.2. To the best of our

knowledge, however, none of the existing non-parametric

subspace learning model can be directly applied to the

top-down learning where the task emerges from our pro-

posed framework (c.f. Section 3.3). Motivated by the work

(Changpinyo et al. 2016b), we employ a parametric learn-

ing model as a baseline for the top-down learning. In all the

experiments described below, the nearest-neighbor rule de-

scribed in Section 3.4 is used for zero-shot recognition.

For the bottom-up latent space learning, we conduct a

comparative study on four candidate techniques (c.f. Sec-

tion 2.2): two unsupervised algorithms, PCA and LPP, and

two supervised algorithms, LDA and SLPP3. For fairness,

we apply the same cross-validation procedure described in

Section 4.4 to find out the optimal hyper-parameter values,

i.e., dy for PCA, α , dy and kG for LPP. For LDA, however,

the dimension of the latent space is intrinsically determined

by the number of training classes. Hence, the dimension

of its latent space is set to the number of training classes

subtracted by one. Furthermore, we apply our LSM algo-

rithm directly to visual representations without the bottom-

3 The implementation of PCA and LDA used in our experiments is

based on the open source available online: http://www.cad.zju.edu.cn/

home/dengcai/Data/DimensionReduction.html.

up learning. This experiment yields a baseline that clearly

exhibits the role played by each of two subsequent learning

stages in our framework.

In addition, some existing ZSL methods could be en-

abling techniques applied to our bottom-up latent space

learning4, e.g., SJE (Akata et al. 2015), LatEm (Xian et al.

2016) and CCA (Fu et al. 2015). Unlike the aforementioned

subspace learning where no semantic representations of la-

bels are considered, those ZSL algorithms take into account

semantic representations during projection learning. For ex-

ample, SJE (Akata et al. 2015) learns a projection matrix

W such that given a pair of visual and semantic representa-

tions, xxx and yyy, similarity score xxxTWyyy is maximized if xxx has

a label represented by yyy. LatEm extends SJE to a nonlin-

ear model with multiple piecewise linear models by learn-

ing different projection matrices such that different instances

can select the most appropriate projection matrices. CCA is

an algorithm used to learn a common space from two multi-

dimensional variables such that the correlation between the

projections of the two variables in the common space can

be maximized. Furthermore, the canonical correlation prob-

lem may be converted into a distance minimization problem:

minW,W ′ ||XW −YW ′||F (Hardoon et al. 2004), where || · |||F
is the Frobenius norm and W and W ′ are projection matrices

for source and target embedding (to the common space). In

our experiments, we strictly follow the experimental setting

described in the original literature and the learned projec-

tions from visual to target space are used to form the latent

space. As a result, the dimensionality of the latent space is

equal to the dimensionality of semantic representations for

SJE and LatEm, and the dimension of latent space learned

by CCA is found by the same cross-validation procedure de-

scribed in Section 4.4. It is worth mentioning that LatEm

yields multiple projection matrices, which results in multi-

ple “latent” spaces. Hence, zero-shot recognition has to take

into account all of such “latent” spaces. There are two man-

ners for the nearest-neighbor based decision-making: mini-

mum distance and averaging distance to a label embedding

in multiple “latent” spaces. As the averaging distance always

outperforms the minimum distance, we only report the re-

sults based on the averaging distance.

Our LSM algorithm described in Section 3.3 is always

employed for the top-down embedding learning in all the

aforementioned experiments regarding the bottom-up learn-

ing. We further conduct an experiment by employing the

support vector regression (SVR) (Smola and Vapnik 1997)

to replace the LSM for the top-down learning. This experi-

ment is based on SLPP used in the bottom-up stage. When

SVR is used, the top-down learning is formulated as a re-

gression task (Changpinyo et al. 2016b) and the regressor is

trained based on training data where the landmarks are tar-

4 An anonymous reviewer pointed out this fact and suggested this

experiment.

http://www.cad.zju.edu.cn/home/dengcai/Data/DimensionReduction.html
http://www.cad.zju.edu.cn/home/dengcai/Data/DimensionReduction.html
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gets used for learning. As our LSM and the SVR work in a

quite different manner for the top-down learning, it is possi-

ble to combine their results to improve the zero-shot recog-

nition performance as well as to understand their behavior.

To this end, we further use a simple ensemble strategy to

combine the two methods. Let bbbu
lsm and bbbu

svr (u = 1, · · · , |Cu|)
denote the latent embedding for unseen classes resulting

from two different top-down techniques, respectively. Thus,

the combined embedding of unseen classes is defined by

(bbbu
lsm + bbbu

svr)/2 (u = 1, · · · , |Cu|) to be used in zero-shot

recognition.

It is worth mentioning that the optimal hyper-parameter

values in various candidate techniques are also achieved via

the same classwise cross-validation protocol suggested by

Akata et al. (2016); Zhang and Saligrama (2016a).

4.6 On the Joint Use of Multiple Semantic Representations

The joint use of multiple semantic representations can

also improve the robustness in zero-shot visual recognition

(Akata et al. 2014; 2015; Changpinyo et al. 2016a; Xian

et al. 2016). Our framework allows for jointly using multiple

semantic representations easily. Since our recognition pro-

cess described in Algorithm 1 requires only between-class

semantic distances as inputs, we use a convex combination

of semantic distance matrices to exploit the information con-

veyed in multiple semantic spaces.

Given attributes and word vectors used in our experi-

ments, let ∆ Att and ∆WV denote the corresponding semantic

distance matrices achieved by using attributes and word vec-

tors, respectively. The fused distance matrix is achieved by

∆ = γ∆WV + (1− γ)∆ Att , where γ is in the range of (0.0,

1.0) and used to trade-off the contributions of two different

types of semantic representations. In our experiments, we in-

vestigate the optimal value of γ via a grid search by setting

γ = 0.1,0.2, · · · ,0.9 with the classwise cross-validation.

As the aforementioned strategy for the simultaneous use

of two semantic representations affects both the top-down

and the bottom-up learning, we have to apply the same

cross-validation protocol described in Section 4.4 first to

find the optimal values of all other hyper-parameters, α , dy,

kG and kST , especially for the scenario that two semantic

representations are jointly used. In our experiments, we ex-

ploited experimental results on a single semantic represen-

tation to achieve those optimal hyper-parameter values. As

a result, we chose the set of hyper-parameter values lead-

ing to the best averaging accuracy regarding two semantic

representations (when used individually on a visual repre-

sentation) as the optimal values. Thus, this set of optimal

hyper-parameter values are fixed to be used in the subse-

quent classwise cross-validation that decides the optimal

value of γ .

4.7 On the Comparative Study

To evaluate our proposed framework thoroughly, we con-

duct a comparative study by comparing ours to most of

state-of-the-art zero-shot visual recognition methods on four

benchmark datasets described in Section 4.1. For a fair com-

parison, we adopt the same experimental settings and use the

optimal hyper-parameter values reported in literature so that

one can clearly see the results yielded by different methods

under the same conditions.

Below, we briefly describe the state-of-the-art zero-shot

visual recognition methods used in our comparative study.

• Direct Attribute Prediction (DAP): DAP proposed

by Lampert et al. (2009) is among those earliest meth-

ods for ZSL, which is often used as a baseline in

zero-shot visual recognition (Al-Halah and Stiefelha-

gen 2015; Gan et al. 2016; Xu et al. 2015b). It learns a

direct mapping from visual representation to attributes

of their corresponding class labels. In deployment,

the attributes associated with a test instance are pre-

dicted by the learned mapping functions. Then the la-

bel of this test instance is inferred with a probabilistic

model.

• Indirect Attribute Prediction (IAP): IAP (Lampert

et al. 2009) is yet another baseline ZSL method (Al-

Halah and Stiefelhagen 2015; Gan et al. 2016; Xu

et al. 2015b). Unlike DAP, in deployment, IAP first

predicts the probability scores of all the known classes

for the test instance and then apply the known class-

attribute relationship in semantic space to estimate the

probability scores of attributes. With the prediction of

attributes, the label of this test instance is predicted in

the same way as DAP.

• Structured Joint Embedding (SJE): SJE (Akata

et al. 2014) learns a joint embedding space by max-

imizing the compatibility of visual and semantic rep-

resentations xTW s. The objective used for learning W

in SJE is similar to that proposed for the structured

SVM parameter learning (Tsochantaridis et al. 2005).

• Synthesized Classifiers (Syn-Classifier): Syn-

Classifier (Changpinyo et al. 2016a) is a recent

zero-shot object recognition method that exploits the

relations between known and unseen classes in the

semantic space. As a result, the so-called “phantom”

classes are explored to model the relations between

known and unseen classes for ZSL.

• Exemplar prediction (EXEM(SynC)) (Changpinyo

et al. 2016b) is yet another bidirectional latent space

learning method similar to ours where PCA and SVR

are used to learn the latent space and to predict the

exemplars for unseen classes. Once the exemplars of

unseen classes are predicted, they are treated as ideal
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semantic representations and Syn-Classifier (Chang-

pinyo et al. 2016a) is used for zero-shot recognition.

• Latent Embedding (LatEm): LatEm (Xian et al.

2016) is a non-trivial extension of SJE. Instead of

learning a single mapping transformation in SJE, it

learns a piecewise linear compatibility function of K

parameter matrices Wi (i = 1, · · · ,K). Given a test in-

stance x, it will be labelled as the class whose seman-

tic representation maximises max
1≤i≤K

xTWis.

• Hierarchical Attribute Transfer (HAT): HAT (Al-

Halah and Stiefelhagen 2015) explores the hierarchi-

cal structures underlying the set of attributes. Based

on the relations of the original attributes, additional

high-level attributes are exploited to enhance the

knowledge transfer.

• Kernel-alignment Domain-Invariant Component

Analysis (KDICA): KDICA (Gan et al. 2016) learns

a feature transformation of the visual representations

to eliminate the mismatches between different classes

in terms of their marginal distributions over the input.

Once the transformation is learned, the representation

yielded by this transformation is used for its attribute

prediction.

• Semantic Similarity Embedding (SSE): SSE

(Zhang and Saligrama 2015) learns a model that

decomposes the visual and semantic representations

into a mixture of known classes. Thus, all the unseen

classes can be represented by such “mixture patterns”.

Given a test instance, its visual representation is first

decomposed into the mixture of known classes, and

its “mixture pattern” is used against all the unseen

classes. A label of the class with the most similar

mixture pattern is assigned to this test instance.

• Joint Latent Similarity Embedding (JLSE): JLSE

(Zhang and Saligrama 2016a) is one of the latest

zero-shot recognition methods. It formulates zero-

shot recognition as a binary prediction problem by

assigning a binary label to a pair of source and tar-

get domain instances. The visual and semantic rep-

resentations are mapped to their corresponding latent

spaces via dictionary learning and the joint latent sim-

ilarity embedding is learnt with a probabilistic model

via a joint optimization on two latent spaces so that

a pair of matched source and target domain instances

can be found.

• Unsupervised Domain Adaptation (UDA): UDA

(Kodirov et al. 2015) is proposed to tackle the domain

shift problem in zero-shot recognition by regularizing

the projection learning for unseen instances with the

projection learned with training data in known classes.

Table 4 Optimal hyper-parameter values in our approach on two ob-

ject recognition datasets, corresponding to different visual and se-

mantic representations, obtained with the cross-validation protocol de-

scribed in Section 4.4. Notation: Vis. Rep. – Visual representation,

Sem. Rep. – Semantic representation, Att – Attributes, WV – Word

Vectors and Comb – The combination of attributes and word vectors.

Dataset Vis. Rep. Sem. Rep.
Hyper-parameter

α dy kG kST

AwA

GoogLeNet

WV 1000 300 15 200

Att 1000 50 5 180

Comb 1000 50 5 200

Vgg19

WV 1000 300 10 160

Att 1000 150 5 180

Comb 1000 150 5 200

CUB-200-2011

GoogLeNet

WV 0.01 250 10 60

Att 10 100 30 40

Comb 10 100 30 60

Vgg19

WV 1 250 30 40

Att 10 100 20 20

Comb 1 100 30 40

Due to using test instances in projection learning, it is

a typical transductive ZSL algorithm.

• Transductive Multiview - Hypergraph Label Prop-

agation (TMV-HLP): TMV-HLP (Fu et al. 2015)

employs multiple visual and semantic representa-

tions to learn a common space. Heterogeneous hyper-

graphs are constructed for multiple views and la-

bel propagation in zero-shot object recognition. This

method is proposed especially for transductive ZSL.

• Ridge Regression + Nearest-Neighbor (RR+NN):

RR+NN (Xu et al. 2015b) is one of latest methods

proposed for zero-shot human action recognition. In

Xu et al. (2015b), a ridge regression from visual to

semantic representations is learned with the training

data. Then the learned regression model is first used

to map a test instance from visual to semantic spaces.

Then a nearest neighbour algorithm is employed to as-

sign a class label to this test instance in the semantic

space.

• Manifold Regression + Self-Training + Nor-

malized Nearest-Neighbor (MR+ST+NRM):

MR+ST+NRM (Xu et al. 2015b) is one of latest

methods proposed for zero-shot human action recog-

nition. Similar to ours, the manifold of visual space

is considered to learn a smooth regression model to-

wards enhancing the generalisation to unseen classes.

The self-training (ST) and the normalized nearest

neighbour (NRM) (Dinu et al. 2015) techniques

are further employed towards further improving the

zero-shot recognition accuracy.
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Fig. 2 The classwise cross-validation results on AwA and CUB-200-2011 used to determine the optimal hyper-parameter values.

5 Experimental Results

In this section, we report our experimental results5 corre-

sponding to our settings described in Sections 4.4 – 4.7,

where the per-class accuracy is used in evaluation.

5.1 Results on Hyper-parameters

By using the cross-validation protocol described in Section

4.4, we report experimental results via the mean and the

standard error of per-class recognition accuracy over multi-

ple cross-validation trials for all the datasets unless a dataset

has a standard classwise split. The initial grid search sug-

gests that the initial optimal values of dy and kG are 100 and

10, respectively, regardless of different visual representa-

tions and are hence used in the hyper-parameter fine-tuning

stage described in Section 4.4.

Fig. 2 shows the detailed cross-validation results in

terms of statistics (mean and standard error) obtained in

the fine-tuning stage for two object recognition datasets. It

5 The source code used in our experiments as well as more exper-

imental results not reported in this paper are available on our project

website: http://staff.cs.manchester.ac.uk/∼kechen/BiDiLEL.

is evident from Fig. 2 that different values of α affect the

recognition accuracy significantly, while kG has the least ef-

fects on performance. Based on results illustrated in Fig.

2, we choose the set of hyper-parameter values leading to

the best accuracy in each case when specific visual and se-

mantic representations work together as “optimal” for such

a case. For clarity, we explicitly list all the optimal hyper-

parameter values for different scenarios on two object recog-

nition datasets in Table 4. It is worth stating that the optimal

hyper-parameter values for the scenario that two semantic

representations are jointly used are easily achieved with the

results shown in Fig. 2; i.e., for a specific visual represen-

tation, the averaging accuracy on two semantic representa-

tions can be immediately achieved at each grid point of a

hyper-parameter and the optimal value can hence be found

easily for this combination scenario.

As there are 30 different training/test splits (Xu et al.

2015a) for each of two human action datasets, UCF101 and

HMDB51, we have 30 sets of optimal hyper-parameter val-

ues on a dataset for each of scenarios that combine specific

visual and semantic representations. As we used four differ-

ent visual representations and up to two semantic represen-

tations in our experiments, there are totally up to eight dif-

ferent scenarios. Due to the limited space, it is impossible to

http://staff.cs.manchester.ac.uk/~kechen/BiDiLEL
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Table 5 Zero-shot visual recognition performance (mean±standard error)% of our approach resulting from the baseline without the bottom-up

learning and the use of different enabling techniques in the bottom-up and the top-down learning stages. Notation: Vis. Rep. – Visual representa-

tion, Sem. Rep. – Semantic representation, Att – Attributes and WV – Word Vectors.

Dataset Vis. Rep. Sem. Rep.
LSM SVR LSM & SVR

Vis. Rep. PCA LPP LDA SLPP SLPP SLPP

AwA

GoogLeNet
WV 57.0 56.4 56.2 51.1 56.1 55.9 57.7
Att 74.2 73.3 72.1 72.6 72.4 74.1 74.5

Vgg19
WV 57.3 56.2 56.4 51.0 56.7 57.7 59.6
Att 79.8 78.9 79.0 73.9 79.1 75.7 78.6

CUB-200-2011

GoogLeNet
WV 29.5 29.3 32.7 36.7 34.5 30.4 32.7

Att 43.5 43.9 45.9 42.0 49.7 50.7 52.4

Vgg19
WV 29.5 28.9 34.9 36.7 37.0 33.2 34.9

Att 42.7 42.8 45.0 42.8 47.6 49.7 49.5

UCF101 (81/20)

C3D
WV 36.6±1.1 37.6±1.1 38.1±1.2 31.9±0.9 38.3±1.2 35.1±0.8 36.5±0.9
Att 35.3±1.1 38.3±1.0 38.7±1.2 34.5±1.2 39.2±1.0 43.3±1.0 43.7±1.1

MBH
WV 21.6±0.8 23.8±0.9 27.3±0.9 24.0±0.9 29.9±1.1 26.6±0.9 27.7±0.8
Att 21.1±0.9 24.6±0.9 26.5±0.8 27.5±0.8 31.4±0.8 30.6±0.8 32.2±0.8

IDT
WV 18.4±0.5 20.5±0.6 28.4±0.9 31.3±1.1 32.6±1.1 29.4±0.9 31.3±1.1
Att 21.2±0.7 22.9±0.8 28.4±0.9 34.5±0.9 34.2±0.8 33.7±0.7 35.0±0.7

UCF101 (51/50)

C3D
WV 17.8±0.4 18.5±0.4 18.6±0.4 16.3±0.4 18.9±0.4 17.9±0.5 18.9±0.5
Att 18.4±0.4 20.2±0.4 20.5±0.5 19.2±0.4 20.5±0.5 23.8±0.6 24.2±0.5

MBH
WV 9.7±0.3 10.7±0.2 12.5±0.3 11.7±0.3 14.0±0.3 12.8±0.3 13.5±0.3
Att 10.0±0.3 11.6±0.3 12.8±0.3 14.5±0.3 15.2±0.3 15.2±0.4 16.0±0.3

IDT
WV 8.5±0.2 9.2±0.2 13.5±0.4 14.4±0.4 15.4±0.4 14.3±0.2 14.9±0.3
Att 9.7±0.3 10.6±0.3 13.3±0.4 17.3±0.4 16.6±0.3 16.5±0.4 16.9±0.4

HMDB51

C3D WV 18.8±0.7 18.5±0.7 18.3±0.7 15.1±0.6 18.6±0.7 19.3±0.7 19.5±0.6
MBH WV 10.6±0.4 11.7±0.4 12.5±0.5 12.0±0.4 14.0±0.6 12.9±0.4 13.3±0.5
IDT WV 11.3±0.4 10.7±0.4 12.7±0.7 15.4±0.5 16.4±0.6 15.8±0.6 16.0±0.6

include all the details in this paper but we have made all the

experimental results on two human action datasets available

on our project website.

The optimal hyper-parameter values achieved via the

aforementioned classwise cross-validation experiments are

used in the comparative study reported in Section 5.4.

5.2 Results on Enabling Techniques

By using the settings described in Section 4.5, we conduct

the experiments to explore proper enabling techniques. Ta-

ble 5 shows the zero-shot recognition performance resulting

from the baseline without the bottom-up learning and the

use of different enabling techniques, where a bold-font fig-

ure indicates the best performance of statistical significance

in a specific setting, and a italic-font figure suggests that the

performance has been improved due to the combination of

different embedding of unseen-class labels resulting from

our LSM and SVR.

Regarding those enabling techniques for the bottom-up

learning, it is evident from Table 5 that SLPP generally per-

forms the best regardless of datasets and representations. By

a closer look at Table 5, we observe that the performance

of PCA and LPP is comparable to that of SLPP when deep

representations, e.g., GoogleNet, Vgg19 and C3D, are used.

This suggests that the additional use of labeling information

in SLPP does not improve the generalization performance

substantially. It is also evident from Table 5 that the aggres-

sive use of labeling information in LDA usually results in

poor generalization. Such performance is attributed to the

fact that, to some extent, the visual features generated by

deep CNNs via supervised learning on a much larger dataset

characterize the intrinsic structure of visual data and dis-

criminative aspects of images or video streams belonging to

different classes. Further supervised learning on such visual

representations may lead to overfitting to training classes. It

is particularly true on AwA where the deep features of visual

data sufficiently capture the intrinsic “cluster” structure; it is

observed from Table 5 that without the bottom-up learning,

our LSM algorithm yields the better performance than that

of itself working on four candidate subspace learning algo-

rithms used in the bottom-up learning. This suggests that the

bottom-up learning might be redundant for a dataset such as

AwA. As clearly shown in Table 5, however, the bottom-up

learning on other three datasets leads to a performance gain

regardless of different visual and semantic representations

used. On the other hand, we observe that the performance of

LDA is also comparable to that of SLPP when a kernel rep-

resentation space is used by the joint use of multiple visual

representations, e.g., IDT on UCF101. This suggests that af-

ter being mapped onto a kernel representation space, the in-

stances in different classes are not separated well, and the

use of labeling information improves the discriminative as-

pects in the latent space. Based on the baseline performance,
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Fig. 3 The classwise cross-validation results on AwA and CUB-200-2011 when two semantic representations are jointly used.

Table 6 Results on SJE, LatEm and CCA used as the enabling tech-

niques for the bottom-up learning while the LSM is used for the top-

down learning.

Dataset Vis. Rep. Sem. Rep. SJE LatEm CCA

AwA

GoogLeNet
WV 47.8 53.1 48.9

Att 70.0 73.2 72.7

Vgg19
WV 48.2 57.4 51.9

Att 75.7 76.5 75.5

CUB-200-2011

GoogLeNet
WV 26.8 26.6 37.1

Att 39.2 34.8 49.7

Vgg19
WV 26.7 25.1 37.9

Att 37.2 36.0 49.2

we conclude that the proper bottom-up learning is required

by taking into account preserving intrinsic structure under-

lying visual data and promoting the discriminative capabil-

ity simultaneously unless a visual representation has already

captured the intrinsic “cluster” structure of a visual data set.

Regarding the enabling top-down learning techniques,

the results shown in Table 5 reveal that LSM generally

performs better than SVR, although its performance is in-

ferior to that of SVR in some occasions for specific vi-

sual and semantic representations used on different datasets:

GoogleNet+Att and Vgg19+WV on AwA, Att on CUB-200-

2011 and C3D+Att on UCF101. Furthermore, an interesting

phenomenon is observed from Table 5 that the combination

of LSM and SVR in unseen-class embedding always im-

proves the performance of SVR whenever SVR outperforms

LSM but the further improvement does not always happen

when our LSM outperforms SVR. The experimental results

exhibit the difference between the SVR, a parametric model,

and our LSM, a non-parametric model in knowledge trans-

fer.

Regarding the use of existing ZSL methods for bottom-

up learning, we have only done the experiments on two ob-

ject recognition benchmark datasets since results on these

two datasets are only reported in the literature regarding

three candidate methods, SJE, LatEm and CCA. It is evi-

dent from Table 6 that SLPP generally outperforms three

methods on AwA although the performance of LatEm is

better than that of using specific visual and semantic rep-

resentation combinations, GoogleNet+Att and Vgg19+WV.

However, CCA outperforms SLPP on CUB-200-2011 for

those visual and semantic representation combinations:

GoogLeNet+WV, Vgg19+WV and Vgg19+Att. This sug-

gests that a proper enabling technique for the bottom-up

learning may be dependent of a specific dataset. Fortunately,

different enabling techniques can be easily and flexibly ap-

plied in our framework.

In summary, the above experimental results suggest that

SLPP can preserve intrinsic structure underlying visual data

and facilitate discriminating different classes in the latent

space. Thus, SLPP provides a proper enabling technique for

the bottom-up learning. On the other hand, our proposed

LSM works effectively in comparison to SVR and is hence

a proper enabling technique for the top-down learning.

5.3 Results on the Joint Use of Multiple Semantic

Representations

By using the settings described in Section 4.6, we conduct

experiments to seek the optimal value of γ used in combin-

ing two semantic representations: attributes and word vec-

tors. As there are many candidate visual representations, we

adopt only those that lead to the state-of-the-art performance

in our experiments. As there are no attributes available in

HMDB51, our experiments are done on AwA, CUB-200-

2011 and UCF101. While different values of γ in its permis-

sible range are used in the experiments, γ = 0.0 corresponds
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Table 7 Zero-shot object recognition per-class accuracy (mean±standard deviation)% of different approaches on AwA and CUB-200-2011

datasets. Notation: Vis. Rep. – Visual representation, Sem. Rep. – Semantic representation, Att – Attributes, WV – Word Vectors, Comb –

Combination of two semantic representations. ∗ indicates that this method uses unlabelled test instances during learning under a transductive set-

ting. † refers to the fact that the result is generated based on their specific splits publicly unavailable. ‡ refers to the results on per-image accuracy.

- refers to no result reported for this setting.

Method Vis. Rep.
AwA CUB-200-2011

Att WV Comb Att WV Comb

DAP (Al-Halah and Stiefelhagen 2015) GoogLeNet 59.9 - - 36.7 - -

SJE (Akata et al. 2015) GoogLeNet 66.7 60.1 73.9 50.1 28.4 51.0

SynC (Changpinyo et al. 2016a) GoogLeNet 72.9 - 76.3 54.7† - -

EXEM(SynC) (Changpinyo et al. 2016b) GoogLeNet 77.2 - - 59.8† - -

LatEm (Xian et al. 2016) GoogLeNet 72.5 52.3 76.1 45.6 33.1 47.4

HAT (Al-Halah and Stiefelhagen 2015) GoogLeNet 74.9 - - 51.8† - -

BiDiLEL(Ours) GoogLeNet 72.4±0.0 56.1±0.0 73.5±0.0 49.7±0.0 34.5±0.0 50.9±0.2
KDICA (Gan et al. 2016) Vgg19 73.8 - - 43.7 - -

SSE (Zhang and Saligrama 2015) Vgg19 76.3±0.8 - - 30.4±0.2 - -

JLSE (Zhang and Saligrama 2016a) Vgg19 80.5±0.5‡ - - 42.1±0.6 - -

BiDiLEL(Ours) Vgg19 79.1±0.0 56.7±0.0 78.8±0.0 47.6±0.0 37.0±0.0 48.4±0.1

UDA(Kodirov et al. 2015)∗ OverFeat 73.2 - 75.6 39.5 - 40.6

TMV-HLP (Fu et al. 2015) ∗ OverFeat+Decaf - - 80.5 - - 47.9

BiDiLEL+ST (Ours)∗ GoogLeNet 86.2±0.0 59.5±0.0 85.6±0.0 53.5±0.0 38.0±0.0 56.6±0.0

BiDiLEL+SP (Ours)∗ GoogLeNet 92.6±0.0 76.0±0.0 92.5±0.0 62.8±0.0 37.7±0.0 61.1±0.0

JLSE+SP (Zhang and Saligrama 2016b)∗ Vgg19 92.1±0.1 - - 55.3±0.8 - -

BiDiLEL+ST(Ours)∗ Vgg19 88.5±0.0 57.3±0.0 89.7±0.0 52.8±0.0 40.9±0.0 53.0±0.0
BiDiLEL+SP (Ours)∗ Vgg19 95.0±0.0 68.9±0.0 94.9±0.0 59.3±0.1 40.6±0.0 57.4±0.0

to the situation that attributes are only used and γ = 1.0 in-

dicates that word vectors are only used.

Fig. 3 illustrates the classwise cross-validation results

for different values of γ in the joint use of two seman-

tic representations on two object recognition datasets. From

Fig. 3, we see the optimal hyper-parameter values for dif-

ferent visual representations in different settings, which are

used in the comparative study reported in Section 5.4. Under

the inductive setting, γ = 0.4 for AwA regardless of visual

representations and γ = 0.2, 0.4 for CUB-200-2011 when

GoogleNet and Vgg19 are used, respectively. When the self-

teaching is used in the transductive setting, γ = 0.3 for AwA

regardless of visual representations and γ = 0.3, 0.2 for

CUB-200-2011 when GoogleNet and Vgg19 are used, re-

spectively. When the structure prediction is used in the trans-

ductive setting, γ = 0.8, 0.3 for AwA and γ = 0.3, 0.1 for

CUB-200-2011 when GoogleNet and Vgg19 are used, re-

spectively.

Likewise, the classwise cross-validation was done on 30

training/test splits for different scenarios on each of two hu-

man action datasets, respectively, as same as described in

Section 5.1. Consequently, those optimal γ values on 30

splits, which are also available on our project website, are

used in the comparative study reported in Section 5.4.

5.4 Results on Comparative Study

By using the settings described in Section 4.7, we conduct

experiments to compare ours to a number of state-of-the-art

zero-shot visual recognition methods. By using the identical

experimental protocol as suggested in literature, we can di-

rectly compare the performance to that reported in literature.

For our approach, we report the mean and standard deviation

resulting from five random initial conditions used in the top-

down learning on AwA and CUB-200-2011 as well as the

mean and standard error of the mean resulting from 30 train-

ing/test splits on UCF101 and HMDB51 while the detailed

experimental results can be found on our project website. To

facilitate our presentation, we group the experimental results

in terms of zero-shot object and human action recognition.

5.4.1 Results on Zero-shot Object Recognition

Table 7 shows the performance of different approaches in

zero-shot object recognition where the best performance is

highlighted with bold font and the results from the inductive

and the transductive settings are separated with a delimiter.

For AwA, it is evident from Table 7 that in the attribute-

based inductive setting our approach based on Vgg19 visual

features outperforms all other state-of-the-art approaches

with a high accuracy of 79.1% in terms of per-class accu-

racy except JLSE that reports the per-image accuracy of

80.5%. In its corresponding transductive setting, the use
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Table 8 Zero-shot human action recognition performance (mean±standard error)% of different approaches on UCF101 and HMDB51 datasets.

Notation: Vis. Rep. – Visual representation, Sem. Rep. – Semantic representation, Att – Attributes, WV – Word Vectors, Comb – Combination of

two semantic representations. ∗ indicates that this method uses unlabelled test instances during learning under a transductive setting. † highlights

that the visual representation is encoded with bag-of-features. - refers to no result reported for this setting.

Method Vis. Rep.
UCF101 (51/50) UCF101 (81/20) HMDB51

Att WV Comb Att WV Comb WV

DAP (Xu et al. 2015b) IDT(HOG,HOF,MBH) 15.2±0.3 - - - - - -

IAP (Xu et al. 2015b) IDT(HOG,HOF,MBH) 15.6±0.3 - - - - - -

RR+NN (Xu et al. 2015b) IDT(HOG,HOF,MBH) - 11.7±0.2 - - - - 14.5±0.1
DAP (Gan et al. 2016) C3D - - - 26.8±1.1 - - -

KDICA (Gan et al. 2016) C3D - - - 31.1±0.8 - - -

BiDiLEL (Ours) IDT(MBH) 15.2±0.3 14.0±0.3 17.1±0.3 31.4±0.8 29.9±1.1 36.3±1.0 14.0±0.6
BiDiLEL (Ours) IDT(HOG,HOF,MBH) 16.6±0.3 15.4±0.4 19.5±0.4 34.2±0.8 32.6±1.1 39.6±1.0 16.4±0.6
BiDiLEL (Ours) C3D 20.5±0.5 18.9±0.4 24.4±0.6 39.2±1.0 38.3±1.2 47.5±1.3 18.6±0.7

BiDiLEL (Ours) C3D + IDT 22.2±0.5 19.6±0.5 26.4±0.6 43.3±1.2 40.8±1.2 51.1±1.2 20.6±0.8

UDA (Kodirov et al. 2015)∗ IDT(MBH)† 13.2±0.6 - - 20.1±1.0 - - -

MR+ST+NRM (Xu et al. 2015b)∗ IDT(HOG,HOF,MBH) - 18.0±0.4 - - - - 19.1±0.5

BiDiLEL+SP (Ours)∗ IDT(MBH) 17.6±0.6 15.2±0.6 19.1±0.9 41.1±1.4 36.6±1.9 44.3±1.8 13.5±0.6
BiDiLEL+SP (Ours)∗ IDT(HOG,HOF,MBH) 21.8±0.7 17.0±0.6 23.3±0.8 48.3±1.6 40.3±1.6 51.0±2.0 15.9±0.7
BiDiLEL+SP (Ours)∗ C3D 28.3±1.0 21.4±0.8 31.6±1.2 50.1±2.0 45.6±2.0 58.3±1.8 18.9±1.1
BiDiLEL+SP (Ours)∗ C3D + IDT 29.8±1.0 23.0±0.9 35.1±1.1 57.1±1.7 49.3±2.0 66.9±1.9 22.3±1.1

of self-training (ST) in our approach based on GoogLeNet

and Vgg19 visual features lifts the accuracy to 86.2% and

88.5%, respectively, and the use of structured prediction

(SP) further improves the accuracy to 92.6% and 95.0%,

respectively. In the word-vector based inductive setting,

our approach based on Vgg19 visual features and 300-

dimensional word vectors6 yields an accuracy of 56.1%,

which is lower than that of SJE but higher than that of LatEm

where 400-dimensional word vectors are used in their exper-

iments. In the transductive setting, we observe that both ST

and SP lead to a higher accuracy. Especially, the use of SP

dramatically improves the accuracy from 56.1% to 76.0%

based on GoogleNet features. Our results suggest that SP

is constantly superior to ST under the transductive setting.

While the combination of two semantic representations sig-

nificantly improves the performance of some methods, e.g.,

SJE, it is not a case for our approach on this dataset. It is

observed that the combination of attributes and word vec-

tors generally does not improve the performance on AwA

regardless of visual representations.

For CUB-200-2011, EXEM(SynC) yields the best ac-

curacy of 59.8% in the attribute-based inductive setting but

their classwise data split protocol is unavailable publicly.

In contrast, the best performance of our approach is 49.7%

with GoogleNet features, which is better than that of DAP,

LatEM, SSE, JLSE and KDICA but worse than that of SJE,

HAT and SynC. The use of SP in the attribute-based trans-

ductive setting leads our approach to an accuracy of 62.8%.

In the word-vector based settings, it is evident from Table

6 In our experiments, we use the pre-trained 300-dimensional word

vectors available online: https://code.google.com/archive/p/word2vec,

where 400-dimensional word vectors are unavailable.

7 that our approach outperforms all others; 37% accuracy

is achieved with Vgg19 features under the inductive setting

and the use of ST and SP under the transductive setting lifts

the the accuracy to 40.9% and 40.6%, respectively. Similar

to other methods, e.g., SJE and LatEm, the joint use of two

semantic representations further improves the performance

of our approach on CUB-200-2011 in the inductive setting.

Nevertheless, the combination of semantic representations

under the transductive setting leads to limited improvement

only when ST is used but does not work when SP is applied

in our approach.

It is worth pointing out that the cost function used in our

LSM algorithm is non-convex and the gradient-based local

search only leads to a local optimum. However, our experi-

mental results shown in Table 7 suggest that the LSM learn-

ing on two benchmark object recognition datasets is insen-

sitive to different unseen-class embedding initialization and

almost always converges to the same solution.

5.4.2 Results on Zero-shot Human Action Recognition

For zero-shot human action recognition, to the best of our

knowledge, there are much fewer studies than zero-shot ob-

ject recognition in literature. Hence, we compare ours to

all the existing approaches (Gan et al. 2016; Kodirov et al.

2015; Xu et al. 2015b). It is worth clarifying that our ex-

periments concern only zero-shot human action recognition

while the previous work (Xu et al. 2015b) addresses other is-

sues, e.g., action detection, which is not studied in our work.

In addition, Xu et al. (2015b) come up with the data aug-

mentation technique to improve the performance. However,

we notice that in their experiments, some classes from auxil-

https://code.google.com/archive/p/word2vec
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iary data used for training are re-used in test, which violates

the fundamental assumption of ZSL that training and test

classes must be mutually excluded. Thus, we do not com-

pare ours to theirs (Xu et al. 2015b) in terms of the data

augmentation. Since SP almost always outperforms ST for

the post-processing, we only report the results yielded by SP

under the transductive setting in Table 8.

Table 8 shows the zero-shot recognition results of dif-

ferent methods on UCF101 and HMDB51. In the induc-

tive setting, our approach yields the best performance on

two different UCF101 classwise splits, 51/50 and 81/20. It

is clearly seen from Table 8 that our approach leads to the

highest accuracy of 22.2% and 19.6% on average for the

51/50 split and the highest accuracy of 43.3% and 40.8%

on average for the 81/20 split by using attributes and word

vectors, respectively, along with appropriate visual repre-

sentations. Despite the use of the same visual representa-

tions, our approach outperforms all the others regardless of

semantic representations. Moreover, it is evident from Table

8 that the exactly same conclusion on the results achieved

in the inductive setting can be drawn in the transductive set-

ting, where our approach results in the highest accuracy of

29.8% and 23.0% on average for the 51/50 split and the

highest accuracy of 57.1% and 49.3% on average for the

81/20 split by using attributes and word vectors, respec-

tively, along with appropriate visual representations. Fur-

thermore, the results shown in Table 8 suggest that the joint

use of two semantic representations always improve the per-

formance of our approach substantially regardless of visual

representations and classwise splits; for the 51/50 and the

81/20 splits, the highest accuracy is 26.4% and 51.1% on

average, respectively, in the inductive setting and the high-

est accuracy is 35.1% and 66.9% on average, respectively, in

the transductive setting. For HMDB51, the behavior of our

approach is identical to that on the 51/50 split of UCF101

in both inductive and transductive settings when word vec-

tors are used. Ours yields the highest averaging accuracy of

20.6% in the inductive setting and 22.3% with SP along with

C3D+IDT features in the transductive setting, respectively,

although our approach underperforms MR+ST+NRM when

IDT(HOG,HOF,MBH) features are used. Here, it is worth

pointing out that neither of the optimal hyper-parameter

search methods were described nor the detailed experimen-

tal results on each of 30 training/test splits were reported in

(Gan et al. 2016; Kodirov et al. 2015; Xu et al. 2015b). In

general, we summarize the main results shown in Table 8

as follows: a) the use of attributes always outperforms that

of word vectors when the same visual representations are

employed, which is consistent with (Akata et al. 2016); b)

the deep representation C3D outperforms the state-of-the-

art hand-crafted visual representations significantly in all the

settings; c) the joint use of two semantic representations sub-

stantially improves the performance of our approach; and d)

under the transductive setting, SP does not always improve

the zero-shot recognition performance probably due to the

highly complex intrinsic structure underlying visual data.

In summary, the experimental results achieved from our

comparative study suggest that our proposed framework

yields the favorable performance and is generally compara-

ble to all the existing state-of-the-art zero-shot visual recog-

nition methods described in Section 4.7.

6 Concluding Remarks

In this paper, we have proposed a novel bidirectional latent

embedding learning framework for zero-shot visual recog-

nition. Unlike the existing ZSL approaches, our framework

works in two subsequent learning stages. The bottom-up

learning first creates a latent space by exploring intrinsic

structures underlying visual data and the labeling informa-

tion contained in training data. Thus, the means of projected

training instances of the same class labels form the embed-

ding of known class labels and are treated as landmarks. The

top-down learning subsequently adopts a semi-supervised

manner to embed all the unseen-class labels in the latent

space with the guidance of landmarks in order to preserve

the semantic relatedness between all different classes in the

latent space. Thanks to the favorable properties of this la-

tent space, the label of a test instance is easily predicted

with a nearest-neighbor rule. Our thorough evaluation un-

der comparative studies suggests that our framework works

effectively and its performance is competitive with most of

state-of-the-art zero-shot visual recognition approaches on

four benchmark datasets.

In our ongoing research, we would further explore po-

tential enabling techniques to improve the performance and

extend our proposed framework to other kinds of ZSL prob-

lems in computer vision, e.g., multi-label zero-shot visual

recognition. Despite being proposed for zero-shot visual

recognition, we expect that our proposed framework also

works on ZSL problems in different domains, e.g., zero-shot

audio classification, zero-shot music genre recognition and

and zero-shot multimedia information retrieval.

Appendix A Derivation of Gradient on the LSM Cost

Function

In this appendix, we derive the gradient of E(Bu) de-

fined in Eq.(7). To facilitate our presentation, we sim-

plified our notation as follows: dlu
i j ,d

uu
i j ,δ

lu
i j and δ uu

i j de-

note d(bbbl
i ,bbb

u
j),d(bbb

u
i ,bbb

u
j), δ (sssl

i ,sss
u
j) and δ (sssu

i ,sss
u
j), respectively,

where d(·, ·) and δ (·, ·) are distance metrics used in the la-

tent and semantic spaces.
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Based on the simplified notation, Eq.(7) is re-written as

follows:

E(Bu) =
1

|Cl ||Cu|

|Cl |

∑
i=1

(dlu
i j −δ lu

i j )
2

δ lu
i j

+
2

|Cu|(|Cu|−1)

|Cu|

∑
i= j+1

(duu
i j −δ uu

i j )
2

δ uu
i j

.

(A.1)

Let bbbu
j = (bu

j1, · · · ,b
u
jdy
) denote the embedding of unseen

class j in the latent space, where bu
jk is its k-th element. By

applying the chain rule, we achieve

∂E(Bu)

∂bu
jk

=
∂E(Bu)

∂dlu
i j

∂dlu
i j

∂bu
jk

+
∂E(Bu)

∂duu
i j

∂duu
i j

∂bu
jk

. (A.2)

For the first term in Eq.(A.2), we have

∂E(Bu)

∂dlu
i j

=
2

|Cl ||Cu|

|Cl |

∑
i=1

(dlu
i j −δ lu

i j )

δ lu
i j

, (A.3)

and

∂dlu
i j

∂bu
jk

=
−2(bl

ik −bu
jk)

2
√

∑k(b
l
ik −bu

jk)
2
=

bu
jk −bl

ik

dlu
i j

. (A.4)

Likewise, for the second term in Eq.(A.2), we have

∂E(Bu)

∂duu
i j

=
4

|Cu|(|Cu|−1)

|Cu|

∑
i=1

(duu
i j −δ uu

i j )

δ uu
i j

, (A.5)

and

∂duu
i j

∂bu
jk

=
−2(bu

ik −bu
jk)

2
√

∑k(b
u
ik −bu

jk)
2
=

bu
jk −bu

ik

duu
i j

. (A.6)

Inserting Eqs.(A.3)-(A.6) into Eq.(A.2) leads to

∂E(Bu)

∂bu
jk

=
2

|Cl ||Cu|

|Cl |

∑
i=1

dlu
i j −δ lu

i j

δ lu
i j dlu

i j

(bu
jk −bl

ik)

+
4

|Cu|(|Cu|−1)

|Cu|

∑
i= j+1

duu
i j −δ uu

i j

δ uu
i j duu

i j

(bu
jk −bu

ik).

(A.7)

Thus, we obtain the gradient of E(Bu) with respect to Bu

used in Algorithm 1: ∇Bu E(Bu) =
(

∂E(Bu)
∂bu

jk

)
|Cu|×dy

.

Appendix B Extension to the Joint Use of Multiple

Visual Representations

In this appendix, we present the extension of our bidirec-

tional latent embedding framework in the presence of mul-

tiple visual representations.

In general, different visual representations are often of

various dimensionality. To tackle this problem, we apply the

kernel-based methodology (Cristianini and Shawe-Taylor

2000) by mapping the original visual space X to a pre-

specified kernel space K. For the visual representations X l ,

the mapping leads to the corresponding kernel representa-

tions Kl ∈ R
nl×nl where Kl

i is the i-th column of the kernel

matrix Kl and Kl
i j = k(xxxl

i ,xxx
l
j). k(xxxl

i ,xxx
l
j) stands for a kernel

function of certain favorable properties, e.g., the linear ker-

nel function used in our experiments is k(xxxl
i ,xxx

l
j) = xxxl

i

T
xxxl

j. As

there is the same dimensionality in the kernel space, the la-

tent embedding can be learned via a joint use of the kernel

representations of different visual representations regardless

of their various dimensionality.

Given M different visual representations

X (1),X (2), ...,X (M), we estimate their similarity matri-

ces W (1),W (2), ...,W (M) with Eq.(1), respectively, and

generate their respective kernel matrices K(1),K(2), ...,K(M)

as described above. Then, we combine similarity and kernel

matrices with their arithmetic averages:

W̃ =
1

M

M

∑
m=1

W (m), (A.8)

and

K̃ =
1

M

M

∑
m=1

K(m). (A.9)

Here we assume different visual representations contribute

equally. Otherwise, any weighted fusion schemes in (Yu

et al. 2015) may directly replace our simple averaging-based

fusion scheme from a computational perspective. However,

the use of different weighted fusion algorithms may lead to

considerably different performance. How to select a proper

weighted fusion algorithm is non-trivial but not addressed in

this paper.

By substituting W and X l in Eq. (2) with W̃ in Eq.

(A.8) and K̃ in Eq. (A.9), the projection P can be learned

from multiple visual representations with the same bottom-

up learning algorithm (c.f. Eqs. (2)-(5)). Applying the pro-

jection P to the kernel representation of any instance leads

to its embedding in the latent space. Thus, we can embed all

the training instances in X l into the learned latent space by

Y l = PT K̃l , (A.10)
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where K̃l is the combined kernel representation of training

data X l . For the same reason, the centralization and the l2-

normalization need to be applied to Y l prior to the landmark

generation and the top-down learning as presented in Sec-

tions 3.2 and 3.3. As the joint use of multiple visual repre-

sentations merely affects learning the projection P, the land-

mark generation and the top-down learning in our proposed

framework keep unchanged in this circumstance.

After the bidirectional latent embedding learning, how-

ever, zero-shot recognition described in Section 3.4 has to

be adapted for multiple visual representations accordingly.

Given a test instance xxxu
i , its label is predicted in the latent

space via the following procedure. First of all, its represen-

tation in the kernel space K is achieved by

K̃u
i = {k̃(xxxu

i ,xxx
l
1), k̃(xxx

u
i ,xxx

l
2), ..., k̃(xxx

u
i ,xxx

l
nl
)}T , (A.11)

where k̃(·, ·) is the combined kernel function via the arith-

metic averages of M kernel representations of this instance

arising from its M different visual representations. Then we

apply projection P to map it into the learned latent space:

yyyu
i = PT K̃u

i . (A.12)

After yyyu
i is centralized and normalized in the same manner

as done for all the training instances, its label, l∗, is assigned

to the class label of which embedding is closest to yyyu
i ; i.e.,

l∗ = argmin
l

d(yyyu
i ,bbb

u
l ), (A.13)

where bbbu
l is the latent embedding of l-th unseen class, and

d(xxx,yyy) is a distance metric in the latent space.

Appendix C Visual Representation Complementarity

Measurement and Selection

For the success in the joint use of multiple visual representa-

tions, diversity yet complementarity of multiple visual rep-

resentations play a crucial role in zero-shot visual recogni-

tion. In this appendix, we describe our approach to measur-

ing the complementarity between different visual represen-

tations and a complementarity-based algorithm used in find-

ing complementary visual representations to maximize the

performance, which has been used in our experiments.

C.1 The Complementarity Measurement

The complementarity of multiple visual representations

have been exploited in previous works. Although those

empirical studies, e.g., the results reported by Shao et al.

(2016), strongly suggest that the better performance can be

obtained by combining multiple visual representations in

human action classification, little has been done on a quan-

titative complementarity measurement. To this end, we pro-

pose an approach to measuring the complementarity of vi-

sual representations based on the diversity of local distribu-

tion in a representation space.

First of all, we define the complementarity measurement

of two visual representations X (1) ∈R
d1×n and X (2) ∈R

d2×n,

where d1 and d2 are the dimensionality of the two visual rep-

resentations, respectively, and n is the number of instances.

For each instance xi, i = 1,2, ...,n, we denote its k nearest

neighbours (kNN) in space X (1) and X (2) by N
(1)
k (i) and

N
(2)
k (i), respectively. To facilitate our presentation, we sim-

plify our notation of N
(m)
k (i) to be N

(m)
i . According to the

labels of the instances in the kNN neighborhood, the set

N
(m)
i can be divided into two disjoint subsets:

N
(m)
i = I

(m)
i ∪E

(m)
i , m = 1,2, i = 1,2, · · · ,n

where I
(m)
i and E

(m)
i are the subsets that contain nearest

neighbours of the same label as that of xi and of different

labels, respectively. Thus, we define the complementarity

between representations X (1) and X (2) as follows:

c(X (1),X (2)) =
min(|I(1)|, |I(2)|)−|I(1)∩I(2)|

|I(1)|+ |I(2)|− |I(1)∩I(2)|
, (A.14)

where I(m) = ∪n
i=1I

(m)
i for m = 1,2, and | · | denotes the

cardinality of a set. The value of c ranges from 0 to 0.5.

Intuitively, the greater the value of c is, the higher comple-

mentarity between two representations is.

In the presence of more than two visual representa-

tions, we have to measure the complementarity between one

and the remaining representations instead of another sin-

gle one as treated in Eq.(A.14). Fortunately, we can extend

the measurement defined in Eq.(A.14) to this general sce-

nario. Without loss of generality, we define the complemen-

tarity between representation X (1) and a set of representa-

tions S = {X (2), ...,X (M)} as follows:

c(X (1),S) =
min(|I(1)|, |I2,...,M|)−|I(1)∩I2,...,M|

|I(1)|+ |I2,...,M|− |I(1)∩I2,...,M|
, (A.15)

where |I2,...,M| = |I(2) ∪ I(3)... ∪ I(M)|. Thus, Eq. (A.15)

forms a generic complementarity measurement for multiple

visual representations.

C.2 Finding Complementary Visual Representations

Given a set of representations {X (1),X (2), ...,X (M)}, we aim

to select a subset of representations Sselected where the com-

plementarity between each element and another is as high

as possible. Assume we already have a set Sselected contain-

ing m complementary representations, and a set Scandidate
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containing M −m candidate representations, we can decide

which representation in Scandidate should be selected to join

Sselected by using the complementarity measurement defined

in Eq. (A.15). In particular, we estimate the complementar-

ity between each candidate representation and the set of all

the representations in Sselected , and the one of highest com-

plementarity is selected. The selection procedure terminates

when a pre-defined condition is satisfied. For example, a

pre-defined condition may be a maximum number of repre-

sentations to be allowed in Sselected or a threshold specified

by a minimal value of complementarity measurement. The

complementary representation selection procedure is sum-

marized in Algorithm A.1.

Algorithm A.1 Finding Complementary Representations.

Input: Scandidate and Sselected = /0 .

Output: Sselected .

Initialize: Compute the classification performance of each represen-

tation in Scandidate, and move the one with best performance from

Scandidate to Sselected .

1: while Termination condition is not satisfied do

2: for Each candidate representation Xm ∈ Scandidate do

3: Compute c(X (m),Sselected).
4: end for

5: Select the X (m), with highest c(X (m),Sselected).
6: Move the X (m) from Scandidate to Sselected .

7: end while

C.3 Application in Zero-shot Human Action Recognition

Here, we demonstrate the effectiveness of our proposed

approach to finding complementary visual representations

for zero-shot human action recognition. We apply Algo-

rithm A.1 to candidate visual representations ranging from

handcrafted to deep visual representations on UCF101 and

HMDB51. For the hand-crafted candidates, we choose the

state-of-the-art improved dense trajectory (IDT) based rep-

resentations. To distill the video-level representations, two

different encoding methods, bag-of-features and Fisher vec-

tor, are employed to generate four different descriptors,

HOG, HOF, MBHx and MBHy (Wang and Schmid 2013).

Thus, there are a total of eight different IDT-based local

representations. Besides, two global video-level representa-

tions, GIST3D (Solmaz et al. 2013) and STLPC (Shao et al.

2014), are also taken into account. For deep representations,

we use the C3D (Tran et al. 2015) representation. Thus, all

the 11 different visual representations constitute the candi-

date set, Scandidate.

On UCF101 and HMDB51, we set the termination con-

dition to be five visual representations at maximum in

Sselected in Algorithm A.1. Applying Algorithm A.1 to 11

candidate representations on two datasets leads to the same
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Fig. 4 Results regarding the joint use of multiple visual representations

(mean and standard error) on UCF101 (51/50 split).
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Fig. 5 Results regarding the joint use of multiple visual representations

(mean and standard error) on UCF101 (81/20 split).

Sselected consisting of C3D and four FV-based IDT represen-

tations. To verify this measured result, we use our bidirec-

tional latent embedding framework working on incremen-

tally added representations with the same settings described

in Section 4. As illustrated in Figs. 4–6, the performance of

zero-shot human action recognition achieved in 30 trials is

constantly improved as more and more selected representa-

tions are used, which suggests those selected representations

are indeed complementary. In particular, the combination

of the deep C3D representation and four IDT-based hand-

crafted representations yields the best performance that is

significantly better than that of using any single visual rep-

resentations.
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Fig. 6 Results regarding the joint use of multiple visual representations

(mean and standard error) on HMDB51.

In conclusion, we anticipate that the technique presented

in this appendix would facilitate the use of multiple visual

representations in not only visual recognition but also other

pattern recognition applications.
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